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tion of the total energy. In other words, norms that
highlight the near-field energetic structures may not
be an efficient way to represent the noise generating
flow, even if the dynamics of these structures are ul-
timately responsible for generating the sound. An in-
triguing question is whether an appropriate norm can
be defined that would efficiently represent the sound
producing dynamics of the flow, and a long term goal
of the present work is to address this issue. In other
words, we seek to determine what is a good norm to
define such that relatively few POD modes contribute
to the generation of radiated sound. This, we hope,
will in turn lead to phenomenological models for sound
radiation by large-scale structures in turbulent jets.

The immediate goals of the present paper are more
modest: we examine the structure of three dimen-
sional POD modes in the turbulent jet and compare
those that are produced using different norms. These
including some two-dimensional norms related to pre-
vious experimental measurements, and norms defined
over the acoustic field to highlight the sound genera-
tion process. We also study the efficiency with which
the POD modes are able to reconstruct various point-
wise statistics, such as turbulence kinetic energy or
sound pressure level.

Simulation Database

The simulation database is reported on in detail by
Freund.® It is a Mach 0.9, Reynolds number 3600
jet with uniform stagnation temperature. Results
agree with the mean flow development, sound field
directivity, and noise spectrum of the corresponding
experiments of Stromberg et al.'® In addition, down-
stream of the potential core, where the turbulence be-
comes fully developed, Reynolds stresses match those
measured in much higher-Reynolds-number jets.% 11-12
Though the Reynolds number is low, kinetic energy
spectra are broad-banded, two-point velocity correla-
tions decay rapidly in space, and physically resolved
dissipation of turbulence kinetic energy is a significant
factor in the overall energy budget.

In the course of the simulation, all flow variables
were saved every 20 numerical time steps of At =
0.00857,/a on every other mesh point in space. This
resolution is sufficient to compute most flow quanti-
ties. There are, in all, 2333 such file saves which are
used to compute POD modes in this study.

The Proper Orthogonal Decomposition

In this section we briefly outline the notation and
properties of the POD and the procedures we used
to compute it. Results are stated here without proof.
Our approach follows closely that of Rowley;!® see that
text for further details and references.

We seek a representation for a vector of flow quanti-
ties, functions of space and time q(x,t), as an expan-
sion in vector-valued orthogonal modes, ¢;(x). The

POD expansion provides an optimally convergent se-
ries representation of a specified Lo norm of q. For
incompressible flow fields, this norm is typically taken
to be the fluctuation kinetic energy. In general. we can
specify q, the region over which the norm is defined.
and how the individual components of q are weighted
in the norm.

For compressible flows, the best choices of variables,
norms, and weightings are not obvious, as many of
the (interrelated) dependent variables, including ther-
modynamic quantitics. can be important. Rowley!'3
found that the stagnation enthalpy was particularly
useful, which in our cylindrical coordinates would give
q = (vg, vy, v9,a), where a the speed of sound, and the
norm

2a> . .
llall® = /Q o vy + v} + v dV, (1)

where again, {1 is the region of interest. In the present
study, we are primarily interested in acoustics, and in
order to compare with earlier studies,? we would like
the pressure of the POD modes to be defined. So we
generalize and use q = (v, vy, vy, a,p) with scaling
factor & = (ay,...,as) and define

llal|®> = /Qalv;’; + agv? + azvj + aga® + asp® dV, (2)

where a consistent non-dimensionalization of q is im-
plied. The constants « determine the specific norm.
Choosing a = (1,1, 1, %,0) recovers the stagnation
enthalpy norm used by Rowley,!® and o = (1, 1,1,0,0)
recovers the standard kinetic energy norm often used
in incompressible flow.

It is well known that for homogeneous (periodic)
coordinate directions, Fourier modes are identical to
POD modes. We anticipate this result by starting with
the azimuthal Fourier transform of q,

Ny /2

q(z,r,6,t) = qz,r) + Z

m=—Ngy ;'1.2

q™ (e, t)e™ ) (3)

where we have removed the mean, q, and computed
POD modes for each m as

N
qQ"(xz,rt) = Z ai*(t)ey (z,7) m = 0,ldots, My
j=1

(4)
To reduce computation we take My = 9 and use the
q~ ™ = q"™" symmetry.
Method of snapshots
For clarity, we drop the superscript m in this section.
In the method of snapshots,!* we use the simulation
data saved at the N = 2333 different times denoted by
tj. The POD modes are
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k _— . .
where each cg ), k=1,2,...,N,is an eigenvector of

N
3 Myel = X0 P, (6)

=1

and the matrix M;; is the inner product of the snap-
shots

]wij = <q(;l',7‘,tj),Q(ll',T,ti)>, (7)

where the inner product of q; and qo is

(a1,q2) = / MUz, Vg + G2V, Uy + 30, Vg, (®)
Q

+ ga1 a2 + aspr1p2 dv.

Thus the defining Lo norm is (2).

Norms considered

We have computed vector valued POD modes, ¢;
using the norms listed in table 1. The first 3 are
integrations over the computational domain, with o
chosen so that the kernel represents the fluctuating
kinetic energy, pressure, and streamwise velocity, re-
spectively. The fourth norm uses only the streamwise
velocity, and integrates over a slice at a single stream-
wise positions, * = 18r,. This is chosen to match
the experimental setup of George and co-workers.5815
Finally, we consider a norm defined by the integration
of the sound pressure level over a portion of a sphere at
607, from the origin, and extending to spherical angles
between 10 and 90 degrees (limited by the truncation
of the extended acoustic domain discussed below).

The Near Field
Energy representation

The relative eigenvalues for the modes defined with
the p-3d and K-3d norms (see table 1) are shown in
figure 1. The nine largest eigenvalues are shown for
each of the first 10 azimuthal modes numbers. The
most energetic K-3d mode is at n = 2, while the most
energetic p-3d mode is at n = 1. The p-3d mode en-
ergies decay more rapidly with both n and eigenvalue
number at a particular n. Azimuthal spectra have, in
the past, shown that the p Fourier coefficients peaks at
smaller n than the u Fourier coefficients.'® At small n,
the energetic p-3d modes come roughly in pairs that
seem to represent propagation with nearly constant
phase speed. In table 2, the percentage of energy cap-
tured in J modes, for varying J, is listed for all the
norms discussed in this paper.

Using the w-2d norm (see table 1), Citriniti &
George” found that in the shear layer region of a turbu-
lent jet, the most energetic POD mode had n = 0. The
next most energetic mode was at n = 4, and their sec-
ond most energetic mode at each azimuthal mode num-
ber typically contained less than one-third the energy
of the most energetic mode at the same n. It would be
misleading to make a direct comparison to this data

Fig. 1

Relative mode energies:
dimensional K-3d, and (b) p-3d as defined in (table
1). The nine largest eigenvalues for each azimuthal
mode are shown.

(a) three-

J p3d K-3d U-3d U-2d p-sp
1 4.0 2.2 3.1 4.7 27
5 15 8.6 11 20 96
10 25 14 18 35 70
50 53 36 44 72 96
100 64 49 57 85 99
500 88 81 84 99 100

Table 2 Percent induced norm captured with J
POD modes.

because our low-Reynolds-number jet is laminar for
much of the shear layer region. It is only downstream
that it becomes turbulent, starting to match Reynolds
stresses of high-Reynolds-number jets downstream of
the potential core’s closing. However, George and his
group have more recently obtained POD modes further
downstream in the jet.%# 15 In figure 2 (a) the relative
energies of the modes computed using the u-2d norm
at x = 18r, in the same way as these references.t> %15
Like Jung et al® saw at x = 12r,,* we too see that
the most energetic mode is at n = 2 and energies fall
off for both higher and lower n’s. In agreement with
Jung,% the next most energetic mode at each is n is ap-
proximately one-third the energy at the most energetic
mode.

However, the u-3d norm shown in figure 2 (b)
reflects the greater complexity of the full three-
dimensional flow as compared to a two-dimensional
slice. Although the peak energy is still at n = 2 and
energy of the most energetic modes at neighboring n’s
drop in a similar fashion as in two dimensions, the

*A direct comparison at the same downstream location does
not seem possible because our potential core is longer since the
turbulence is slower to develop in this low-Reynolds-number jet.
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Fig. 7 Reconstruction of turbulence kinetic energy
(TKE) at (a) = = 8r, and (b) = = 167,.

The nine largest eigenvalues for each azimuthal mode
are shownp-3d norm (dashed lines) also captures the
nearly as effectively as the K-3d norm. The p-sp norm
is inefficient, but this is not unexpected since most en-
ergy in the near field does not directly contribute to
the acoustic field. This is discussed further in the next
section.

At the position further upstream (figure 7 a), we
sce that the p-3d modes actually capture the point-
wise turbulence kinetic energy more efficiently than
the K-3d modes do (by a very considerable margin).
One would expect more efficient reconstruction down-
strcam where the fluctuations (both turbulence energy
and pressure) are larger (and therefore contribute more
to the norm). But for the pressure the reconstruction
is equally good at both locations, despite the fact that
the pressure fluctuations are an order of magnitude
smaller at & = 8r, than at © = 167,. It is intercst-
ing to further compare the reconstruction of p'p’ as
is done for the same streamwise positions in figurc 8.
In both cases the p-3d norm also better captures the
point-wise pressure fluctuations in fewer modes. This
better convergence may have to do with the fact that
the most energetic K-3d modes appear to primarily
represent large structures (with n = 2 dominant) in
the region somewhat downstream of the close of the
potential core.

In general, it may at first seem disappointing to re-
quire 500 modes to capture only about 60% of the
peak kinctic cnergy at z/r, = 16. In many fows

P-sp

/7o psp

p'p’

r/T,

Fig. 8 Reconstruction of pressure fluctuations at
(a) £ =8r, and (b) = = 16r,.

one would hope for only a few modes to be domi-
nant, to capture some relevant dynamical feature of
the flow at low-order. However, when one considers
that this is just 2.86% of the modal content of the
data set (there were 10 azimuthal modes and 1750
snapshots, so 500/10/1750=2.86%), it seems more im-
pressive. Clearly further work is warranted to deter-
mine whether reduced-order models based on Galerkin
projection of the modes have the ability to capture a
similar portion of the energy or pressure, and to deter-
mine whether the lowest-order modes reveal something
interesting about the dynamics of the turbulence.

Far-field reconstruction

We turn now to the reconstruction of the acoustic
field by the POD modes. As in the last section, we
sum over the first 10 azimuthal modes and various
numbers of POD modes, J. Despite the fact that we
used 10 modes, modes n = 0 and n = 1 are dominant
in the far-field, with virtually no contribution from
the higher azimuthal modes. We consider the data
on a large spherical shell at R = va2 +1r2 = 60r,,
the same area over which the p-sp norm was defined.
Plotted in figure 9 is p'p’ versus directivity angle
measured from the downstream axis, for reconstruc-
tions with J = 10, 50,100, and 500 modes. The peak
radiation is at roughly v & 30° for the total and most
of the reconstructions. The dotted line shows recon-
struction based on the p-sp norm. It is not surprising
that only a few modes, so-defined, capture the radi-
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dimensions (as is most often done in experiments due
to measurement difficultics).

POD modes computed for a pressure volume come
in pairs and have a clear wave-packet structure.
Other norms give very different distributions of energy
amongst the modes and very different looking cigen-
functions.

To converge to 50% of the turbulence kinetic energy
(globally) requires 100 modes from a turbulence ki-
netic energy norm, 0.57% of the total modes used to
represent the full flow statistics. The pressure norm is
nearly as efficient (better in some places) at represent-
ing the energy. However, obtaining a good representa-
tion of the sound ficld requires virtually all the POD
modes from either TKE or pressure based norms. Of
course, one may define the norm as an integration over
the far field and obtain rapid convergence to the ra-
diated sound. Such a norm does not offer an efficient
compression of the near-field data, but the modes that
it does illuminate appear to have an interesting wave-
packet appearance and may be dynamically relevant
to the sound radiated by large structures in the flow.
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