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Abstract: A chip-based gyroscope is demonstrated that uses counter-propagating Brillouin lasers 
to measure rotation as a Sagnac-induced frequency shift. Demonstration of rotation measurement 
below the Earth rotation rate is presented. Prospects for improved performance are discussed. 
OCIS codes: (140.3370) Laser gyroscopes; (130.0130) Integrated optics.  

Lightweight and compact rotation sensors (gyroscopes) are required in many applications. Micro-electro-
mechanical-systems (MEMS) rotation sensors are used widely in consumer electronics, however, their sensitivity and 
bias stability does not compete with optical gyroscope systems based on the Sagnac effect (ring-laser gyroscopes [1] 
and fiber-optic gyroscopes [2]).  Also, MEMS devices rely upon a suspended mechanical structure for rotation 
measurement and can be sensitive to shock and vibration [3].  For these reasons there has long been interest in the 
possibility of a chip-based analog to a ring laser or fiber-optic gyroscope. Being lightweight with no moving parts, 
such micro-optical gyros [4] would be highly insensitive to shock and vibration. Their reliance on the Sagnac effect 
could also potentially allow them to out-perform MEMS devices. However, until recently, the performance of micro-
optical devices has lagged far behind MEMS devices on account of difficult-to-achieve requirements for high optical-
Q-factor chip-based optical resonators. Recent demonstrations using ultra-high-Q whispering-gallery resonators have 
provided encouraging results [5, 6] that approach sensitivities needed to observe the Earth rotation rate. Here, a 
monolithic optical gyroscope is described that uses counter-propagating Brillouin lasers to measure rotation through 
a Sagnac-induced frequency shift. Demonstration of rotation measurement below the Earth rotation rate is presented.  

 

 
 

Figure: A. Photograph of a 36 mm resonator gyro packaged in a brass box with fiber connectors. B. Allan deviation measurement performed on 
two disk resonator devices having different diameters (see legend).   

Brillouin scattering has been intensely studied in silica optical fiber [7] and it results from the interaction of 
an optical pump wave with microwave-rate phonons.  The application of this process for rotation sensing was 
demonstrated using optical fibers in the 1990s [8].  As shown in the figure (panel A), the current work uses a silicon-
chip-based ultra-high-Q disk resonator [9] to generate counter-propagating Brillouin lasers [5].  When the resonator 
is rotated about an axis perpendicular to the plane of the disk, the counter-propagating Brillouin lasers experience 
opposing Sagnac frequency shifts.  Detection of their beat frequency therefore provides a rotation readout. The 
sensitivity of this method of rotation measurement depends upon the linewidth of the beat note. Here, the ultra-high-
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Q systems enables sub-Hertz fundamental laser linewidths [10]. Additionally, because the counter-propagating 
Brillouin lasers are co-lasing within the same cavity, the technical noise contributions to their respective linewidths 
are largely common-mode-noise. As a result, heterodyne detection of the Brillouin laser waves produces a sub-Hertz 
linewidth beat frequency [10]. Initial work on this device was able to measure rotations rates as low as 22 degrees/hour 
[5]. Improvements to the system have now boosted the bias stability to around 3.6 degrees/hour using a 36 mm ultra-
high-Q chip resonator (see figure panel B). 

The physics of high-coherence Brillouin laser action in the ultra-high-Q resonator system will be reviewed. 
Both single pump and dual pump configurations of the rotation sensor will be described along with ways to further 
improve the rotation sensor performance.  
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