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Abstract–Qualitative behaviour of time average power flow in elec-
tromagnetic fields can be studied by observing the critical points of
the Poynting vector field, S. In order to analyze the behaviour of the
flow lines of a plane Poynting vector field in the neighbourhood of a
critical point, the S field is expanded in a Taylor series. Using this
expansion, critical points can be classified according to their order and
degeneracy. A formula for the index of rotation of the S field at a
critical point is derived. The behaviour of the transverse electric or
magnetic field component in the neighbourhood of the critical point
is also studied. Lowest order critical points are always nondegenerate
and they have interesting properties with regards to polarization and
energy distribution. Examples involving linearly polarized system of
interfering plane and/or cylindrical waves are given to show the critical
points. The behaviour of flow lines is illustrated in these examples.
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1. INTRODUCTION

Despite the controversy about its interpretation, the Poynting vec-
tor has been successfully used to describe the flow of electromagnetic
power. Intuitively the power flow is visualized just as a fluid flow. How-
ever for fluid flow a differential equation can be directly written down
but in the case of electromagnetic power flow the situation is different.
Maxwell’s equations have to be solved for the electric and magnetic
fields and then Poynting vector is calculated, which is a quadratic
quantity. Study of power flow in an electromagnetic problem is really
the study of Poynting vector fields. These fields exhibit some interest-
ing structure. A very interesting example is given in [1] where electro-
magnetic power flows around a diffracting half plane making vortices
in front of the half plane. What other structures are possible as elec-
tromagnetic power flows through space? In this paper an attempt will
be made to classify the structures that are present in a source free
Poynting vector field. A qualitative study of Poynting vector fields can
help in understanding the power flow in electromagnetic fields without
completely solving for electric and magnetic fields at all points in the
region of interest.

2. FLOW LINES AND CRITICAL POINTS

Throughout this paper only time harmonic electromagnetic fields will
be considered. The time dependence exp(−iωt) will be assumed for
the field quantities E and H. This factor will be suppressed. The term
Poynting vector will be used to imply the time average Poynting vector
which is defined as

S(r) =
1
2
�{E(r) × H∗(r)}, (1)

where E is phasor electric field H∗ is complex conjugate of the phasor
magnetic field and � denotes the real part of the expression. In this
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paper attention will be focused on regions of space which do not contain
sources or sinks of electromagnetic power. In most of the practical
problems the generation or loss of power occurs only in bounded regions
of space. The bounded regions containing sources or sinks can be
eliminated from consideration without great loss of generality. The
Poynting’s theorem for time average Poynting vector field in regions
devoid of sources or sinks is given as

©

∫
S
S · enda = 0. (2)

This may be stated in differential form as ∇ · S = 0 . The study
of time average flow of electromagnetic energy is now reduced to the
study of lines of S, which may also be called flow lines. Due to the
restrictions imposed above, S is a solenoidal vector field and its flow
lines are continuous in the regions of interest.

In principle, the lines of flow can be obtained by solving the following
differential equation

dx

Sx
=

dy

Sy
=

dz

Sz
, (3)

where Sx, Sy, and Sz are cartesian components of S. Solution of
(3) is by no means a trivial matter. In a lot of cases the qualitative
behaviour of flow lines alone provides sufficient amount of information.
In order to facilitate any further discussion on the subject a number
of terms will have to be defined first. Consider a point P and its
neighbourhood where S �= 0 . The direction cosines of the flow line
through P are well defined, hence a unique line segment can be drawn
through P . Such a point is called an ordinary point. On the other
hand if there exists a point P such that the Poynting vector at P is
zero and does not vanish in the neighbourhood of P then such a point
is called an isolated critical point of the Poynting vector field. It is the
presence of critical points which drastically modifies the behaviour of
flow lines. It is evident that the direction cosines of a line through P
cannot be uniquely defined. Therefore a line of flow through a critical
point, if indeed there is any, may not unique. Since the critical points
play a major role in determining the pattern of flow lines, an attempt
will be made in this paper to understand the behaviour of the Poynting
vector field in the neighbourhood of its critical points.
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3. PLANE POYNTING VECTOR FIELDS

In general the Poynting vector field is three dimensional and its flow
lines are space curves. It is difficult to visualize, represent and study
these space curves in much detail except in a few simple cases. For
this reason the problem will be simplified by assuming that the elec-
tric and the magnetic fields are two dimensional. By two dimensional
it is meant that the field vectors are independent of z-coordinate in
a cartesian coordinate system. It can be easily shown that two di-
mensional electromagnetic fields are completely specified in terms of
z-directed components of E and H. Specifically, the total electromag-
netic field can be written down as

E = Ezez +
i

ωε
∇Hz × ez, (4a)

H = Hzez −
i

ωµ
∇Ez × ez, (4b)

where Ez and Hz are functions of x and y only. The Poynting
vector for this field can be expressed using (1) as

S =
1

2ωµ
�{iEz∇E∗

z} +
1

2ωε
�{iHz∇H∗

z } +
1

ω2µε
�{∇E∗

z ×∇Hz}

= Se + Sh + Seh. (5)

It follows from (5) that the partial vector fields Se and Sh are entirely
transverse to ez while Seh is parallel to ez . Another simplifying as-
sumption will be made at this point to make sure that the Poynting
vector field is plane field. It will be assumed that the partial Poynt-
ing vector field Seh of an electromagnetic field under consideration is
identically zero. The flow lines of such plane fields are directed plane
curves which can be easily visualized and sketched on paper. It is also
observed from (5) that the components Se and Sh are completely
specified by Ez and Hz respectively. Therefore the electromagnetic
field can be partitioned in an E-polarized field and an H-polarized
field. The E-polarized field is given as

E1 = Ezez, (6a)

H1 =
−i

ωµ
∇Ez × ez, (6b)
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while the H-polarized field is given as

H2 = Hzez, (7a)

E2 =
i

ωε
∇Hz × ez. (7b)

The Poynting vectors of E-polarized and H-polarized fields are Se

and Sh respectively. The total power flux density is just the sum of
the power flux densities of both the polarizations for the case of plane
Poynting vector fields.

In this paper the critical points of the Poynting vector fields Se

generated by E-polarized fields given by (6) will be studied. The
case for H-polarized fields given by (7), which generate the Poynting
vector field Sh is analogous. This is not a seriously limiting restriction.
There is a whole class of problems in the electromagnetic field theory
in which the fields are either E-polarized of H-polarized. For example
scattering by cylindrical objects or by long edges is solved separately for
each polarization. when an electromagnetic field is a sum of fields due
to both the polarization then the critical points of the total Poynting
vector field do not have a simple correspondence with the critical points
of partial fields Se and Sh . It is clear from (5) that the total Poynting
vector field will also have a critical point where both Se and Sh have
a critical point. There may be additional critical points at isolated
points where Se and Sh cancel each other.

A plane Poynting vector field is also obtained if the flow lines of
Se + Sh are parallel straight lines and the partial field Seh does not
vanish identically. In this case a cartesian coordinate system can be
chosen such that the total Poynting vector field has the following rep-
resentation,

S = Sy(x)ey + Sz(x, y)ez. (8)

It is immediately observed that the points where S field vanishes are
not isolated in the y-z plane. Hence such plane Poynting vector fields
do not possess isolated critical points and therefore these fields will not
be considered any further.

Consider an E-polarized electromagnetic field. This field is com-
pletely described in terms of a complex scalar function of two variables
namely the coordinates x and y . This function can chosen as z di-
rected component of the electric field. Let this function be expressed
in terms of its real and imaginary parts or in terms of its amplitude
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and phase, i.e.,

Ez(x, y) = R(x, y) + iI(x, y) = A(x, y) exp{iφ(x, y)}. (9)

The function R, I, A, and φ are real valued functions. In physically
realizable problems the electric field is well behaved. Therefore it is
reasonable to assume that the functions R, I, and A are continuous
and differentiable. It should be noted that at the points where the am-
plitude A goes to zero the phase φ may become ambiguous. At such
points the representation of the electric field in terms of its real and
imaginary parts is unique and hence more convenient. The Poynting
vector of this field is calculated using (1) and (6) as

S =
1

2ωµ
(R∇I − I∇R) =

1
2ωµ

A2∇φ. (10)

4. INDEX OF ROTATION

An important property of the critical points of plane vector fields is
their index of rotation. The index of rotation γ is defined as follows.
Let there be a closed curve C which encloses only one critical point and
there are no critical points on C itself. When the curve C is traversed
once in the positive direction, i.e., counterclockwise, the angle between
the vector at the moving point on C and a fixed direction changes.
If the total change in this angle is 2nπ then the index of rotation of
the critical point is defined to be n . It can easily shown that n can
only take integral values. For example the two vector fields shown in
Figures 1(a) and 1(b) have indices of rotation, γ = 1 and γ = −2
respectively. The dots denote the location of the critical points in this
figure and subsequent figures.

It should be noted that the index γ is independent of the choice
of curve C . The index of a critical point can be measured using the
geometrical method employed for its definition or it can be calculated
analytically with the help of Poincaré’s formula,

γ =
1
2π

©

∫
C

SxdSy − SydSx

S2
x + S2

y

, (11)

where Sx and Sy are cartesian components of vector field S(r). In
most of the cases the integration indicated in (11) is very complicated.
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(a) (b)

Figure 1. Critical point is located at O . (a) The index of rotation is
1. (b) The index of rotation is−2.

In such cases it is advantageous to use the geometric method. Index
of rotation is a very important concept. A number of properties of the
plane vector fields can be derived with the help of this concept. Two
important theorems on this subject will now be stated without proof.
These theorems will be utilized later on in this paper. For a proof of
these theorems and a comprehensive discussion on this topic the reader
is referred to the excellent work of Krasnosélskiy et al. [2].

Theorem 1. If a closed curve C has a finite number of critical points
in its interior each with its own index of rotation γi then the total index
of rotation γ on C is the sum of the individual indices of rotation of
the critical points, i.e.,

γ =
∑

i

γi. (12)

This theorem provides the means to calculate the index of rotation on
any given curve without critical points.

Theorem 2. Two vector fields have an identical index of rotation on
a closed curve C if and only if they are homotopic to each other.

A vector field Sp is homotopic to another vector field Sq on a closed
curve if the field Sp can be continuously transformed into the field Sq

without going through a null vector, i.e., a critical point. If a vector
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field S can be partitioned as

S = Sp + Sq (13a)

such that
|Sp| > |Sq|. (13b)

then the component vector field Sp is called the principal part of
S field. Krasnosélskiy et al. [2] go on to prove that a vector field is
homotopic to its principal part. This theorem provides an easy method
to calculate the index of rotation if a simple principal part can be
extracted from the total field. This method will be utilized in Section
7 to calculate the index of rotation of a critical point.

5. TAYLOR SERIES EXPANSION AT CRITICAL POINTS

In regions of space devoid of charges or currents the electric field satis-
fies homogeneous Helmholtz’s equation. Therefore the real and imagi-
nary parts of Ez also satisfy homogeneous Helmholtz’s equation, i.e.,

∇2R + k2R = 0 (14)
∇2I + k2I = 0, (15)

where k = ω
√

µε . The behaviour of the Poynting vector at any par-
ticular point can now be studied. For this purpose let the origin of the
coordinate system be placed at the point of interest. Circular cylindri-
cal coordinate system with radial coordinate ρ and angular coordinate
θ has been employed here. This choice facilitates the ensuing analy-
sis. The solutions to the above differential Equations (14) and (15)
can be expanded in a series of eigenfunctions which are valid on a
disk ρ < ρ0 . It is well known that such eigenfunction expansion for
Helmholtz’s equation in two dimensions are given as

R(ρ, θ) =
∞∑

j=0

AjJj(kρ) cos(jθ + αj) (16)

and

I(ρ, θ) =
∞∑
l=0

BlJl(kρ) cos(lθ + βl), (17)
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where Jj and Jl are Bessel functions of order j and l respectively.
Aj , Bl, αj , and βl are constants of the eigenfunction expansion.
These constants can be evaluated for a given problem. Here they are
completely arbitrary.

The Poynting vector can now be calculated using (10) and it is given
as

S =
1
2η

∞∑
j=0

∞∑
l=0

AjBl

{
cos(jθ + αj) cos(lθ + βl)

{
Jj(kρ)J ′

l (kρ) − Jl(kρ)J ′
j(kρ)

}
eρ +

1
kρ

Jj(kρ)Jl(kρ)

{j sin(jθ + αj) cos(lθ + βl) − l cos(jθ + αj) sin(lθ + βl)} eθ

}
. (18)

The primes denote differentiation with respect to the argument. The
constant η is the impedance of the medium defined as η =

√
µ/ε .

Since the Poynting vector field will be investigated in a small neigh-
bourhood around the origin, the Bessel functions Jn(kρ) may be writ-
ten as

Jn(kρ) =
1

2nn!
(kρ)n + O(kρ)n+1, (19)

where O(kρ)n+1 implies that rest of the terms are of the order equal
to or greater than n + 1 . Therefore in a small neighbourhood around
the origin the components of the Poynting vector can be written down
as

Sρ =
1
2η

∞∑
j=0

∞∑
l=0

AjBl cos(jθ + αj) cos(lθ + βl)

{
l − j

2j+lj!l!
(kρ)j+l−1 + O(kρ)j+l+1

}
, (20a)

Sθ =
1
2η

∞∑
j=0

∞∑
l=0

AjBl {j sin(jθ + αj) cos(lθ + βl)

− l cos(jθ + αj) sin(lθ + βl)}{
1

2j+lj!l!
(kρ)j+l−1 + O(kρ)j+l+1

}
. (20b)

This may be recognized as the Taylor series expansion of the Poynting
vector field around the origin. It is useful to extract the leading term
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of the above Taylor series. If the expansion coefficients Aj are zero
for all j < m and the coefficients Bl vanish for all l < n then the
leading non zero terms in (20) may be concisely written as

Sρ =
−Cmn

m + n
(kρ)m+n−1v′(θ) + O(kρ)m+n, (21a)

Sθ = Cmn(kρ)m+n−1v(θ) + O(kρ)m+n, (21b)

where

Cmn =
AmBn

2m+n+1n!m!η
, (22)

v(θ) =m sin(mθ + αm) cos(nθ + βn)
− n cos(mθ + αm) sin(nθ + βn). (23)

Throughout this paper the variables m and n will be used to denote
the leading terms in the eigenfunction expansion of R and I respec-
tively. It is observed from Equation (21) that the origin is a critical
point if and only if m + n ≥ 2.

A critical point will be called non-degenerate if the function v(θ)
has no roots or only simple roots. This condition implies that the
coefficients αm and βn should be such that the set of simultaneous
equations

cos(mθ + αm) = 0, (24a)
cos(nθ + βn) = 0. (24b)

has no real solutions. Otherwise the critical point will be referred to
as a degenerate critical point. If the critical point is non degenerate
then the truncated Poynting vector field

S1 = Cmn(kρ)m+n−1

{
− v′(θ)

m + n
eρ + v(θ)eθ

}
(25)

also has an isolated critical point at the origin. If the critical point is
degenerate then S1 = 0 for θ = θi , where θi are solutions to the set
of simultaneous equations (24). If there is at least one value of θ which
satisfies (24) then there are exactly two times gcd(m, n) other such
values of θ . The behaviour of the flow lines in a small angular sector
around θi cannot be described correctly by truncated Poynting vector
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field S1 alone. For this purpose higher order terms in (20) should be
taken into account.

It may be noted that if m = n and αm = βn then the leading terms
of R and I are proportional and the resulting S1 is identically zero.
It may appear that this critical point is a degenerate critical point but
this is not the case. In Section 9 it will be shown how to handle this
situation by a simple transformation of eigenfunction expansions (16)
and (17). At this point it is assumed that if m = n then αm �= βn .
This is not a restrictive assumption. Critical points of any type will
not be left out of the classification scheme because of this assumption.

6. NON DEGENERATE CRITICAL POINTS

In this section the behaviour of flow lines in the neighbourhood of a
non degenerate critical point will be studied. For this purpose flow
lines of the truncated Poynting vector field S1 will be studied first.
The differential equation for the flow lines given by (3) can be modified
for the case of two dimensional Poynting vector fields. This modified
equation in cylindrical polar coordinates is given as

dρ

dθ
= ρ

Sρ

Sθ
. (26)

Substituting the components of S1 in (26) gives the required differ-
ential equation for the flow lines of truncated Poynting vector field,
i.e.,

dρ

dθ
= − 1

m + n
ρ
v′(θ)
v(θ)

. (27)

Integration of (27) yields,

ρ = K (|v(θ)|)−1/(m+n) , (28)

where K is the constant of integration. Equation (28) gives a family
of curves which coincides with the flow lines of field S1 . The directions
of flow can be attached to these curves by inspection of (25).

The behaviour of flow lines is closely connected with the behaviour
of function f(θ) defined as,

f(θ) = |v(θ)|. (29)
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(a) (b) (c)

Figure 2. Possible behaviours of flow lines in a small sector containing
the direction θ0 such that (a) f(θ0) is zero, (b) f(θ0) is a local
maximum, and (c) f(θ0) is a local minimum.

Consider the case when m = n then the function f(θ) is a constant
and

ρ = K (m| sin(αm − βm)|)−1/2m (30)

gives a family of concentric circles centered on the origin. Therefore
in this case the flow lines form closed loops around the critical point.
Such a critical point is designated as a center point.

In the case when m �= n , the function f(θ) has some real roots in
[0, 2π) . If θ0 is one of the roots. Then the flow line through a point
(ρ0, θ0) is a ray θ = θ0 as depicted in Figure 2(a). If f(θ0) is a local
maximum then the flow lines cut across the ray θ = θ0 orthogonally as
shown in Figure 2(b). If f(θ0) is a local minimum different from zero
then the flow lines cut across the ray θ = θ0 orthogonally and Figure
2(c) is representative of this behaviour. The direction of flow lines in
Figure 2 has been put arbitrarily and figures with reversed directions
are equally valid. The directions θ0 for which f(θ0) = 0 are called
critical directions and the flow lines in or out of the critical point are
called critical rays.

It can be easily shown that the function f(θ) has 2max(m, n)
maxima and they are located at the roots of cos(mθ + αm) = 0 if
max(m, n) = m or at the roots of cos(nθ+βn) = 0 if max(m, n) = n .
It can also be shown that f(θ) possesses 2 min(m, n) local min-
ima different from zero. These minima are located at the roots of
cos(mθ+αm) = 0 if min(m, n) = m or at the roots of cos(nθ+βn) = 0
if min(m, n) = n . Since f(θ) is a continuous function it may be de-
duced from the above discussion that it has exactly 2|m − n| simple
roots. These roots lie between two extrema of f(θ) both of which
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are a local maximum. In short, a non degenerate critical point and
the flow lines in its neighbourhood are completely described by four
constants m, n, αm, and βn.

In the case when min(m, n) = 0 the flow lines around the critical
point except for their orientation in the x-y plane are characterized
by one number alone, i.e., max(m, n) . Such a point is called a p-
sectored saddle point, where p = 2max(m, n) . In particular if p = 4
it is simply called a saddle point and if p = 6 then it is referred to
in literature as a monkey saddle. So much for the nomenclature. In
general a critical point can be roughly characterized by the quantity
|m − n| alone because its flow lines are homeomorphic to the flow
lines of a p-sectored saddle point, where p = 2|m − n| . That is to
say there are 2|m − n| rays coming into or going out of the critical
point in critical directions. A circle centered on the critical points is
divided by these rays into 2|m − n| sectors. In each of these sectors
the flow lines form a family of curves which are homeomorphic to one
branch of a hyperbola. For the sake of illustration the flow lines in
the neighbourhood of two types of critical points are given in Figures
3 and 4. In Figure 3(a) the function f(θ) is shown for the case when
m = 2, n = 0, and α2 = 0 . The corresponding flow lines are sketched
in Figure 3(b). In Figure 4(a) the function f(θ) is shown for a critical
point whose parameters are m = 3, n = 1, α3 = π/2, and β1 = 0 .
In Figure 4(b) the flow lines near this critical point are shown.

Now consider a non degenerate critical point whose Poynting vector
field is given by (20). It can be shown using Forster’s [3] results that
the flow lines of the Poynting vector field in this case will behave essen-
tially as the flow lines of truncated Poynting vector field except in the
neighbourhood of a center point. According to Forster a center point
of the truncated field may be either a center point of a focal point of
the original vector field. A critical point is designated as a focal point
when all the flow lines in its neighbourhood either emerge from or tend
to it as shown in Figure 5. Forster’s results are general and apply to
any plane vector field. But the Poynting vector field is solenoidal and
hence field lines cannot emerge from or tend to a single point. There-
fore the possibility of a focal Point in the Poynting vector fields has to
be ruled out. Hence it is concluded that the behaviour of flow lines in
the neighbourhood of a non degenerate critical point is similar to the
behaviour of the flow lines of the corresponding truncated field at that
point.
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(a)

(b)

Figure 3. (a) Plot of the angular function f(θ) for a critical point
whose parameters are m = 2, n = 0, and α2 = 0 . (b) Sketch of the
flow line in the neighbourhood of this critical point.
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(a)

(b)

Figure 4. (a) Plot of the angular function f(θ) for a critical point
whose parameters are m = 3, n = 1, α3 = π/2, and β1 = 0 . (b)
Sketch of the flow line in the neighbourhood of this critical point.
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(a) (b)

Figure 5. Lines of flow near a focal point. (a) Focal point behaving
as a source. (b) Focal point behaving as a sink.

7. INDEX OF ROTATION AT NON DEGENERATE
CRITICAL POINTS

The index of rotation of a non degenerate critical point will now be
determined. It has been shown that the index of rotation of a critical
point is identical to the index of rotation of the corresponding critical
point of the truncated Poynting vector field [4]. The index of rotation
γ can be calculated with the help of Poincaré’s formula which can
rewritten in terms of cylindrical polar components of the Poynting
vector field as

γ = 1 +
1
2π

∫ 2π

0

Sρ(dSθ/dθ) − Sθ(dSρ/dθ)
S2

ρ + S2
θ

dθ. (31)

Unit circle is the path chosen to calculate γ , i.e., kρ = 1 in (25).
Direct application of (31) leads to a very complicated integral hence
the concept of homotopy will be employed to compute γ . It can be
readily verified that the truncated Poynting vector field may be written
as

S1 = Sp + Sq, (32)
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where

Sp =Cmn(kρ)m+n−1

{
(n − m) cos{(n − m)θ + βn − αm}eρ

− (n + m) sin{(n − m)θ + βn − αm}eθ

}
, (32a)

Sq =Cmn(kρ)m+n−1

{
(m − n) sin(mθ + αm) sin(nθ + βn)eρ

+ {m sin(nθ + βn) cos(mθ + αm)

− n cos(nθ + βn) sin(mθ + αm)}eθ

}
. (32b)

It can easily be shown that

|Sp| > |Sq|.

Hence Sp represents the principal part of S1 . Therefore the index of
rotation will now be calculated with the help of theorem 2. Using the
cylindrical polar components of Sp in (31) the index γ is given as

γ = 1 − 1
2π

∫ 2π

0

(m + n)(m − n)2

m2 + n2 − 2mn cos{2(m − n)θ + 2αm − 2βn}
dθ.

(33)
Techniques of complex variables are used to evaluate the above integral
which after reduction yields the simple result for the index of rotation

γ = 1 − |m − n|. (34)

The index of rotation of the critical point was established using purely
analytical techniques. In light of the behaviour of flow lines around
the critical point deduced in Section 6, the index of rotation can also
be calculated from purely geometrical arguments. Following Nemytskii
and Stepanov [4] a critical direction will be called a critical direction
of type II if the flow lines, in a small sector containing no other critical
direction, behave as depicted in Figure 6(a). A sector is labeled as
a hyperbolic domain if it is bounded by a pair of successive critical
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(a) (b)

Figure 6. (a) Flow lines around a critical direction of type II. (b) Flow
lines within a hyperbolic domain.

directions. A possible behaviour of flow lines in a hyperbolic domain
is sketched in Figure 6(b) as an example.

If a circular region around the critical point can be completely di-
vided into nh hyperbolic domains then according to a theorem by
Poincaré (see for example [5]) the index of rotation of the critical point
is given by

γ = 1 − nh

2
. (35)

Referring back to Section 6 it is immediately apparent that the re-
gion around the critical point can be completely divided into 2|m−n|
hyperbolic domains. Therefore the index computed by this method
is identical to (34). The method of counting the number of hyper-
bolic domains to compute the index of rotation will be useful in the
discussion of degenerate critical points.

8. DEGENERATE CRITICAL POINTS

This section will be devoted to the study of degenerate critical points.
The constants αm and βn have to satisfy exactly the set of simulta-
neous Equations (24) for some values of θ . In most of the cases this is
not a probable scenario yet the case of degenerate critical points will
be taken up for the sake of completeness.

Let θ0 be a root of the set of simultaneous Equations (24) then the
truncated Poynting vector field may be expanded in a Taylor series
around θ0 . Keeping only the leading terms in this expansion, S1 may
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be written as

S1 = ±mn(n − m)Cmn(kρ)m+n−1

{
(θ − θ0)2eρ −

m + n

3
(θ − θ0)3eθ

}
.

(36)
The ± sign in front of (36) is of no practical significance and will
depend on which of the roots of system (24) is under consideration.
According to Nemytskii and Stepanov [4] the direction θ0 remains a
critical direction if

lim
ρ→0

lim
θ→θ0

Sθ

Sρ
= 0, (37)

where Sρ and Sθ are the components of the total Poynting vector field.
Using the Taylor series expansion (36) in the expression (21) for the
components of S , it is easy to show that the condition enunciated in
(37) is satisfied. Therefore all the directions θ0 which are the roots of
system of Equations (24) remain critical directions for the untruncated
Poynting vector field.

To study the behaviour of the flow lines in a small sector |θ−θ0| < δ
and ρ < ρ0 , higher order terms in the expansion (21) will have to be
taken into account. The next higher order term is of the order m + n
in (21). Since the divergence of the Poynting vector is zero term by
term in expansion (20), the (m + n)th term of S can be written as

S = (kρ)m+n

{ −1
m + n

g′(θ)eρ + g(θ)eθ

}
(38)

in the sector |θ− θ0| < δ and ρ < ρ0 , where δ and ρ0 are small con-
stants. The form of the function g(θ) is not important for this discus-
sion except that it is continuous and differentiable which is guaranteed
from (20). There are two cases to be considered.

The first case arises when g(θ0) �= 0 . In this case the function g(θ)
may be approximated as a constant in the sector under consideration.
Let g0 be such a constant. Then the Poynting vector in this sector
may be approximately written as

S = C̃(kρ)m+n−1

{
(θ − θ0)2eρ −

m + n

3
(θ − θ0)3eθ

}
+ g0(kρ)m+neθ,

(39)
where C̃ is a new constant obtained by lumping the constants in (36).
In the sector under consideration the flow lines have the behaviour
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(a) (b) (c)

Figure 7. Behaviour of the flow lines of S field in the neighbourhood
of a critical direction of the truncated Poynting vector field. There are
three cases, (a) the constant g0 �= 0 , (b) when g1C̃ > 0, (c) when
g1C̃ < 0.

indicated in Figure 7(a) according to expression (39). It is assumed
that the Poynting vector filed given by (39) is sufficient to characterize
the flow lines of the untruncated Poynting vector filed. It is also seen
from Figure 7(a) that the critical direction is of type II.

The second case arises when g(θ0) = 0 but g′(θ0) �= 0 . In this
case g(θ) be approximated as a linear function in the sector under
consideration, i.e.,

g(θ) = g1{θ − θ0} in |θ − θ0| < δ, ρ < ρ0, (40)

where g1 is a constant. Then the Poynting vector, up to the leading
term is given as

S = C̃(kρ)m+n−1

{
(θ − θ0)2eρ −

m + n

3
(θ − θ0)3eθ

}

+ g1(kρ)m+n

{ −1
m + n

eρ + (θ − θ0)eθ

}
. (41)

Expression (41) is utilized to investigate the behaviour of the flow lines
in a given sector. If g1C̃ > 0 then the qualitative behaviour of the
flow lines of S is given in Figure 7(b). It is observed that two new
hyperbolic domains have been created in this case. If g1C̃ < 0 then
the behaviour of flow lines is indicated in Figure 7(c). In this case
it may be noticed that the critical direction is of type II and no new
hyperbolic domains has been created. Once again it is assumed that
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the behaviour of the Poynting vector filed is completely characterized
by the approximate field given in (41).

In sectors around the critical point which do not include a critical
direction, the behaviour of flow lines is described by the truncated
Poynting vector field. This behaviour will depend on the function
f(θ) which has been discussed in Section 6. If it happens that both
the constants, g0 and g1 are zero, i.e., g(θ0) = g′(θ0) = 0 then the next
term of higher order in expression (20) should be taken into account.
This term will have a representation similar to expression (38) except
that the power of (kρ) will change from m + n to an appropriate
greater number. The above method of analysis can once again be
applied. This procedure may be repeatedly applied till a function g(θ)
is found such that g(θ0) �= 0 or g′(θ0) �= 0.

The index of rotation of a degenerate critical point cannot be calcu-
lated from a knowledge of m and n of the truncated Poynting vector
field only. The behaviour of the flow lines in each of the 2gcd(m, n)
sectors has to be known to compute the index, γ . With the help of
following straightforward geometrical argument the index of rotation
can be computed. If there are j1, j2, and j3 sectors with the be-
haviour of their flow lines as depicted in Figures 7(a), 7(b), and 7(c)
respectively, then

j1 + j2 + j3 = 2gcd(m, n). (42)

Since the number of hyperbolic sectors increases by 2j2 , i.e., only in
the case when g1C̃ > 0 , the index of rotation is given as

γ = 1 − |m − n| − j2. (43)

This result follows directly from Equation (35).

9. CRITICAL POINTS DUE TO ARBITRARY ELECTRIC
FIELD

In Section 5 it was observed that when m = n and αm = βn , the
critical point is not a degenerate critical point. In this section this
statement will be explained. In the previous discussions all possible
behaviours of the flow lines of the Poynting vector field have been clas-
sified. This classification has been in terms of real and imaginary parts
of the electric field, namely, the functions R and I . The eigenfunc-
tion expansions of these functions, given in Equations (16) and (17),
will be termed as canonical forms. The following question will now be
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posed. Given an arbitrary electric field, how can one characterize the
behaviour of flow lines in the neighbourhood of a critical point using
only m and n ? This question is crucial because two electric fields
differing by an arbitrary phase constant give rise to the same Poynting
vector field although they have different real and imaginary parts. To
illustrate this point, consider an arbitrary electric field Ẽz such that

Ẽz = Ez exp(iφ0), (44)

where Ez is canonical electric field and φ0 is a constant. The real
and imaginary parts of this electric field in terms of canonical real and
imaginary parts given as

R̃ = R cos φ0 − I sinφ0, (45a)

Ĩ = R sinφ0 + I cos φ0. (45b)

If the origin is a critical point then the canonical eigenfunction expan-
sions can be written as

R =
∞∑

j=m

AjJj(kρ) cos(jθ + αj), (46a)

I =
∞∑

l=n

BlJl(kρ) cos(lθ + βl). (46b)

If the analysis of the critical point is made, on the basis of leading
term, in the expressions for R̃ and Ĩ , one encounters an apparent dis-
crepancy. It is evident from Equations (45) and (46) that the leading
terms of R̃ and Ĩ are of the same order, which is the minimum of
m and n . Thus one may conclude that the critical point is a center
point. Such a conclusion would be in error because m and n are not
equal in general. An analysis of canonical electric field will yield a dif-
ferent result. To resolve this discrepancy, without the loss of generality
suppose that m ≤ n . Substitution of Equation (46) in (45) results in

R̃ =
n−1∑
j=m

AjJj(kρ) cos φ0 cos(jθ + αj) +
∞∑

j=n

Jj(kρ)

·
{

Aj cos φ0 cos(jθ + αj) − Bj sinφ0 cos(jθ + βj)
}

, (47a)
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Ĩ =
n−1∑
j=m

AjJj(kρ) sinφ0 cos(jθ + αj) +
∞∑

j=n

Jj(kρ)

·
{

Aj sinφ0 cos(jθ + αj) + Bj cos φ0 cos(jθ + βj)
}

. (47b)

If m = n then the first summation in expressions (47a) and (47b)
disappears. The leading terms in the expansions of R̃ and Ĩ are of
the same order. These terms are not proportional to each other. In
this case the lines of flow of the Poynting vector field form concentric
circles and the origin is a center point.

On the other hand if m �= n then R̃ and Ĩ are of equal order.
Their leading terms are proportional. The phase constant φ0 can be
calculated from the leading terms as

φ0 = tan−1

{
Leading term of Ĩ

Leading term of R̃

}
. (48)

Using this value of φ0 it is possible to calculate the canonical form of
the electric field as

R = R̃ cos φ0 + Ĩ sinφ0, (49a)

I = −R̃ sinφ0 + Ĩ cos φ0. (49b)

With the help of m and n of the canonical electric field derived above
it will be possible to classify the behaviour of the flow lines. There is
no need to calculate the Poynting vector field. The assumption that
m ≤ n forces the leading term of R to be of order m . This is not
restrictive as far as classification of the critical points is concerned.
This assumption works because the qualitative behaviour of the flow
lines depends only on the quantities m + n and |m − n| , which are
symmetrical in m and n .

10. MAGNETIC FIELD AT CRITICAL POINTS

In the case of E-polarized electromagnetic fields given by Equation
(6), the magnetic field is completely in the x-y plane. In general this
magnetic field is elliptically polarized and can be written down as

H = HR + iHI =
1

ωµ
(∇I × ez − i∇R × ez). (50)
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It is of interest to investigate the magnetic field in the neighbourhood of
a critical point of the Poynting vector field. The Poynting vector field
is approximated by the truncated Poynting vector field S1 which in
turn is calculated using the leading terms of R and I . The magnetic
field can be approximately calculated with the help of the same leading
terms. The fields near the origin are of particular interest, therefore,
the Bessel functions can be approximated as in Equation (19). Thus
the leading terms of real and imaginary parts of the magnetic field are
given as

HR =
−nBn

η2nn!
(kρ)n−1

{
sin(nθ + βn)eρ + cos(nθ + βn)eθ

}
, (51a)

HI =
mAm

η2mm!
(kρ)m−1

{
sin(mθ + αm)eρ + cos(mθ + αm)eθ

}
. (51b)

The major and minor diameters of the polarization ellipse are desig-
nated as d1 and d2 respectively. They are calculated to be

d1 =

√
1
2

{
H · H∗ +

√
(H · H∗)2 − 4(|HR × HI |)2

}
, (52a)

d2 =

√
1
2

{
H · H∗ −

√
(H · H∗)2 − 4(|HR × HI |)2

}
. (52b)

The magnetic field is linearly polarized when d2 = 0 . The direction
of rotation of the H vector can be deduced as follows

HR × HI · ez

{
> 0 counterclockwise,
= 0 linear,
< 0 clockwise.

(53)

It can be easily shown that

∇× S = ωµHR × HI . (54)

Therefore information about the polarization of the magnetic field can
also be gleaned from the curl of the Poynting vector. In the present
case Equation (53) implies that

mn sin ((m − n)θ + αm − βn)

{
> 0 counterclockwise,
= 0 linear,
< 0 clockwise.

(55)
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If m = n , then the magnetic field is elliptically polarized in the same
sense everywhere in the neighbourhood of the critical point, which is
a center point. If the condition m �= n �= 0 holds, then the region
around the critical point is divided into 2|m− n| equiangular sectors.
The polarization is linear on the boundaries of these sectors. The sense
of rotation is alternately clockwise and anticlockwise in the contiguous
sectors. It may be recalled that the critical point, for which m �= n ,
is isomorphic to a saddle point with 2|m − n| hyperbolic sectors.

As a result of above discussion it becomes clear that the morphology
of flow lines at a critical point may be determined from a knowledge of
the sense of rotation of the magnetic field on a small circle around the
critical point. For example, suppose, there is a critical point. The sense
of rotation of the magnetic field is measured on a circle of small radius,
centered on the critical point. It is found that the sense is clockwise on
q number of arcs interleaved with q number of arcs on which sense of
rotation is anticlockwise. It may then be concluded that critical point
under investigation has a flow line structure which is isomorphic to the
flow line structure in the neighbourhood of a 2q-sectored saddle point.
As a bonus one may also calculate the index of rotation of the critical
point from such a measurement using expression

γ = 1 − q. (56)

If either m = 0 or n = 0 then the magnetic field is linearly polarized
in the vicinity of the critical point.

11. ELEMENTARY CRITICAL POINTS

The order of a critical point is defined to be the degree of the leading
term in the Taylor series expansion of the Poynting vector field given
by expression (20). This Taylor series is expanded about the critical
points. Therefore in terms of the notation employed in this paper, the
order of a critical point is (m + n − 1) . The lowest possible order of
any critical point is one. The critical points of order one are called
elementary critical points. For elementary critical points m + n = 2 .
There are two distinct cases. In the first case m and n are equal
while in the second case they are not equal. Elementary critical points
are the subject of discussion in this section and both the cases will be
dealt separately.

The first case arises when m = n = 1 . This is the case when the
lines of the Poynting vector field are known to circulate the critical
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Figure 8. The lines of flow and the lines of constant phase in the
neighbourhood of an elementary center point. The phase is undefined
at the center.

point, which is also called a center point. The lowest order critical
point of this type will be labeled as an elementary center point. It
follows from Section 5 that the magnitude of the electric field is zero
at this critical point. The phase of the electric field is undefined at
this type of critical point. Lines of constant phase emanate radially
outward from the critical point and they are sketched in Figure 8. The
magnetic field at the critical point is not zero. It can be obtained from
Equation (51) by letting m and n to be equal to one, i.e.,

H =
1
2η

{(−B1 sinβ1 + iA1 sinα1)ex + (−B1 cos β1 + iA1 cos α1)ey} .

(57)
The magnetic field is elliptically polarized and the expression for the
polarization ellipse is given as

(
A2

1 cos2 α1 + B2
1 cos2 β1

)
H2

x +
(
A2

1 sin2 α1 + B2
1 sin2 β1

)
H2

y

−
(
A2

1 sin 2α1 + B2
1 sin 2β1

)
HxHy = 4η2A2

1B
2
1 sin2(α1 − β1). (58)
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Figure 9. The lines of flow and the lines of constant phase in the
neighbourhood of an elementary saddle point.

The electric field energy density, We , is zero at the critical point and
it increases in the neighbourhood. The contours of constant energy
density are ellipses and are given by

We =
ε

4

{(
A2

1 cos2 α1 + B2
1 cos2 β1

)
(kx)2

+
(
A2

1 sin2 α1 + B2
1 sin2 β1

)
(ky)2

−
(
A2

1 sin 2α1 + B2
1 sin 2β1

)
(kx)(ky)

}
. (59)

Comparison of Equations (58) and (59) brings out an interesting fact
that the polarization ellipse is similar to the contours of constant elec-
tric field energy density. Therefore if the polarization ellipse is mea-
sured at one point near an elementary center point, the rate of increase
of We in different directions can be predicted.

The second case of elementary critical point arises when m = 2
and n = 0 or vice versa. Without loss of generality it will be assumed
that m > n . In this case the lines of flow form a family of rectangular
hyperbolae. The lines of constant phase which are orthogonal to the
lines of flow also form a family of rectangular hyperbolae. Such a
critical point is called an elementary saddle point. The flow lines near
an elementary saddle point are depicted in Figure 9. The polarization
of the magnetic field is linear in the neighbourhood of this critical
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point. Neither the electric field nor the magnetic field is zero at the
elementary saddle point. These fields are in time quadrature at this
type of critical point and this is the reason why the Poynting vector is
zero.

It may be verified that the elementary critical points are always
non degenerate. This verification can be carried out by substituting
appropriate values for m and n in Equation (23) and checking the
conditions stipulated in Equation (24). In general Taylor series coeffi-
cients are non-zero more often than zero. Hence one would expect to
find elementary critical points more often. Therefore at this juncture it
is appropriate to discuss ways and means to detect the elementary crit-
ical points and determine their nature. For this purpose consider a long
wire made of a good conductor. Let the diameter of this wire be much
smaller than the wavelength. Place the wire parallel to the z-axis. It
will experience a force proportional the strength of the Poynting vec-
tor field and in the same direction. At the critical point the Poynting
vector field is zero and hence at this point no net time average force
will be exerted on the wire. Therefore in principle one can locate the
critical points by moving a wire in the electromagnetic field and mea-
suring force on it. If the electromagnetic field is E-polarized then the
current induced in the wire will be proportional to Ez . Therefore at
a center point no current will be induced in the wire. At the saddle
point the electric field is not zero hence current will be induced in
the wire but no average force will be exerted on it. Thus the induced
current will distinguish a saddle point from a center point. Another
method to distinguish between these two types of critical points is to
construct a device similar to vane. It is constructed with the help of
two long straight wires of diameters which are small in comparison
with the wavelength. The wires are connected together by a piece of
light insulating material such as plastic. A sketch of this contraption
appears in Figure 10(a). This device is capable of measuring a torque
about its axis due to the radiation pressure. If the axis is placed in
such a way that it coincides with a center point then a net torque will
be exerted on the device and it will rotate. On the other hand if the
axis is placed on the saddle point the devise will tend to align itself
with one of the arms of the saddle point because in this configuration
the net force and the net torque on it are zero. The behaviour of this
device is illustrated in Figure 10. It may be noted that the device de-
scribed above is sensitive to the curl of the Poynting vector field which
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(a) (b) (c)

Figure 10. (a) A device which may be used to distinguish a center
point from a saddle point. (b) The behaviour of the device at a center
point and (c) a saddle point.

is finite and non zero for the center point and zero for the saddle point.
At this point it may be noted that Latmiral’s [6] suggestion on using
a tuned dipole as a true sensor of the curl of S is not workable in the
case of plane Poynting vector fields. The reason is that once the dipole
is aligned with Ez and charges are induced on its ends there is no
transverse part of the electric field to act on these charges. Thus there
will be no rotation of the dipole.

12. WAVE INTERFERENCE: EXAMPLE OF CRITICAL
POINTS

In the previous discussions it was assumed that isolated critical points
of the Poynting vector field exist. No examples were given. The ex-
istence of these points will now be demonstrated in a fairly simple
situation. It is well known that the Poynting vector of a standing wave
is zero everywhere. Therefore it is logical to look for critical points
in the problems in which the electromagnetic field is a slight variation
of a standing wave field. Consider the interference of three linearly
polarized plane waves traveling in the directions which make angles
0◦, 180◦ and θ◦ with the x-axis. The amplitudes of their respective
electric fields are 1

2 , 1
2 and α . Thus the total electric field is as

E =
{

1
2

exp(ikx) +
1
2

exp(−ikx) + α exp(ikx cos θ◦ + iky sin θ◦)
}

ez.

(60)
The first two waves alone would form a standing wave. The case
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θ◦ = 90◦ was considered by Braunbek [7] to point out the existence
of vortices in the Poynting vector field. It will be shown below that
critical points in this case exist only if 0 < α ≤ 1 . If θ◦ = 90◦ , then
the Poynting vector is given as

S =
α

2η
{sin(kx) sin(ky)ex + (α + cos(kx) cos(ky))ey} . (61)

This Poynting vector field does not possess any critical points if |α| >
1 . If α = 0 then the Poynting vector is zero everywhere and all the
points are critical points but they are not isolated. If the range of α
is restricted such that 0 < |α| ≤ 1 then there are four sets of points
where the S field has isolated critical points. Let these sets be denoted
by P1, P2, P3, and P4 . These sets are enumerated as

P1 :
{
(kx, ky)|kx = 2q1π ± cos−1 α, ky = (2q2 + 1)π

}
, (62a)

P2 :
{
(kx, ky)|kx = (2q1 + 1)π ± cos−1 α, ky = 2q2π

}
, (62b)

P3 :
{
(kx, ky)|kx = (2q1 + 1)π, ky = 2q2π ± cos−1 α

}
, (62c)

P4 :
{
(kx, ky)|kx = 2q1π, ky = (2q2 + 1)π ± cos−1 α

}
, (62d)

where q1 and q2 are any integers and the range of cos−1 α is restricted
to [0, π] . If 0 < |α| < 1 then all the critical points are found to be
elementary critical points. Such an analysis also yields the informa-
tion that points corresponding to the sets P1 and P2 are elementary
center points and the points corresponding to the sets P3 and P4 are
elementary saddle points. If α = 1 , the set P1 is identical to the P4

and the set P2 is identical to the set P3 . If α = −1 then the set P1

coincides with the set P3 and the set P2 coincides with set P4 . In
both of the above cases the critical points are not elementary. These
are critical points of order 2 with the indices m = 2 and n = 1 .

An explicit expression for the lines of flow of the Poynting vector
field can be obtained by the integration of differential Equation (3).
This expression is given by

sin(kx) cos(ky) + α(kx) = constant. (63)

Sketches of the flow lines for the two cases 0 < |α| < 1 and |α| = 1 ,
are given in Figures 11(a) and 11(b) respectively. A cursory glance at
these figures is enough to show that they are qualitatively different.
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Figure 11. (a) Flow lines of the Poynting vector field for the case of
three wave interference when 0 < |α| < 1.

Another example is that of a plane wave interfering with a circularly
cylindrical wave which also gives rise to critical points. For the sake
of definiteness consider a line source of electrical current located at
the origin of the coordinate system. This line source radiates linearly
polarized circularly cylindrical waves. In addition suppose there is a
linearly polarized plane wave traveling the direction of the negative
y-axis. The total electric field may be written as

E =
{

exp(−iky) + bH
(1)
0 (kρ)

}
ez, (64)
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Figure 11. (b) Flow lines of the Poynting vector field for the case of
three wave interference when |α| = 1.

where b is the strength of the cylindrical wave and H
(1)
0 is Hankel

function of the first kind. The strength of cylindrical wave may be
changed by changing the amount of current flowing in the line source.
When b = 0 the plane wave alone does not give rise to any critical
points. For an arbitrarily small but non zero b an elementary saddle
point appears on the positive y-axis. As the value of b is increased the
location of the saddle point moves up alone the y-axis. A sketch of the
flow lines of the Poynting vector field for this situation is given in Figure
12(a). The index of rotation of the source point is +1 because all the
flow lines emanate radially outward from the line source. Therefore the
total index of rotation in the S field remains zero. This can be verified
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by calculating the rotation on any closed curve which contains both
the line source and the elementary saddle point. There are no other
critical points of the S filed. The reason for this is that the amplitude
of the cylindrical wave falls with the distance as 1/

√
kρ and far from

the source it is completely swamped by the field of the plane wave.
The ensuing result is that all the flow lines from the source point are
eventually directed towards the negative y-axis.

As the strength of the cylindrical wave is increased the location of
the elementary saddle point moves up on the y-axis. Above a certain
value of b two elementary center and saddle points appear as indicated
in Figure 12(b). The total index of rotation still remains zero. As b
increased further more pairs of critical points are created. Each of
those pairs consists of an elementary center and saddle point.

(a)

Figure 12. Critical points resulting from the interference of a plane
wave and cylindrical wave. (a) When the amplitude of cylindrical
wave is small. (b) When the amplitude of cylindrical wave is increased
beyond a certain value.
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(b)

Figure 12. Continued.
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