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We propose a general strategy to develop accurate Force Fields (FF) for metallic systems derived
from ab initio quantum mechanical (QM) calculations; we illustrate this approach for tantalum.
As input data to the FF we use the linearized augmented plane wave method (LAPW) with the
generalized gradient approximation (GGA) to calculate:
(i) the zero temperature equation of state (EOS) of Ta for bcc, fcc, and hcp crystal structures for
pressures up to ∼ 500 GPa.
(ii) Elastic constants.
(iii) We use a mixed-basis pseudopotential code to calculate volume relaxed vacancy formation
energy also as a function of pressure.
In developing the Ta FF we also use previous QM calculations of:
(iv) the equation of state for the A15 structure.
(v) the surface energy bcc (100).
(vi) energetics for shear twinning of the bcc crystal.
We find that with appropriate parameters an embedded atom model force field (denoted as qEAM
FF) is able to reproduce all this QM data. Thus, the same FF describes with good accuracy the bcc,
fcc, hcp and A15 phases of Ta for pressures from ∼ −10 GPa to ∼ 500 GPa, while also describing the
vacancy, surface energy, and shear transformations. The ability of this single FF to describe such a
range of systems with a variety of coordinations suggests that it would be accurate for describing
defects such as dislocations, grain boundaries, etc.
We illustrate the use of the qEAM FF with molecular dynamics to calculate such finite temperature
properties as the melting curve up to 300 GPa; we obtain a zero pressure melting temperature of
Tmelt = 3150 ± 50 K in good agreement with experiment (3213 − 3287 K). We also report on the
thermal expansion of Ta in a wide temperature range; our calculated thermal expansivity agrees
well with experimental data.

64.30.+t, 62.20.Dc, 64.70.-p, 64.70.Dv, 65.40.-b

I. INTRODUCTION

Despite decades of experimental and theoretical re-
search on the mechanical properties of materials many
questions remain open, particularly in the relation be-
tween atomistic processes (involving dislocations, grain
boundaries, cracks, their mobility and interactions
thereof) and the macroscopic behavior (plastic deforma-
tion, failure, etc.). Macroscopic plasticity and failure
are well characterized experimentally and described using
a variety of mesoscale and macroscale models with pa-
rameters obtained empirically. These models and their
parameters should ultimately be derivable in terms of
the fundamental physics of atomic interactions as de-
scribed by quantum mechanics (QM). Unfortunately de-
spite the enormous progress in ab initio QM, such cal-
culations are too computationally demanding to study
directly most processes relevant to plasticity and failure.

To do so would require that millions of atoms be de-
scribed for nanoseconds or longer, calculations that are
impossible to consider today. In order to bridge this gap
between atomic interactions and the mechanical proper-
ties of macroscopic systems we use first principles QM
data to derive a FF with which energies and forces can
be calculated in a computationally efficient way given
only the atomic positions. This allows us to use clas-
sical molecular dynamics (MD) to simulate the various
atomistic processes governing the mechanical and ther-
modynamical properties of materials. Since the FF is
derived by fitting a wide range of QM data, we expect to
obtain an accurate description of the atomic interactions
which, with molecular dynamics, can provide insight and
constitutive equations to be used in the mesoscale and
macroscale models of plasticity and failure. We illus-
trate this procedure here for Ta. Ta is chosen because it
exhibits only a single crystalline phase over the interest-
ing range of temperatures and pressures. This makes the
validation of theoretical predictions against experimental
data under a wide range of conditions more clear.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/223096937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/cond-mat/0208027v1


Several authors have used ab initio methods to study
various mechanical properties of Ta. Söderlind and Mo-
riarty used the full potential linear muffin-tin orbital
method within the GGA approximation and with spin
orbit interactions to calculate different zero temperature
properties of of Ta, including the EOS of different crys-
talline phases, elastic constants, and shear strength.1 Va-
cancy formation migration energies have also been calcu-
lated from first principles.2,3 Recently, Ismail-Beigi and
Arias4 calculated ab initio dislocation core energy and
structures for Ta and Mo.
On the other hand, several FF have been developed for

bcc metals. The first principles based multi-ion analytic
model generalized pseudopotential (MGPT) force field
has been used to calculate several mechanical and ther-
modynamical properties of various metals,5–7 including
Ta. One of the most popular many-body force fields for
metals is the Embedded Atom Model (EAM), proposed
by Daw and Baskes in 1984.8 Most EAM FF have been
based on experimental data regarding structures at and
near equilibrium [for bcc metals, see for example Ref.
9–11]. One of the main advantages of EAM force fields
is that they are computationally very efficient which al-
lows MD simulations of large systems for long times.
The modified embedded atom model (MEAM), which in-
cludes angular dependence of the electronic density, was
developed by Baskes and coworkers12 and applied to a
variety of materials including bcc transition metals13.
In this paper we propose a strategy to derive accurate

many body FF based on QM calculations; these FF can
be used to simulate the dynamics of systems with millions
of atoms. We use accurate QM (LAPW GGA method)
to calculate various mechanical properties of Ta which
require a small number of atoms: namely the zero tem-
perature EOS for bcc, fcc and hcp crystalline phases, and
elastic constants. We also use a mixed-basis pseudopo-
tential method to calculate vacancy formation energies.
We find that we can describe all this first principles data
using a classical many body EAM FF (named qEAM
FF) with good overall accuracy. We then illustrate the
use of the qEAM FF with MD simulations to study vari-
ous properties as a function of pressure and temperature;
such as the melting curve of Ta up to pressures of ∼ 300
GPa, and thermal expansivity.
This paper is organized as follows. In Section II we

present first principles results for the equation of state
for bcc, fcc and hcp phases, elastic constants and volume
relaxed vacancy formation energy and enthalpy for a wide
pressure range. In Section III we develop the qEAM FF
based on ab initio results. In Section IV we calculate the
thermal expansivity of Ta using the qEAM FF and ab

initio calculations. Section V presents the calculation of
the melting curve of Ta for pressures up to 300 GPa using
molecular dynamics. Finally, in section VI, conclusions
are drawn.

II. QUANTUM MECHANICS RESULTS

We computed the static equation of state of Ta for
different crystalline phases using the linearized aug-
mented plane wave (LAPW) method.14,15 LAPW is an
all-electron method, with no essential shape approxima-
tions for the charge density or potential, and is easily
converged. The 5p, 4f , 5d and 6s states were treated as
band states, and the deeper states were treated as soft
core electrons. Here we used the Perdew, Burke, and
Ernzerhof (PBE) implementation of the generalized gra-
dient approximation16 for the exchange-correlation po-
tential. A 16x16x16 special k-point mesh17 was used,
giving 140 k-points within the irreducible Brillouin zone
of the bcc lattice. Tests demonstrated convergence with
this mesh. The convergence parameter RKmax was 9 giv-
ing about 1800 planewaves and 200 basis functions per
atom at zero pressure.
Total energies were computed for bcc, fcc and hcp

phases at 20 volumes. For the fcc and hcp phases,
12x12x12 and 16x16x12 k-point meshes were used for
Brillouin zone integrations giving 182 and 180 k-points
within the irreducible zone respectively. For the hcp
phase, the ideal c/a ratio was used, and at two differ-
ent volumes also c/a was optimized. We found that
the change in the energy due to the this optimization
is less than 40 meV/atom around zero pressure and de-
creases by pressure. We have tabulated the ab initio

energy-volume data for the different phases and have
made them available as supplementary material, see Ref.
18. We have fitted our energy-volume data to Rose’s
universal equation of state;19 the obtained zero pressure
volume (V0), zero temperature bulk modulus (BT ), and

its derivative with respect to pressure (B
′

T ) are shown in
Table I. We also show in Table I the results obtained by
Söderlind and Moriarty using full potential linear muffin-
tin orbital method within the GGA approximation and
with spin orbit interactions (denoted as FP LMTO GGA
SC), and room temperature experimental values by Cynn
and Yoo.20 Our LAPW calculations of the bcc equation
of state agree well with the experimental values and pre-
vious theoretical calculations.
Static elastic constants [cs=(c11-c12)/2 and c44] were

obtained from strain energies by straining the bcc cell
with volume conserving tetragonal and orthorhombic.
We calculate cs using tetragonal strain of the cubic bcc
lattice:

a = a(1 + ǫ, 0, 0),

b = a(0, 1 + ǫ, 0),

c = a(0, 0, 1/(1 + ǫ)2), (1)

where a is the cubic lattice constant of the system, a, b,
and c are the lattice vectors and ǫ is the strain. cs is
related to the quadratic term of the strain energy:

E(ǫ) = E(ǫ = 0) + 6V (ǫ = 0)csǫ
2 +O(ǫ3), (2)
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where E(ǫ = 0) is the energy of the unstrained system
and V (ǫ = 0) is its volume. Similarly c44 is obtained
from the orthorhombic strain:

a = a(1, ǫ, 0),

b = a(ǫ, 1, 0),

c = a(0, 0, 1/(1− ǫ2)). (3)

the shear constant c44 is obtained from:

E(ǫ) = E(ǫ = 0) + 2V (ǫ = 0)c44ǫ
2 +O(ǫ3). (4)

The convergence of strain energies with respect to the
Brillouin zone integration was carefully checked; we used
16x16x16 k-points meshes in the full Brillouin zone giv-
ing 344 and 612 k-points within the irreducible Brillouin
zone of tetragonal and orthorhombic lattice respectively.
cs and BT = (c11 + 2c12)/3 were used to calculate c11
and c12; the resulting zero pressure and zero tempera-
ture elastic constants are shown in Table I. The elastic
constants cs and c44 as functions of pressure are avail-
able as supplementary material18, see also Ref. 21. The
zero pressure values and initial slopes are in good agree-
ment with the experimental data of Katahara et al.22 We
find that c44 shows a change in behavior at ∼150 GPa21

which is probably due to the electronic transition also
evident in the equation of state.38 The band structure
and density of state show a major reconfiguration with
pressure.38 Our results indicate that the elastic constants
can be much more sensitive to changes in the occupied
states below the Fermi surface than the equation of state,
where changes were much more subtle.
The vacancy formation energy was determined24 us-

ing supercells of 16 and 54 atoms and a mixed-
basis pseudopotential (MB-PS) code.25 Using the GGA
approximation,26 the zero pressure volume relaxed va-
cancy formation energy was determined to be 3.25 eV
for a 54 atom supercell, and 3.26 eV for a 16 atom su-
percell, indicating convergence. The effects of structural
relaxation on vacancy formation energy are discussed in
Ref. 24. A comparison with recent ab initio and experi-
mental results will be presented in the next section. The
ab initio data used to calculate vacancy formation ener-
gies is also available as supplementary material.18

III. qEAM FORCE FIELD

In order to predict mechanical properties of materials
and processes like phase diagrams, dislocations structures
and mobility, mechanical failure, etc. it is important to
have accurate classical force fields to describe the atomic
interactions. With MD simulations it is then possible to
study large systems (millions of atoms) for relatively long
times (ns).
One of the most popular many-body force fields for

metals is the EAM, proposed by Daw and Baskes in
1984.8 This approach is computationally efficient and has

been used successfully for numerous applications, like cal-
culation of thermodynamic functions, liquid metals, de-
fects, grain boundary structure, fracture, etc, see for ex-
ample Ref. 11,27.
The EAM implementation that we have used is based

on the one proposed by Chantasiriwan and Milstein.9

This from of EAM was chosen because it can describe
third order elastic constants correctly9 thus being useful
in a wide range of strains. The energy of a given atomic
configuration with atom positions {ri} is given by:

U{ri} =
N
∑

i

F (ρi) +
∑

i<j

φ(rij), (5)

with

ρi =
∑

j 6=i

f(rij) (6)

where F (ρ) is the embedding energy, ρi is the total
“electronic density” on the atomic site i, f(r) is the
electron density function, φ(r) is a two-body term and
rij = |ri − rj |.
Following Ref. 9 we took the two-body term as:

φ(r) =

{

(r − rm)4
∑7

i=0
bir

i if r < rm
0 otherwise,

(7)

the factor (r− rm)4 ensures that the two body term and
its first three derivatives with respect to r vanish at the
the cut-off radius (rm). The optimized form of the two
body term shows short range repulsion and longer range
attraction.
The “electron density” is:

f(r) =
1 + a1 cos(

αr
V 1/3 ) + a2 sin(

αr
V 1/3 )

rβ
, (8)

where V is the volume per atom of the system. The
parameters of the “electron density” are volume depen-
dent, but structure independent. The importance of the
oscillatory behavior of the “electron density function” in
embedded atom model-like force fields is related to their
ability to correctly account anharmonicities.9

Finally the embedding energy as a function of the
electronic density is obtained from the reference bcc
structure:9

F (ρ) = URose(V )−
∑

i<j

φ(rij), (9)

where the sum is made for the perfect bcc structure and
URose(V ) is Rose’s universal equation of state:19

URose(V ) = −Ecoh(1 + a∗ + f3a
∗3 + f4a

∗4)e−a∗

(10)

where a∗ = (a− a0)/a0λ and λ = (Ecoh/9V0BT )
1/2.

We we optimized the parameters in the qEAM FF us-
ing the following data:
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(a) Zero temperature energy-volume and pressure-
volume curves for different crystal structures (bcc, fcc
and A15) in a wide pressure range, from ∼ −10 GPa to
∼ 500 GPa. For the bcc and fcc structures the data from
Section II was used, while for A15 we used the results
obtained by Söderlind and Moriarty.1

(b) Zero temperature, zero pressure elastic coefficients,
shown in section II.
(c) Vacancy formation energy at zero pressure.
(d) Energetic of homogeneously sheared bcc crystal,

from Ref. 1.
(c) Unrelaxed (100) surface energy from Ref. 28.
We fit the parameters entering the qEAM FF energy

expression to the training set using an optimization algo-
rithm based on simulated annealing. We define an error
function of the form:

C =
∑

i

Ci
(QqEAM

i −Qtarget
i )2

(Qtarget
i )2

, (11)

where the sum runs over the different quantities to be fit-

ted, QqEAM
i is the value given by the qEAM FF for quan-

tity i, Qtarget
i is the target quantity and Ci are weight

factors. The EOS information of the different phases ac-
count for ∼ 78% of the total cost; elastic constants and
vacancy formation energy account for ∼ 9% each one;
surface energy represents ∼ 3% of the total cost and en-
ergy of sheared bcc crystal represent ∼ 1%.
In Tables II and III we show the optimized qEAM pa-

rameters.
A detailed comparison between the qEAM FF and the

data it was fitted to is shown in the following subsec-
tions, together with other ab initio and experimental re-
sults. We also show the calculation of related quantities
obtained using the qEAM FF via MD simulations.

A. Equation of state and elastic constants

The most important quantities used to develop the
qEAM FF are zero temperature EOS for different crystal
phases of Ta in a wide pressure range. We used energy-
volume and pressure-volume for bcc Ta from Section II;
fcc-bcc energy difference and fcc pressure for different
volumes from Section II; and first principles A15-bcc en-
ergy difference obtained by Söderlind and Moriarty1 us-
ing full potential linear muffin-tin orbital method within
the GGA approximation with spin orbit interactions. Ta
is a bcc metal and no pressure-induced phase transition
to other solid structure has been found experimentally or
theoretically. Nevertheless, using QM it is possible to cal-
culate the equation of state for different crystalline struc-
tures although they may not be thermodynamically sta-
ble. Including the EOS of different phases in the FF de-
velopment leads to an accurate description of the atomic
interactions even when the environment of an atom is
not that of the stable phase; this could play a key role to
correctly describe defects and non-equilibrium processes.

In Figure 1 we show energy [Figure 1(a)] and pres-
sure [Figure 1(b)] as a function of volume for bcc Ta at
T = 0 K. The circles denote LAPW GGA results and
the lines the qEAM FF. Figures 2 and 3 show the same
results for fcc and A15 Ta respectively. In Figure 3(a)
open circles show the A15 energy calculated by Söderlind
and Moriarty,1 and the filled circles denote the sum of the
A15-bcc energy difference from Ref. 1 and our bcc energy
from section II, these are the quantities the FF was actu-
ally fitted to. The insets on Figures 2(a) and 3(a) show
the fcc-bcc and A15-bcc energy difference as a function
of volume obtained with the qEAM FF (lines) and from
QM (circles). In Figure 4(a) and 4(b) we show energy-
volume and pressure-volume curves for hcp phase respec-
tively; circles denote denote the LAPW GGA results of
section II and the lines show the qEAM FF results. Note
that although the the hcp data was not included in the
training set for the qEAM FF the agreement is very good.
Figures 1 to 4 show that the qEAM FF reproduces the
zero temperature EOS for the four different phases very
well.
We also included in the FF training set the ab initio

elastic constants from Section II at zero pressure. Table
I shows bcc Ta EOS parameters [zero pressure volume
(V0), bulk modulus (BT ), its derivative with respect to
pressure (B′

T ) and the elastic constants] obtained using
the qEAM FF together with the QM values from Sec-
tion II and the ones reported in Ref. 1. V0, BT , and B′

T
were obtained fitting Rose’s universal equation of state
to the energy-volume data shown in Figure 1. The elas-
tic constants cs and c44 were calculated with the qEAM
FF using the tetragonal and orthorhombic strains shown
above [equations (1) to (4)].
In Figure 5 we show the elastic constants [bulk mod-

ulus BT , cs and c44] as a function of pressure obtained
with the qEAM FF (filled circles and full lines) and the
LAPW results from Section II. While the agreement in
BT is excellent and that for cs is good, qEAM FF greatly
underestimates c44 for high pressures; this problem is
amplified by the possible electronic phase transition that
leads to a change of behavior of c44 at ∼ 150 PGa (see
Section II and Ref. 21).
In order to estimate the accuracy of the the numerical

calculation of elastic constants we have calculated c11
independently using a uniaxial strain:

a = a(1 + ǫ, 0, 0),

b = a(0, 1, 0),

c = a(0, 0, 1), (12)

the elastic constant c11 is obtained from:

E(ǫ) = E(ǫ = 0) + PV (ǫ = 0)ǫ+
1

2
V (ǫ = 0)c11ǫ

2 +O(ǫ3),

(13)

where E(ǫ = 0) is the zero strain energy, V (ǫ = 0)
is the volume at zero strain, and P is the zero strain
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hydrostatic pressure. For zero pressure we calculate
c11 = 273.67GPa only 0.4 % higher than the one com-
puted from cs [equations (1) and (2)] and BT (calculated
form the energy-volume data shown in Figure 1). We
find a similar agreement under compression: for pres-
sure P=109.54 GPa (corresponding to a volume per atom
V (ǫ = 0) = 13.36Å3) we obtain c11 = 819.90 GPa only
0.8 % larger than the calculated from cs and BT .
We have calculated the T= 300 K EOS using

isothermal-isobaric (NPT) MD with a Hoover29 thermo-
stat and Rahman-Parrinello barostat.30 In Table I we
show the T=300 K zero pressure volume, bulk modu-
lus and its first derivative with respect to volume; we
also show recent compressibility data20 obtained in a
diamond-anvil cell at room temperature and ultrasonic
measurements of adiabatic elastic constants.22

Zero temperature EOS data obtained with the qEAM
FF is available in the supplementary material.18

B. Vacancy formation energy

We used experimental values for vacancy formation en-
ergy and cohesive energy in the training set used to fit
the qEAM FF. The experimental value for the relaxed
vacancy formation energy is Evac = 2.8 eV.31 From this
value we estimated the value of the unrelaxed vacancy
formation energy to be 3 eV. This unrelaxed value was
used to fit the qEAM FF. The value for the cohesive
energy used is Ecoh = 8.10 eV.32

The volume-relaxed vacancy formation energy is de-
fined in computer simulations as:

evac(P ) = evac(N − 1, P )− N − 1

N
extal(N,P ), (14)

where extal(N,P ) is the energy of the perfect crystal with
N atoms at pressure P and evac(N − 1, P ) is the energy
corresponding to the N-1 atoms system with a vacancy at
pressure P where the atomic positions are not allowed to
relax. The relaxed vacancy formation energy is defined
in the same way but with evac(N −1, P ) being the atom-
relaxed energy of the system with a vacancy.
The volume-relaxed vacancy formation energy ob-

tained using the qEAM FF is 3.10 eV, in very good agree-
ment with the target value (3 eV) and only slightly lower
than the ab initio value 3.25eV. The relaxed vacancy for-
mation energy obtained with the qEAM FF is 2.95 eV.
Previous work by Korhonen, Puska and Nieminen, us-
ing a DFT full potential linear muffin-tin orbital method
with LDA gives 3.49 eV for the unrelaxed vacancy for-
mation energy;33 Satta, Willaime and Gironcoli3 (using
DFT plane Waves LDA) calculated 3.51 eV and 2.99 eV
for unrelaxed and relaxed vacancy formation energies;
recently Söderlind, Yang, Moriarty and Wills (also using
the full potential linear muffin-tin orbital method with
GGA) obtained 3.74 eV for the volume relaxed vacancy
formation energy and 3.2 for the relaxed vacancy forma-
tion energy. Table IV summarizes our vacancy formation

energies together with previous theoretical results and
experimental data.
In Figure 6(a) we show the volume-relaxed vacancy

formation energy (evac) as a function of pressure (P);
the thick solid line shows qEAM results and circles de-
note QM results of Section II. We used a simulation cell
containing 54 atoms for the perfect crystal case with pe-
riodic boundary conditions. Vacancy formation enthalpy
is defined in the same way as evac(P ) [eq. (14)] replacing
energy with enthalpy. In Figure 6(b) we plot the va-
cancy formation enthalpy hvac with respect to pressure.
The difference between the vacancy formation enthalpy
as obtained by qEAM FF and QM, is due to the differ-
ence in the vacancy formation volume obtained from the
two methods. The vacancy formation volume [vvac(P )]
is, again, defined in the same way as evac(P ) [eq. (14)]
replacing energy with volume. In Figure 7 we plot the
vacancy formation volume (Ωf

vac), with respect to pres-
sure. While the pressure dependence of vvac(P ) calcu-
lated using the qEAM FF is very similar to the MB-PS
calculation, our Force Field overestimates the vacancy
formation volume resulting in higher vacancy formation
enthalpy for compressed states.
In order to calculate the vacancy formation enthalpy

at finite temperatures as a function of pressure we per-
formed NPT MD simulations using a cell containing
N = 1458 atoms with periodic boundary conditions. We
performed simulations at 9 different volumes (19, 18.36,
18, 17, 16, 15, 14, 13, 11 Å3); for each volume we started
with the relaxed structure a T = 0 K and heat the sys-
tem in 100 K steps; for each temperature we performed 25
ps MD simulations and used the last 20 ps for measure-
ments. In Figure 8 we show vacancy formation enthalpy
as a function of pressure for T = 0K (full atomic relax-
ation), T = 300 K, the volume-relaxed enthalpy is also
shown for comparison; the zero pressure values are also
shown in Table IV. The fundamental data used to calcu-
late vacancy energy, enthalpy and volume can be found
in the supplementary material.18

A very important quantity, which determines vacancy
mobility, is the vacancy migration energy barrier (Emig

vac ).
We calculate Emig

vac using the qEAM FF by marching a
nearest neighbor atom towards the position of the va-
cancy in short steps. At each step the position of the
marching atom is fixed, as well as that of a distant, ref-
erence, atom, and the positions of all the other atoms are
relaxed at constant pressure. In this way we obtain the
optimum migration path and energy as a function of dis-
placement. In Figure 9 we show the energy as a function
the position of the marching atom for zero pressure and
zero temperature; we obtain a vacancy migration energy
Emig

vac ∼ 1.093 eV. The activation energy for self diffusion
is defined as Q = Ef

vac + Emig
vac , using the qEAM FF we

obtain Q = 4.028 eV in good agreement with the exper-
imental value 3.8 ± 0.3 eV,34 and ab initio calculations3

which give 3.82 eV, see Table IV. At T=300 K we obtain
a vacancy migration energy of 1.1 ± 0.5 eV, see Table
IV, very similar to the zero temperature value.
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C. Energetics of homogeneously sheared bcc crystal

Zero temperature, first principles energetics of a homo-
geneously sheared bcc crystal in the observed twinning
mode was also included in the qEAM training set.
The ideal shear strength is defined to be the stress

separating elastic and plastic deformation when a homo-
geneous shear is applied to a perfect crystal. It gives an
upper bound for the shear strength of the material. The
shear transformation is in the direction of the observed
twining mode and deforms the crystal into itself.1,35 For
bcc crystal we use the following transformation of the cell
vectors:1,35

a =
1

2
[1̄11] +

s√
18

[1̄1̄1],

b =
1

2
[11̄1] +

s√
18

[1̄1̄1],

c =
1

2
[111̄], (15)

when the shear variable s is equal to the twinning shear
s = stw = 2−1/2 the lattice vectors [a = 1/3[2̄12], b =
1/3[12̄2] and c = 1

2
[111̄]] form a bcc structure, twin of

the initial one.
In this way one can calculate the energy along the shear

path,

W (s) = e(V, s)− e(V, s = 0), (16)

where e(V, s) is the energy per atom of the deformed
system and e(V, s = 0) is the perfect crystal energy.
The energy barrier associated with this transformation
is Wmax = W (s = 0.5). The corresponding stress is de-
fined as:

τ(s) =
1

V

dW (s)

ds
. (17)

The ideal shear strength (τmax) is defined as the maxi-
mum stress along the path. In Figure 10 we show energy
and stress as a function of shear using the qEAM FF for
zero pressure volume, see also Ref. 18.
Söderlind and Moriarty1 calculated W (s) and τ(s) for

Ta at different volumes, from first principles. In develop-
ing the qEAM FF we used Wmax for V=17.6186Å3 and
V=10.909Å3 as part of the training set. In Table V we
show a comparison between the first principles results1

and the ones obtained using the qEAM FF. We can see
that the qEAM results are is in very good agreement with
the ab initio calculations.

D. Surface energy

The unrelaxed (100) surface energy using the qEAM
FF is 1.971 J/m2, lower than the first principles values
of 3.097 J/m2 of Ref. 28 and 3.23 J/m of Ref. 36. Low
surface energy is a common problem in EAM-like force

fields, see Ref. 11. The zero temperature experimental
estimate of the surface energy (averaged over different
surfaces) is 2.902 J/m2.37

IV. THERMAL EXPANSION

Thermal expansivity is an important materials prop-
erty that can be calculated directly from MD simulations.
In order to calculate the lattice constant as a function of
temperature for zero pressure we performed NPT MD
simulations with a computational cell containing 1024
atoms increasing the temperature by 100 K every 25 ps
at zero applied pressure. For each temperature the first 5
ps were taken as thermalization and the remaining 20 ps
were used for measurements.18 ab initio MD simulations
are very time consuming and only feasible for small sys-
tems and short times; thus in order to calculate the ther-
mal expansion from first principles we take the following
approach.38 The Helmholtz free energy can be written
as:

F (V, T ) = E0(V ) + Fel(V, T ) + Fvib, (18)

where E0(V ) is the zero temperature energy (Section II),
Fel(V, T ) is the electronic contribution and Fvib is the
vibrational part of the free energy. The electronic contri-
bution is obtained using quantum statistical mechanics.
The vibrational part is obtained using the particle in a
cell method,39 further detail of our calculations can be
found in Ref. 38. This calculations were performed us-
ing the mixed basis pseudopotential method and a cell
containing 54 atoms.
In Figure 11(a) we show the thermal expansivity

(α(T ) = 1/V ∂V/∂T ) as a function of temperature ob-
tained form our MD simulations (circles), first principles
results (dashed-dotted line), as well as the experimental
values (full and dashed lines).40 Figure 11(b) shows the
linear thermal expansion (a − a0)/a0 (where a0 is the
T= 300 K lattice constant) as a function of tempera-
ture obtained using the qEAM FF (circles) as well as the
experimental values.40 The high temperature experimen-
tal results (shown as dashed lines) represent provisional
experimental data.40 Both MD and the particle in cell
methods are based on classical mechanics so none of the
them are expected to capture the low temperature behav-
ior where the differences between quantum and classical
statistical mechanics are important. The force field re-
sults agree with experimental data well; for example the
qEAM FF underestimates the change in lattice parame-
ter from T = 300 K to T = 2000 K by less than 0.2%.
This is an important result since the thermal expansion
in related to anharmonicities of the internal energy. Our
ab initio data also agree well with the experimental re-
sults; we slightly overestimate thermal expansivity for
temperatures lower than T=2000 K.
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V. MELTING CURVE OF Ta

We studied melting of Ta using one phase and two-
phase MD simulations with the qEAM force field.
In Figure 12 we show the results of zero pressure heat-

ing a solid sample until it melts and then cooling the melt.
The system contains 1024 atoms with periodic boundary
conditions with a heating and cooling rate of 100 K per
25 ps. In Figure 12 we plot enthalpy [Figure 12(a)] and
volume [Figure 12(b)] as a function of temperature. The
solid superheats on heating and the liquid undercools as
expected for a small, periodic system with no defects to
act as nucleation centers and high heating and cooling
rates.
In order to overcome some of these problems we cal-

culate the melting temperature using the “two phase
technique”. We place pre-equilibrated liquid and pre-
equilibrated solid samples in a single computational cell.
Once this initial configuration is built we perform TPN
MD (using a Hoover thermostat and Rahman-Parinello
barostat) simulation and observe which phase grows. If
the simulation temperature T is lower than the melting
temperature at the given pressure [Tmelt(P )] the liquid
will start crystallizing, on the other hand the solid will
melt if T > Tmelt(P ).
Given that the liquid-solid phase transition is first or-

der, i.e. the enthalpy of the solid and liquid in equilib-
rium differ by a finite amount, it is very easy to know
whether the system is crystallizing or melting by analyz-
ing the time evolution of the total potential energy during
the MD run. In Figure 13 we show potential energy as a
function of time for zero pressure two-phase simulations
at different temperatures. We can see that at T=3100 K
(dotted line in Figure 13) the potential energy decreases
with time; this means that the solid phase is growing
and Tmelt > 3100 K. On the other hand, for T = 3200
K the energy grows, the system is, then, melting and
Tmelt < 3200 K. At T = 3150 K the energy is rather
constant and both phases are close to equilibrium. This
value for the zero pressure melting is in very good agree-
ment with experimental results which range from 3213 K
to 3273 K.41 This is a very important validation of the
FF, taking into account that only zero temperature data
was used in its development.
The slope of the melting curve is given by the Clausius

Clapeyron equation:

[

dP

dT

]

melt

=
1

T

∆H

∆V
, (19)

where ∆H and ∆V are the enthalpy and volume differ-
ence between the liquid and solid in equilibrium respec-
tively. From our MD runs, see Figure 12, the slope of the
melting curve at zero pressure is dT/dP = 92.8 K/GPa,
larger than the the experimental value dT/dP = 60± 10
K/GPa.42

Using the two phase simulation procedure we calcu-
lated the melting temperature for various pressures up

to 300 GPa. In Figure 14 we show the melting curve for
Ta, see also Ref. 18. To the best of our knowledge this
is the first calculation of melting temperature in Ta for
such a wide pressure range. Zero pressure experimental
values41 are also shown in Figure 14 as empty diamonds.
High pressure melting of Ta has been studied experi-
mentally via shock compression;43 melting is identified
as a change in the velocity of the rarefication wave (from
the longitudinal to the bulk sound velocity). The transi-
tion was found to occur in the pressure range from ∼250
GPa to 295 GPa.43 The calculation of the temperature
in shock experiments (i.e. along the Hugoniot) is diffi-
cult; the electronic contribution to the specific heat has a
very strong effect on the melting temperature.43 Simple
models for the electronic behavior lead to very differ-
ent temperatures: using the free electron gas model the
melting temperature is ∼10000 K while considering band
electrons give Tmelt ∼ 7500 K, see Ref. 43. These exper-
imental values are shown in Figure 14 are empty circles.
Using the accurate ab initio thermal equation of state
obtained using the methods described above and the
Rankine-Hugoniot equation Cohen and Gülseren calcu-
lated pressure-volume and temperature-pressure curves
for Ta under shock conditions.38 This calculation leads
to a melting temperature (using the experimental melt-
ing pressure Pmelt=375 GPa) of 8150 K (see square in
Figure 14). Our MD results are in good agreement with
the high pressure calculation of the melting temperature
based on shock experiments and ab initio calculations.

VI. CONCLUSIONS

We have presented here a general strategy to derive
accurate classical force fields based on ab initio QM me-
chanical calculations for metallic systems. Force fields al-
low calculations on systems containing millions of atoms,
providing a means to study from an atomistic point of
view a variety of processes relevant to the mechanical
and thermodynamical properties of metals, such as phase
transitions, dislocations dynamics and interactions, fail-
ure, crack propagation, etc.
We showed that the qEAM FF describes with good

accuracy the EOS of Ta for different crystal phases [bcc
(coordination number 8), fcc (coordination number 12),
and A15 (mixed coordination numbers)], and also elas-
tic constants, vacancy formation energy, and energetics
of the deformed bcc lattice in the twinning direction. A
critical point in our approach is that in developing the
force field we use not only the thermodynamically sta-
ble phase but also high energy phases and large strains;
a force field that can correctly describe such structures
should be appropriate for simulations of defects and non-
equilibrium processes.
The large amount of QM data used to derive our force

field gives an important measure of its quality.
We used the qEAM FF with MD to calculate the melt-
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ing curve for Ta in a wide pressure range. The zero pres-
sure melting temperature obtained from our simulations
Tmelt = 3150± 50 K is in very good agreement with the
experimental result of 3290±100 K. This is an important
validation of our approach given the fact that the qEAM
FF was derived using zero temperature data.
First-priciples-based force fields represent an impor-

tant step in ab initio multiscale modeling of materials.
We have used the qEAM FF to study spall failure,44

crack propagation, and dislocation properties such as
core structure and energy, Peierls stress, and kink for-
mation energies45 with systems containing as many as
50,000 atoms. We used such calculations with a mi-
cromechanical model of plasticity developed by Stainer,
Cuitiño and Ortiz46 to develop a multiscale model of sin-
gle crystal plasticity in Ta.47 We are currently performing
shock simulations in systems containing more than a mil-
lion atoms using a parallel MD code; for a system con-
taining 1,098,500 atoms 1 ps of MD simulations (1000
steps) takes approximately one hour on an SGI Origin
2000 computer using 128 250-MHz R10000 processors.
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TABLE I. EOS parameters for bcc Tantalum.

V0(A
3) BT (GPa) B′

T c11 (GPa) c12 (GPa) c44 (GPa)

Theory (0 K)

This work (LAPW-GGA) 18.33 188.27 4.08 245.18 159.8 67.58
This work (qEAM FF) 18.36 183.04 4.16 272.54 137.57 69.63
FP LMTO GGA SC a 17.68 203 - 281 163 93

Theory (300 K)

This work (qEAM FF) 18.4 176 4.9 - - -

Experiment (300 K)

Diamond Anvil Cell b 18.04 194.7±4.8 3.4 - - -
Ultrasonic c - - - 266 160.94 82.47

aFull potential linear muffin-tin orbital calculations, P.
Söderlind and J. A. Moriarty.1
bH. Cynn and C. Yoo.20
cAdiabatic elastic constants at 25◦ C, Katahara, Manghnani,
and Fisher.22

TABLE II. qEAM paramters for Ta: two body term. The
units of bi are eVÅ−(4+i).

rm Å b0 b1 b2 b3
4.81253968 6.50281587 -11.26455130 8.01451544 -2.97299223

b4 b5 b6 b7 -

0.60004206 -0.06222106 0.00258801 -0.00000504 -

TABLE III. qEAM paramters for Ta: embedding energy

a1 a2 α (1/Å) β a0 (Å)

0.07293238 0.15781672 21.79609053 7.79329426 3.32389219

Ecoh(eV) BT (GPa) λ f3 f4
8.15420437 183.035404 0.20782789 -0.00717801 -0.00000504

TABLE IV. Volume-relaxed (evrvac), full-relaxed Vacancy
formation (earvac), vacancy migration energies (emig

vac ), and ac-
tivation energy for self diffusion (Q).

evrvac (eV) earvac(eV) emig
vac (eV) Q (eV)

Theory (0 K)

This work (qEAM FF) 3.10 2.935 1.093 4.028
This work (MB-PS) 3.25 - - -
FP LMTO GGA SC a 3.74 2.20 - -
Plane waves LDA b 3.51 2.99 0.83 3.82
FP LMTO LDA c 3.49 - - -

Theory and Experiment (300 K)

This work (qEAM FF) - 3.0 ± 0.05 1.1 ± 0.05 4.1 ± 0.1

Experiment d - 2.8 ± 0.6 - 3.8 ± 0.3

aP. Söderlind and J. A. Moriarty.2
bSatta, Willaime, and Gironcoli.3
cUnrelaxed value by Korhonen, Puska, and Nieminer.33
dRef. 31 for vacancy energy and Ref. 34 for activation energy
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TABLE V. Shear deformation in the observed twinning
mode in Ta.

Volume (Å3) Wmax (eV) τmax Wmax (eV) τmax

This work (qEAM FF) FP LMTO GGA SC a

18.36 0.188 7.14 - -
17.618602 0.2 8.0 0.194 7.37
15.143996 0.26 12.05 0.276 12.4
10.9090116 0.43 28.2 0.566 36.2

aP. Söderlind and J. A. Moriarty.1

FIGURE CAPTIONS

Figure 1. Zero temperature EOS for bcc Ta, LAPW
GGA and qEAM FF results. Energy [Figure 1(a)] and
pressure [Figure 1(b)] as a function of volume. Circles
denote LAPW GGA results and lines show qEAM FF
results.
Figure 2. Zero temperature EOS for fcc Ta, LAPW

GGA and qEAM FF results. Energy [Figure 2(a)] and
pressure [Figure 2(b)] as a function of volume. Circles
denote LAPW GGA results and lines show qEAM FF
results. The inset of Figure 2(a) shows fcc-bcc energy
difference as a function of volume (circles joined by dots
denote LAPW GGA results and line qEAM FF).
Figure 3. Zero temperature EOS for A15 Ta, ab initio

and qEAM FF results. Energy [Figure 3(a)] and pres-
sure [Figure 3(b)] as a function of volume. Open circles
with dotted line denote full potential muffin-tin orbital
calculations results Ref. 1; filled circles show the sum of
A15-bcc energy difference from1 and our calculation of
bcc energy using LAPW GGA method (section II). The
full line shows qEAM FF results. The inset of Figure 3(a)
shows A15-bcc energy difference as a function of volume
(circles with dotted line denote QM results1 and the line
qEAM FF).
Figure 4. Zero temperature EOS for hcp Ta, LAPW

GGA and qEAM FF results. Energy [Figure 4(a)] and
pressure [Figure 4(b)] as a function of volume. Circles
denote LAPW GGA results, section II, and lines show
qEAM FF results. The inset of Figure 4(a) shows hcp-
bcc energy difference as a function of volume (circles with
dotted line denote LAPW GGA results and line qEAM
FF).
Figure 5. Zero temperature elastic constants for Ta,

LAPW GGA and qEAM FF results. Circles show bulk
modulus [(c11+2c12)/3]; diamonds show c44 and squares
represent cs = (c11−c12)/2. qEAM FF results are shown
with filled symbols and full lines and ab initio LAPW
results with open symbols and dashed lines.
Figure 6. Volume relaxed vacancy formation energy

(a) and enthalpy (b) as function of pressure. Dashed
lines represent ab initio MB-PS results (section II) and
full lines show qEAM results.
Figure 7. Vacancy formation volume as function of

pressure. Dashed lines represent ab initio MB-PS results
(section II) and full lines show qEAM results.
Figure 8. Vacancy formation enthalpy as function of

pressure using the qEAM FF. Solid line shows the volume
relaxed result; the dotted line the T=0 K fully relaxed
results; dashed line is T=300 K result.
Figure 9. Vacancy migration energy using qEAM FF.

Energy as a function of position of the marching atom at
T=0 K and zero pressure. The vacancy migration energy
is 1.093 eV.
Figure 10. Ideal shear strength of Ta using qEAM FF

at zero temperature and volume V=18.36 Å3. We show
energy W (s) [Figure 10 (a)] and stress τ(s) [Figure 10
(b)] as a function of shear.
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Figure 11. Thermal expansion in Ta. (a) thermal
expansivity as a function of temperature; circles repre-
sent qEAM FF results, the dashed-dotted lines shows
mixed basis pseudopotantial calculations using the par-
ticle in a cell method, and the line denotes experimental
results from Ref. 40. (b) Linear thermal expansion of
Ta. (a−a0)/a0 as a function of temperature; circles rep-
resents qEAM FF results and line denote experimental
results from Ref. 40. The high temperature experimental
data (dashed lines) are provisional values.40

Figure 12. Melting of tantalum using the qEAM FF.
Enthalpy (a) and volume (b) as a function of tempera-
ture for zero pressure; heating of bcc Ta (lower branches)
and cooling of liquid Ta (higher branches). Heating and
cooling rates are 100 K per 25 ps.
Figure 13. Ta melting using the qEAM FF. Two phase

simulations. Time evolution of the potential energy in
TPN MD at zero pressure for different temperatures. For
T=3100 K (dotted line) the potential energy decreases
with time, i.e. the system is crystallizing; for T=3200 K
(dashed line) the potential energy grows denoting melt-
ing. For T = 3150 ∼ Tmelt(P = 0) the potential energy
remains constant; in this case the solid and liquid phases
coexist in equilibrium.
Figure 14. Ta Melting qEAM FF. Melting curve for

Ta up to P= 300 GPa obtained using the two-phase sim-
ulation technique. We also show the experimental zero
pressure melting temperature41 (circles) and the results
of shock melting.43
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