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Abstract

According to the holographic bound, there is only a finite density of degrees of freedom in space
when gravity is taken into account. Conventional quantum field theory does not conform to this
bound, since in this framework, infinitely many degrees of freedom may be localized to any given
region of space. In this essay, we explore the viewpoint that quantum field theory may emerge from
an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional
version of a Klein-Gordon scalar field using generalized Clifford algebras. Demanding that the finite-
dimensional field operators obey a suitable version of the canonical commutation relations makes
this construction essentially unique. We then find that enforcing local finite dimensionality in a
holographically consistent way leads to a huge suppression of the quantum contribution to vacuum
energy, to the point that the theoretical prediction becomes plausibly consistent with observations.
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1 Introduction: Gravity and Quantum Field Theory

A quantum field theory has infinitely many degrees of freedom in any given region of space. In the

presence of gravity, when we try to excite such degrees of freedom that are supported on a compact

region, many of the resulting states would collapse the region into a black hole. Recall that a black

hole has a finite amount of entropy which scales as the area of its horizon. Therefore, any attempts

to increase the region’s entropy by creating further excitations would only increase the size of the

resulting black hole, and hence also the size of its supporting region. Such considerations suggest that

the amount of entropy that can be localized in a compact region of space is finite [1–8]. This idea is

succinctly expressed through the holographic bound [9, 10], which says that the amount of entropy in

a spacelike region R is bounded by the area of its boundary in Planck units,

S(R) ≤ |∂R|
4`2Pl

. (1)

If we turn it around, the holographic bound, as well as its covariant generalizations [11], says that

only finitely many degrees of freedom could have been localized to a compact region of space in the

first place. The von Neumann entropy of a maximally mixed state in a Hilbert space of dimension

exp(|∂R|/4`2Pl) is enough to saturate the holographic bound, and so the degrees of freedom localized

to R can have at most this number of orthogonal microstates. In other words, the Hilbert space of a

gravitating system is locally finite-dimensional.

At a first glance, it would therefore seem that quantum field theory is in conflict with the local finite

dimensionality implied by gravity. One way of addressing this conflict is to work within the framework

of quantum field theory and introduce regulators so that it has effective finite dimension, e.g., through

suitable infrared (IR) and ultraviolet (UV) cutoffs. Another approach is to view the effective low energy

behaviour of quantum field theory as something that must emerge from a theory that is intrinsically

locally finite-dimensional.

We will explore the latter stance in this essay and construct a finite-dimensional version of an ef-

fective scalar field theory, in particular for which each mode cannot carry arbitrarily many excitations.

We will see that an automatic consequence of intrinsic finite dimensionality and the holographic bound

is a tremendous suppression of the quantum contribution to vacuum energy compared to the prediction

of conventional field theory. Many authors before us have argued for observable consequences of holog-

raphy in gravity, including corrections to vacuum energy [12–15]; this essay offers a fresh perspective

on this line of reasoning through intrinsic finite dimensionality.

2 Finite-Dimensional Effective Field Theory

2.1 Finite-Dimensional Field Operators

In a conventional infinite-dimensional setting, such as the non-relativistic quantum mechanics of a

single particle, classical conjugate variables φ and π are promoted to linear Hilbert space operators
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which obey the Heisenberg canonical commutation relation (CCR)

[φ̂, π̂] = i, (2)

where we have set ~ = 1. In a quantum field theory, the field and its conjugate momentum are operator-

valued functions on spacetime which obey a continuous version of the CCR, labelled by spacetime

points.

The Stone-von Neumann theorem guarantees that there is an irreducible representation of Eq. (2),

which is unique up to unitary equivalence, on any infinite-dimensional Hilbert space that is separable

(i.e., that possesses a countable dense subset) [16]. However, in this case, the theorem also implies

that the operators φ̂ and π̂ must be unbounded. There are therefore no irreducible representations of

Eq. (2) on finite-dimensional Hilbert spaces.

Instead, consider the following commutation relation due to Weyl [17] on a finite-dimensional Hilbert

space of dimension d:

e−iαπ̂eiβφ̂ = e−iαβeiβφ̂e−iαπ̂ (3)

This is an exponentiated form of Heisenberg’s CCR in the sense that, if the real parameters α and β

are chosen such that αβ = 2π/d, then Eq. (3) is equivalent to Eq. (2) in the limit as d → ∞. The

operators φ̂ and π̂ defined through Weyl’s CCR do admit an irreducible representation on a Hilbert

space with finite dimension d. Moreover, the representation is still unique up to unitary equivalence

via the Stone-von Neumann theorem, since a finite-dimensional Hilbert space is separable.

The generalized Clifford algebra (GCA) [18–22] provides a simple way to write down the operators

φ̂ and π̂. For example, let the dimension of Hilbert space be d = 2l + 1 for some non-negative integer

l. (The construction works when the dimension is even too, but we focus on odd values to streamline

the notation.) The GCA is generated by two unitary matrices

Â =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


B̂ =


ω−l 0 · · · 0
0 ω−l+1 · · · 0
...

...
. . .

...
0 0 · · · ωl

 , (4)

which satisfy the commutation relation ÂB̂ = ω−1B̂Â and multiplicative closure Âd = B̂d = Id, where

ω = exp(2πi/d). The identification Â ≡ exp(−iαπ̂) and B̂ ≡ exp(iβφ̂) then realizes Eq. (3). These

conjugate operators φ̂ and π̂ from the GCA each have a bounded, linearly-spaced, discrete spectrum

of dimensionless eigenvalues. In the infinite-dimensional limit, they reduce to the usual conjugate

operators with unbounded spectra and obey the Heisenberg CCR.

2.2 Vacuum Energy

Let us now use these finite-dimensional conjugate operators to construct a finite-dimensional version

of a scalar field theory. Consider first a scalar field in a three-dimensional box of side length L with
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the usual Klein-Gordon Hamiltonian, which we can decompose in terms of its Fourier modes,

Ĥ =
∑
~k

Ĥ~k =
1

L

∑
~k

(
1

2
π̂2~k +

1

2
Ω2
kφ̂

2
~k

)
. (5)

This Hamiltonian describes a number of decoupled quantum harmonic oscillators, one for each mode ~k

with natural frequency Ωk. We have pulled out a factor of 1/L in the equation above so that the φ̂~k’s

and π̂~k’s are dimensionless. Similarly, each Ωk ≡ kL is a dimensionless frequency, where k ≡ |~k|. Since

we have cast the Hamiltonian in terms of dimensionless operators, we can obtain a finite-dimensional

theory by simply replacing the φ̂~k’s and π̂~k’s with the (dimensionless) finite-dimensional operators

described above. Letting the Hilbert space dimension dk of each mode go to infinity restores the

original Klein-Gordon theory. For finite dimension dk, however, the spectrum of each Ĥ~k is not linearly

spaced and possesses both maximum and minimum eigenvalues which depend on the values of Ωk as

well as dk [22].

To fix the dk’s, we come back to the question of creating black holes. A gravitationally-acquainted

effective field theory should cut off below any excitations that would collapse into black holes. Therefore,

it is natural to impose that the largest energy eigenvalue for each mode k should not exceed the

Schwarzschild energy of the box. Although there is no closed-form expression for the maximum energy

of a mode, it is tightly bounded by

Emax(k) ≤
πΩ2

kdk
4L

, (6)

and so by demanding that it be less that ∼ LM2
Pl/4, we arrive at

dk .
L2M2

pl

πΩ2
k

. (7)

In particular, this bound suppresses the dimension of high-frequency modes and defines a smallest

mode residing at k = MPl/
√
π, for which dk = 1. Note that this construction is inherently different

from simply truncating every Klein-Gordon mode’s usual spectrum, each of which is that of an infinite-

dimensional harmonic oscillator.

Let us now examine the minimum energy eigenvalue of each mode. Emin(k) is always bounded

above by k/2, the zero point energy of an infinite dimensional oscillator, and lowering the value of

dk lowers the value of Emin(k); this is illustrated in Fig. 1. Therefore, the bound (7) also suppresses

Emin(k), with the suppression becoming increasingly severe at higher frequencies.

In summary, we find that imposing a finite dimension that prevents each mode from exceeding

the box’s Schwarzschild energy reduces the ground state energy of each field mode. The quantum

contribution to total vacuum energy density will consequently be lowered as well, even when summing

over modes all the way to the Planck scale. While our finite-dimensional field-in-a-box is not a precise

cosmological model, we can get a sense for what the size of the effect might be for our Hubble patch

by taking the box size L to be the current Hubble radius. The resulting vacuum energy density that
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we compute is

ρGCA0 =
1

L3

∑
~k

Emin(k)

≈ 1

L3

∫ MPl/
√
π

L−1

dk 4πk2
(
L

π

)3

Emin(k) . (104 GeV)4.

(8)

This is 60 orders of magnitude lower than the näıve counting of vacuum energy density contribution

from a free Klein-Gordon field,

ρKG0 =
1

L3

∑
~k

k

2

≈ 1

L3

∫ MPl

L−1

dk 4πk2
(
L

π

)3 k

2
∼ (1019 GeV)4.

(9)
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Figure 1: Minimum energy eigenvalue for a finite-dimensional field mode, normalized by Ω/L, as a
function of the dimension d and for several values of Ω.

3 Conclusion: Hilbert Space and Holography

While an intrinsically finite-dimensional version of a scalar field results in a vastly smaller vacuum

energy compared to the original infinite-dimensional theory, it is still many orders of magnitude above
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the observed value, ρ0 . (10−11 GeV)4 [23, 24]. However, this is because our simple estimate still

counts many more states than allowed by the holographic bound. This can be seen by setting dk equal

to the bound (7) and computing the dimension, D, of the total Hilbert space:

logD =
∑
~k

log dk ≈
∫ MPl/

√
π

L−1

dk 4πk2
(
L

π

)3

log dk ∼ (LMPl)
3 +O(log(LMPl)) (10)

According to the holographic bound, this should be no more than S ∼ (LMPl)
2.

Local finite dimension according to Eq. (7) alone is therefore not the end of the story. There will

also be a holographic depletion of states, which should be strongest in the UV [25, 26]. This can be

understood heuristically by noting that the density of field theoretic degrees of freedom are observed

to scale extensively in the IR, and also that many otherwise-valid states would collapse to form black

holes in the UV. For example, exciting every Klein-Gordon mode up to k ∼ 1 meV is already enough

to reach the Schwarzschild energy of our universe-sized box.

In a crude attempt to model this holographic depletion of states, we can try modifying the density

of modes g(k) dk = 4πk2 dk by setting

g̃(k) =

{
4πk2 L−1 < k < k∗
2πk k∗ < k < MPl/

√
π

. (11)

Taking the crossover to lie at k∗ ∼ 1 meV, we find that the vacuum energy is reduced to ρGCA0 .

(10−10 GeV)4, which is consistent with the observed value of vacuum energy to within an order of

magnitude. This result should be taken with a grain of salt, however, due to the delicate interplay

between the finite oscillator dimensions dk and the density of modes g̃(k), which we have yet to inves-

tigate in detail. Nevertheless, the calculation discussed here for vacuum energy illustrates that taking

finite dimensionality and holography together seriously can have important predictive consequences for

gravity.
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