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Communication codes in developmental signaling pathways

Pulin Li"2 and Michael B. Elowitz34*

ABSTRACT

A handful of core intercellular signaling pathways play pivotal roles
in a broad variety of developmental processes. It has remained
puzzling how so few pathways can provide the precision and
specificity of cell-cell communication required for multicellular
development. Solving this requires us to quantitatively understand
how developmentally relevant signaling information is actively
sensed, transformed and spatially distributed by signaling pathways.
Recently, single cell analysis and cell-based reconstitution, among
other approaches, have begun to reveal the ‘communication
codes’ through which information is represented in the identities,
concentrations, combinations and dynamics of extracellular ligands.
They have also revealed how signaling pathways decipher these
features and control the spatial distribution of signaling in multicellular
contexts. Here, we review recent work reporting the discovery and
analysis of communication codes and discuss their implications for
diverse developmental processes.

KEY WORDS: Communication codes, Signal processing, Pathway
architecture

Introduction

Embryonic development depends on accurate, timely and specific
communication between cells. Our understanding of cell-cell
communication has evolved over many decades. In the early 20th
century, classic tissue-grafting experiments revealed crucial roles
for cell-cell communication in cell fate decision-making and other
processes (Horstadius, 1973; Spemann and Mangold, 1924).
However, the identities of the communication signals remained
elusive for more than half a century owing to the lack of molecular
tools. Over several decades, however, researchers used molecular
genetic approaches to uncover a set of highly conserved core
pathways, including the Notch, Transforming Growth Factor beta
(TGF-B), Wnt, Hedgehog (HH) and Receptor Tyrosine Kinase
(RTK) signaling systems, which play pivotal roles across an
astonishingly broad range of developmental processes (Fig. 1A).
Genetic screens and biochemical studies helped to identify the
molecular components and interactions that make up these pathways
and elucidated their roles in numerous developmental contexts
(Gerhart, 1999), providing a foundational framework for
understanding developmental signaling.

A growing body of work, especially in single cells, increasingly
suggests that these pathways signal through a set of ‘communication
codes’. More specifically, pathways sense different features of
their ligand inputs, including molecular identity, concentration,
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combination with other ligands, and dynamics (Fig. 1B). Pathways
actively sense and transform these features into the concentrations,
states and dynamics of intracellular effectors, which, in turn,
ultimately control target genes or proteins. Each processing step can
depend on cell type or context. Furthermore, at the tissue level,
pathways not only sense extracellular ligands but dynamically
sculpt their spatial distribution to enable the generation of precise
developmental patterns (Fig. 1C). From this point of view, each
pathway can be thought of as a device that actively processes signals
while changing their representation through a multi-tiered and
spatially extended processing scheme.

Communication codes depend on pathway architecture. Pathways
differ in the number and type of molecular interactions from
receptor to target gene, the integration of parallel ligand and receptor
variants, and feedback loops (Fig. 1A). Here, we review recent
progress towards understanding how different pathway architectures
implement a variety of communication codes, and discuss their
functional implications from single cells to developing tissues.
We organized the Review around four distinct input features: ligand
identity, concentration, combinations and dynamics, exploring
examples from selected pathways for each feature. We then discuss
new approaches that are enabling quantitative and even single
cell analysis of communication codes in spatio-temporally complex
systems. Finally, we identify challenges and opportunities for
future work.

Because of the stochastic and unsynchronized nature of signaling
responses in different cells, single cell methods are essential for
analyzing cell-cell communication. Therefore, throughout the
Review, we highlight the roles of single cell tools and approaches,
including fluorescent reporters, quantitative time-lapse imaging,
microfluidics, synthetic biology, genome engineering and single
cell gene expression profiling. We restrict our focus to the small set
of core signaling pathways listed in Fig. 1A that play especially
prevalent roles in embryonic development across the entire animal
kingdom and exemplify signal encoding paradigms likely to
generalize to other pathways. This Review therefore omits equally
relevant work across many other pathways and contexts, such as
NF-kB in immune signaling and cancer, which have been reviewed
elsewhere (Colombo et al., 2018; Purvis and Lahav, 2013).

Discriminating ligand identity

During evolution, gene duplication and divergence produced
multiple ligand variants that interact with multiple receptor
variants in a many-to-many (promiscuous) fashion in many
signaling pathways (Fig. 2A). For example, although each of the
seven major mammalian fibroblast growth factor receptor (FGFR)
isoforms preferentially binds to a subset of the 22 fibroblast
growth factor (FGF) ligands, the binding affinities for different
ligands tend to show a broad overlapping distribution (Ornitz et al.,
1996; Zhang et al., 2006). In contrast to this extracellular
complexity, diverse ligand-receptor complexes appear to converge
intracellularly on a smaller set of overlapping effectors. Given this
convergent architecture, it is puzzling to understand whether and
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Fig. 1. Developmental signaling pathway architectures sense, process
and control ligands in space and time. (A) Major developmental signaling
pathways use diverse architectures to control cell-cell communication. In these
pathways, ligand-receptor interactions activate intracellular effectors, which
then regulate target gene expression. Intracellular signaling activity also
induces a myriad of feedback loops to further modulate the signal processing
capability of the pathway. TF, transcription factor. (B) At the single cell level,
pathways can sense the molecular identity and concentration of individual
ligands, the relative concentrations of multiple ligands (combinations) or the
temporal dynamics of ligand concentrations. (C) At the tissue level, signaling
pathways can actively modulate the distribution of extracellular ligands and
intracellular signal perception in space and time. This spatio-temporal control
occurs through direct ligand-receptor interactions, secreted inhibitors or
modulators, and feedback loops (arrows inside each cell). The ruler and clock
represent the spatial and temporal scales of signaling activity in morphogen
gradients. Understanding the relationships between pathway architecture (A)
and signal processing (B,C) is a fundamental challenge.

how cells activate different target programs in response to different
ligands through a common set of intracellular effectors (Madhani
and Fink, 1997).

Discriminating Notch ligands

The Notch pathway enables direct communication between
neighboring cells and controls numerous cell fate decisions (Bray,
2016; Henrique and Schweisguth, 2019). Within the mammalian
pathway, four Notch receptors interact in a promiscuous fashion
with a set of Notch ligands, including delta like 1 (DII1) and
delta like 4 (D114). Signaling occurs when a ligand on one cell binds
to a Notch receptor in a neighboring cell, inducing proteolytic
release of the Notch intracellular domain (NICD) of the receptor.
NICD translocates to the nucleus to activate target genes, such as
Hes basic helix-loop-helix (bHLH) family repressors, which, in
turn, control cell fate decisions (Kageyama et al., 2007) (Fig. 2B).
This mechanism, along with the apparent equivalence among
the different Notch receptor intracellular domains (Liu et al., 2015),
provides no obvious way for a signal-receiving cell to qualitatively
determine which ligand is responsible for its activation.
Nevertheless, different ligands can trigger distinct Notch activity
dynamics even through the same receptor. Using quantitative time-
lapse microscopy to follow Notch signaling in cultured CHO cells,
Nandagopal et al. discovered that DIl and DIl4 activate the
Notchl receptor with pulsatile or sustained dynamics, respectively
(Nandagopal et al., 2018) (Fig. 2B). They further showed that direct
modulation of NICD activation dynamics in cultured C2C12 cells
differentially activates the Notch target genes Hes! and Heyl/HeyL,

whereas pulsatile Notch activation is sufficient to induce Hesl,
sustained Notch activity is required for Heyl/HeyL upregulation.
Finally, D111 and D114 had opposite effects on cell fate, promoting or
inhibiting myogenesis, respectively, when expressed in neural crest
cells within developing chick embryos. These results showed that
even the relatively ‘direct” Notch pathway is capable of
discriminating among similar ligands, processing ligand identity
into effector dynamics, and then deciphering those dynamics into
distinct target programs. In fact, using dynamics to discriminate
among ligands or inputs appears to be a growing theme in many
systems (Levine et al, 2013; Purvis and Lahav, 2013).

How is ligand identity processed into effector dynamics? Notch
ligands and receptors are known to cluster at cell interfaces.
Quantitative imaging of these clustered signaling complexes in
cultured cells (Nandagopal et al., 2018) is consistent with a working
hypothesis in which DII1 preferentially and coordinately activates
Notch receptors as clusters, thereby releasing a ‘pulse’ of many
NICDs in a single event, whereas DII4 activates Notch within
smaller clusters or individual ligand-receptor complexes, resulting
in a steady ‘trickle’ of NICDs to the nucleus (Nandagopal et al.,
2018). Further studies should help to understand the ways in which
clustering contributes to dynamic ligand discrimination.

The mechanism through which NICD dynamics are subsequently
used to differentially activate Hes ! and Hey1/HeyL remains unclear.
However, several features of the Hes/Hey regulatory circuit could
play a key role. Hesl and Heyl/HeyL are known to reciprocally
inhibit each other’s expression (Heisig et al., 2012; Noguchi et al.,
2019), whereas Hes| is unstable at the protein and mRNA level and
negatively autoregulates its own expression. Hes/ also has a unique
Notch enhancer architecture, which enables it to respond faster than
Heyl/HeyL to lower levels of NICD (Arnett et al., 2010; Nam et al.,
2007; Ong et al., 2006). Mathematical modeling has suggested that
these features together allow Hes!I to respond rapidly to a sudden
increase in NICD, whereas extended durations (~1-2 h) of sustained
NICD activity are required to upregulate Heyl/HeyL (Nandagopal
et al.,, 2018). Further studies will be necessary to disentangle
the roles of these and other mechanisms in discriminating Notch
ligand identities.

Discriminating RTK ligands

Dynamics also allow cells to discriminate among RTK ligands.
Recent studies have revealed that different ligands can induce
different epidermal growth factor receptor (EGFR) signaling
dynamics by modulating the structural features of the receptor
dimer (Fig. 2C). For example, epiregulin (EREG) and epigen
(EPGN) promote differentiation of MCF-7 cells, whereas epidermal
growth factor (EGF) promotes proliferation. These different
outcomes correlate with sustained or transient phosphorylation of
EGFR and its downstream effector ERK induced by EREG/EPGN
or EGF, respectively (Freed et al., 2017). However, EREG/EPGN
have a lower affinity for EGFR and induce shorter-lived receptor
dimers than EGF. A possible explanation for this counter-intuitive
result is that short-lived receptor dimers might fail to engage key
negative feedback mechanisms and thus prevent the termination of
the signal (Freed et al., 2017). Thus, structural alterations of
receptors induced by different ligands could be crucial for
determining signaling dynamics and discriminating ligands.

FGF and nerve growth factor (NGF) receptors also process
ligand identity into effector dynamics, activating distinct target
programs. For example, treating PC12 pheochromocytoma cells
with EGF causes proliferation, whereas FGF or NGF treatment
induces neural differentiation (Greene and Tischler, 1976;
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Fig. 2. Discriminating ligand identity. (A) Many signaling pathways share a convergent structure, with ligands interacting with receptors in a many-to-many
fashion and information ‘funneling’ down to control a smaller number of intracellular effectors. However, the shared effector can discriminate ligand-receptor
identity to induce differential gene expression programs. (B) The Notch pathway ligands DII1 and DIl4 both bind to the Notch1 receptor but activate the
downstream effector NICD with different dynamics. DII1 induces pulsatile responses, which preferentially activate the transcriptional target Hes 7, whereas DII4
induces sustained responses, which are required for activating Hey1. (C) Different RTK pathways share a common set of intracellular signal transduction
components, including PI3K/AKT and RAS/ERK, but induce different cellular responses. For example, both EREG and EGF share the same receptor EGFR, but
EREG promotes differentiation (Diff) whereas EGF promotes proliferation (Prolif) in MCF-7 cells. Based on population-level analysis, EREG elicits sustained
phosphorylation of ERK (pERK) whereas EGF induces transient pERK (Freed et al., 2017). Similarly, EGF/NGF treatment of PC12 cells induces transient/
sustained pERK that correlates with proliferation/differentiation (Marshall, 1995). (D) Single cell analysis has revealed a heterogeneous response of PC12 cells to
NGF treatment. At the single cell level, these cell fate decisions depend on both pERK and phosphorylated AKT (pAKT), with a curved boundary separating
proliferation and differentiation (left). Feedback loops within the NGF pathway (right) maintain the distribution of pAKT and pERK activities within the cell
population close to the boundary. Adapted from Chen et al. with permission (Chen et al., 2012).

Huff et al.,, 1981), although the two pathways signal through
overlapping downstream effectors, such as AKT and ERK
(Fig. 2C). Pioneering studies using synchronized populations of
cells revealed that EGF induces transient ERK phosphorylation
(pERK), whereas NGF induces sustained pERK (Fig. 2C; Traverse
et al., 1992), leading to the hypothesis that ERK dynamics could
represent the activating ligand and receptor identity. Numerous
subsequent studies in the same experimental system have revealed
how pERK duration encoding and decoding arise both from the
activity of the ligand-receptor complexes and downstream signal
processing circuits (Kao et al., 2001; Marshall, 1995; Murphy et al.,
2002, 2004; Santos et al., 2007; Sasagawa et al., 2005; Traverse
et al., 1994; Uhlitz et al., 2017; Whitmarsh, 2007). Nevertheless, it
has remained unclear to what extent transient and sustained ERK
activity can explain the distinct cellular phenotypes, especially at
the single cell level.

More recent work has begun to analyze RTK signaling dynamics
in individual cells. For example, using a fluorescence resonance
energy transfer-based biosensor (FRET) to track ERK activity
dynamics in individual cells in real time, Ryu et al. found that
application of either EGF or NGF leads to a mixed population of
PC12 cells with transient or sustained pERK activity, respectively
(Ryu et al., 2016). Similar heterogeneity was also observed at the
level of pERK and cell fate decision-making (proliferation versus
differentiation) by assaying cell morphology and proliferation
markers in fixed cells (Chen et al., 2012). Chen et al. further showed
that pERK levels alone do not predict cell fate outcomes. Rather,
cell fate depends on a combination of AKT and ERK activities. In
fact, the decision between differentiation and proliferation can be
discriminated by a curved boundary in this two-pathway signaling
space (Fig. 2D). Interestingly, a feedback loop mediated by

downregulation of Ras/ERK signaling in response to PI3K/AKT
signaling appears to shift the signaling activities closer to this fate
boundary, allowing a fraction of cells to remain in a proliferative
state across a range of inputs. Functionally, this active signal
processing system could thereby balance the number of cells in
proliferating or differentiating states and thus the overall structure of
the cell population. As EGF and NGF elicit different cellular
phenotypes, it would be interesting to investigate whether different
RTKs engage similar or distinct downstream feedback loops, or
whether the different dynamics result from different structural
features of various ligand-receptor complexes. Combinatorial
control of a cell response by AKT and ERK has also been
observed in individual human mammary gland epithelial cells
stimulated with various growth factors (Sampattavanich et al.,
2018). The RTK signaling system thus provides an important and
intriguing example of how signaling pathways not only transmit
inputs but actively process them to control population structure, and
how quantitative, multi-dimensional, single cell measurements can
provide insights into the relationship between signal processing and
cell fate decision-making.

Modulating or programming ligand specificity

In the examples discussed above, multiple ligands activate different
responses through the same pathway. But in other contexts, cells
may selectively respond to some ligands but not others. When
different ligands use distinct receptors, this could be achieved
simply through differential receptor expression. However, cells
appear to selectively sense specific ligands, even when multiple
ligands can signal through the same receptors. One way this is
achieved is through pathway modulators, such as co-receptors and
enzymes that inhibit or facilitate binding between specific ligands
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and receptors, and thus alter communication specificity. For
example, Fringe glycosyltransferases modify Notch receptors,
altering their preference for Delta or Jagged ligands (LeBon et al.,
2014; Moloney et al., 2000; Panin et al., 1997). Similarly, in the Wnt
pathway, the cell-surface co-receptor Reck can specifically
recognize Wnt7, but not other Wnts, and recruits Wnt7 into
dynamic Wnt/Frizzled/Lrp5/6 signalosomes (Eubelen et al., 2018).
This might explain how Wnt7 exclusively controls mammalian
forebrain and ventral spinal cord angiogenesis within the
neurovascular system.

Synthetic biology enables a complementary approach to
understanding communication specificity by engineering synthetic
‘orthogonal’ (independent) communication channels (Elowitz and
Lim, 2010). For example, the extracellular ligand-binding domains
and the intracellular effector domains of Notch can both be replaced
with engineered alternative domains to create synthetic receptors that
sense arbitrary inputs and activate arbitrary target genes (Morsut
et al., 2016). These and related synthetic communication systems
have been used for controlling immune cell responses (Roybal et al.,
2016), engineering synthetic multicellular patterns (Toda et al.,
2018) and mapping direct cell-cell contact and neural connections
(He et al., 2017; Huang et al., 2016, 2017). By demonstrating the
possibility of orthogonal multiplexing, they provoke the question,
which we address in the section ‘Sensing ligand combinations’: why
do so many natural pathways appear to use many-to-many ligand-
receptor specificities?

Sensing ligand concentration

For most developmental pathways, different ligand concentrations
can trigger distinct cellular responses. For example, along a
morphogen gradient, adjacent cells commit to distinct fates based
on small differences in local ligand concentration. In the simplest
scenario, higher concentrations of ligand generate correspondingly
higher activities of intracellular effectors (Fig. 3A). However, recent
work has begun to reveal more-complex signal processing schemes.

Fold change detection of ligand concentration

In some systems, ligand concentration controls the fold change (post-
stimulus divided by pre-stimulus activity) of an intracellular effector,
rather than its absolute level, and this fold change in turn determines
cellular responses (Adler and Alon, 2018). Early evidence for fold
change detection (FCD) in developmental signaling came from the
observation in Xenopus that developmental outcomes depend on fold
changes, rather than absolute levels, of B-catenin, the downstream
effector of Wnt (Goentoro and Kirschner, 2009).

Analyzing FCD requires tracking signaling activity both before
and after stimulation in the same cell. To achieve this, Frick et al.
used quantitative single cell time-lapse imaging to demonstrate that
FCD is used by the TGF-p pathway (Frick et al., 2017). The authors
stimulated C2C12 cells with different concentrations of TGF-§
ligand, quantified nuclear localization of the TGF- effector Smad3
before and after the stimulation using time-lapse imaging, and
analyzed the expression of downstream targets in the same cells by
single molecule fluorescence in situ hybridization (FISH).
Combining these single cell approaches, they discovered that
different TGF-B concentrations induce different fold changes in
nuclear Smad3 levels. They further observed that the expression of
downstream transcriptional targets correlates more strongly with the
fold change than the absolute level of nuclear Smad3 (Fig. 3B).
Similar examples of FCD have also been suggested or reported in
pathways employing ERK or NF-xB as intracellular effectors
(Cohen-Saidon et al., 2009; Lee et al, 2014). Furthermore,
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Fig. 3. Different strategies for sensing ligand concentration. (A) In the
simplest ‘amplitude modulation’ systems, ligand concentrations are encoded in
the concentrations of intracellular effectors. (B) The TGF-B pathway can
encode ligand concentration in the fold change, rather than the absolute level,
of its effector nuclear Smad3 (S). At the single cell level, cells display highly
heterogeneous levels of nuclear Smad3 both before and after TGF-f treatment
(top panels), and the distribution of absolute Smad3 level overlaps significantly
between different concentration groups (second row). However, fold changes
of nuclear Smad3 (post-stimulus divided by its pre-stimulus level in the same
cell) show less heterogeneity and better separated distributions between
different concentration groups (third row). Furthermore, target gene expression
correlates better with the fold change, [S(tenq)/S(to)] than with the absolute
level, S(teng), of nuclear Smad3 (bottom row). Dots represent the number of the
same transcripts in individual cells treated with either low (gray) or high (blue)
concentrations of TGF-B. (C) EGF induces coherent oscillations of pERK
shuttling between the nucleus and cytoplasm in certain cellular contexts, and
the concentration of EGF regulates the frequency of these oscillations. (D) In
developing mouse and chick embryos, SHH secreted from the ventral side of
the neural tube forms a concentration gradient. Cells at different positions
encode different SHH concentrations into Gli activity profiles with distinct
amplitude and duration. Gli activity is then decoded by the downstream fate-
decision circuits, composed of multiple transcription factors. A two-
dimensional map based on both the amplitude and duration of Gli activity
determines the cell fate output, and thus the spatial domains of distinct
progenitor cell types. D, dorsal; V, ventral. Adapted from Briscoe & Small with
permission (Briscoe and Small, 2015).

theoretical analysis and experimental perturbation have identified
specific architectures of downstream circuits that could perform
FCD, such as incoherent type-1 feedforward loops (Goentoro et al.,
2009), non-linear integral feedback loops (Shoval et al., 2010) and
logarithmic sensors (Olsman and Goentoro, 2016), as reviewed
elsewhere (Adler et al., 2017). Together, these results support FCD
as a prevalent mode of sensing and decoding ligand concentration.

What advantage does FCD provide compared with more directly
sensing the absolute level of effector activity? One benefit is to
reduce cell-to-cell variability in responses to homogenous ligand
stimulation. Cells are inherently heterogeneous, or ‘noisy’, in the
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expression level of pathway components (e.g. receptors and
effectors). Such heterogeneity could lead to high variability in the
absolute level of effector activity both in the basal and ligand-
stimulated states. However, by sensing the ratio of post- to pre-
stimulation activity, many sources of variability effectively ‘cancel
out’, providing a more accurate readout of input (Frick et al., 2017).
FCD, therefore, can effectively reduce cell-to-cell variability and
compensate for biological noise.

Frequency modulation by ligand concentration

Ligand concentration can be represented by the frequency, duration
or amplitude of effector oscillations (Hao et al., 2013). For example,
in human mammary epithelial cells (HMECs) and MCF-10A cells,
EGF induces oscillatory shuttling of phosphorylated ERK between
the nucleus and cytoplasm, with EGF concentration controlling the
oscillation frequency (Albeck et al., 2013; Shankaran et al., 2009)
(Fig. 3C). Similar ERK oscillations have also been reported in
Caenorhabditis elegans (de la Cova et al., 2017). To test whether
ERK dynamics generate differential cellular responses, Toettcher
and colleagues used optogenetic approaches to directly control ERK
activity in individual cells (Toettcher et al., 2013). They took
advantage of the light-gated protein-protein interaction between
Phytochrome B (Phy) and PIF (Shimizu-Sato et al., 2002). By
anchoring Phy to the cell membrane, where Ras protein resides,
and fusing the activator of Ras (SOScat) to the otherwise
cytoplasmically localized PIF, they were able to use light to
switch the SOScat-Ras interaction on and off within seconds,
activating Ras, which in turn phosphorylates ERK. In this way, they
showed that different ERK oscillation dynamics are sufficient to
induce distinct gene expression programs (Wilson et al., 2017).
Furthermore, they identified a network of immediate early genes that
directly decipher ERK dynamics in NIH3T3 cells. As ERK
oscillations are not synchronized between cells, these discoveries
depended on quantitative single cell time-lapse imaging and the
development of fluorescent reporters, such as an ERK-GFP fusion
protein, a FRET-based ERK activity reporter and a phosphorylation-
dependent kinase translocation reporter (Regot et al., 2014).

Frequency modulation has now been observed in diverse
signaling systems, including p53 in cancer cells (Lahav et al.,
2004; Purvis and Lahav, 2013), NF-xB in the immune system
(Hoffmann, 2002; Nelson et al., 2004), calcium-NFAT signaling
(Yissachar et al., 2013), Notch/Hes signaling in neurogenesis and
stem cell maintenance (Hirata et al., 2002; Imayoshi et al., 2013;
Manning et al., 2018 preprint; Shimojo et al., 2008) as well as in
several yeast pathways (Cai et al., 2008; Hao and O’Shea, 2012; Lin
et al.,, 2015). In yeast, a systematic movie-based screen found
pulsing in ~10% of transcription factors (Dalal et al., 2014),
suggesting that pulsatile or oscillatory dynamics are likely to
be prevalent.

Despite much work in individual systems, key questions about
pulsing and oscillation remain unclear. For example, although
recent theoretical work has identified candidate regulatory circuits
that could decode dynamics (Gao et al., 2018) and examined
mechanisms of dynamic decoding by target promoters in yeast
(Hansen and O’Shea, 2013), decoding remains incompletely
understood in most contexts. A second issue is context-
dependence. ERK exhibits frequency-modulated oscillations in
epithelial cells, but duration-modulated adaptive pulses in PC12
cells (Albeck et al., 2013; Marshall, 1995; Shankaran et al., 2009).
Similarly, in the early Drosophila embryo, cellular responses
depend on the integrated activity of ERK over time (Johnson and
Toettcher, 2019), rather than on other features of the dynamics.

Understanding how cell context affects decoding is a key challenge.
Finally, why are oscillations often more sporadic than periodic
(Levine et al., 2013)? One possibility is that the system functions
mainly to control, e.g. by pulse frequency, the overall fraction of
time that a given regulator is active. Further study is needed to reveal
the principles of dynamic signal processing, tradeoffs between
alternative processing schemes, and ways to rationally intervene and
modulate signaling dynamics.

Amplitude and duration modulation in morphogen gradients

Ligand concentration can also be represented by the amplitude and
duration of adaptive pulses of effector activity. A classic example
occurs in neural tube development, during which multiple
morphogens together specify complex tissue patterns. One of
these, Sonic hedgehog (SHH), forms a concentration gradient on the
ventral side of the neural tube, specifying several neural progenitor
fate domains (Briscoe and Small, 2015). Here, SHH concentration
controls the amplitude and duration of an adaptive pulse of
intracellular SHH signaling activity (Cohen et al., 2015; Dessaud
et al., 2007). Quantitative analysis of SHH signaling dynamics, as
reported by the activity of the downstream effector Gli and the
expression of cell fate markers (Pax6, Olig2 and Nkx2.2), has
suggested that both the amplitude and duration of Gli activity
collectively determine neural progenitor cell fates in chick and mice
(Dessaud et al., 2007) (Fig. 3D). These features of effector activity
are deciphered through a downstream gene regulatory network
composed of the same transcription factors that mark progenitor cell
fates (Balaskas et al., 2012). Recent work in zebrafish suggests that
anterior and posterior regions of the developing zebrafish neural tube
might be sensitive to distinct, but overlapping, features of the
dynamic SHH activity signal (Xiong et al., 2018 preprint). These
studies provoke the question of how many modes of signal
processing exist, how they vary between tissue and species
contexts, and how they are impacted by factors such as tissue
geometry and developmental speed.

Sensing ligand combinations

Inside an embryo, cells are more often exposed to “cocktails” of
multiple ligands rather than to a single ligand species. Recent
studies suggest that cells can extract information encoded in multi-
ligand combinations, both within a single pathway and among
multiple pathways.

Ligand-receptor promiscuity enables combinatorial sensing

Within the Bone Morphogenetic Protein (BMP) pathway, multiple
ligands and receptors interact in a promiscuous fashion (Fig. 2A). In
most developmental processes, multiple BMP ligands are present in
overlapping regions of the tissue and individual cells typically
express multiple receptor variants (Danesh et al., 2009; Salazar
et al., 2016). These observations provoke the general question of
what functional capability these apparent redundancies might
provide. Recent studies have therefore used mathematical
modeling and experimental approaches to analyze the ways in
which the BMP and larger TGF-B pathways process multi-ligand
signals (Vilar et al., 2006; Antebi et al., 2017). By quantitatively
studying the response of the BMP pathway to simultaneous
presentation of multiple ligands, Antebi et al. showed that cells
can respond to the relative (rather than absolute) concentrations of
two ligands in complex ways (Antebi et al., 2017). For example, the
pathway may respond to the ratio of two ligand concentrations,
similar to other ratiometric sensing systems (Vilar et al., 2006;
Escalante-Chong et al., 2015), or become activated when those
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ligands are either close to (‘balance detection’) or far from
(‘imbalance detection’) a specific concentration ratio (Fig. 4A).
Molecularly, these computations can emerge from competitive
receptor-ligand interactions that form distinct protein signaling
complexes, which then phosphorylate downstream effectors at
different rates. In the simplest case, ratiometric sensing can emerge
when two ligands compete to form active or inactive complexes
with the same receptors. Furthermore, changing the profile of
expressed receptors can alter the computation that the pathway
performs on a given set of ligands (Fig. 4A). Consequently, altering
the concentration of a single ligand could have opposite effects on
cells exhibiting different receptor expression profiles. This result
suggests a combinatorial solution to the problem of communication
specificity in promiscuous systems: signaling occurs in a high-
dimensional, combinatorial encoding space, with cells effectively
‘tuning in’ through their receptor expression profile to sense
information encoded in ligand combinations. A recent theoretical
study suggests additional functions for promiscuous ligand-receptor
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Fig. 4. Sensing combinations of multiple ligands in the same or
orthogonal pathways. (A) Multiple BMP ligands can often bind to the same
receptors. Pathway activity in this context can be a complex function of ligand
combinations. Cells expressing the same receptors can compute different
functions of distinct ligand combinations, including additive, ratiometric or
imbalanced relationships between the two ligands (top row). Cells can also
change their receptor expression profiles to compute different functions of the
same ligand combinations (bottom row). For example, BMP4 and BMP9 exhibit
an additive relationship in NMuMG cells, whereas knocking down BMPR2 in
NMuMG cells or altering the BMPR expression profile entirely in a different cell
type, such as mouse embryonic stem cells (MESC), completely changes the
ligand relationship. (B) SHH and BMP set up anti-parallel gradients in the
developing neural tube to specify several dorsal (D), intermediate (I) and
ventral (V) neural progenitor fate domains. The ligand concentrations of the two
orthogonal pathways control the activities of their canonical intracellular
effectors, Gli and pSmad, which are subsequently decoded by a gene
regulatory network, represented here in its abstract form. Different
combinations of BMP and SHH concentrations lead to distinct cell fates:
SHH-low/BMP-low produces intermediate fates, whereas SHH-high/BMP-high
produces either dorsal or ventral fates in a stochastic manner but not
intermediate fates, which suggests cells do not measure the relative level of the
two ligands. Different dorsal progenitor fates are indicated by different shades
of red, and different ventral progenitor fates are indicated by different shades of
blue. Adapted from Zagorski et al. with permission (Zagorski et al., 2017).

sensing, including improved sensing accuracy (Carballo-Pacheco
et al., 2019). Given the prevalence of such promiscuous ligand-
receptor interactions, it is tempting to speculate that these
promiscuity-based combinatorial computations could be used
more broadly to enable different cell types to respond in different
ligand environments.

Integrating information from orthogonal pathways

A recurring theme in development is the use of multiple signaling
pathways simultaneously or sequentially in a given developmental
process. However, the underlying logic of how information is
integrated from orthogonal pathways often remains obscure. In the
developing neural tube, BMP and SHH form antiparallel dorsal-
ventral gradients that together pattern at least ten distinct cell fates
along the dorsal-ventral axis. To understand how information from
the two pathways is combined to control cell fates, Zagorski et al.
used phosphorylated Smad (pSmad) staining and an SHH signaling
reporter to quantitatively measure both pathway activities along
the dorsal-ventral axis, and correlate these activities with the
resulting positional identities (Zagorski et al., 2017). As expected,
BMP-high/SHH-low elicited dorsal fates, BMP-low/SHH-high
elicited ventral fates, and BMP-low/SHH-low specified fates in the
intermediate zone (Fig. 4B). Interestingly, however, simultaneously
treating chick neural tube explants with high BMP7 and high
SHH concentrations produced a mixture of dorsal and ventral
progenitors, but no intermediate fates. This behavior suggests that, at
high ligand concentrations, cell fate decisions can be exclusive
and stochastic. The authors further showed how a proposed gene
regulatory circuit can recapitulate these experimentally measured
signal-integration behaviors across different combinations of BMP/
SHH concentrations (Fig. 4B). Importantly, acquiring positional
information from both gradients appeared to help minimize the
positional error, a principle that could generalize to other patterning
systems.

Perceiving ligand dynamics

Experimentally, it is usually convenient to study responses to
sudden increases in ligand concentration. However, within a
developing embryo, ligand concentrations may be continually
changing. How cells extract useful information from such
constantly changing environments is an important but relatively
understudied question. Recently, Sorre et al. applied microfluidics
and quantitative time-lapse imaging to study the response of the
TGF-B pathway to different ligand dynamics (Sorre et al., 2014).
They analyzed the ability of TGF-f to block the differentiation of
C2C12 cells into myotubes in low-serum conditions. Combining a
GFP-Smad4 reporter to dynamically monitor Smad4 nuclear
localization and a synthetic transcriptional reporter to quantify
target promoter activity, they observed that a step-wise increase in
TGF-B induces a strong adaptive signal response, as reported
previously (Strasen et al., 2018; Vizan et al., 2013; Warmflash et al.,
2012). Two interesting behaviors also emerged. First, they found
that treating cells with a ‘pulse train’ of TGF-B (i.e. 1h pulses
separated by 6 h) blocks differentiation more efficiently compared
with continuous (15 h) exposure to the same ligand at the same
concentration (Fig. 5A) (Sorre et al., 2014). One crucial aspect is the
duration of the interval between successive pulses, which must be
longer than a minimal recovery time to produce the elevated effect.
A similar effect of input intervals on cellular responses has been
observed in PC12 cells treated with pulsatile EGF/NGF and in
neuroblastoma cells treated with pulsatile TNF-o (Ashall et al.,
2009; Ryu et al.,, 2016). Although the molecular mechanisms
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Fig. 5. Perceiving rates of change in ligand concentration. (A) Step-like but
sustained TGF-p treatment leads to adaptive dynamics of intracellular signaling
activity, which is measured by the level of nuclear Smad4. Sustained TGF-$
exposure is less effective than pulsatile TGF-B exposure at inhibiting myoblast
differentiation into myotubes, which is induced by a low level of serum in the
culture. (B) In the same experimental system, gradually increasing TGF-3
concentration activates the signal less strongly than a sudden step-like rise in
the ligand concentration. The rate of change in ligand concentration correlates
with response amplitude.

controlling the duration of the refractory periods remain unclear,
negative feedback loops operating at specific timescales are likely
involved. Second, the authors found that gradually ramping up the
ligand concentration generates different outcomes compared with a
sudden increase to the same final ligand concentration (Fig. 5B). In
fact, the amplitude of the response correlates with the rate of
increase in ligand concentration, with slower increase leading to
dampened responses, similar to rate of change sensing in bacteria
(Shimizu et al., 2010; Young et al., 2013). This could have
interesting implications in morphogen gradients, in which cells at
different positions could experience not only different ligand
concentrations but also different rates of change in the ligand
concentration. Lastly, it is interesting to contrast TGF-$ with BMP4.
Both ligands belong to the same superfamily of signaling ligands,
but BMP4 induces sustained signaling activity whereas temporal
adaptation appears to be built into the TGF-f pathway (Nemashkalo
etal.,2017; Yoney et al., 2018). How and why the pathways exhibit
such distinct dynamic behaviors remains unclear.

Spatio-temporal signaling codes for multicellular patterning
One of the key objectives of studies of intercellular communication
codes is to understand, predict and engineer tissue-level behavior.
To wunderstand how multicellular behavior emerges from
information processing in individual cells, it is necessary to first
take the cells out of their spatial contexts, precisely control the
ligand input and quantitatively measure the signal and cell fate
outputs, as in the examples discussed above. However, studying
cells in isolation neglects the roles of tissue geometry and polarity,
as well as spatially organized ligand secretion and receptor
expression, in the overall signaling and patterning behavior of a
multicellular tissue (Butler and Wallingford, 2017; Chan et al.,
2017). It is therefore essential to study the roles of signaling
pathways in spatio-temporally organized multicellular contexts.

One of the most important types of information that ligands encode
is spatial position within a developing tissue. In the simplest classic
models of morphogenetic patterning, ligand concentrations diminish
away from a source, such that signal-receiving cells can infer their
position from local ligand concentration (Rogers and Schier, 2011).
However, signaling pathways in receiving cells employ complex
feedback loops (Fig. 1A), which can in fact actively modulate the
spatial distribution of extracellular ligands and intracellular signaling
activity (Freeman, 2000; Perrimon and McMahon, 1999). Although
these systems are inherently challenging to analyze within complex
developmental contexts, recent work has shown that many complex
spatial patterning behaviors can be analyzed in reconstituted systems
outside the embryo. Such studies are shedding light on the basic
principles of how pathway activities within individual cells impact
pattern formation at the multicellular scale. Here, we highlight
examples of both spontaneous and synthetically engineered pattern
formation in cultured cells.

Reconstituting spontaneous pattern formation

One of the most fascinating examples of tissue patterning is
somitogenesis (Hubaud and Pourquié, 2014; Oates et al., 2012).
Undifferentiated presomitic mesoderm (PSM) tissue progressively
differentiates into a series of somites through a process involving
tightly coordinated oscillations and spatial gradients of multiple
signaling pathways that produce kinematic waves of activity
(Soroldoni et al., 2014). Although somitogenesis has been imaged
in spectacular detail within embryos, disentangling the dynamic
roles of different signaling pathways during somitogenesis at the
single cell level remains challenging in embryos. However,
culturing individual PSM cells in vifro has allowed direct
observation of signaling pathway activities, for example of Notch
pathway activity.

Unlike their in vivo counterparts, isolated PSM cells do not
sustain oscillations in Notch pathway targets (Masamizu et al.,
2006; Palmeirim et al., 1997, Webb et al., 2016). However,
reaggregation of unsynchronized PSM cells in 2D culture causes
cells to self-organize in space and time to create synchronized Notch
signaling waves that move across fields of cells, reminiscent of the
segmentation clock in vivo (Hubaud et al., 2017; Lauschke et al.,
2012; Tsiairis and Aulehla, 2016). More recently, Hubaud and
colleagues used 2D in vitro-cultured PSM to study whether self-
sustaining oscillations can occur in a cell-autonomous manner or
whether they emerge from interactions among cells (Hubaud et al.,
2017). By dissociating, re-aggregating and plating PSM cells at
different densities, the authors showed that oscillations are a
collective property of the cells that requires active intercellular
signaling through the Yap and Notch signaling pathways (Fig. 6A).
In a separate study, Sonnen and colleagues used cultured PSM
together with microfluidics to investigate the role of the relative
timing of Notch and Wnt oscillations (Sonnen et al., 2018). By
directly forcing oscillations in one pathway, the other, or both, they
were able to show that Notch oscillations could drive corresponding
Wht oscillations and vice versa. Using this system, they investigated
the functional role of observed relative timing, or phasing, in
patterning. It is known that the phase difference between the
pathways naturally changes from anti-phase to in-phase along
the posterior-anterior axis of the PSM. By driving oscillations of the
two pathways either in or out of phase, they directly showed that the
relative timing of these oscillations controls segmentation (Fig. 6B).
Thus, cells can encode positional information in the relative
timing of oscillatory pathway activities. It is interesting to compare
these findings with recent work in yeast similarly showing that

7

DEVELOPMENT



REVIEW

Development (2019) 146, dev170977. doi:10.1242/dev.170977

A Emergent dynamics B Phase modulation in space

Single cells  Population .
[@) z —Somite
© AN
Time
Z 2 =) Notch
= > Z
8 k] kot Wnt
< < < ‘
Time Time Time
C Bottom-up reconstitution D
Senders
Fibroblasts @_, SHH ©
-
==\ = PTCH
@ gﬁ \ ﬂ 2 @x
Receivers 2 = 1 ‘>®
I | | Distance | Target (O

Genetic engineering  Quantitative imaging

E Architecture controlling gradient robustness

Normal rate % Signal response
of SHH D@- —
production

| [EleeeEs AM;’,;;sg,za,gk

Increased ® PTCH
rate of SHH D@@ feedback
production (natural)

& Intracellul
(@lo)elo[a]o) ”fggﬁ,‘i,a‘;kar
S4 (rewired)

Fig. 6. Reconstituted systems enable quantitative analysis of
communication codes in space and time. (A,B) A 2D culture system of PSM
cells can be used as an in vitro model for somitogenesis. The activities of multiple
pathways, including Notch, Wnt and FGF, oscillate in the PSM. Whereas isolated
individual PSM cells exhibit pulses of signaling activation in vitro, populations of
densely packed PSM cells display synchronized oscillations in a density-
dependent manner (A). The relative phases between Notch and Wnt signal
oscillation differ at different locations within the PSM, with an anti-phase
relationship in the posterior and an in-phase relationship in the anterior, which
triggers segmentation (B). The phasing between two oscillatory signals can
therefore encode spatial information. (C) A bottom-up morphogen gradient
reconstitution system enables quantitative analysis of the causal relationship
between pathway architecture and tissue patterning. By engineering mouse
fibroblasts into morphogen-sending and -receiving cells and plating the two
populations under defined spatial arrangements, gradients can form within the
cell layer in a petri dish. Spatio-temporal dynamics can be quantitatively
measured using time-lapse imaging. (D) Unique architectural features of the SHH
pathway. PTCH receptor (purple) inhibits downstream signal and transcriptional
targets (yellow) in the absence of SHH (blue) (1). SHH-PTCH binding leads to
inactivation of PTCH and SHH (2), and thus activation of the downstream targets.
Signal activation induces an evolutionarily conserved negative feedback through
upregulation of PTCH (3), which both sequesters ligand extracellularly and
inhibits signal intracellularly, and therefore is bifunctional (red arrows).

(E) Rewiring the SHH pathway to explore different architectures and measuring
the resulting gradients revealed different degrees of robustness to variations in
SHH production rate: without feedback (minimal), the amplitude (the response in
the first cell next to the source) and length of the signaling gradient are
sensitive to an increase in the ligand production rate (second row versus first row);
with the evolutionarily conserved PTCH feedback (natural), both gradient
amplitude and length become more robust (second row versus third row); with
intracellular negative feedback (rewired) from a mutant PTCH (orange) that does
not bind SHH but suppresses the intracellular signal (Briscoe et al., 2001),
gradient amplitude but not lengthscale becomes more robust compared with no
feedback (last row versus second row). These results directly link pathway
architecture to patterning behavior.

the identities of different environmental stresses are encoded in the
relative timing with which different transcription factors activate
(Lin et al., 2015).

Similar reconstitution approaches have been applied to
embryonic stem cells to enable spatially organized differentiation
in 2D and 3D. Some of the 2D models are especially compatible
with quantitative time-lapse imaging and spatio-temporally
controlled perturbations, and hence are particularly suitable for
studying signaling activities in space and time at the single cell level
(Martyn et al., 2018; Morgani et al., 2018; Thorne et al., 2018;
Warmflash et al., 2014; Yoney et al., 2018). Together, these systems
are poised to address fundamental questions about how
developmental signaling information is encoded in space and time
during early embryonic development.

Synthetically engineering pattern formation from the bottom up
Despite our improved capability of analyzing natural genetic
circuits, it is still difficult to identify which minimal circuits are
sufficient to enable spatial patterning, what key parameters control
system performance and what tradeoffs exist among alternative
circuit designs. To address these issues, one would ideally like to
systematically rewire circuit architecture, tune key parameters and
quantitatively measure the resulting multicellular behaviors. In this
respect, traditional genetic approaches of perturbing one or a few
components at a time inside an embryo are limited. An alternative
approach is to engineer genetic circuits into cells that normally do
not express them, and test whether the reconstituted circuits are
sufficient for enabling desired behaviors. Based on this rationale, we
have recently reconstituted SHH signaling gradients in a petri dish
using engineered mouse fibroblasts that can secrete and respond to
SHH (Fig. 6C) (Li et al., 2018). In this system, gradients form
primarily through ligand movement within the cell layer, similar to
what happens inside an embryo. This reconstituted system avoids
interference from upstream or parallel developmental processes,
enables genetic rewiring of the pathway and is compatible with
quantitative analysis of spatio-temporal gradient dynamics. It
therefore provides a unique opportunity for studying how genetic
circuits enable multicellular behaviors.

The SHH pathway has several unique architectural features
(Fig. 6D). First, the pathway has a double-negative logic, in which
free receptor PTCH inhibits the intracellular signal, and SHH-PTCH
interaction leads to mutual inactivation and internalization of the
complex, effectively removing the inhibition to enable pathway
activation (Briscoe and Thérond, 2013). Second, pathway activation
upregulates the expression of PTCH, forming an evolutionarily
conserved feedback loop (Goodrich et al., 1996; Jeong and
McMahon, 2005). Third, this feedback loop both sequesters
ligands extracellularly and suppresses signal intracellularly (Chen
and Struhl, 1996), and therefore acts as a bifunctional negative
feedback. To understand how these architectural features impact
gradient formation, we rewired the SHH pathway to implement
alternative pathway variants that both do, and do not, exist in nature,
and systematically analyzed the spatiotemporal dynamics of the
resulting gradients (Li et al., 2018) (Fig. 6E). This analysis revealed
that without the negative feedback (minimal design), signaling
gradients are sensitive to variations in the ligand production rate.
PTCH feedback (natural design) makes the signaling gradient more
robust to variations in the ligand production rate, and it also
accelerates the approach of gradients to steady states. Finally, PTCH
feedback outperforms other alternative designs, such as an
intracellular negative feedback that only inhibits signal inside the
cells without affecting extracellular ligand distribution (rewired
design). The performance of PTCH feedback requires its dual
function, which enforces a tight coordination between intra- and
extra-cellular modulation.

DEVELOPMENT



REVIEW

Development (2019) 146, dev170977. doi:10.1242/dev.170977

These results directly demonstrate that the wiring of a pathway
can determine the spatio-temporal dynamics and robustness of
signaling gradients. They also pose new questions: how do other
pathways achieve patterning robustness (Eldar and Barkai, 2005;
Eldar et al., 2003, 2004)? Or, alternatively, have other pathways
evolved to provide distinct capabilities? Examination of other
spatial patterning systems reveals a rich set of patterning phenomena
and pathway architectures that could be analyzed in a similar
fashion. For example, work in embryos has shown that BMP ligands
can be actively ‘shuttled’ from the location in which they are
produced to generate specific developmental patterns (Shilo et al.,
2013). Similarly, the ability to proportionally scale a pattern with
tissue size can emerge from repression of a rapidly diffusible
morphogen ‘expander’ or from a distinct mechanism (Ben-Zvi
et al., 2011; Gregor et al., 2005; Inomata et al., 2013), which has
been comprehensively reviewed (Umulis and Othmer, 2013). It will
be interesting to see whether such complex, multi-protein behaviors
can be understood through similar reconstitution approaches.

Synthetic approaches to development are now gaining traction.
Engineering circuits using endogenous or orthogonal signaling
components has shown that relatively simple circuits are sufficient for
producing non-trivial population-level behaviors, such as forming
concentric rings and periodic patterns (Matsuda et al., 2015; Sekine
et al., 2018; Toda et al., 2018). These synthetic systems can generate
patterns in roughly predictable ways, and it will be interesting to find
out to what extent importing design principles from natural patterning
systems is necessary or helpful in increasing their precision to the
level of natural developmental systems. Together, these reconstituted
systems provide an exciting opportunity for studying developmental
processes at high spatio-temporal resolution.

Conclusions and future directions

As described above, developmental signaling systems are not
passive transmitters of information from an extracellular ligand to
an intracellular effector. The information they sense is represented in
diverse ways, many of which could not be inferred from knowledge
of molecular interactions alone. Experimentally, deciphering these
codes will require systematic quantitative control of multiple ligand
concentrations in space and time and simultaneous monitoring of
pathway outputs in diverse cell contexts. It will also involve re-
wiring pathways to understand which of their architectural features
are necessary or sufficient for signal processing. A strong test of our
understanding will be the ability to use synthetic biology approaches
to program synthetic multicellular developmental behaviors that use
these pathways.

Achieving these goals also requires that we grapple with thorny
issues such as whether any single ‘pathway’ can be meaningfully
isolated from any other, and how ‘cell context’ impacts the
interpretation of signals. However, the payoff of learning these
codes is likely to be immense. Developmental signaling pathways
provide the most biologically relevant and powerful levers we have
for controlling cells, explaining their frequent role as targets of drug
development and their pivotal importance for regenerative
medicine. Understanding how these pathways ‘expect’ their
inputs to be encoded, whether in ligand concentrations, temporal
dynamics, multi-ligand combinations or in other ways, could enable
more specific control of cell fate and other responses, and provide
crucial insight into the logic of the diverse developmental processes
that they enable. An additional benefit of this approach could be
conceptual. Currently, we represent pathways predominantly in
molecular terms. But a complementary understanding will come
from the ability to represent them as programs that address messages
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Fig. 7. Active signal processing allows specificity and precision in cell-
cell communication. Developmental signaling pathways can be viewed as
programs that control message addressing (‘who can talk to whom’; 1),
message content (‘which target program to activate’; 2), and message delivery
(‘when and where the information should be received’; 3). The diverse signal
processing schemes used by different pathways not only transduce signals but
actively modulate them in ways that enable specificity and precision in
multicellular development.

to specific cell types, control the ‘content’ (target program) of a
message, and specify the precise spatial distribution of intercellular
messages (Fig. 7). It appears that the approaches described above,
together with ongoing revolutions in single cell analysis, are
opening up powerful new opportunities for understanding and
controlling cellular communication in the years ahead.
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