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ABSTRACT 

 Recently developed large scale calcium imaging techniques allow functional 

analysis of hundreds to thousands of simultaneously recorded individual neurons, resulting 

in exceedingly large datasets.  Conventional analysis methods are not scalable for large 

imaging datasets collected at high speed and high pixel resolution.  The efforts described 

in this dissertation focus on the development of analysis methods designed for large 

datasets, along with the application of these analytic methods to derive novel conceptual 

insights into how neuronal circuits function in both healthy and diseased brains. 

 First, an image processing pipeline and a segmentation toolbox were developed and 

shared as an open-source software.  The processing pipeline is a parallelized version of a 

recently published motion correction algorithm, but which improved processing speed by 

10%.  The segmentation toolbox is semi-automated and provides high confidence in the 

spatial extent of segmented cells, with the option to integrate temporal information for the 

segmentation. 

 Next, these and additionally developed methods were used to study the effect of 

mild traumatic brain injury (mTBI) on neuronal circuits over consecutive days.  Using a 

newly developed signal normalization technique, we found that immediately following a 
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blast injury event, neurons exhibited two types of changes in intracellular calcium 

dynamics at different time scales. One was a reduction in basal intracellular calcium levels 

on a time scale of minutes.  The second was a reduction in the rate of transient calcium 

fluctuations at the sub-second time scale.  Both changes recovered one hour post blast 

injury, suggesting different types of neuronal damage from mTBI. 

 Lastly, we developed a method that allowed us to observe network differences on 

a trial-by-trial basis with a limited number of data points.  We utilized these analysis tools 

to study hippocampal network responses during two learning processes, trace conditioning 

and extinction learning.  We found a similar pattern of neuronal dynamics for both learning 

processes, however the single-neuron identities for each process was unique. 

 Overall, this dissertation describes a set of image processing, segmentation, and 

network analysis tools for large scale calcium imaging datasets, which were applied to 

analyze network changes during learning and externally induced by mTBI. 
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CHAPTER 1 – INTRODUCTION 

 The brain is a complex organ, driving the somatic and autonomic processes that 

enable healthy bodies to function, in addition to providing each individual with a sense of 

selfhood.  However, there is still much to be learned about how the brain carries out its 

diverse and important functions.  Understanding brain function in both health and disease 

is increasingly important as both the financial and societal burden of neurological disorders 

continues to grow in the United States and throughout the world [1]–[3].  For both healthy 

and diseased brains, neurons are fundamental functional units of communication within the 

brain and communicate using a variety of electrical and chemical signals [4].  These signals 

differentially impact how the brain functions across both spatial and temporal scales.  To 

understand and integrate the data at these different scales, robust and scalable analysis 

methods are required.  The work of this dissertation is to develop analysis methods for 

large scale calcium imaging data, a powerful optical microscopy technique that provides 

single-cell resolution across millimeters of tissue while concurrently monitoring hundreds 

to thousands of neurons simultaneously in awake, behaving animals. 

 

1.1 The Brain as a Network 

 Our current understanding about brain function suggests that the neurons function 

as networks across multiple spatial scales, from the macro- (whole brain) to micro- (single 

cell) scales.  Information about network function needs to be integrated across these spatial 

scales to effectively understand brain function and treat neurological diseases.  

Microscale anatomical study of the brain began in the late 19th century with the use 
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of Golgi staining by Ramon y Cajal [5] to observe the intricate processes of individual 

neurons and their spatial relationship to one another (Figure 1A).  These early studies 

focused on how the anatomy of neurons form networks with their axons and dendrites, and 

subsequent anatomical studies have shown how wide-spread these networks can reach 

throughout the brain on a single-cell level [6], [7].  In addition to these methods for studying 

the anatomical networks in the brain, techniques have been developed to study the 

functional neuronal network behavior that rely on these microscale anatomical 

connections.  These functional network measurements include patch clamping [8], [9], 

multichannel electrode arrays [10]–[12], local field potentials [13]–[15], and voltage [16], 

[17] and calcium imaging [18]–[20], all of which can be utilized in cell cultures, brain 

slices, or living animals.  These techniques provide measurements of functional brain 

networks at a spatial resolution of single cells, on a scale ranging from microns to 

millimeters while simultaneously recording tens to thousands of cells. 

Macroscale study of brain regions also began in the late 19th century while being 

pioneered by anatomists.  Scientists such as Paul Broca showed that specific aphasias were 

linked to lesions in a localized part of the brain [21] which is now known as Broca’s area. 

Similarly, Carl Wernicke showed there was a localized spatial constraint for another type 

of aphasia in an area of cortex now known as Wernicke’s area [22], while his advisor 

Theodor Meynert also made important contributions to the concept of functionally 

localized brain regions at a macroscale [23].  These studies lead to Korbinian Brodmann 

defining the Brodmann areas of the brain [24], 52 brain areas grouped into 11 histological 

areas that are still covered in neuroanatomy books today [4].  Similar to the evolution of 
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the microscale study of the brain, modern techniques now also include functional read-outs 

to study how whole brain regions interact in different contexts.  These techniques include 

electroencephalography (EEG) [10], [25], [26] and magnetoencephalography (MEG) [25], 

[26], which record the electric fields or magnetic fields respectively that rise from the 

electrical dipoles that arise from bulk brain activity in a specific region.  Additional 

techniques such as functional near-infrared spectroscopy (fNIRS) [27]–[29], and functional 

magnetic resonance imaging (fMRI) [30], [31] measure blood flow to different brain 

regions in different contexts, which is tied to the functional activity of neurons in that area.  

Ultimately, all of these methods provide functional brain readouts that allow for studies of 

networks with spatial resolution at the brain region level, on the order of cubic millimeters 

(Figure 1B). 
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Figure 1. Microscale and Macroscale Networks in the Brain 

(A) The intricate details of neuronal processes highlight the network structure of cells at the microscale 

as seen in this drawing of neurons in a chick cerebellum from Ramon y Cajal’s publication in 1905.  

Image from [5].  (B) Schematic of the functional macroscale network generated from EEG data.  

Pairwise associations of nodes are used to draw edges between brain regions within the network.  Image 

from [25]. 

 Network analysis is commonly performed for both the macro- and micro-scales of 

the brain, though each scale is typically studied in isolation.  At the macro-scale, nodes of 

the network often correspond to brain regions [25]–[27], [29]–[31], while individual 

neurons or small groups of neurons typically represent network nodes at the microscale 

[18], [32].  In recent years, wide-field calcium imaging methods allow us to record the 

functional output of 100s to 1000s of individual neurons simultaneously in awake, 

behaving animals [20] (see “1.4 Analysis Tools for Large Scale Neuronal Calcium 

Imaging”).  Data collection at this scale has the potential to bridge our understanding of 

brain networks between the micro- and macro- scales by providing single-cell resolution 

in millimeters of brain tissue, theoretically allowing the recording of all the nodes of a 

network at the micro-scale while measuring a single node of the macro-scale network. 
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1.2 The Hippocampus 

 The hippocampus is a sub-cortical brain region that is critical for learning and 

memory formation.  The classical example of how the hippocampus is tied to learning and 

memory was a man named Henry Molaison, commonly known as H.M. in the research 

literature.  In 1953, the surgeon William Scoville removed H.M.’s hippocampus as a 

treatment for epilepsy.  While the surgery helped treat the epilepsy, it resulted in “a very 

grave, recent memory loss” immediately after the surgery [33] with an inability to learn 

new tasks as “once he had turned to a new task the nature of the preceding one could no 

longer be recalled.” [34]  Additionally, a large body of research has shown that 

hippocampal atrophy is related to many diseases related to memory loss and difficulty 

learning, such as Alzheimer’s disease, various dementias, and Parkinson’s disease when 

connected to mild cognitive impairment [35]–[39].  For this dissertation, the hippocampus 

is the primary brain region of study because of its role in traumatic brain injury (TBI) and 

for learning and memory. 

 Blast-induced TBI is an important public health concern, especially in military 

settings [40], [41], and is tied to pathologies of the hippocampus.  Blast related injuries are 

connected with an increased likelihood of developing seizures [42], as well as memory and 

learning deficits [43], both of which are known to be related to hippocampal function [44], 

[45].  Additionally, blast injuries lead to various anatomical and structural changes, a loss 

of inhibitory interneurons, and a reduction of long-term potentiation within the 

hippocampus [46]–[48].  These pathologies have been reported across many regions of the 

hippocampus, including Cornu Ammonis 1 (CA1), the primary anatomical focus of this 



 

 

6 

work. 

 The hippocampus also plays an important role in two specific types of learning: 

trace conditioning and extinction learning.  Trace conditioning is a specific learning 

process that has been shown to be dependent on the hippocampus [49]–[51].  For trace 

conditioned learning, an association is learned between a conditioned stimulus (CS) and an 

unconditioned stimulus (US) that are separated by a very short time period, called a trace 

interval.  For animal studies, this takes the common form of trace eye-blink conditioning, 

where a tone is played as the CS, followed by a short trace interval a few hundred 

milliseconds long, followed by a puff of air to the animal’s eye as the US [20], [50], [51].  

Over time, animals will learn to associate the tone with the puff [52]–[56].  Extinction 

learning is the process of learning that a specific CS is no longer associated with the US to 

which it was previously connected.  In the case of eye-blink trace conditioning, the puff 

can be removed and animals will learn that a specific tone is no longer connected to 

receiving a puff.  Previous studies have shown that lesioning CA1 in the hippocampus 

alters the ability for animals to learn in the extinction context [50], [57].  This dissertation 

contains a study of the dynamic role of the hippocampus in each of these learning contexts. 

Because the hippocampus is a local brain region tied to specific brain functions in 

certain contexts, it makes it an attractive area to understand how the single cell function in 

a micro-network relates to the function of a single node of the macro-network.  

Additionally, the cells in CA1 of the hippocampus are arranged in a monolayer, which is a 

beneficial anatomical feature for single-photon calcium imaging at high resolution (see 

“1.4 Analysis Tools for Large Scale Neuronal Calcium Imaging). 



 

 

7 

1.3 Neuroscience in the Age of Big Data and Open Science 

 Neuroscience has been thrust into the age of big data.  One of the priority research 

areas established by the United States BRAIN Initiative [58] is “developing and applying 

improved methods for large-scale monitoring of neural activity.”  As this work is currently 

underway with many new technologies and techniques being developed to record more and 

more neurons simultaneously, the size of datasets in neuroscience is growing at a rapid 

pace.  For example, one 20 minute recording of a calcium imaging dataset at 20 Hz in our 

laboratory takes up about 45 Gigabytes (GB) of data to store.  For the trace conditioning 

learning task presented in Chapter 4 of this dissertation, animals were recorded for about 2 

sessions per day, across 5 days, yielding about 450 GB of data for 1 mouse for 1 

experiment.  For this specific study, there are 5 mice that we used, yielding 2.25 Terabytes 

(TB) of data.  After motion correcting the videos and taking into account storing both the 

original data and motion corrected files for further extraction and analysis, the storage for 

this experiment doubles to 4.5 TB from only a couple weeks of data collection.  Spread 

across additional experiments and research personnel, it is no wonder that the Han Lab now 

requires close to 200 TB of storage to house the data from our experiments.  With the 

development of newer methods such as voltage imaging [17], [59] to collect more data at 

a higher temporal resolution (1 kHz) or light sheet microscopy for neuronal volumetric 

imaging [60]–[62], storing and accessing large datasets has become the new normal for 

neuroscience. 

For the field of neuroscience to move forward and keep up with these large datasets, 

open science is required for effective sharing of tools and techniques.  This has previously 
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been suggested by thought leaders in the field [62] and led to the development of cloud-

based platforms for computational reproducibility, such as Code Ocean [63].  

Unfortunately, due to the limitations of academic research funding as a platform for 

software maintenance, one of the primary frameworks developed to unify neuronal data 

analysis in a scalable and open manner [64] is no longer actively being maintained, nor are 

the open data repositories SpikeFinder [65] and NeuroFinder [66] for calcium 

deconvolution and calcium image segmentation.  Nevertheless, the same principles of open 

science are crucial for the field of neuroscience to move forward in the age of big data. 

The principles of open science and transparency with data, code and analyses are 

important and conscious design elements for the work of this dissertation.  The tools and 

methods herein are all shared publicly as hosted by the Han Lab GitHub organization 

(github.com/HanLabBU).  This has been established with the primary goal of helping 

neuroscience advance more quickly by enabling other researchers to use these tools in 

making their own discoveries. 

 

1.4 Analysis Tools for Large Scale Neuronal Calcium Imaging 

Calcium imaging is a tool with many attractive features that can bridge our 

understanding of neuronal function across scales.  First, many cells can be recorded 

simultaneously while maintaining the spatial information and relationship between 

individual cells, enabling high-throughput recordings with single-cell resolution [20], [67].  

This is a distinct advantage over electrode recording techniques, where precise spatial 

information at a single-cell level is not maintained.  Recordings can be performed in awake, 
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behaving animals, avoiding potential confounds related to how anesthesia impacts 

neuronal function [68]–[70].  Additionally, genetically encoded calcium sensors such as 

GCaMP6 [71], can be targeted to specific neuronal subtypes to give additional insight 

about how different types of neurons work together within a brain region [72]. These are 

all features that can help understand how many individual neurons within a network to give 

rise to the function of a brain region.   

Large scale, wide-field calcium imaging has several distinct advantages and 

challenges when compared to other common microscopy modalities for calcium imaging.   

One of the most common techniques for calcium imaging is using a 2-photon microscope 

which is a scanning microscope method that greatly reduces scattering.  However, the 

scanning nature of this method strongly couples the imaging speed to the extent of the field 

of view.  Thus, if one wants to collect calcium imaging data at 20 Hz, which is close to the 

temporal resolution of GCaMP6f, spatial video recordings are typically limited to 256x256 

or 512x512 pixels and tens to a few hundred cells at most simultaneously [67], [73]–[75].  

Micro-endoscopes are another common method to record calcium imaging data, though 

their image size is also limited to this smaller field of view because the microscope 

hardware is mounted to the head of the animal [76]–[78].  In contrast, wide-field imaging 

can allow much larger fields of view to be recorded at high spatial (1024x1024 pixels) and 

temporal (20-100 Hz) resolutions.  Working with over 1 million pixels per frame requires 

unique image processing and trace extraction methods when compared to the standard 

techniques developed for just over 260,000 pixels per frame [79]–[82].  Some of the 

analysis methods developed in this dissertation are aimed to address the challenge of 
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having high resolution microscopy videos with high pixel counts in each frame. 

After extracting temporal calcium traces, population and network analysis methods 

are required to interpret how the network behavior gives rise to brain function.  Exciting 

computational methods using dimensionally reduction techniques have recently been 

developed to understand neuronal networks and have typically been applied to discrete 

spiking data [18], [83], [84].  Using these techniques, temporal traces of neuronal data are 

projected into an abstract dimensional space, allowing the observation of features that seem 

to be important for the network.  While informative, such dimensionality techniques 

produce abstract features, which cannot be easily projected back to specific dynamic 

patterns or connections of individual neurons.  Ideally, one would like to detect network 

features that are more directly related to individual neuronal functions.  Thus, one design 

constraint for this dissertation was to develop analyses techniques to understand changes 

in neuronal networks that can be more directly connected to individual neuronal function 

in a very quantitative fashion, in hopes that results from these analyses will be more 

interpretable.   

Additionally, while such dimensionally analysis techniques can extract abstract 

spiking features about a neuronal network, their adaptation to calcium imaging data is not 

straightforward.  One solution to this concern has been to develop deconvolution 

algorithms to convert calcium traces into spiking traces [18], [79], [85] so that the same 

dimensionality reduction techniques can be used.  However, the relationship between 

spiking and calcium dynamics is nonlinear, poorly understood, and it is unknown whether 

or not the calcium dynamics in all cell types follow spiking in the same manner.  These 
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additional concerns and manipulations of the calcium data increase the probability of 

introducing additional confounding factors into the network analyses.  

The most direct manner to understand calcium imaging data is to analyze the 

calcium traces directly, as calcium imaging provides additional unique prospects for 

neuronal network analyses.  While calcium signals indirectly relate to neuronal spiking 

activities [71], [74], [86], calcium dynamics have additional physiological roles in neurons 

beyond serving as a temporally filtered surrogate for spiking.  For example, intracellular 

calcium dynamics are critically involved in network plasticity [87] and cell survival [88], 

[89].   

With the remarkable sensitivity of calcium sensors, calcium imaging in neuronal 

networks is increasingly used communication within networks of neurons. To date, 

however, there have been no scalable computational analysis methods applied for calcium 

neuronal networks of hundreds to thousands of cells to understand how the inherent 

calcium signals behave at a network level.  This dissertation describes efforts to develop 

such analysis methods.
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CHAPTER 2 – MOTION CORRECTION PIPELINE AND  

IMAGE SEGMENTATION TOOLBOX DEVELOPED FOR  

LARGE SCALE CALCIUM IMAGING DATA 

 
2.1 Abstract 

 Conventional analysis methods for calcium imaging data are designed for small 

scale 2-photon and microendoscope data.  These methods are not scalable for large imaging 

datasets collected at high speed and high pixel resolution, which necessitates the 

development of additional tools for these methods.  To this end, we developed a parallel 

motion correction pipeline and semi-automated segmentation toolbox to be shared as open-

source software. 

 The processing pipeline developed is a parallelized version of a recently published 

motion correction algorithm, but which improved processing speed by 10%.  This was 

accomplished by generating a single reference frame that could be sent out with each 

individual frame to be processed in parallel.  This method is scalable for further 

parallelization in a cluster environment. 

The segmentation toolbox is semi-automated and provides high confidence in the 

spatial extent of segmented cells.  Additionally, users have the option to integrate temporal 

information for the segmentation using either pixel-wise cross-correlation or principal 

component analysis. 

Together, these methods provide an important step for streamlining the 

preprocessing of large scale calcium imaging datasets, and enable other researchers to more 

effectively adopt this microscopy method. 
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2.2 Introduction 

Preprocessing of calcium image data is a critical step prior to any successful 

analyses.  The quality of the preprocessing will greatly impact what inferences can be 

drawn from the data and whether or not they are truly reflected in the data.  The 

preprocessing steps for data analysis can also take an extensive amount of time.  In light of 

these considerations, many efforts have been devised to both automate and speed up the 

preprocessing of calcium image data [79]–[82].  While these efforts have been shown to 

be effective for smaller scale 2-photon and microendoscope calcium imaging datasets, they 

either take an unrealistic amount of computational time or simply do not work on large 

scale calcium imaging datasets.   

The primary reason these methods are ineffectual for large scale datasets is the 

number of pixels per video frame.  Datasets from 2-photon and microendoscope 

microscopes tend to have anywhere from 65,636 to 262,144 pixels per frame (256x256 to 

512x512 pixels), while the large scale wide-field calcium datasets contain 1,048,576 pixels 

per frame (1024x1024 pixels).  This 4-16 fold increase in the number of pixels per frame 

causes an immense slowdown for any sort of pixel-wise comparisons or large tensor 

decompositions across the video.  Additionally, 2-photon and microendoscope datasets are 

qualitatively different from large scale wide-field datasets, with 2-photon data having little 

to no background scattering, and microendoscope datasets having a very high level of 

scattering, with the large scale wide-field datasets falling somewhere in between.  These 

challenges suggest that unique methods need to be developed to handle these large scale 

datasets. 
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Our lab had previously developed a preprocessing pipeline to efficiently handle 

these datasets for both motion correction and image segmentation [20].  While effective, it 

was designed with the intent to scale to real-time processing of data as it was being 

collected, which required processing the frames in serial fashion for motion correction.  

The automated segmentation developed in this pipeline was also performed in a serial 

manner with cellular regions of interest (ROIs) being merged across frames.  After 

examining this framework with different design constraints, we decided to further develop 

these methods.  First, we created a motion correction pipeline that processed the video 

frames in parallel, resulting in a 10% decrease in processing time over the serial method.  

Additionally, we created an image segmentation toolbox that functioned in a semi-

automated fashion to allow the user a high level of confidence in the extent of their 

segmented cells.  These tools provided a basis for the work in the remainder of this 

dissertation, as well as other published work [90]. 

 

2.3 Parallel Motion Correction Pipeline 

 Converting a serial processing code to a parallel processing code requires breaking 

the code into discrete steps that can be sent out to parallel processes or threads, computed 

individually, and then aggregated back together after each process is completed.  For the 

previously developed motion correction method [20], each frame had the same process 

performed on it (Figure 2).  First, a frame was spatially median filtered, with a filter size 

of 3 pixels to decrease pixel noise.  Next, the frame was spatially homomorphic filtered to 

remove low frequency spatial components, flatten the background intensity, and highlight 
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edges that exist in each frame, such as the boundaries of each cell.  A sigma value of 7 was 

used for the homomorphic filtering.  Homomorphic filtered frames were then cross-

correlated with a reference frame to determine how much the frame needed to shift to 

correct for any motion artifact.  Lastly, both the raw frame and filtered frame was shifted 

by the calculated amount to remove the rigid motion artifact in the video.  This general 

process can be broken up and sent out to parallel processes to speed up the motion 

correction. 

 

Figure 2. Motion Correction Process for Each Frame 

Schematic shows the process for motion correction of each individual frame.  First, each frame is median 

filtered to remove noise, followed by a homomorphic filter to remove spatial low frequencies and 

enhance edges.  Lastly, each image is registered to a reference image using frame-wise cross-correlation. 

 Before implementing this process in parallel, one key difference needed to be 

developed.  The reference frame in the real-time processing version was constantly 

changing as an aggregated average frame of all previous frames in the video.  To motion 

correct in parallel, this could not be used as the reference frame as each process would 

require input from every other process to generate the reference, and thus could not be 

computed independently.  To address this, the parallel motion correction pipeline 

performed a motion correction of a fixed number of beginning frames, typically one 

multipage tiff or 2047 frames.  It used a noisy mean projection across the whole image as 

the initial reference frame.  After motion correction to this noisy reference, a new motion 

corrected reference was generated from this sub-selection of motion corrected video 
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frames.  This reference frame was sent to each individual process for the correction of 

every other individual frame. 

 Once the reference frame was generated, motion correction of the remaining frames 

could be performed in parallel (Figure 3).  Each individual frame of the remaining videos 

could be sent to a process individually with a copy of the reference frame, have each 

filtering and cross-correlation step performed, and the corrected frame with the x and y 

shift values returned to the central process to aggregate the corrected videos.  Calculated x 

and y shift values were also outputted and saved in the event videos need to be re-motion 

corrected at some point due to file corruption.  This can allow for the videos to not have to 

be fully re-processed as the shifts can be applied to each frame directly.  Additionally, the 

frames used to generate the reference are also re-corrected to the new reference for 

consistency, though being able to do the full process in parallel overcomes any lost time 

from re-correcting those individual frames.  To process one full dataset in a serial fashion 

took 4712 seconds (1 hour 18 minutes and 30 seconds) while processing the same dataset 

in a parallel fashion took 4231 seconds (1 hour 10 minutes and 30 seconds) using 32 cores, 

a decrease of 10% of the processing time. 

 In addition to building upon the previously published pipeline, this version of the 

pipeline was written with the intent to be open-sourced and user friendly.  To this end, the 

pipeline was written in Python, a freely available coding language.  Each component of the 

pipeline was also modularized for others to use as fits their specific needs.  The initially 

published version of code was used for preprocessing of the calcium imaging data in 

Chapter 3, but this version was used for the data in Chapter 4.  The code for this pipeline 
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is called “Python Tif Motion Correction (PTMC)” and is available on the Han Lab GitHub 

Organization site (github.com/HanLabBU/ptmc). 

 

Figure 3. Schematic of Parallel Motion Correction Pipeline 

Outline of motion correction as implemented in parallel.  Orange boxes represent inputs, yellow boxes 

represent outputs, and green boxes represent the process of motion correction outlined in Figure 2.  First, 

one single video was motion corrected to an average projection of itself to generate a reference image.  

That reference image is then sent to multiple parallel processes with individual frames to correct each 

frame in parallel.  The motion corrected images are then aggregated after parallel processing and saved 

as output, along with the x and y directional shifts of each individual frame. 

 

2.4 Semi-automated Image Segmentation Toolbox 

 After motion correction of calcium imaging data, individual neurons need to be 

segmented to extract temporal traces.  Without clean and effective segmentation, 

researchers cannot have confidence in the downstream conclusions they arrive at with their 

data.  While automated segmentation methods have many advantages over semi-automated 

methods, though one major limitation of currently published automated methods is that the 

quality of ROIs selected can be highly variable from dataset to dataset [20], [79]–[82].  To 
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address this, some methods include a semi-automated “clean-up” method to inspect each 

ROI and temporal trace and exclude any that the user does not want to include in their 

dataset [79], [81].  However, this process can still be time consuming and it is difficult to 

simply alter or adjust the ROI if it is clearly including a combination of cells.  Some of 

these limitations led to the development of a fully semi-automated image segmentation 

toolbox to enable the selection of ROIs with high confidence in their quality. 

 The image segmentation toolbox was developed to allow the user flexibility in 

selecting how to segment ROIs from their videos.  Input types allow for either a single 

projection image produced from the motion corrected video or a three-dimensional tensor 

including video frames over time.  Typical projection images include a maximum 

projection image with either a minimum projection or mean projection subtracted from it 

to increase the signal to noise ratio for each pixel.  Video inputs as tensors can either include 

the full video extent or a temporally sub-sampled tensor for quicker calculations. 

After loading the input data of choice, spatial segmentations of neurons can be done 

as either a circle of fixed radius, or segmentation of the full extent of the cells.  To select 

circles of a fixed radius, the user simply needs to click once in the center of each cell they 

would like to segment (Figure 4A).  The advantage of fixed circle size is it can provide 

segmentation of the dataset much more quickly, though you cannot compare the spatial 

footprint of different cells as the selected ROIs are all the same size, and you have a slightly 

lower signal to noise ratio for each cell.  To segment the full extent of the cell, a large ROI 

that encompasses the full cell is selected, and a user-controlled dynamic thresholding 

method is used to refine the ROI within that larger boundary.  This process is then repeated 
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for the selection of each ROI.  While more time intensive, the dynamic thresholding 

method provides more detailed spatial information about segmented cells (Figure 4B). 

 

Figure 4. Examples of User Segmentation Options 

(A) Circle of fixed radius selection overlaid on a projection image.  (B) Full extent ROIs selected using 

the user controlled dynamic thresholding method on the raw input map.  (C) Full extent ROIs selected 

from a cross-correlation map.  Selection using temporal information tends to lead to smoother ROI 

boundaries than segmentation on the raw input map. 

Additional contrast can be obtained in segmentation images by using the temporal 

information across the video.  In addition to segmentation on the static projection image 

(Figure 5A), temporal cross-correlation or principal component analysis (PCA) can be 

performed to project the temporal information into the static projection.  Segmentation 

using temporal composite images typically results in smoother boundaries around each 

ROI (Figure 4C).  A cross-correlation map measures the pixel-wise cross correlation and 

represents it as an intensity value in the image.  Pixels that are correlated with one another 

will have a higher correlation value, making it easier to segment single cells (Figure 5B).  

The PCA method calculates the first three principle components across each time series 

and represents each one as a red-green-blue (RGB) value for every pixel.  These principle 

components are then represented as an RGB image for segmentation (Figure 5C).  This 

method is most useful when cells are very densely labelled, as it can help distinguish nearby 



 

 

20 

cells with different temporal traces from one another.  These methods are possible on large 

scale datasets because pixels in a field of view are spatially subsampled based on user input.  

To generate any of these measures on the full dataset is too time intensive to be practical. 

 

Figure 5. Segmentation Images Generated from Temporal Information 

(A) Raw input image of maximum-minimum projection for segmentation.  (B) Pixel-wise cross-

correlation map of user-defined inset.  Higher intensities represent higher correlation values between 

neighboring pixels, which makes cells easier to distinguish.  (C) First 3 principal components from time 

series represented as RGB values for field of view. 

After segmentation of the video from user selected input, the spatial location of 

each ROI corresponding to a cell is saved.  Pixel values from the segmentation are then 

used to extract temporal time traces from the full motion corrected video datasets. 

This segmentation toolbox was designed to be user-friendly and allow researchers 

to have high confidence in the segmentation of their datasets.  To this end, this toolbox is 

still used by several non-computationally focused collaborators, as well as the fact that this 

toolbox was used to segment the “ground-truth” datasets for an automated segmentation 

paper previously published [90].  For generating such ground-truth datasets, high 

confidence in the segmented ROIs was extremely important for benchmarking the 

effectiveness of the automated methods.  It is also important to note that many of the design 

elements of the software, such as using cross-correlation and PCA projection images, are 
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not unique to this toolbox.  Similar methods are used in many commercial software, as well 

as a toolbox developed by Dr. Michael Economo for in-house analyses in the Wachowiak 

lab [75].  The main advantage of this work was that it implemented these tools in a Matlab 

toolbox that was provided in an open-source repository for others to use.  Similar to the 

motion correction pipeline, this toolbox is called “SemiSeg” and is available on the Han 

Lab GitHub Organization site (github.com/HanLabBU/SemiSeg) 

 

2.5 Future Directions 

 The motion correction pipeline and image segmentation toolbox described herein 

provide useful tools for large scale calcium imaging datasets.  These methods can continue 

to be improved in various ways to further improve the preprocessing steps for large scale 

calcium imaging datasets.   

For the motion correction pipeline, two main sources of improvement would 

include adding graphics processing unit (GPU) acceleration and further parallelization in a 

cluster environment.  As motion correction is primarily a graphics-based process, GPUs 

are highly optimized to perform the associated computations in a quick and efficient 

manner.  Integrating that with this parallel toolbox can further improve the processing 

speed of these large datasets.  Additionally, one of the major bottlenecks in processing 

these videos is in loading the video frames into memory.  Once a reference image is 

generated for a dataset, each individual multipage tiff could be sent out in parallel to an 

individual node in a cluster computing environment.  For these datasets, that would 

decrease the runtime of motion correction by roughly a factor of 13-20, depending on the 
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number of files for each recording, which would represent a huge performance boost. 

One improvement of interest for the image segmentation toolbox would be to 

develop a Python version.  Python is an open-source language and more easily accessed 

without the paywall restrictions of Matlab.  Additionally, Matlab occasionally implements 

upgrades that fundamentally changes core components of their code, which often breaks 

older versions of code.  With Python, you can always install an older version of the code-

base, which is not an option with a paid software like Matlab.  These are some of the aspects 

that are attractive for developing a truly open-source tool for researchers to use for large 

scale calcium imaging. 

In conclusion, we developed a motion correction pipeline and image segmentation 

toolbox designed for large scale calcium imaging datasets that improved over previously 

published and utilized methods.  These methods were used during the further scientific 

discovery process and method development described in this dissertation.
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CHAPTER 3 – MILD BLAST INJURY PRODUCES ACUTE CHANGES IN 

BASAL INTRACELLULAR CALCIUM LEVELS AND ACTIVITY PATTERNS 

IN MOUSE HIPPOCAMPAL NEURONS 

 
3.1 Abstract 

Mild traumatic brain injury (mTBI) represents a serious public health concern. 

Although much is understood about long- term changes in cell signaling and anatomical 

pathologies associated with mTBI, little is known about acute changes in neuronal 

function. Using large scale Ca2+ imaging in vivo, we characterized the intracellular Ca2+ 

dynamics in thousands of individual hippocampal neurons using a repetitive mild blast 

injury model in which blasts were directed onto the cranium of unanesthetized mice on two 

consecutive days. Immediately following each blast event, neurons exhibited two types of 

changes in Ca2+ dynamics at different time scales. One was a reduction in slow Ca2+ 

dynamics that corresponded to shifts in basal intracellular Ca2+ levels at a time scale of 

minutes, suggesting a disruption of biochemical signaling. The second was a reduction in 

the rates of fast transient Ca2+ fluctuations at the sub-second time scale, which are known 

to be closely linked to neural activity. Interestingly, the blast-induced changes in basal Ca2+ 

levels were independent of the changes in the rates of fast Ca2+ transients, suggesting that 

blasts had heterogeneous effects on different cell populations. Both types of changes 

recovered after ~1 h. Together, our results demonstrate that mTBI induced acute, 

heterogeneous changes in neuronal function, altering intracellular Ca2+ dynamics across 

different time scales, which may contribute to the initiation of longer-term pathologies. 
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3.2 Introduction 

Traumatic brain injury (TBI) due to blast represents a serious public health concern, 

particularly in military settings [40], [41]. Four categories of blast injury have been 

established. Primary injury results directly from exposure to the blast wave, whereas 

secondary, tertiary and quaternary blast injuries are associated with collisions with 

projectiles set in motion by the blast, hitting other nearby objects, or from being exposed 

to the heat and noxious chemicals accompanying the blast, respectively [91]–[95]. Of the 

different types of blasted related injuries, primary injury is the most complex and remains 

the least understood, as there is often clear functional deficit in the absence of anatomical 

pathology [46], [96]. 

The pathophysiology of TBI can vary depending on the nature and severity of the 

injury. Although moderate and severe TBI receive considerable attention, mild TBI (mTBI) 

accounts for approximately 75% of injuries [46], [97]. Damages from mild injury can result 

in a broad spectrum of neurological deficits. For example, repeated mTBI has been 

associated with memory impairment, increased susceptibility to temporal lobe epilepsy, 

post-traumatic stress disorder (PTSD), and neurodegeneration, as observed in chronic 

traumatic encephalopathy [40], [42]–[45], [93], [98], [99]. Blast-related impairments in 

learning and memory [43], as well as increased susceptibility to seizures [42], have 

motivated studies focused on the hippocampus due to its integral role in learning and 

memory and its contribution to temporal lobe seizures in humans [44], [45].  Several 

studies have reported that blast reduces hippocampal long term potentiation, and leads to 

the loss of GABAergic interneurons and other anatomical structural changes [46]–[48].  
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These pathologies have been linked to a number of biochemical and synaptic changes, 

involving various neurotransmitters and intracellular signaling pathways across all 

hippocampal sub-regions, including the dentate gyrus, CA1 and CA3.  

Over the years, several animal models of blast injury have been developed using 

devices such as shock tubes, blast tubes, and detonation of explosives in open-fields, to 

study blast injury [98], [100], [101].  To understand the acute effects of mTBI on neuronal 

function, we here used a previously published cranium only blast injury model [101], to 

determine the feasibility of using wide-field imaging to examine Ca2+ changes in large 

numbers of individual CA1 neurons. This model has the advantage that the blast is confined 

to the cranium, and because no surgery is required, mice can be blasted in the absence of 

any anesthetics, allowing us to perform real time analysis in mice with full head mobility.  

Recent developments in scientific CMOS cameras and high performance 

genetically encoded Ca2+ sensors such as GCaMP6, have enabled ultra-large scale 

Ca2+imaging of thousands of individual neurons in the brain using wide-field microscopy 

[71]. Studies using GCaMP6 and earlier generations of genetically encoded Ca2+ sensors 

have consistently demonstrated that transient, sub-second changes of intracellular Ca2+ 

levels are closely correlated with neuronal spiking in many brain regions [71], [74], [86], 

[102]–[104]. In the hippocampal CA1 region, patterns of sub-second Ca2+ transients 

recorded in individual neurons closely paralleled the spiking patterns reported in 

electrophysiological studies, demonstrating that sub-second Ca2+ transients can be used to 

estimate neural activities [20], [78], [105], [106].  While a single spike can produce 

detectable changes in GCaMP6 fluorescence, most of the sub-second time scale GCaMP6 
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fluorescence transients observed in living brains are likely associated with bursts of spikes 

[71]. We previously demonstrated that wide-field Ca2+ imaging with GCaMP6 allows the 

ability to simultaneously image the activity of hundreds to thousands of individual 

hippocampal neurons in awake behaving mice [20]. Because of the simple instrumentation 

of wide-field Ca2+ imaging, this imaging modality can be easily adopted by many 

researchers to study acute changes in neuronal function following exposure to mild blasts.  

This study highlights the utility of this technique for studying mTBI, and reports some 

initial results using this technique in animals that experience a blast injury over two 

consecutive days. 

 

3.3 Results 

3.3.1 Wide field imaging of hippocampal CA1 neurons in awake mice upon mild 

traumatic blast injury (mTBI) 

To examine the acute effects of mTBI on individual hippocampal neurons, we 

performed Ca2+ imaging using wide-field fluorescence microscopy (Figure 6A) in awake, 

head-fixed mice [20], before and immediately after a mild cranial blast injury. The mTBI 

was produced with a Cranium Only Blast Injury Apparatus (COBIA) that directs blast 

waves onto the freely moving head of a mouse (Figure 6B), adapted from that of Kuehn et 

al [101]. We note that although the mouse bodies were restrained in the COBIA, their heads 

moved freely to ensure the success of the blast injury model.  

We calibrated our COBIA device using a sensor that had a 500 kHz resonant 

frequency (100 kHz maximum sampling frequency).  With our calibration setup, the blast 
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peak overpressure reached 1,399 ± 252 kPa (mean ± std, n=5 tests) at a single time point 

(~2 µs) (Figure 6C).  To compare to the measurements reported in Kuehn et al. (2011), we 

filtered the pressure trace at 12 kHz and obtained a transient overpressure of 322 ± 92 kPa 

(mean ± std), which was slightly below the maximum overpressure they reported [101]. To 

compare to the shock tube device reported by Goldstein et al. (2012), we filtered the blast 

pressure trace at 2 KHz, and detected a peak pressure of 178 ± 26 kPa, which is above the 

77 kPa they reported [98]. The severity of blast injury is typically attributed to the 

magnitude of the pressure produced (peak blast overpressure), and the duration of peak 

overpressure [93], [100], [101], [107].  Because none of our blasted animals lost 

consciousness or exhibited noticeable abnormal behavior immediately following blast or 

the week after, and the general agreement of the blast overpressure of our experiment with 

prior studies, we consider our COBIA model to be mTBI [98], [101].  

Several weeks prior to testing, mice were surgically injected with AAV9-syn-

GCaMP6f virus encoding the genetically encoded Ca2+ sensor GCaMP6f into the CA1, and 

implanted with a custom imaging window over the injection site. Upon complete recovery 

from the surgeries, mice were blasted and imaged each day on two consecutive days 

(Figure 6D).  Prior to each blast, we first imaged spontaneous Ca2+ dynamics for 100 

seconds in mice that were awake and head-fixed under the imaging setup.  We then 

transferred the mice to the COBIA, where they received a single cranial blast with free 

head movement.  Immediately after the blast, we transferred the animals back to the 

imaging setup, and imaged awake and head-fixed for 100 seconds every 10-20 minutes 

until about one hour after the blast (Figure 6E).  Because the COBIA also produced a 
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transient loud noise, we performed a sham study in mice that were prepared in an identical 

fashion, but positioned next to the COBIA during the blast portion of the protocol.  Sham-

exposed mice were also allowed free head movement, and thus they experienced the blast 

related noise without being exposed to any blast pressure waves. Each mouse was blasted 

and imaged each day on two consecutive days (n=4 blasted mice) or sham-exposed on each 

of the two consecutive days (n=5 sham-exposed mice). 

 

Figure 6. Experimental design for wide-field Ca2+ imaging of hippocampal neurons in mice 

exposed to a cranial blast 

(A) A wide-field fluorescence microscope coupled to a sCMOS camera was used to image neurons 

expressing a genetically encoded Ca2+ sensor (GCaMP6f) in vivo. (B) The Cranium Only Blast Injury 

Apparatus (COBIA) consisted of a modified nail gun coupled to a blast director to direct the blast wave 

vertically onto the freely moving head of un-anesthetized mice. The distance from the animal’s head to 

the opening of the blast director was 2 cm. (C) Waveform of average overpressures (n=5 tests) generated 

from the COBIA. Inset shows the zoom in of the waveform over 10ms. (D) Experimental timeline. (E) 

Ca2+ imaging protocol during each blast session. 
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3.3.2 Blast exposure induced both sustained and transient intracellular Ca2+ changes in 

a large number of individual neurons 

The wide-field imaging system, equipped with a sCMOS camera and a 10X 

objective lens, allowed us to image over a 1.343 x 1.343 mm2 brain area containing 

hundreds of individual neurons in each mouse (Figure 7A). In one representative session, 

we recorded 554 neurons before blast, and 467 neurons after blast (Figure 7B). The 

difference in the number of neurons identified between the pre- and post- blast sessions in 

the same mice was due to the fact that the blast procedure was conducted in mice whose 

heads were not restrained. Thus, the same neurons often could not be easily registered 

before and after the blast. However, because we imaged the same brain area from the same 

imaging window, a majority of cells recorded before and after the blast were expected to 

come from the same neuronal population.  

Before the blast, most neurons exhibited transient and dynamic GCaMP6f signals 

on a sub-second time scale, consistent with Ca2+ changes associated with neural activities 

[71], [74], [85], [86], [102]–[104], [108], [109].   These Ca2+ transients, on the sub-second 

time scale, were sparse over time, and were present in cells across the entire imaging field 

(Supplemental Video 1). The overall dynamics of these patterns were consistent with those 

reported previously for spontaneous CA1 Ca2+ transients associated with spiking [20], [78], 

[105], [106].  Immediately after blast, we observed a drastic change in the pattern of 

GCaMP6f signals (Figure 7A).  A substantial fraction of cells exhibited a sustained 

reduction in their sustained basal intracellular Ca2+ levels, as well as a reduction in the 

frequency of sub-second Ca2+ transients. 
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Figure 7.  Blast altered intracellular Ca2+ dynamics in individual hippocampal neurons 

(A) Maximum projection of GCaMP6 fluorescence intensity across all imaging frames during a 100 
seconds long recording period for a representative blasted mouse (left) and a representative sham noise-

exposed mouse (right). Post-Blast/Sham period 1 was immediately after the blast, and Post-Blast/Sham 
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period 5 was about 65 minutes after the blast. Images were contrast enhanced using the same contrast 

scaling factor for both periods 1 and 5. (B, C) Ca2+ traces (normalized by the mean fluorescence in 

period 5) of individual neurons identified in a representative blasted mouse (B) and in a representative 

sham noise-exposed mouse (C), before and after blast. (i) Traces were sorted by the mean fluorescence 

in the pre-blast or post-blast period 1 respectively. Sorting order of a given neuron from period 1 was 

maintained across the remaining blast periods.  (ii) Representative Ca2+ traces of specific representative 

neurons with different levels of intracellular Ca2+, as indicated by the colored asterisks in (i). 

In addition, we found a very small fraction of cells that exhibited sustained elevation of 

basal intracellular Ca2+ levels after blast, which appeared constantly bright in the imaging 

field (Supplemental Video 1).  Changes in both the sub-second Ca2+ transients and the slow 

sustained basal intracellular Ca2+ levels slowly recovered over time. In most blast sessions, 

patterns of Ca2+ dynamics observed at the end of the recording session, about one hour after 

the blast, were visually indistinguishable from that observed during the pre-blast baseline 

period. However, there was one blast session on the second day (out of total of eight 

sessions in four animals), where Ca2+ dynamics remained attenuated and sparse one hour 

after blast. 

In sham mice, we did not detect noticeable changes in either the sub-second Ca2+ 

transients or the slow sustained basal intracellular Ca2+ levels (Figure 7C & Supplemental 

Video 2). Since it took about five minutes to transfer animals from the COBIA blast device 

back to the imaging setup, we could not determine the precise time when the changes in 

Ca2+ dynamics were first initiated by the blast. 

3.3.3 Mild blast injury reduced basal intracellular Ca2+ levels in most neurons 

Because we could not easily register a one-to-one match among imaged neurons 

before and after blast, we first examined population neural activity observed ~65 minutes 

after blast (Period-5) versus that observed during pre-blast period as those seemed 
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qualitatively similar. We compared the histogram distributions of mean basal Ca2+ levels 

across all neurons for each mouse between the Pre-Blast period and Period-5, and found 

no statistically difference (Wilcoxon Rank Sum Test, p>0.05), consistent with our visual 

evaluation (Supplemental Video 1). Then to examine the immediate effects of blast at the 

individual neuron level, we compared the first 100-second long imaging session 

immediately after blast (Period-1) and the last 100-second imaging session ~65 minutes 

after the blast (Period-5) when activity largely recovered to that of pre-blast period in most 

cases. 

To estimate the slow, sustained, basal intracellular Ca2+ changes induced by blast, 

we constructed a probability density estimate (PDE) for each neuron’s fluorescence 

intensity in Period-1 and Period-5 (Figure 8). The fluorescence intensity of a given neuron 

sampled at each image frame was used to calculate the PDE. The mean of the PDE 

represents the overall basal intracellular Ca2+ levels averaged over the given 100-second 

long imaging period, and the distribution of the PDE estimates the temporal variation 

within the imaging period.  

In the blast group, the PDEs of most neurons during Period-1 were drastically 

shifted towards smaller intensity values when compared to that during Period-5 (Figure 

8Aii), suggesting that blast reduced basal intracellular Ca2+ levels in most neurons. 

Interestingly, the PDEs of a small portion of neurons (a representative one is shown in 

Figure 8Ai) were shifted to higher intensity values, suggesting that blast increased the 

intracellular Ca2+ levels of these neurons. For the few cells that showed little change in the 

overall mean intensity, they exhibited a small shift in the distribution, suggesting that these 
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neurons exhibit more variable changes in intracellular Ca2+ levels than sham-blasted mice 

(Figure 8Aiii compared to Figure 8B). 

We then calculated the mean of the PDEs of all neurons recorded in this blast 

session, and compared between Period-1 and Period-5 (Figure 8C). As a population, basal 

intracellular Ca2+ levels of most neurons in blasted mice were above the unity line, 

demonstrating that blast reduced the intracellular Ca2+ levels in most neurons. A few 

neurons were below the unity line, representing the neurons whose intracellular Ca2+ levels 

were elevated by the blast. This phenomenon was consistent across most blast sessions 

(Figure 8D).  Our estimation of blast-induced effects represent a conservative measure, as 

it is possible that blast-induced changes may remain at some level during Period-5 that is 

still different from the pre-blast period, though not statistically significant. In addition, the 

comparison between Period-1 and Period-5 allows us to assess how individual neurons 

recover over time after each blast. Across sham-exposure sessions, the mean basal Ca2+ 

levels remained on the unity line, which confirmed that sham-exposure did not alter 

intracellular basal Ca2+ levels (n=10 sessions in 5 mice).   

To further quantify the changes in individual neurons, we estimated the variation 

of the PDEs across all neurons recorded in the sham group where blast did not alter the 

mean basal calcium levels. We then used the 95% confidence interval of the width of this 

distribution as a threshold to determine significance along the unity line. If a neuron’s mean 

fluorescence intensity during Period-1 was significantly smaller than its intensity during 

Period-5, we classified this neuron as significantly suppressed by the blast. If a neuron’s 

mean fluorescent intensity during Period-1 was significantly larger during Period-5, we 
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classified this neuron as significantly elevated by the blast. If a neuron’s mean fluorescence 

intensity was within a 95% confidence interval between Period-1 and Period-5, it was 

considered to have a consistent basal calcium level. For the blasted mice, 55.5 ± 24.8% of 

cells were suppressed, while for sham mice only 5.83 ± 9.26% of cells were suppressed for 

the second blast day (Wilcoxon Rank-Sum W = 15, nb = 4 ns = 5 mice, p = 0.016, two-

tailed).  It is interesting to note that the percentage of cells in this population that were 

suppressed doubled between the blasts, going from 20% of the cells on day 1 to 55% of the 

cells on day 2 of blasting (Figure 8E). 

Together, these results suggest that mild blast caused wide spread, sustained 

reductions in basal intracellular Ca2+ levels in a large fraction of individual hippocampal 

neurons. A larger fraction of hippocampal neurons was impacted during the second blast 

compared to the first blast.  While the intracellular Ca2+ levels in most neurons were 

reduced following blast, a small fraction of cells exhibited long lasting increase in 

intracellular Ca2+. These changes in intracellular Ca2+ recovered on a timescale of minutes, 

and returned to similar patterns as that observed before blast. Considering the importance 

of intracellular Ca2+ in cell signaling pathways and gene expression, such a shift in basal 

intracellular Ca2+ levels over a time course of minutes could lead to longer term changes 

in membrane excitability, synaptic remodeling and structural plasticity. 
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Figure 8.  Blast reduced intracellular basal Ca2+ levels 

(A) Left: spatial distribution of cells whose intracellular Ca2+ levels were elevated (red), suppressed 

(blue), or non-modulated (gray) in a representative blasted mouse. Middle: Ca2+ traces for the three 

representative neurons indicated in the spatial map. Right: the probability density estimates (PDE) of 

the neurons (shown in the middle) for imaging period-1 and period-5. The short vertical lines above the 

density distributions correspond to the mean of each respective density and highlight the shift in 

intracellular calcium levels between the imaging sessions.  A.U.: arbitrary units, as measured by 16-bit 

pixel intensities. (B) Spatial distribution map, Ca2+ traces, and probability density estimates for a 

representative sham noise-exposed mouse.  (C) The mean fluorescence intensity of all cells during 

period-1 plotted against the mean fluorescence intensity during period-5 for the representative blasted 

mouse (red) and the representative sham-blasted mouse (blue) shown in A and B respectively. Dotted 

black line is the unity line. (D)  All neurons recorded in all blast sessions (red, 2781 neurons) and all 

sham sessions (blue, 3259 neurons) during period-1 plotted against period-5. Dotted black line is the 

unity line, and dotted gray lines indicate 95% confidence interval used to classify elevated and 

suppressed cells.  (F)  The fraction of cells that were suppressed, elevated or non-modulated, averaged 

across mice, for the first blast (day 1) and the second blast (day 2).  More neurons were suppressed after 

the second blast (*: p<0.05, Wilcoxon Rank-Sum).  Error bars represent the quartile range. 
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3.3.4 Mild blast injury reduces individual neuronal activity measured as Ca2+ transients 

In addition to altering slow basal intracellular Ca2+ levels, blast also impacted the 

faster, sub-second time scale Ca2+ transients, known to be correlated with neural activity 

[71], [74], [85], [86], [102]–[104], [108], [109].   Immediately after blast, many neurons 

were largely inactive and exhibited few Ca2+ transients for an extended period of time 

(Figure 7B & Figure 9A-Post-Blast 1-2 and Supplemental Video 1). Ca2+ transients 

recovered gradually, and in most blast sessions by the last recording session (approximately 

one hour after blast), they were similar to the pre-blast state. In the sham group, Ca2+ 

transients showed little change following exposure to the sound of the blast thus confirming 

that noise alone did not cause the changes in Ca2+ transient events recorded in the blast 

group.   

To quantify the effect of blast on Ca2+ transients for individual neurons, we 

calculated the frequency of the sub-second long Ca2+ transients. To dissociate the sub-

second timescale of Ca2+ transients from the sustained long-lasting basal Ca2+ level shifts, 

we first calculated the changes in fluorescence from the mean fluorescence (ΔF) for each 

neuron within a given 100s long imaging period. We then normalized ΔF to the mean of 

the last imaging period (F5) to highlight any change in the frequency of Ca2+ transients 

(Figure 9A-B). This normalization allowed optimal detection of changes in transient Ca2+ 

events, without any bias from effects of the basal Ca2+ level changes. To calculate the rate 

of Ca2+ transient events, we first converted normalized Ca2+ traces to binary traces to 

identify the rising phase of GCaMP6 signals (ones), and counted the number of Ca2+ events 

occurred for each 100 second recording time period, before and after each blast.  
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We found that mean Ca2+ event rates of all neurons simultaneously recorded in each 

imaging session before blast were comparable between the blasted and the sham groups 

(blast: 2.20 ± 0.19 events, mean ± s.d, n=4 mice; sham: 2.28 ± 0.42 events, mean ± s.d., 

n=5 mice). Ca2+ event rate dropped significantly to 0.47 ± 0.3 events per 100 seconds for 

the blast group, compared to 1.45 ± 0.47 events for the sham group (Wilcoxon Rank-Sum 

W=35, nb = 4 ns = 5 mice, p = 0.016, two-tailed).  Ca2+ events rates then quickly recovered 

over the subsequent tens of minutes following blast (Figure 9C, p>0.05).  On the second 

day, the average calcium event rate returned to ~2 events per 100 seconds for both sham 

and blast groups before blast.  Following the second blast, the event rate again dropped 

sharply and recovered slower on the second day compared to the first day, although this 

pronounced decline was not statistically significant. 

To determine the fraction of cells in each mouse that exhibited a change in Ca2+ 

event rates, we compared the event rate in Period-1 to that in Period-5 for each cell.  A 

bootstrapping method was used to determine whether the frequency of Ca2+ transients for 

each neuron were significantly different between Period-1 and Period-5, to classify neurons 

as significantly increased, decreased or non-modulated. We found that following the first 

blast, 58.5 ± 20.3% (mean ± s.d.) of cells showed a decrease in response to blast, 

significantly different from the 26.5 ± 6.3% of cells upon sham exposure (Wilcoxon Rank-

Sum W = 16, nb = 4 ns = 5 mice, p = 0.032, two-tailed). In addition, we found that 44.6 ± 

11.3% of neurons in sham mice showed an increase in the frequency of Ca2+ transients over 

time, but only 13.6 ± 11.8% of neurons in the blasted mice exhibited such increase 

(Wilcoxon Rank-Sum W = 35, nb = 4 ns = 5 mice, p = 0.0159, two-tailed).  These 
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proportions were different for the second day of blasting, with the number of calcium 

events being more comparable to the sham mice (Figure 9D). 

 

Figure 9. Blast decreased calcium transient event rates in individual neurons 

(A, B) Sub-second Ca2+ transients, events closely related to neural activity, plotted for individual 

neurons for different time periods after blast in a blasted mouse (A), and a sham noise-exposed mouse 

(B). Cells were sorted using the same order as shown in Figure 7. Transient Ca2+ events were calculated 

using ΔF/F5 rather than F/F5 to highlight transient events occurring on top of the slower basal changes 

in intracellular Ca2+ levels. (C) The average number of calcium events before and after the first blast 

(day 1) and the second blast (day 2), plotted for the 6 recording periods each day. (*: p<0.05, Wilcoxon 

Rank-Sum).  Error bars represent the quartile range. (D) The fraction of neurons exhibiting decreased, 

increased and non-modulated Ca2+ event rates. (*: p<0.05, Wilcoxon Rank-Sum).  Error bars represent 

the quartile range.  (n=4 blast mice, and 5 sham mice). 
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3.3.5 Heterogeneous effects of blast on intracellular Ca2+ dynamics at different time 

scales 

Interestingly, when comparing changes between basal intracellular Ca2+ levels and 

the frequency of Ca2+ transients, we failed to find a clear relationship (Figure 10).  When 

plotting the full population of neurons comparing the difference in the average number of 

Ca2+ events with the difference in the basal Ca2+ levels, we found no linear relationship 

between the two for either blasting days (blast: R2=0.1141 and 0.0031 for the first and 

second blast respectively; sham: R2=0.0371 and 0.0206 for the first and second sham 

exposure respectively). Sham mice had a tighter distribution of the average basal Ca2+ 

levels, while blast mice showed a broader distribution of differences in basal Ca2+ levels.  

Interestingly, a few neurons in the sham group exhibited changes throughout the full range 

of basal Ca2+ level changes and the frequency of Ca2+ transient changes, suggesting blast-

induced changes are physiologically achievable.  These results demonstrate heterogeneous 

effects of blast on both basal and transient Ca2+ changes, which could involve different 

cellular mechanisms, and also confirmed that our imaging technique and analysis methods 

can independently detect changes in transient sub-second Ca2+ events and sustained basal 

shift in intracellular Ca2+ levels. 
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Figure 10.  Blast induced changes in baseline calcium levels are independent of the changes in 

Ca2+ event rates 

Each dot representing a single cell is plotted comparing the change in the mean baseline Ca2+ level with 

the change in the number of Ca2+ events over the 100 second recording period immediately after blast.  

Day 2 showed a greater divergence in the baseline mean, although both days showed similar cellular 

responses in the change in Ca2+ events.  While the range of values was observed in both blast and sham 

conditions was similar, the fraction of cells exhibiting stronger deviations from the center was much 

larger in the blast condition than the sham condition.  Large colored dots represent the mean of each 

value across mice for either the sham or the blast group, and error bars represent the quantile range 

spanning 95% of the data. 

3.3.6 No significant differences in glia immunoreactivity one week following repetitive 

blasts 

Immunocytochemistry was performed one week after the second blast to identify 

morphological changes in cytoarchitecture and to evaluate the status of glia (Figure 11). 

We found no significant differences in the percent area occupied by GFAP labeled 

astrocytes between sham and blasted groups, either in the ipsilateral area directly 

underneath the imaging window (t=-0.404, df=10, p=0.695), or in the contralateral intact 

hemisphere (t=-0.876, df=6.698, p=0.411). We observed a slight increase in the area 

occupied by GFAP in the ipsilateral side underneath the imaging window, compared to the 

contralateral intact hemisphere in both blast and sham groups (sham: n=5 t=2.167, df=4, 
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p=0.096; blast: n=6, t=1.580, df=6, p=0.165), consistent with local immune responses to 

imaging implants. 

 

Figure 11.  No significant differences in GFAP and Iba1 immunoreactivity following blasts 

(A, B) DAPI labeled coronal sections from a representative sham-exposed mouse (Ai.-iii.) and a 

representative blasted mouse (Bi.-iii.). DAPI = 4’,6-Diamidino-2-Phenylindole. GFAP = glial fibrillary 

acidic protein. IBA1 = ionized Ca2+ binding adaptor molecule 1. CA1 = Cornu ammonis 1. SM = 

Stratum moleculare. SP = Stratum pyramidale. SO = Stratum oriens. (C,D) GFAP (Glial fibrillary acidic 

protein) immunofluorescence (C) and Iba1 (ionized Ca2+ binding adaptor molecule 1) 

immunofluorescence (D) from a sham mouse (top) and a blast exposed mouse (bottom), ipsilateral (i., 
iii.) and contralateral to the imaging window (ii., iv.). E) No significant difference in the percent area 

of GFAP immunofluorescence was observed between sham and blast exposed animals, either ipsilateral 
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or contralateral to the imaging window. (F) No significant difference in the percentage non-ramified 

cells positive for Iba1 was observed between sham and blast exposed animals ipsilateral or contralateral 

to the imaging window. 

 

In addition, no significant difference was observed in Iba1 phenotypes between sham and 

blasted groups under the imaging window (t=-0.329, df=9, p=0.749), as well as in the 

contralateral hemisphere (t=-1.299, df=6.475, p=0.238). Similar to GFAP labeled 

astrocytes, we observed a greater percentage of non-ramified Iba1 positive microglia in the 

ipsilateral area directly underneath the imaging window compared to the contralateral 

hemisphere, in both sham and blasted animals, though the difference was not significant 

(sham: n=5 t=1.693, df=4, p=0.166; blast: n=6, t=1.829, df=5, p=0.127). 

 

3.4 Discussion 

To examine the immediate functional effect of mild blast, we integrated a recently 

developed in vivo wide-field imaging technique to monitor intracellular Ca2+ changes in 

large numbers of individual hippocampal neurons in un-anesthetized mice, with an mTBI 

COBIA model that produced no drastic anatomical pathology.  We found a significant 

effect on neural function after exposure to a single blast or repeated blasts. Blast produced 

heterogeneous effects on different neuron populations, across different time scales. Basal 

Ca2+ levels, on the time scale of minutes, were reduced in most neurons, suggesting that 

biochemical signaling may be affected.  Transient Ca2+ events, on the sub-second time 

scale, were reduced in a large fraction of neurons, suggesting an impact on neural activity, 

likely due to changes in membrane excitability and/or synaptic signaling. Blast-induced 

transient Ca2+ activity changes showed little correlation with the shift of basal intracellular 
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Ca2+ levels, suggesting different modes of impact on membrane biophysics and synaptic 

processing versus biochemical pathophysiology of the blast. The observed functional 

changes over the time course of tens of minutes in the absence of anatomical pathology 

may be directly relevant to the immediate cognitive impact of blast and may contribute to 

the long lasting cellular changes. In addition, this study also highlights a novel technology 

platform that enables simultaneous analysis of a large number of individual neurons 

immediately after blast injury. 

3.4.1 Blast Model 

The severity of primary blast injury is typically attributed to the peak blast 

overpressure, the duration of peak overpressure, extent of head movement, distance from 

the blast, and the mortality rate [93], [100], [101], [107], [110], [111]. However, major 

differences in the construction of the devices used to generate the blasts [112]–[114], 

administration of anesthetics [68]–[70], types of animals used [115], their orientation with 

respect to blast [116], [117], and their recovery post blast can significantly affect injury 

outcome. A consensus to calibrate blast intensity based on the sampling frequency analyzed 

has not been reported to our knowledge, and the reported pressure measurements vary 

widely depending on the experimental setups. Kuehn et al. (2011) used a sensor with a 60 

kHz resonant frequency and collected data at 333 kHz to obtain the peak pressure of 517 

kPa using the same experimental setup that we adapted for the present study. Whereas 

Goldstein et al. (2012) reported the peak pressure of only 77 kPa using a shock tube. While 

our calibration results are in general agreement with these studies reporting mild blast 

injuries, future studies focused on standardizing calibration pressures would be beneficial 
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for cross-study comparisons of blast-related injuries.  Although we had a very high blast 

overpressure (1,399 ± 252 kPa), it’s very short duration (~2 µs) probably contributed to the 

mild nature of the blast. 

3.4.2 Evaluation of Astrocytes and Microglia Immunoreactivity 

Although morphological changes used to infer the status of glial activation resulting 

from blasts have been reported, particularly following moderate and severe injuries, it is 

known that functional impairments can exist in the absence of morphological changes [46]. 

For example, Pun et al. (2011) reported acute microglial activation 24 hours following 

exposure to mild blast, which was then absent 4 and 7 days post blast, likely due to 

compensatory upregulation of reparative genes following blast exposure [118].  Consistent 

with Pun et al., we did not observe significant differences in astrocytes or microglia 

immunoreactivity one week following the final blast exposure. However, we cannot rule 

out the possibility that transient changes in glial morphology occurred prior to the sub-

acute time point examined. Future studies are warranted to assess the temporal 

characteristics of glia morphologies and how the dynamic nature of glia may contribute to 

the functional responses following blast.  Using the same experimental technique reported 

here, the acute changes of intracellular calcium in glia could also be studied in response to 

blast, as in vivo calcium imaging in glia has been performed previously [119].  

3.4.3 Neuronal Functional Changes 

To our knowledge, we report the first in vivo evidence of how neurons in un-

anesthetized brains responded to blasts within minutes (~5 mins) after blast exposure.  
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While in vivo imaging has been utilized to examine a variety of neural networks involved 

in various behaviors [73], [74], [119]–[124], recent improvements in wide-field optical 

imaging allow simultaneous recording of cellular responses from hundreds to thousands of 

individual neurons, over relatively large brain areas, providing the opportunity to obtain 

finer details regarding the dynamic features of large neural networks [20], [125]. Using in 

vivo imaging in a blast injury rodent model, we identified acute changes in a large fraction 

of neurons within tens of seconds, and the extended effects over the time course of minutes, 

which recovered after about one hour. Even though the activity of most neurons were 

drastically reduced, a small number of neurons exhibited striking elevations in intracellular 

calcium. While the functional relationship between the intracellular Ca2+ changes at both 

the modulatory and synaptic time scales is unclear, future studies using Ca2+ imaging will 

likely establish their role in the manifestation of blast pathology. 

At a population level, we found an overall loss of Ca2+ activation events in the 

hippocampus after blast, suggesting that blast led to a network state where the neurons are 

less active. This reduced activity may be related to the temporary loss of memory or 

confusion often observed in patients experiencing head trauma [126]. Future Ca2+ imaging 

studies may provide important links to the mechanisms underlying memory deficits related 

to head injuries.  

3.4.4 Potential causes of the mTBI induced changes in intracellular Ca2+ levels 

Blast-induced changes in sustained basal intracellular Ca2+ levels on the order of 

minutes to tens of minutes are indicative of modulation of biochemical, cellular signaling 

cascades, whereas the change in the frequency of sub-second Ca2+ transients is suggestive 
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of altered spiking patterns that are likely associated with changes in membrane biophysics 

or synaptic mechanisms. While the sub-second transient Ca2+ changes can be explained by 

changes in neuronal activity patterns, it is still unclear how blast induces sustained shifts 

in basal intracellular Ca2+ level. It is possible that the reduction in basal intracellular Ca2+ 

levels could arise from spreading depression [127]. However, this does not seem likely in 

that a small number of cells with increased Ca2+ levels were interspersed with those with 

decreased Ca2+ levels.  

While many studies indicated that blast induces a long-term increase in intracellular 

Ca2+ levels over the course of days [128]–[131], a recent study also showed immediate 

suppression of neuronal activity lasting for 5 to 20 minutes followed by increased cortical 

activity by two hours post injury upon sustained cortical compression in barrel cortex[132]. 

Our results showed an overall suppression in a large fraction of the neuronal population 

immediately after the blast within an hour, indicating blast injuries could cause a dramatic 

shift in the Ca2+ level on various time-scales. The suppression and the increase in Ca2+ 

levels are likely due to distinct cellular mechanisms. For example, it has been suggested 

that there can be a switch in AMPA receptor composition from Ca2+ impermeable 

glutamate receptors (GluRs) to Ca2+ permeable GluR receptors lacking GluR2 following 

mechanical injury in cortical neurons in vitro [133], [134], which could explain the long-

term increase in basal levels of intracellular Ca2+.  In contrast, it has also been suggested 

that there is a decrease in GluR1 expression in the cortex 15 minutes after closed head 

injury [135], that could lead to the acute suppression of intracellular Ca2+ observed here.  

Furthermore, long-lasting loss of Ca2+ permeable glutamate NMDA receptor function, 
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following short-lived (<1 hour) hyper-activation may also contribute to the reduction in 

intracellular Ca2+ [136]. In a lateral fluid percussion model in the hippocampus there was 

decreased net synaptic efficacy and reduced excitatory postsynaptic potentials in CA1 

while both evoked and spontaneous miniature inhibitory potentials were larger in injured 

brains [137].  These results suggest that increased activation of NMDA receptors and Ca2+ 

permeable AMPA receptors may be responsible for the long-term increased basal Ca2+ 

levels that has been reported previously, while enhanced spontaneous inhibitory activity in 

area CA1 following blast may cause the immediate reduced levels of Ca2+ as we observed. 

It is also possible that direct alterations in GABAA receptors may contribute to inhibitory 

dysfunction after trauma [138].  

Interestingly, a recent in vitro study has shown that simulated blast primarily affects 

calcium signaling in human astrocytes, in contrast to neurons, producing calcium waves 

that propagate through astrocytic networks via purinergic signaling [139].  This suggests 

that astrocytes may also play a significant role in modulating Ca2+ levels in response to 

blast. It also raises the possibility that astrocytes may be involved in our present results 

even though we found no pathological changes in astrocytes. The imaging methods and 

reagents employed in the present study could easily be adapted to study blast induced 

changes in Ca2+ in astrocytes. 

In addition to these potential synaptically-based mechanisms, it is also possible that 

changes in the homeostatic regulation of Ca2+ may be involved in the changes in basal Ca2+ 

levels. Homeostatic regulation of Ca2+ in response to TBI has been shown to occur by a 

wide variety of mechanisms including: voltage and receptor activated Ca2+ channels; Ca2+ 
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transporters; release and sequestration of Ca2+ from intracellular stores in the nucleus, 

mitochondria and endoplasmic reticulum; intracellular Ca2+ binding proteins; and changes 

in the permeability of neuronal membranes to Ca2+ [140].  Changes in any of these 

homeostatic mechanisms could influence both the basal and sub-second transient Ca2+ 

changes in response to blast. 

Quantitative analysis indicated that there was a complex relationship between the 

slower modulatory changes in basal Ca2+ levels and the sub-second scale Ca2+ dynamics.  

For example, cells with increased modulatory cytoplasmic levels of Ca2+ could have either 

increased, decreased or unaltered levels of presumptive synaptic Ca2+ activity at the 

millisecond time scale.  These different responses indicate there are multiple neuronal types 

and synaptic circuits being influenced by blast and that several different signal transduction 

pathways are involved. Given that only a small population of hippocampal neurons had 

increased cytoplasmic levels of Ca2+ in response to blast, it will be important for future 

studies to determine why these neurons are unique. Further characterization of the specific 

cell types involved, their synaptic properties, and the signal transduction pathways being 

affected could form the basis for future treatments to prevent or treat neuronal blast injury.  

Given that synaptic processing requires a precise functional balance of inhibition and 

excitation, the increased and decreased levels of basal Ca2+ we see in response to blast may 

produce overall changes in network functionality. These changes in intracellular Ca2+ and 

their related signaling pathways may underlie the immediate cognitive effects of blast 

exposure, and contribute to longer term anatomical pathologies. 
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3.5 Methods 

3.5.1 Blast model 

The blast injury model used was adapted from the previously developed Cranium 

Only Blast Injury Apparatus (COBIA) [101]. The central component of the COBIA was a 

Mastershot (a 22 caliber, single-shot, powder-actuated tool, Ramset RS22; ITW Ramset, 

Glendale Heights, IL) mounted vertically on a custom-fabricated stand. The Mastershot 

was modified by removing the piston that normally drove the fastener, making it function 

like a firearm allowing the blast wave to propagate undampened through the barrel (Figure 

6B). The muzzle of the Mastershot was snugly fit into a custom blast director, constructed 

from polyvinyl chloride pipe (10 cm long with an inner diameter of 2cm), (Figure 6B). The 

blast wave was generated by firing a 22-caliber crimped brass blank cartridge (power 

hammer loads power level 4, yellow color coding, with 179 ± 5mg of smokeless powder, 

Ramset 42CW, Ramset, Glendale Heights, IL). 

3.5.2 Blast wave measurement and calibration 

A precision dynamic high frequency piezoelectric pressure transducer (Model: 

113B21 High Frequency ICP® pressure sensor, PCB Piezotronics, Inc., Depew, New 

York), powered by a power supply (Model 5421, Columbia Research Laboratories, Inc., 

Woodlyn, PA), was used to measure the pressure of the blast waves produced by the 

COBIA (Figure 6C). The sensor was positioned approximately 2 cm from the dissipation 

chamber, where the head of the mouse was positioned. Transducer outputs were digitized 

using a NADAQ data acquisition system (National Instruments, NI-USB-6259) at 350 
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kHz, and analyzed offline.  

We calibrated our COBIA device using this sensor which had a 500 kHz resonant 

frequency (100 kHz maximum sampling frequency).  To compare to the pressure 

measurements reported in Kuehn et al. (2011), we filtered the pressure trace at 12 kHz to 

measure a comparable transient overpressure [101]. To compare to the shock tube device 

reported by Goldstein et al. (2012), we filtered the blast pressure trace at 2 KHz [98]. While 

the severity of blast injury is typically attributed to the magnitude of the pressure produced 

(peak blast overpressure), and the duration of peak overpressure [93], [100], [101], [107], 

none of the animals exposed to blast lost consciousness or exhibited noticeable abnormal 

behavior immediately following blast nor the week after. In addition, upon dissection, the 

brains were unremarkable with no contusions. Due to the similarities of the blast 

overpressure in this study with prior studies, we consider results of this study most relevant 

to mild blast injury [98], [101]. 

3.5.3 Wide-field imaging and blast procedure 

All animal procedures were approved by the Boston University Institutional 

Animal Care and Use Committee. Nine adult female C57BL/6 mice (Taconic; Hudson, 

NY) 2-12 months old at the start of the experiments were imaged as described previously 

[20]. Briefly, under isoflurane anesthesia, mice were stereotaxically injected in CA1 (AP: 

–2 mm, ML:1.4 mm, DV: –1.6 mm) with 0.25µL of AAV9-Syn-GCaMP6f.WPRE.SV40 

virus (titer~6e12 GC/ml, University of Pennsylvania Vector Core) using a microsyringe 

pump (UltraMicroPump3-4; World Precision Instruments, Sarasota, FL) at a speed of 

40nl/min.  Upon complete recovery (at least 5 days), animals were then surgically 
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implanted over the CA1 viral injection site with a custom imaging window constructed 

using a stainless steel cannula (OD: 0.317 mm, ID: 0.236 mm, height, 2 mm) adhered to a 

coverslip (size 0; OD: 3mm), and a custom aluminum headplate to allow awake head fixed 

imaging. Upon complete recovery from implant surgery (approximately 2 weeks), mice 

were accustomed to head fixation before imaging sessions began (Figure 6D).  

Awake, head-fixed animals were imaged using a custom-built fluorescence 

microscope as previously described (Figure 6A) [20]. Briefly, the imaging setup consisted 

of standard optics for GCaMP6 imaging and a scientific CMOS (sCMOS) camera (ORCA-

Flash4.0 LT Digital CMOS camera C11440-42U; Hamamatsu, Boston, MA).  Imaging 

data (1024x1024 pixels, 16bit) was collected at 20 Hz and analyzed offline. No anesthetics 

or analgesics were used for any of the blast or imaging protocols. 

Mice were first imaged for 100 seconds to obtain baseline activity prior to blast, 

and then removed from the imaging setup and inserted into a mouse restrainer (Stoelting 

Co. Wood Dale, IL) that permitted full mobility of the head (Figure 6B). For the blast group 

(n=4 mice), restrained mice were placed 2 cm under the blast dissipation chamber and 

positioned so that the blast was directed dorsally between Bregma and Lambda.  For the 

sham group (n=5 mice), restrained mice were positioned adjacent to the COBIA, so that 

mice experienced the sound of the blast but not the blast pressure. Prior to blasts, tape was 

placed over the imaging cannula and a wetted custom paper cone was fitted to cover the 

head to allow reproducible positioning of the head, to allow free movement of the head, 

and to prevent potential quaternary damage from gun powder during blasts. Immediately 

following blasts, animals were removed from the restrainer and quickly repositioned and 
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head-fixed in the imaging setup. This transfer process typically took less than 5 minutes. 

Calcium imaging was then performed for 100 seconds for all mice in each of the following 

intervals: immediately following head-fixation after blast (0 minutes), and at 

approximately 10 minutes (Range: 6-15m, Mean: 10m 45s), 20 minutes (R: 16-26 min, 

Mean: 21m 19s), 35 minutes (R: 29-46 min, Mean: 35m 32s), and 65 minutes (R: 57-76 

min, Mean: 65m 28s) after blast/sham (Figure 6E). Each animal underwent these 

procedures once a day for two consecutive days. 

3.5.4 Calcium imaging data analysis 

For each imaging session, the 100-second videos for the five time points following 

the blast/sham-exposure (0, 10, 20, 35, and 65 minutes after blast/sham-exposure and head 

re-fixation) were first concatenated, and then processed as one video (500-second total 

duration) to provide a continuous registration of regions of interest (ROIs) across all time 

points. Each of the 100-second baseline videos taken immediately prior to blast or sham-

exposure was processed separately, because it was difficult to accurately align the ROIs 

between the videos taken before and after the blast, when the mice were transferred from 

the imaging setup to the COBIA device. Ca2+ imaging videos were first filtered with a 

homomorphic filter to enhance contrast, and then motion corrected using a rigid correction 

as previously described [20]. Circular ROIs with a radius of 6 pixels (corresponding to 7.8 

microns) were manually selected as being centered on the cell body on a maximum 

projection image across all video frames using a code we developed 

(https://github.com/HanLabBU/mTBI_Ca_Hippocampus).   

Raw calcium traces were extracted for each identified ROI as the mean intensity of 
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all pixels within a given ROI, where the absolute value of each pixel intensity was 

determined from the motion corrected videos without the homomorphic filter.  The raw 

calcium intensity for each cell was used to determine whether a cell was elevated or 

suppressed.  A probability density estimate (PDE) of raw pixel intensities was calculated 

using MATLAB 8.1 (MathWorks Inc., Natick, MA, 2013) for each cell for the imaging 

periods immediately after blast (Period-1) and 65 minutes (Period-5) after blast.  The 

difference in mean pixel intensity between Period-5 and Period-1 for each cell was 

calculated.  To establish a confidence interval, pixel intensity differences were pooled 

across all sham mice for all imaging sessions.  A 95% confidence interval was determined 

from the 0.025 and 0.975 quantiles of these pooled differences.  The width of this 

confidence interval was applied to the unity line, which would suggest no difference 

between Period-1 and Period-5.  Differences in mean pixel intensity that fell outside of this 

confidence interval for both blasted and sham-exposed mice were classified as elevated 

(Period-1 > Period-5) or suppressed (Period-1 < Period-5).   

For additional analyses, we also calculated normalized Ca2+ traces as 
∆𝐹

𝐹5
=

𝐹−𝐹0

𝐹5
, 

where F is the linearly detrended instantaneous fluorescence intensity, F0 is the linearly 

detrended mean fluorescence for a given imaging period, and F5 is the mean fluorescence 

for the final imaging period (Period-5, ~65 minutes after blast).  Binarized traces were then 

created from the normalized traces by setting the rising phase of calcium activation events 

to 1s, with 0s elsewhere along the binary trace. Specifically, normalized Ca2+ traces (
∆𝐹

𝐹5
) 

were low-pass filtered with a 6th order Butterworth filter at a cutoff of 2 Hz.  A global 

standard deviation was calculated across all concatenated videos (SDall) for each trace. 
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Calcium activation events were identified as peak values that were at least 3*SDall above 

the mean for each imaging period.  Each of these peaks was counted to determine an integer 

value of the calcium event rate.  From each peak point, the data points prior to the peak 

with a positive derivative were set to a binary 1, with all other data points were assigned 

as 0s.  To determine if a cell showed a significant decrease or increase in dynamic activity 

after blast, a bootstrapping method was used.  The percentage of time a cell was active was 

measured during a 10 second window that was randomly permuted 1000 times from the 

trace over the course of each period to determine how active the cell was for that time 

period.  These bootstrapped samples for period-1 and period-5 were compared for each cell 

using a two-tailed Wilcoxon Rank Sum test.  Cells that were statistically different (p<0.05) 

between the two time periods were classified as showing increased activity or decreased 

activity, where decreased cells were those with less activity in period-1 than period-5, and 

increased cells were those with more activity in period-1 than period-5. 

 Each cell was determined to be either suppressed, elevated, or consistent in its basal 

levels, as well as determining whether the calcium event rate was increased, decreased, or 

non-modulated by comparison of time period 1 to time period 5 for each cell.  Each of 

these classifications was quantified as the fraction of total neurons within each mouse, and 

those values were used for population analyses between sham and blasted mice. 

3.5.5 Immunocytochemistry 

One week following the second blast, mice were perfused with 0.9% NaCl 

heparinized saline followed with 4% paraformaldehyde in 0.1M phosphate buffer (PB) pH 

7.4 (containing sodium phosphate monobasic (Sigma, Cat# S0751), and sodium phosphate 
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dibasic (Sigma, Cat# S3264). Brains were post-fixed overnight at 4˚C, and then 

cryoprotected in 30% sucrose in PB overnight at 4˚C. Brains were then blocked from 

Bregma -0.94mm to -2.92mm using an adult mouse brain slicer matrix (BSMAS001-1, 

Zivic Instruments, Pittsburgh, PA), and sectioned at 40µm using a freezing sliding 

microtome (Reichert Jung Inc. Depew, NY). Brain slices were stored at -20˚C in 

cryoprotectant ((containing 30% sucrose (Sigma, Cat#S0389), 30% ethylene glycol (Fisher 

Scientific, Cat#BP230-1), 1% polyvinylpyrrolidone (Fisher Scientific, Cat#BP431-500)) 

in Tris-buffered saline pH 7.6 ((0.4M Trizma HCl, (Sigma, Cat# T-3253), 0.01M Trizma 

base, (Sigma T-1503), 0.15M sodium chloride, (Fisher Scientific, Cat# BP358-212)) for 

subsequent immunostaining.  

Free floating sections were first mounted and dried onto Colorfrost Plus slides 

(Fisher Scientific, Waltham, MA). Mounted slices were rehydrated in PB prior to 

incubation with 5% normal donkey serum (Jackson ImmunoResearch Laboratory, Inc. 

West Grove, PA) in PB containing 0.3% TritonX100 (PBTx). Slices from each animal were 

immunostained overnight at 4°C using either mouse monoclonal anti-glial fibrillary acidic 

protein (GFAP 1:250, Clone No. N206 A/8, UC Davis/NIH NeuroMab Facility Cat# 75-

240, RRID:AB_10672299), or rabbit anti-Iba1 (1:1000, Wako, Catalog No. 019-19741), 

followed by the appropriate fluorescently conjugated secondary antibodies, donkey anti-

mouse Cy3 (1:500, Jackson Immuno Research, Catalog No. 715-165-150) or donkey anti-

rabbit 647 (1: 500, Jackson Immuno Research, catalog No. 711-605-152), for two hours at 

room temperature. These primary antibodies have been previously characterized in mouse 

brain [141], [142]. Slices were then coverslipped in Gelvatol ((10% polyvinyl alcohol, 
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(Sigma, Cat#P8136), 20% glycerol, Sigma G-9012, 0.02% sodium azide, (Fisher 

Scientific, Cat#-227-100), 0.2M Tris (Amresco, Cat#0497), pH 8.5)) or Vectashield with 

DAPI (4’6-diamindino-2-phenylindole) (Vector Labs, Burlingame, CA) to visualize 

nuclei.  

Sections were imaged using a Nikon Eclipse motorized microscope (Nikon 

Instruments, Inc.) at 10x. ImageJ software (National Institutes of Health, Bethesda, 

Maryland, USA) was used to analyze the stained slices. 

3.5.6 Immunocytochemistry quantification 

The percent area occupied by GFAP was analyzed using ImageJ software. 

Immunostained images were first inverted so that signal appeared black and then binarized 

using the isodata algorithm in ImageJ.  Five randomly selected cells per slice, and three 

slices per hemisphere with visible somata were analyzed for each mouse. An area large 

enough to enclose a single cell was used for all analyses. The area fraction, defined as the 

percent coverage (percent area) of immunoreactivity within each area, was obtained for 

each binary image using the area fraction selection from the ImageJ Measure plugin. It was 

expected that evidence of glial activation would be reflected by a greater percent area 

because the cells would be larger in size and therefore occupy a greater percentage of the 

area. Values for percent area were obtained for individual cells (n=5 cells per hemisphere). 

To account for any differences due to the presence of the imaging window (ipsilateral), the 

hemisphere opposite to the window (contralateral) was analyzed separately as an internal 

control.  

Two broad classifications of Iba1 phenotypes were chosen for evaluation: ramified 
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and non-ramified. Manual counts of Iba1 positive cells identified as ramified or non-

ramified were performed within the same ROI applied to the hemisphere ipsilateral to the 

imaging window as well as the contralateral hemisphere.   

GFAP and Iba1 immunoreactivity were first evaluated using a paired t-test (p<0.05) 

for the ipsilateral and contralateral hemispheres for sham (n=5) and blast exposed (n=6) 

animals. A two-tailed unpaired t-test (p<0.05) was then performed to compare the results 

from sham and blasted animals. Data are presented as mean ± standard deviation. Statistical 

analysis of immunocytochemistry was performed using SPSS (IBM Corp. Released 2016. 

IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.) 

  



 

 

58 

3.6 Supporting Information 

3.6.1 Supplemental Videos 

Supplemental Video 1.  Blast led to acute changes in basal intracellular Ca2+ levels 

and transient Ca2+ event rates in individual hippocampal neurons, and the changes 

slowly recovered after about one hour. 

Raw microscopy video data is shown for one example blast session.  The appropriate time 

period with respect to the blast is shown in the bottom left corner, with blank black frames 

artificially inserted to demarcate the time between imaging sessions.  A dramatic change 

was observed immediately following the blast that seemed to slowly recover within one 

hour.  For display purposes, only the first 25 seconds of each session is shown and the 

video is sped up by 4-times its original speed.  All frames are scaled to the same contrast 

intensity for all videos.  

Supplemental Video 1 can be accessed at: 

https://www.liebertpub.com/doi/suppl/10.1089/neu.2017.5029/suppl_file/Supp_Video1.zi

p 

 

Supplemental Video 2.  Sham, noise-exposure did not alter intracellular 

Ca2+dynamics in the hippocampus.  

Raw microscopy video data is shown for one example sham-blast session.  Noise-exposure 

produced little changes in intracellular calcium dynamics.  Videos were processed 

identically as in supplemental video 1, with only the magnitude of the contrast scaling 

factor being adjusted for the inherent fluorescent differences observed between mice. 
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Supplemental Video 2 can be accessed at: 

https://www.liebertpub.com/doi/suppl/10.1089/neu.2017.5029/suppl_file/Supp_Video2.zi

p
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CHAPTER 4 – DISTINCT NEURONAL POPULATIONS CONTRIBUTE TO 

TRACE CONDITIONING AND EXTINCTION LEARNING IN THE 

HIPPOCAMPUS 

 
4.1 Abstract 

 Trace conditioning and extinction learning are two learning processes that depend 

on the hippocampus.  Previous studies have suggested that distinct neuronal populations 

contribute to fear conditioning and extinction in both the hippocampus and amygdala.  In 

this study, we present the first evidence that two populations of cells in CA1 of the 

hippocampus contribute to trace eye-blink conditioned learning and extinction of that 

conditioning, and that neuronal extinction responses can be observed in the hippocampus 

in less than 6 consecutive extinction presentations. 

 Using trial-averaged neuronal responses, we observed neurons that consistently, 

but sparsely responded to a conditioned stimulus (CS) over multiple days of learning a 

trace conditioning task, and a different population of cells that responded to the CS during 

extinction learning.  The ability of individual cells to encode CS presentations on a sparse 

number of trials suggests that network or population responses are critical for the encoding 

of learning and memory in CA1.  To this end we developed a method to quantify network 

responses of co-active neurons, and found that subpopulations of neurons responded on 

significantly more trials with the correct behavioral response than with the incorrect 

behavioral response for both the last trace eye-blink conditioning session and extinction 

session.  These results suggest an important role for distinct populations of neurons that 

encode information about the CS within the hippocampus. 
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4.2 Introduction 

 Many studies have revealed that the hippocampus is critical for learning and 

memory in animals and humans. Early surgical lesions of the hippocampus in human 

patients, designed to alleviate intractable epilepsy, resulted in severe memory loss and an 

inability to form new declarative or episodic memories [33], [34].  Hippocampal atrophy 

is also associated with diseases related to memory loss and cognitive decline including  

dementia and Alzheimer’s disease [35]–[39]. Many subsequent studies have highlighted 

that the hippocampus is specifically important for spatial, contextual, and associative 

learning in a variety of animal models [143], [144].  

Various experimental paradigms have been devised to probe hippocampal specific 

forms of learning and memory. One such well-established paradigm is trace eye-blink 

conditioning which requires an intact hippocampus [50], [51]. In this experimental design, 

subjects are presented with a conditioned stimulus (CS) such as a tone or light that reliably 

predicts an unconditioned stimulus (US), such as a puff of air delivered to the subject’s 

eye. In trace eye-blink conditioning, the CS and US are separated temporally by a memory 

trace interval. Over time, subjects learn to associate the CS with the US [52]–[56].  Both 

nicotinic and muscarinic acetylcholine receptors (AChRs) are critical for the acquisition of 

trace eye-blink conditioning [145]–[147], and NMDA mediated plasticity is required for 

trace eye-blink conditioned learning [148].   

Another type of learning that requires the hippocampus is context dependent 

extinction learning [50]. Extinction learning is traditionally considered new-learning that 

overrides a previously learned relationship. In the example of trace eye-blink conditioned 



 

 

62 

extinction learning, this would correspond to the association that a previously established 

CS is no longer predictive of a subsequent US.  Extinction learning can be tested after trace 

eye-blink conditioning by removing the US after CS presentations, and monitoring the 

strength or presence of a behavioral or conditioned response (CR). As new learning occurs, 

animals will suppress the CR to the previously predictive tone or light. Extinction learning 

has also been shown to be NMDA receptor dependent for operant learning [57], and 

requires the involvement of hippocampal inhibitory neurons for context-related extinction 

[149] and adult neurogenesis for fear extinction [150].  

While the hippocampus and NMDA dependent plasticity have been implicated in 

both trace conditioning and extinction learning, it remains largely unknown how individual 

hippocampal neurons selectively participate in trace eye-blink conditioning and extinction 

learning.  Two distinct functional populations tied to fear conditioning and extinction have 

been reported in the amygdala [151], supporting the idea that trace conditioning and 

extinction learning involve distinct learning processes which likely involve different 

mechanisms supported by different neurons. While segregated populations of hippocampal 

neurons upregulate different genes for both fear conditioning and context dependent fear 

extinction [152], it remains unknown how ongoing neuronal activity changes for individual 

neurons during trace eye-blink conditioning and extinction learning, and how these two 

types of learning processes might engage specific factors at the neuronal population level.  

 In order to address these questions, we performed calcium imaging of individual 

CA1 neurons over multiple days during the course of trace eye-blink conditioning, 

followed by extinction learning for that eye-blink task. Calcium imaging using genetically 



 

 

63 

encoded calcium sensors allows us to measure hundreds to thousands of neurons 

simultaneously with single-cell resolution [20], [153]. We chose eye-blink trace 

conditioning because it allows us to track the development of neuronal responses recorded 

in CA1 of the hippocampus across multiple days and multiple sessions [20], [153], unlike 

fear trace conditioning, where the learning often occurs in a small number of trials. We 

found that a significant fraction of CA1 neurons showed task related responses for both 

trace eye-blink conditioning and extinction learning.  However, the identities of the cells 

that contributed to each type of learning differed between eye-blink conditioning and 

extinction, suggesting two functionally distinct subpopulations of cells within the 

hippocampus. To further understand how the neuronal populations reflect learning, we 

developed a classification method that allowed for reliable identification of task related 

neuron populations. Additionally, we show that neurons that are co-active during the 

correct behavioral context are significantly more active than they are in the incorrect 

behavioral context.  This discretization and quantification method is particularly useful for 

data sets where responses evolve rapidly, like learning, and are not conducive to averaging 

an analog signal across a large number of trials for applying correlation analysis. 

 

4.3 Results 

4.3.1 Conditioned responses increase across training days in a classical eye-blink task 

 Trace conditioning experiments were performed in head-fixed mice (n=5 mice) that 

were positioned under a custom-built wide-field microscope (Figure 12A) as previously 

described [20]. Neuronal activity was monitored using GCaMP6f to closely track neuronal 
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spiking events [71], [74], [86], [102]–[104], in combination with a scientific (sCMOS) 

camera for wield-field imaging of hundreds of neurons simultaneously. 

 

Figure 12. Experimental design and measurement of animal behavior for trace conditioning task 

(A) Imaging and behavioral setup.  The imaging setup consisted of a microscope with a sCMOS camera, 

standard wide-field fluorescence optics, and a 10x long working distance objective to image a head-

fixed mouse.  For the behavioral paradigm, a speaker was positioned near the mouse and a cannula for 

directing an air puff was placed in front of the right eye. Eye responses were monitored using a USB 

3.0 Camera.  (Bi) Within trial design. Trials consisted of a 350 ms tone as the conditioned stimulus (CS) 

followed by a 250 ms trace interval with no sound, after which a 100 ms puff of air was delivered to the 
eye of the animal as the unconditioned stimulus (US). (Bii) Experimental timeline. Each animal was 

injected with GCaMP6f virus, allowed 1-2 weeks for virus expression before surgical window 
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implantation above CA1 in the hippocampus.  The first training session was 4-6 weeks after the surgery, 

and animals were recorded for 5-9 days before the extinction recording session.  (Ci) Video eye 

monitoring and behavioral assessment. Raw eye monitoring videos were segmented using Fiji [154] and 

MorphoLibJ [155] to measure eye traces over time.  Eye movement thresholds were calculated for each 

recording and used to classify whether the mouse eyelid moved or not between the CS and the US.  (Cii) 

Extracted eye traces and movement intensity. Eye trace for all 40 trials of one last training session from 

one example mouse.  Red corresponds to eye opening, while blue corresponds to eye closure.  A clear 

blue band is seen after the puff on each trial, while some trials show squinting after the tone, but before 

the puff.  (D) Quantification of behavioral responding for all subjects.  The last session of training had 

the highest level of eye movement behavior on average across mice, while behavioral responding after 

extinction was reduced again to levels comparable to the first session of training. 

Prior to imaging, mice were injected with GCaMP6f virus and implanted with a 

custom window cannula that allowed imaging of dorsal CA1. Following surgery, mice 

were given 4-6 weeks for recovery from surgery that included a period of experimenter 

handling and exposure to the head fixation. Following head-fixed habituation, mice were 

trained on a classic trace-eye conditioning paradigm for 5-9 days (Figure 12Bii). The 

paradigm consisted of a predictive 9500 Hz tone as a conditioned stimulus (CS) followed 

by a gentle 100 ms long puff of air to one eye as an unconditioned stimulus (US). The 350 

ms long CS was separated from the US by a 250ms trace interval (Figure 12Bi). Eye 

behavior was monitored with a USB 3.0 Camera. On the first day of recording, animals 

were given 20 tone presentations alone as a measure of responsivity of calcium activity 

and the strength of eye blink conditioned responding (CR) to the sound alone. Animals 

were subsequently given 60-80 tone-puff trials per day with individual trials separated by 

35 ± 5 seconds. On the final session of conditioning, animals were given 20-40 CS-US 

conditioning trials followed by 40 sound alone extinction trials where the CS was not 

followed by the US (Figure 12Bii). 

 The strength of the behavioral response was quantified by segmenting the eye 

videos and averaging each frame to calculate eyelid movement (Figure 12Ci).  A 
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movement threshold was calculated for each eye trace, assuming a constant average eye 

size (see methods). This thresholding method provided a consistent calculation of eye 

closure for each session across mice.  Each trial was classified as a “correct trial” if the 

eye-trace conditioned response went below the calculated threshold, termed a squint, after 

the tone and prior to the puff.  The same classification was used for extinction trials except 

in this context a conditioned response would be considered an “incorrect trial”.  The 

strength of squint response to the CS and the subsequent full blink response to the US on 

each trial could be clearly delineated and quantified using this method (Figure 12Cii).  

Compared to the first day and extinction sessions, the squint response to the CS after 

several days of training was much larger (Figure 16).  Behavior was measured and scored 

according to this metric across mice, with animals consistently showing more conditioned 

squint responses on the last session of training (69 ± 13%, mean ± s.d.) compared to the 

first session (46 ± 25%, mean ± s.d.) or the extinction session (48 ± 22%, mean ± s.d.) 

(Figure 12D).  There is a clear trend of behavioral improvement over days of training, that 

decreases on the extinction day, though the differences between these behavior scores were 

not significant when corrected for multiple comparisons (one-tailed paired t-test, 

alpha=0.025 after Bonferroni correction, p-values=0.033 & 0.077). 

 

4.3.2 Trial-averaged calcium dynamics in CA1 reflect the strength of behavioral 

responses during trace conditioning  

Imaging the hippocampus during trace conditioning allowed us to understand how 

large neuron populations (409 ± 243 cells, mean ± s.d.) are altered across multiple days of 
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learning. Further we could identify the proportion of neurons recruited by each aspect of 

learning and test whether conditioning and extinction recruit unique cell populations or 

repurpose the same neuronal population.  Videos were motion corrected, a projection 

image was generated across each video, and cells were segmented using a semi-automated 

software to extract temporal traces across imaging sessions (Figure 13A).  Identified cells 

underwent processing steps to remove cross-contamination between neighboring cells and 

were normalized with their baseline fluorescence at zero. 

 A distinct pattern of hippocampal neuronal responses emerged after multiple days 

of trace conditioning.  From a behavior standpoint, the percentage of trials with conditioned 

squint responses increased between the first and last session of training and animals tended 

to string together more consecutive response trials on the last training session than the first 

training session (Figure 13Bi).  Additionally, when looking at the trial averaged neuronal 

responses sorted by average response intensity between the tone and puff, multiple days of 

training resulted in more neurons showing a calcium increase between the tone and puff 

than on the first session of training (Figure 13Bii).  When quantified as an average increase 

in calcium between the tone and puff, 12.5 ± 5.6% (mean ± s.d.) of cells responded on the 

last training session, which was significantly more than the 3.6 ± 1.4% (mean ± s.d.) of 

neurons responded on the first session of training (p<0.05, one-tailed paired t-test, Figure 

13Di).  This percentage of cells for first session was also not significantly different than 

the chance value of 4.0 ± 0.8% (bootstrapped estimation: N=1000, p=0.311, one-tailed 

bootstrap, alpha=0.05), while the last session was significantly different from the chance 

value of 7.0 ± 1.4% (Figure 13Dii, N=1000, p=0.001, one-tailed bootstrap, alpha=0.05).  
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These findings suggest that the number of neurons encoding the conditioned stimulus 

gradually increase over time after multiple days of training (Figure 13Biii). 

 

Figure 13. Calcium imaging responses track behaviorally relevant environmental stimuli 

following learning 

(A) Full-field calcium activity and extracted traces. Maximum-minus-minimum projection for one 

motion corrected video to show example field of view over several hundred cells.  Inset show several 

selected cells and their corresponding normalized fluorescence trace recordings for a subset of a 

recording session.  (Bi) Measures of behavioral responding across training sessions. Behavior responses 

were classified as squint or no squint for the first and last recording sessions from a representative 

mouse.  (Bii) Trial-averaged recordings sorted by average fluorescence between the tone and puff from 

the first and final CS-US conditioning training session.  The dash-dot line represents tone onset, while 
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the dashed line represents puff onset.  (Biii) Zoomed inset of bottom 20% of cells for each recording 

session.  More cells showed a consistent trial-averaged response for the last recording session than 

during the first recording session, as seen by the yellow bands between tone and puff on the last training 

session.  (Ci) Behavior responses from final conditioning session and extinction sessions. Note animals 

show fewer squint events during extinction sessions. (Cii) Trial-averaged recordings of the last training 

session and extinction session, sorted by the average fluorescence between tone and puff.  After sorting 

the cells for the last training session, that sorting was maintained to look at the spatially matched cells 

during the extinction session, revealing a reduction in tone-puff responses from CS responding neurons.  

Resorting for the extinction session alone shows a new population of cells responsive to the extinction 

session.  Dash-dot line represents tone onset, while dashed line represents puff onset.  (Ciii) Zoomed 

inset of bottom 20% of cells for each session.  (Di)  Quantification of the proportion of cells responsive 

to the CS from the first session (orange), the final CS-US training session (red), and the extinction day 

(blue), *p<0.05, paired one-sided t-test.  (Dii) Bootstrapped distributions of the percentage of cells with 

an increase between the tone and puff after circularly shuffling the tone-puff locations 1000 times.  

Dashed black line shows percentage measured with the non-shuffled tone-puff locations.  (Diii)  

Bootstrapped distributions comparing the matched last session and extinction session recordings. 

4.3.3 Extinction learning rapidly recruits a new population of neurons for memory 

encoding in CA1 of the hippocampus  

 Cells imaged during the last training session included both CS-US training and 

extinction, allowing all cell identities to be matched between sessions.  Behavioral analysis 

revealed that conditioned squint responses were substantially reduced as a result of 

extinction training (Figure 13Ci).  Interestingly, when we compared the responses of 

individual cells to the tone after matching cell identities between conditioned trials and 

extinction trials, we discovered that the majority of neurons most responsive to the tone 

did not consist of the same populations (Figure 13Cii). Resorting the population for 

extinction revealed that tone responsive neurons from extinction trials largely reflected a 

novel population of cells that were not responsive to the tone previously (Figure 13Ciii).  

Extinction neurons represented 10.5 ± 5.5% (mean ± s.d.) of cells, which was a statistically 

smaller proportion of the population relative to the 14.0 ± 5.5% (mean ± s.d.) of neurons 

that were CS positive responding cells from the final CS-US training session (p<0.05, one-

tailed paired t-test, Figure 13Di). However, both populations were greater than would be 
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expected to respond by chance, with values of 7.6 ± 1.6% for the last conditioning session 

and 5.6 ± 1.6% for the extinction session (Figure 13Diii, both: N=1000, one-tailed 

bootstrap, alpha=0.05, Last Session p=0.001 | Extinction p=0.005).  Of the conditioned 

stimulus (CS) cells that were strongly responsive to the CS on the final training session 

prior to extinction, 70.4 ± 11.7% (mean ± s.d.) lost their strong responsiveness after 

extinction training began. In contrast, 60.9 ± 9.8% (mean ± s.d.) of extinction (EX) cells 

did not respond during trace conditioning, and were only responsive to the tone 

presentation during extinction. 

4.3.4 Memory coding for both trace conditioning and extinction arises from both 

spatially and temporally distributed populations of neurons 

We next considered the reliability of individual cell activation with regards to the 

tone and their anatomical relationship to one another.  CS cells individually responded to 

only 13.2 ± 5.6% (mean ± s.d.) of trials (Figure 14A), while EX cells only responded to 

11.6 ± 2.3% (mean ± s.d.) of CS presentations during extinction training (Figure 14C). 

Interestingly, the maximum number of trials that a CS single neuron responded to ranged 

from 20-78% of trials across all mice (46.5 ± 22.9%, mean ± s.d., n=5 mice).  For 

extinction, the maximum number of trials that a single cell responded to ranged from 18-

63% of trials (34.5 ± 17.6%, mean ± s.d.).  Additionally, both CS responsive cells (Figure 

14B) and EX responsive cells (Figure 14D) were both heterogeneously distributed across 

CA1 without any strong anatomical spatial clustering. 
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Figure 14. Tone responsive neurons in conditioning trials represent uniquely different 

populations of cells than tone responsive cells during extinction trials 

(A) Individual single trial responses for one neuron that shows a high level of responding on the last 

training session, termed a CS Cell.  Outer columns have individual trials shown in gray, with the 10-

trial average shown in red.  The pink box corresponds to the tone interval, and the orange box 

corresponds to the puff.  Center heat-maps show each trial for the window surrounding the tone-puff 

time.  Central color bars correspond to behavioral label for each trial, with black representing squint, 

red representing no squint on the last session, and blue representing no squint for extinction.  (B) Spatial 

map of all neuron masks, with red neurons representing CS Cells neurons and green as all other cells.  

(C) Similar plot as in (A), but for a cell that showed high tone sensitivity only on extinction training 

trials.  Note that both the CS and EX cells do not respond on every trial, but show reliable predictability 

across the full session.  (D)  Spatial map with blue neurons representing EX Cells, with green cells 

representing all other cells. 
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4.3.5 Network analysis reveals dynamic encoding connected to the correct behavioral 

response for both conditioned and extinction learning 

As most CS and EX neurons classified from trial averaged responses consistently 

responded on a relatively small percentage of trials, we developed a method to quantify 

network responses on a trial-by-trial basis.  Development of this method was additionally 

motivated by the observation of cells that were activated in response to the CS a small 

proportion for either the last session, extinction session, or both (Figure 15A), but were not 

coded as either a CS or EX cell from trial averaged responses.  The ability of individual 

cells to encode CS presentations on a sparse number of trials suggests that network or 

population responses are critical for the encoding of learning and memory in CA1.  While 

pairwise correlation can give reliable measures over many averaged trials, this analysis 

method provides a read-out of coincident population activity in a single trial.   We 

generated a co-occurrence matrix by comparing the calcium responses over the brief time 

period between the tone and puff to an equal time period before the tone for every trial. For 

each calcium trace, it was assigned a binary response variable, with 1 being increase in 

activity, and 0 being no increase in activity (Figure 15Bi).  Taking the outer product of this 

response vector yielded a co-occurrence matrix based on the response values tied to the 

tone-puff window for each individual trial (Figure 15Bii).  Individual trial co-occurrence 

matrices can be combined to look at functional network responses on specific subsets of 

trials and clustered using spectral bi-clustering to compare neurons that were important for 

those trials.  
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Figure 15. Co-occurrence matrix as a measure of network activity across specific trials 

(A) Non-classified cell (neither CS or EX) that highlights heterogeneity that is representative of the 

general population of cells.  Neuron is plotted similar to Figure 3A and Figure 3C. (B) Schematic of 

method for constructing single-trial networks.  (Bi) A sub-population of cells for one trial that highlights 

the how the response pattern was determined.  If cells showed an increase between the tone-puff 

compared to the pre-tone period, they were determined as a responsive cell.  (Bii)  The outer product 

was taken of the response vector with itself across the full population to generate a single trial co-

occurrence matrix.  This is a binary matrix with a 1 corresponding to the ith and jth cells both increasing 

between the tone-puff, but is a 0 otherwise.  These individual trials can be combined as specific trials 

of interest, and clustered with spectral biclustering to observe network behaviors.  (C)  Co-occurrence 

matrices summed and clustered across all squint or no squint trials for the last training session.  When 

first clustered for the correct behavioral response of squinting, neurons in the highly responsive cluster 

were co-activated on significantly more trials then they were for the incorrect behavior.  This did not 

hold true for neurons in the highly active cluster for the incorrect behavior (not shown).  (D)  Extinction 

session co-occurrence matrices summed and clustered across behavioral responses.  Neurons in the 

highly active cluster for the correct behavioral response of no squinting were co-active on a significantly 

higher percentage of trials than for the squint trials.  As with C, this was not the case for neurons in the 

cluster corresponding to the incorrect behavior (not shown).  (E)  Quantification of the percentage of 

trials cells were co-active for in the highly co-firing cluster.  (Ei)  When clustered based on the squint 
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trials (S+), neurons were co-active on a higher percentage of trials on the squint trials than for the no 

squint trials (S-) on the last trace conditioning session.  This was not consistently true for the extinction 

session.  *p<0.05, paired two-sided t-test.  (Eii)  When first clustered based on the no squint trials (S-), 

neurons were co-active for a higher percentage of trials with no squint than trials with a squint.  This 

was not consistent for the last training session.  +p=0.05, paired two-sided t-test. 

 

Combining co-occurrence matrices across squint trial type showed that 

significantly more cells in the network were co-active in the “correct” behavior context for 

that session.  Trials for the last trace conditioning session were group by squint and no 

squint trials.  Clustering was performed on the squint trials, and that same clustering was 

maintained to look at the responses of those same neurons for the no squint trials (Figure 

15C).  For the cluster that was highly active between the tone and puff, cells were co-

activated on 9.2 ± 8.0% (mean ± s.d.) of squint trials, which was significantly more than 

the 3.9 ± 4.7% (mean ± s.d.) of trials that neurons in this cluster were co-active for on no 

squint trials (Figure 15Ei: red bars, p<0.05, two-tailed paired t-test).  To ensure that it was 

the identities of the cells for the “correct” context that was important to have co-active, 

neurons were also first clustered for the no squint context and the percentage of trials with 

co-active cells were then compared for these cells in the squint context, with no significant 

difference existing between the groups (Figure 15Eii: red bars).  Additionally, when first 

clustered for the “correct” behavioral context of not squinting for the extinction session, 

the same effect was observed (Figure 15D).  For the highly active cluster on no squint 

trials, neurons were co-activated between the CS and US on 7.4 ± 5.6% (mean ± s.d.) of 

trials, which was significantly more than the 0.7 ± 0.5% (mean ± s.d.) of trials when the 

animal squinted and the cells were co-activated (Figure 15Eii: blue bars, p=0.05, two-tailed 

paired t-test).  Again, when first clustered for the “incorrect” behavioral response of 
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squinting for the extinction session, this same effect was not observed consistently across 

all mice (Figure 15Ei: blue bars). 

 

4.4 Discussion 

 In this study we provide the first detailed evidence that distinct populations of 

neurons within the hippocampus that consistently respond to a trace conditioned stimulus 

(CS Cells) represent a different population than cells that respond to the same cue during 

extinction (EX Cells).  It was previously reported that two functionally distinct neuron 

populations are activated by conditioning and extinction for fear conditioning in the 

amygdala [151].  A subsequent study looking at the CA1 region of the hippocampus in a 

contextual fear paradigm, revealed distinct changes in phosphorylation states in fear 

conditioning and fear extinction in largely non-overlapping neural populations [152].  

However, this study used pERK immuno-activity as a marker of extinction and was 

measured after 5 days of extinction. This delay makes it difficult to assess if changes in 

extinction neuron populations occur rapidly or evolve gradually, perhaps relying on new 

protein synthesis and long-term plasticity.  

In order to better understand the relationship between conditioning and extinction 

learning in the hippocampus, and whether distinct populations encode these learning 

events, we used calcium imaging as a tool to monitor the activity of individual cells through 

conditioning and extinction learning paradigms. We also applied trace eye-blink 

conditioning which has the advantage of a singular defined stimulus where neural activity 

can be easily aligned, measured between the two different paradigms, and allows training 
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under both conditions to occur in the same session. Interestingly we found that new 

conditioning evolved slowing in the trace task, reflected both in the response rate of 

individual animals and the proportion of neurons that were active during the tone or trace 

interval. Our results support that conditioned learning gradually evolves over many days 

as new neurons are recruited to encode the stimulus and reflect previous electrophysiology 

studies in rabbits and rats where the time course of learning is slow and evolves through 

many CS-US pairings [156], [157].  In contrast extinction learning was rapid and involved 

the emergence of a new population of neurons that responded to the now extinguished tone 

in less than 6 consecutive presentations. Previous work has implicated PFC and septal 

cholinergic input as being critical to the process of extinction, suggesting that the influence 

of these pathways may play a pivotal role in the rapidity with which EX neurons in emerge 

[158]–[160]. More work will need to be done on this front to determine if reducing or 

silencing these inputs could delay or block the emergence of EX neurons. In addition, it is 

possible that extinction learning can occur rapidly because a meaningful memory schema 

already exists. Studies probing updates in location encoding in familiar places suggest 

memory encoding can occur rapidly [161], [162] for spatial information and our 

observation for extinction learning may reflect a manifestation of this principle.  A second 

important feature is that these neurons were almost entirely non-responsive to the CS prior 

to it being unpaired with the US. It is unlikely that these neurons are different simply 

because they are inhibitory neurons, as previous studies have shown that inhibitory cells 

have distinctive calcium waveforms in cortical and subcortical regions [72], [163] 

suggesting that EX neurons are most likely excitatory principal cells. This interpretation is 
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consistent with the description of EX neurons in the amygdala and p-ERK+ cells in the 

hippocampus being excitatory neurons.  

 The use of calcium imaging is a powerful tool to understand how large populations 

of neurons function at the network level. However, when network changes occur rapidly, 

as in response to extinction learning, it can be difficult to decode the information present 

in the population code.  Single trial analytics can suffer from the ability to find meaningful 

correlations with limited data. In our case, we were trying to determine correlations across 

hundreds of neurons with only 12 time-points between the tone and puff.  As a result, we 

had low confidence in the pairwise correlation values measured on a trial-by-trial basis.  

Our development of a co-occurrence matrix developed provides an intuitive way to 

measure and observe the evolution of the network while factoring in the contributions of 

neurons that responded between the tone and puff on a smaller number of trials.  

Additionally, it can be used to break down and compare trials by specific behaviors 

(blink/no blink) or other variables that may change with trials over time.  This is a useful 

technique for monitoring the evolution of these neuronal networks over time with high-

dimensional calcium imaging datasets. 

 

4.5 Materials and Methods 

4.5.1 Animal Surgery and Recovery 

 All animal procedures were approved by the Boston University Institutional 

Animal Care and Use Committee.  A total of 5 female C57BL/6 mice, 8–12 week old at 

the start of the experiments, were used in these studies (Taconic; Hudson, NY). Following 
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arrival from the vendor, mice were allowed to habituate to the vivarium for 2+ weeks prior 

to surgery. Animals were group housed during this time. Animals first underwent viral 

injection surgery targeting the hippocampus under stereotaxic conditions (AP: -2.0 mm, 

ML:+1.5 mm, DV: -1.6 mm). Mice were injected with 250 nL of AAV9-Syn-

GCaMP6f.WPRE.SV40 virus obtained from the University of Pennsylvania Vector Core 

(titer ~6e12 GC/ml). All injections were made via pulled glass pipettes (diameter: 1.2 mm) 

pulled to a sharp point and then broken at the tip to a final inner diameter of ~20 μm. Virus 

was delivered via slow pressure ejection (10-15 psi, 15-20 ms pulses delivered at 0.5 Hz). 

The pipette was lowered over 3 min and allowed to remain in place for 3 min before 

infusion began. The rate of the infusion was 100 nL/min. At the conclusion of the infusion, 

the pipette remained in place for 10 min before slowly being withdrawn over 2-3 minutes. 

Upon complete recovery (7+ days after virus injection, mice underwent a second procedure 

for the implantation of a sterilized custom imaging cannula (OD: 0.317 cm, ID: 0.236 cm, 

height, 2 mm diameter), fitted with a circular coverslip (size 0; OD: 3mm) adhered using a 

UV-curable optical adhesive (Norland Products).  To access dorsal CA1, the cortical tissue 

overlying the hippocampus was carefully aspirated away to expose the corpus callosum. 

The white matter was then thinned until the underlying tissue could be visualized through 

the surgical microscope. The window was then placed and centered above the 

hippocampus. During the same surgery, a custom aluminum head-plate was attached to the 

skull, anterior to the imaging cannula.  
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4.5.2 Animal Training and Trace Conditioning Behavioral Paradigm 

 Mice were trained on a trace eye-blink conditioning task similar to what was 

described previously [20].    Animals were allowed at least 2 weeks to recover from 

surgeries, followed with an additional 2-4 weeks of handling and habituation to being head-

fixed underneath the microscope (Figure 12Bii).  Each animal received at least 3 

habituation sessions prior to the first recording day. Habituation was performed in the dark 

with the imaging LED illuminated to the same intensity as it would be for recording 

sessions. 

Following habituation, training for the eye-blink conditioning task began.  Each 

trial consisted of a 350 ms long 9500 Hz tone (conditioned stimulus - CS) at 78-84 dB 

followed by a 250 ms trace interval, followed by a 100 ms puff to the eye (unconditioned 

stimulus – US) at 4.2-6 psi (Figure 12Bi).  The ambient noise level ranged between 55-60 

dB.  Inter-trial intervals for each presentation were pseudo-randomized within a recording 

session with an inter-trial interval of 35 ± 5 seconds.  The first 20 recording trials consisted 

of tone only presentation without the puff.  Animals were then presented with either 60 

tone-puff trials per day for 8 days, or 80 tone-puff trials per day for 4 days.  The final 

recording session consisted of 20-40 tone-puff trials as the last learning session, followed 

by 40 extinction trials, where the puff was removed but the tone continued for those trials.  

Behavioral stimuli were generated using a custom MATLAB script that delivered TTL 

pulses for the tone and puff via an I/O interface (USB-6259; National Instruments, Austin, 

TX).  Behavioral TTL pulses and imaging frame timing were digitized and recorded 

(Digidata 1440A; Axon CNS Molecular Devices, San Jose, CA or RZ5D Bioamp 
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Processor; Tucker Davis Technologies, Alachua, FL) to align behavioral data and imaging 

frames.   

Mouse eye positioning was captured using a Flea3 USB 3.0 camera (FL3-U3-

13S2C-CS; Richmond, BC, Canada) and the Point Grey FlyCapture 2 software, after 

illuminating the eye and surrounding area with an infrared (IR) lamp positioned 

approximately 0.05-0.5 meters away from the mouse.   

4.5.3 Wide-field imaging 

 A custom-built wide-field microscope was used to record neuronal calcium 

responses during animal learning and behavior as previously described [20].  Briefly, the 

animal was head-fixed below the microscope on an articulating base (SL20 Articulating 

Base Ball Stage; Thorlabs Inc, Morganville, NJ) and a custom-machined attachment for 

the headbar, with the animal being covered by an elastic self-adherent wrap to reduce 

movement during recording.  The microscope consisted of a scientific CMOS (sCMOS) 

camera (ORCA-Flash4.0 LT Digital CMOS camera C11440-42U; Hamamatsu, Boston, 

MA) was used in conjunction with standard optics for imaging GCaMP6 and a 10x 

magnification objective (Leica N Plan 10 X 0.25 PH1 or Mitutoyo Plan Apo Long WD 

Objective 10 X 0.28).  Images yielded a field of view 1.343 mm by 1.343 mm (1024x1024 

pixels) and were acquired at a 20 Hz sampling rate and stored for offline for analysis. 

4.5.4 Behavior Eye-blink Segmentation and Analysis 

 First, each raw video was segmented using Fiji [154] and the MorphoLibJ plugin 

[155] to generate a binary mask video corresponding to the animal’s eye.  To do so, each 
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frame of this binary video was summed and normalized by the average eye size to generate 

a trace corresponding to the percentage of eye closure over time.  First, image stacks were 

loaded as grayscale images, Gaussian filtered with a radius of 2, and thresholded to include 

only the eye range.  Videos were converted to binary, holes were filled, and the Particle 

Analyzer feature was used to exclude all ROIs on the edges of the videos above the 

thresholded value.  The MorphoLibJ plugin [155], was used to label connected components 

with a connectivity of 26.  A custom Jython script (StepIntegers.py) was used to determine 

the connected components that existed across all image frames, which were merged into 

one connected component.  Lastly, to capture any additional smaller connected components 

that commonly were created at or around the time of blinks, another custom Jython script 

(FindModalValues.py) was used to capture these remaining components which were then 

merged into the final connected component.  All other connected components not a part of 

this singular merged component were dropped from the binary mask stack which was saved 

for eye-blink trace generation. 

Eye-blink traces over time were generated by summing the binary pixels 

corresponding to the segmented eye in each video frame and dividing by the average eye 

size across the whole video.  An eye squint was classified by calculating a threshold of 

deviation from the standard eye sizing.  The threshold was calculated by fitting a line to 

the central 95 percentile of the full eye-blink trace, and a deviation of eye size below 2% 

from this line was classified as a squint.  This is equivalent to when the residuals deviated 

by 2% from a uniform distribution.  This distribution was chosen based on the assumption 

that the eye trace that was equal to a constant equivalent to the average eye size.  Each time 



 

 

82 

the eye-trace showed a decrease below this threshold after the tone but before the puff, that 

trial was classified as a squint trial. 

4.5.5 Movement Correction 

 Motion correction of videos was done using ptmc, an open-source, parallel Python 

version (github.com/HanLabBU/ptmc) of an image stabilization process published 

previously [20].  Briefly, each frame was motion corrected by median filtering each image 

to remove noise, homomorphic filtering the image for edge detection, and comparing the 

frame with a reference image to determine how many pixels to shift that specific frame.  

This process was run in parallel by first motion correcting the first multi-page tiff stack 

(2047 frames) with to an average projection image of the noisy, non-corrected video.  This 

corrected video stack was used to generate a new reference image that was sent out in 

parallel with every frame across the whole video, including the first tiff stack used to 

generate the reference. 

4.5.6 Neuronal Trace Extraction 

 After motion correction, regions-of-interest (ROIs) corresponding to cells were 

selected using a semi-automated custom written MATLAB software called SemiSeg 

(github.com/HanLabBU/SemiSeg).  First, a projection image (Max-minus-Min) across the 

whole video stack was calculated for selecting ROIs.  This static frame was loaded into 

SemiSeg and the full boundary of the ROIs was selected by a user selecting a sub-region 

of the image that was thresholded to determine the corresponding pixels within that region 

that correspond to a cell.  After all cells were selected from the projection image, pixels 
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corresponding to these ROIs were averaged together spatially to calculate a temporal trace 

for each neuron. 

 For sessions where ROIs were matched to one another, spatial ROI maps were co-

registered using frame-wise cross-correlation.  ROIs were then matched using a greedy 

method that required the centroid of cells to be within 50 pixels of one another and had to 

have at least 50% of their pixels overlap, as was published previously [90].  Cells that did 

not meet both of those criteria were removed from the matched dataset for comparison. 

4.5.7 Fluorescence Trace Normalization 

 Each neuron’s fluorescence trace was normalized after a local background 

subtraction calculated for each trace.  A local background trace was calculated by finding 

the centroid for each ROI, and measuring a circle approximately 10 cell widths in radius 

(100 pixels) and subtracting the area for the ROI from that circle.  The pixels in this local 

background were averaged together spatially to measure a temporal background trace.  

Background traces were subtracted from each cell’s measured trace to remove local 

fluctuations from scattering in wide-field imaging.  The baseline calcium level was 

calculated for each cell by fitting a normal distribution to the lowest 50 percentile of the 

data and using the mean of this distribution as the baseline calcium level.  This baseline 

was subtracted from each locally corrected trace, and data was scaled by 5% of the 

maximum range of the full calcium trace. 
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4.5.8 Determination of Increased Activity Cells 

 Fluorescence for the 12 data-points (600 ms) within the tone-puff interval was 

compared to the 12 data-points prior to the tone.  A cell was classified as having increased 

if the average fluorescence during the tone-puff window was larger than the average 

fluorescence for the pre-tone window by 0.15, a value that is equivalent to crossing a 

threshold of 1 on at least 6 trials.  This was the threshold used for all statistics and for 

comparison with the network measure. 

4.5.9 Bootstrapping Procedure 

 Trial averaged bootstraps were calculated for each mouse to determine what 

percentages of cells would be expected to increase in random recordings not tied to the 

tone-puff learning paradigm.  Timing between each pseudo-randomized tone-puff was 

maintained to account for any periodicity effects during the recording, and bootstraps were 

calculated by circularly permuting the tone-puff timing across all traces.  The number of 

shuffled permutations performed was 1000 for each mouse.  The timing of each new 

randomized tone puff was averaged together across all shuffled trials, and the percentage 

of cells that increased between the tone and puff was measured.  The percentage of cells 

increased for each mouse was averaged together to get a population estimation of the mean 

number of cells expected to increase within the population, which could be compared to 

the measured percentage of the population that increased between the actual tone-puff 

across all trials. 
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4.5.10 Co-occurrence Network Creation 

 Individual trial co-occurrence matrices were created for each pair of cells across 

every trial.  For each tone-puff interval, the mean value of the 600 milliseconds (12 data-

points) between the tone and puff was compared to the 600 milliseconds before the tone.  

If this value was greater than 1 on a normalized trace, corresponding to 5% the maximum 

peak value of a trace, then the neuron was labelled as responding.  The result was a binary 

vector of 0s and 1s of length N, where N is the number of cells recorded in the population.  

The outer product of this vector was taken with itself for the whole population to yield an 

NxN co-occurrence matrix.  This matrix is 1 if both the ith and jth cells were activated 

between the tone-puff, and 0 otherwise. 

 Once a co-occurrence network was generated for each trial, they could be combined 

for further analyses by either summing (Figure 15C & Figure 15D) or averaging (Figure 

4E quantification) over all trials or certain trials (Figure 15C & Figure 15D) of interest.  

Once a trial combination map was created, spectral biclustering was performed for a 2x2 

cluster pattern using the Python machine learning package scikit-learn [164].  A cluster 

size of 2 was chosen because it resulted in the maximal silhouette score (also implemented 

in scikit-learn) for the clustering across mice. 
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4.6 Supplemental Information 

4.6.1 Supplemental Figures 

 

Figure 16. Behavioral responses across different stages of learning 

Extracted eye traces and movement intensity.  Red corresponds to eye opening, while blue corresponds to eye closure. (A) Eye trace for all 40 

trials of the first training session from the same example mouse in Figure 12 Cii.  Note the fewer blue values corresponding to eye closure between 

the tone and puff.  (B)  Eye trace for all 40 trials of the extinction session of the same example mouse in A.  Note that the hard eye closure at the 

time of the puff is no longer there, as the puff has been removed for extinction.  (C)  Last training session on extinction day for another example 

mouse.  The first 20 trials have the CS-US presentation separated by the trace period, and the final 40 trials are the extinction trials.  Note how 

clearly the behavioral difference can be observed after trial 20, both in the tone-puff interval as well as after the puff once the puff is removed for 

extinction. 
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CHAPTER 5 - CONCLUSION 

5.1 Summary and Significance 

 The work in this dissertation established methods for the analysis of large scale 

calcium imaging data, and used these methods to develop novel insights about mTBI and 

learning.  While the primary design criterion was analyzing large scale calcium imaging 

datasets, many of the computational tools and techniques are applicable for other large 

scale video data, time series, or discrete trial-based data.  Additionally, all these methods 

have been provided in an open-source manner to enable neuroscientists to move the field 

forward at a more rapid pace.  As neuroscience moves into the big data age, scientists need 

to work together in developing more unified methods that can allow rapid feedback, more 

accurate comparisons between datasets, and enable the design of future experiments. 

The pre-processing tools and techniques developed can address the challenges that 

arise using large scale calcium imaging datasets.  A published motion correction algorithm 

was parallelized for a 10% decrease in processing time.  Additionally, the framework 

established with this method is both modular and user friendly, which allows individual 

researchers to more easily apply this pipeline to their own data.  The semi-automated 

segmentation toolbox described herein allows researchers to segment ROIs from large 

datasets with high confidence.  Again, user flexibility is provided to determine how much 

information to integrate for the segmentation, with trade-offs in the time it takes a user to 

segment a dataset.  Importantly, these methods provide high-quality data and complete 

code transparency provides researchers with a high level of confidence in the quality of the 

first level of their processing pipeline. 
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Applying these tools to a study of calcium dynamics for mTBI yielded new insights 

about how both basal and transient calcium dynamics in the hippocampus were impacted 

from blast injury.  A new normalization technique to enable comparison across multiple 

recording sessions highlighted a basal calcium change that slowly recovered over minutes.  

If using calcium deconvolution methods [79], [81], [85], [165] to estimate neuronal spiking 

traces, this important biological effect from blast injury would have been completely 

missed, as well as its lack of connection to the transient calcium dynamics more commonly 

related to neuronal spiking events.  Additionally, we reported that these calcium dynamics 

were impacted differently by subsequent blasts.  These insights are important avenues to 

further study the mechanisms of neuronal damage from blast injuries.  Finally, this study 

established calcium imaging as an important and useful tool for understanding both acute 

and longitudinal effects of blast injuries which can build upon the literature of histological 

analysis for brain injury. 

Additional insights were gained using these tools to study the short-term temporal 

connection between trace conditioning and extinction learning.  Large scale calcium 

imaging methods enabled the tracking of the same neuronal population in CA1 to 

determine the neurons that respond to the CS after many days of training are mostly distinct 

from neurons that respond to the CS during extinction.  This dynamically and rapidly 

captured functional dynamics that were reported in previous fear conditioning and 

extinction studies in the amygdala [151] and in gene expression in the hippocampus [152].  

A method to investigate neuronal responses on a trial-by-trial basis was also developed for 

analyses with few data points in time and used to show that neurons that consistently 
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respond for the “correct” behavior in both learning contexts respond for significantly more 

trials in those contexts than the neurons that responded to the incorrect behavior.  These 

contributions provide a method to further probe specific subsets of trials in multi-trial 

behavioral paradigms while also confirming previous scientific findings using functional 

neuronal responses. 

Altogether, the efforts described in this dissertation help make large scale calcium 

imaging more easily adoptable by other researchers as well as highlight future insights that 

can be gained and developed with these methods. 

 

5.2 Future Directions 

 The tools and findings established in this body of work highlight several potential 

new directions that can be explored and improved upon.  For the preprocessing motion 

correction pipeline, the established framework could be easily further parallelized for a 

cluster environment to further improve runtime by a factor of 13 to 20.  This can be 

accomplished as the major remaining bottleneck in processing comes from loading the 

multi-page tiffs into memory and saving them after processing.  Sending each multi-page 

tiff with a copy of the reference image to a different machine in a cluster environment 

would help accomplish this improvement.  The Matlab image segmentation toolbox could 

also be converted to a Python version to be more amenable for the open-source community 

and be less likely to run into backwards compatibility issues in subsequent versions.  

Calcium imaging should be employed more regularly to study both the acute and 

longitudinal effects of blast injury for both single and multiple blast paradigms, as this can 
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provide a wealth of unique insights for blast related injuries that are not possible with 

conventional histological methods.  Additional studies should also be conducted to 

determine how neuronal responses for extinction learning over multiple days as well as 

reinstatement relate to the populations that emerge for trace conditioning and the first 

extinction session to better understand how the hippocampus processes different aspects of 

learning and memory. 

 Future studies built upon this work will enable large scale calcium imaging to 

further develop and enable researchers to bridge our understanding of networks at both the 

micro- and macro-scales.  Developing this knowledge and improving our understanding 

across scales will provide important insights into the function of healthy brains and allow 

for better and more intelligent design of treatments of neurological disease.   
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