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ABSTRACT

In the last few years, security has become one of the key challenges in computing

systems. Failures in the secure operations of these systems have led to massive in-

formation leaks and cyber-attacks. Case in point, the identity leaks from Equifax in

2016, Spectre and Meltdown attacks to Intel and AMD processors in 2017, Cyber-

attacks on Facebook in 2018. These recent attacks have shown that the intruders

attack di↵erent layers of the systems, from low-level hardware to software as a service

(SaaS). To protect the systems, the defense mechanisms should confront the attacks

in the di↵erent layers of the systems. In this work, we propose four security mech-

anisms for computing systems: (i) using backside imaging to detect Hardware Tro-

jans (HTs) in Application Specific Integrated Circuits (ASICs) chips, (ii) developing

energy-e�cient reconfigurable cryptographic engines, (iii) examining the feasibility

of malware detection using Hardware Performance Counters (HPC).

Most of the threat models assume that the root of trust is the hardware running
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beneath the software stack. However, attackers can insert malicious hardware blocks,

i.e. HTs, into the Integrated Circuits (ICs) that provide back-doors to the attackers or

leak confidential information. HTs inserted during fabrication are extremely hard to

detect since their overheads in performance and power are below the variations in the

performance and power caused by manufacturing. In our work, we have developed an

optical method that identifies modified or replaced gates in the ICs. We use the near-

infrared light to image the ICs because silicon is transparent to near-infrared light

and metal reflects infrared light. We leverage the near-infrared imaging to identify

the locations of each gate, based on the signatures of metal structures reflected by the

lowest metal layer. By comparing the imaged results to the pre-fabrication design, we

can identify any modifications, shifts or replacements in the circuits to detect HTs.

With the trust of the silicon, the computing system must use secure communica-

tion channels for its applications. The low-energy cost devices, such as the Internet of

Things (IoT), leverage strong cryptographic algorithms (e.g. AES, RSA, and SHA)

during communications. The cryptographic operations cause the IoT devices a sig-

nificant amount of power. As a result, the power budget limits their applications. To

mitigate the high power consumption, modern processors embed these cryptographic

operations into hardware primitives. This also improves system performance. The

hardware unit embedded into the processor provides high energy-e�ciency, low en-

ergy cost. However, hardware implementations limit flexibility. The longevity of the

IoTs can exceed the lifetime of the cryptographic algorithms. The replacement of the

IoT devices is costly and sometimes prohibitive, e.g., monitors in nuclear reactors.

In order to reconfigure cryptographic algorithms into hardware, we have developed

a system with a reconfigurable encryption engine on the Zedboard platform. The

hardware implementation of the engine ensures fast, energy-e�cient cryptographic

operations.
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With reliable hardware and secure communication channels in place, the comput-

ing systems should detect any malicious behaviors in the processes. We have explored

the use of the Hardware Performance Counters (HPCs) in malware detection. HPCs

are hardware units that count micro-architectural events, such as cache hits/misses

and floating point operations. Anti-virus software is commonly used to detect mal-

ware but it also introduces performance overhead. To reduce anti-virus performance

overhead, many researchers propose to use HPCs with machine learning models in

malware detection. However, it is counter-intuitive that the high-level program be-

haviors can manifest themselves in low-level statics. We perform experiments using

2 ⇠ 3 ⇥ larger program counts than the previous works and perform a rigorous anal-

ysis to determine whether HPCs can be used to detect malware. Our results show

that the False Discovery Rate of malware detection can reach 20%. If we deploy this

detection system on a fresh installed Windows 7 systems, among 1,323 binaries, 198

binaries would be flagged as malware.
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µ ± 3� regime. On the X-axis, Prec is precision, Rec is recall, and F1

is F1 score. AUC is area under curve in ROC. These 10-fold cross-

validation experiments show that we cannot achieve 100% malware

detection accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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Chapter 1

Introduction

1.1 Background and Motivation

In the last few years, the security of the computing systems has become one of the

main concerns in our lives. In 2016, identity theft from Equifax leaked the social

security numbers of 300 million people (Equ, 2019); Spectre and Meltdown in 2017

a↵ected all Intel and AMD processors to show the vulnerabilities in the architectural

level (Mel, 2019); The leak of information from Facebook in 2018 directly a↵ected

millions of user profiles (Fac, 2019). Every year, there were a series of events in the

security area involving millions or even billions of people. The previous incidents have

shown that the security attacks have reached regimes which cannot be tackled by the

existing defense system. Spectre and Meltdown exposed security flaws in computer

architecture. The leaks of Facebook user profiles illustrated that the attacks on web

applications can have social and political e↵ects. In order to mitigate these failures in

the existing systems, there is a pressing need to build secure systems on every layer

of the computing systems, from circuits to web applications.

The root of the trust in the defense systems is the silicon running beneath all the

software stacks. In general, the fabless design companies, such as Qualcomm, ARM

and Broadcom trust the manufacturers of the ICs. The hardware companies fabricate

their IC chips overseas, given that overseas IC manufacturers can support a range of

technology nodes at much lower cost (AsC, 2019). However, this trust has been broken

since the separation of design and manufacturing creates opportunities for hardware
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attacks like Hardware Trojan (HT) insertion, IC overbuild, reverse engineering, side-

channel analysis, and IC counterfeiting (Tehranipoor and Koushanfar, 2010). Among

these attacks, HTs can cause significant economic and social damages. HTs are

hardware blocks that are designed to perform malicious operations, e.g. leak secret

keys, sabotage the functionality of the chip or launch privilege escalation attacks on

the system. The HTs inserted during manufacturing have negligible overheads in

performance and power consumption of the overall ICs (Nowroz et al., 2014; Yang

et al., 2016). Besides, the attackers design HTs to evade being triggered during

functional testing (Wei et al., 2012a). IC design companies need to either monitor the

entire manufacturing process or apply costly reverse engineering techniques, including

delayering the chip, imaging with Scanning Electron Microscope (SEM) etc. to detect

HTs (Tehranipoor and Koushanfar, 2010; Karri et al., 2010). Both delayering and

SEM are time-consuming and costly. Hence, there is a pressing need for a detection

method, which can detect and locate HTs inserted during fabrication stage in a fast,

accurate, and robust manner (Tsoutsos and Maniatakos, 2014).

At the architectural level, the security functionalities, e.g. cryptographic opera-

tions, ensure the confidentiality and integrity of the communications. The architec-

tural solutions are deployed using dedicated Application Specific Integrated Circuit

(ASIC) units embedded within the processor. For example ARM, Intel, and AVR, all

provide hardware accelerated Advanced Encryption Standard (AES), crypto-engines

in their ARMv8 (ARM, 2016), x86 (Int, 2016a), and Atmel (AVR, 2016) platforms

respectively. These processors can leverage hardware primitives to perform cryp-

tographic operations, such as Advanced Encryption Standard (AES), RivestShami-

rAdleman (RSA), and Secure Hash Algorithm (SHA). These operations are crucial

to the Internet of things (IoT), which handle command and control signals at home

and on the factory floors. IoTs are also low-power devices, which cannot easily be
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replaced or modified, and are deployed for years at a time. Moreover, the longevity of

these IoT devices often surpass the usage of cryptographic algorithm. Besides some

IoT devices are deployed at dangerous places where they are dangerous and hard for

humans to replace them. In order to achieve flexibility, high performance, and low

power cryptographies, we need an energy-e�cient configurable cryptography engine

for IoT devices.

At the application level, the defense system must detect the malicious processes

for protection. Researchers have utilized various analytical methodologies, such as

signature analysis and dynamic analysis, for malware detection. All the previous

methods have a substantial performance overhead. In order to reduce the overhead,

the previous works propose the use of Hardware Performance Counters (HPCs) with

machine learning models (Demme et al., 2013; Kazdagli et al., 2016; Wang et al.,

2016; Ozsoy et al., 2015; Tang et al., 2014; Khasawneh et al., 2015; Khasawneh et al.,

2017; Singh et al., 2017). HPCs are hardware blocks that count micro-architectural

events. However, it is counter-intuitive that the high-level program behaviors can

manifest themselves in low-level statics. In order to show the feasibility of HPC

malware detection, the researchers must evaluate HPC malware detection rigorously

before the real-life deployments.

In this work, we construct the solutions towards the threat models on each comput-

ing layer, hardware, architectural and software layer. We present the thesis statement

as following:

Constructing a defense mechanism on the same computing layer as

a security threat can protect the computing system e↵ectively and e�-

ciently.

Therefore, we propose a multi-level approach to securing computing systems. Our

approaches include the following solutions for securing computing systems:
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• HT Detection using backside imaging: We propose a novel optical method,

where we image the integrated circuit chip from the backside without powering

it up or delayering it (Chapter 2). Using our method, any replacements, modi-

fications or re-arrangements of gates to add HTs can be easily detected through

comparisons between the simulated optical response and backside imaged mea-

surements. We introduce the idea of a noise-based detection method as our

testing method to have higher HT detection rates in di↵erent testbenches. To

further improve the robustness of our method, we strategically place high re-

flectance fill cells in the designs. Our imaging method provides high-resolution,

non-destructive and rapid means to detect HTs inserted during fabrication. We

evaluate our approach using various hardware blocks where the HTs can occupy

less than 0.1% of the total area or consist of fewer than 3 gates. In addition,

we analyze our method with di↵erent magnitudes of noise, process variations,

detection window sizes, and resolutions. To increase the di↵erence in the re-

flection among various gates, we also engineer nano-antenna structures into the

gate pairs. These nano-antennas are unique to illumination polarizations, fre-

quencies and angles. By implementing the nano-antennas, we can improve the

reflectance signature by 300%.

• Flexible Hardware Implementations of Cryptographies: We propose to

use FPGA as the reconfigurable substrate for cryptographic operations in IoT

devices (Chapter 3). We demonstrate our proposed approach on the Zedboard

platform, which has two ARM cores and a Zynq FPGA. The implemented

cryptographic algorithms include symmetric cryptography, asymmetric cryp-

tography, and secure hash functions. We also integrate our cryptographic en-

gines in the SSL library to inherit the software support for block cipher modes

implemented by OpenSSL. Our approach shows that the FPGA-based recon-
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figurable cryptographic components consume 1.8⇥ ⇠ 4033⇥ less energy and

run 1.6⇥ ⇠ 2983⇥ faster than software implementation. At the same time, the

FPGA implementation of cryptographic operations are more flexible compared

to custom hardware implementations of cryptographic components.

• Malware Detection using Hardware Performance Counters with ma-

chine learning: We identify the prevalent unrealistic assumptions and the

insu�cient analysis used in prior works that leverage HPCs for malware detec-

tion (Chapter 4). We perform thorough experiments with a program count that

exceeds prior works (Demme et al., 2013; Kazdagli et al., 2016; Wang et al.,

2016; Tang et al., 2014; Singh et al., 2017) by a factor of 2⇥ ⇠ 3⇥, and the

number of experiments in cross-validations that are 3 orders of magnitude more

than previous works. We divide the train-and-test dataset similar to what prior

works have done, as well as, in a realistic setting where testing programs are

not in the training programs. We compare the e↵ects of this choice on the

quality of the machine learning models. Finally, to facilitate reproducibility,

and enable future researchers to easily compare their experiments with ours,

we make all code, data, and results of our project publicly available under an

open-source license: https://github.com/bu-icsg/Hardware_Performance_

Counters_Can_Detect_Malware_Myth_or_Fact

1.2 Related Work

In this work, we present the works related to HT detection, cryptographic engines,

malware detection using HPCs with machine learning and CFI hardware enforcement.
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1.2.1 HT Detection using Backside Imaging

Three di↵erent HT detection approaches have been proposed for preventing HT in-

sertion and detecting any inserted HT: protective designs before fabrication, HT

detection after fabrication, and side channel detection method. A number of pre-

fabrication protection designs have been proposed on both circuits and architecture

levels. At the circuit level, the separation of fabrication, gate level obfuscations, and

limitations of gate usage have been proposed to protection designs. Separation of

fabrication (Vaidyanathan et al., 2014a; Vaidyanathan et al., 2014b; Valamehr et al.,

2013) proposes that the device layer of IC is fabricated by one trusted vendor, while

other layers are fabricated by untrusted vendors at a lower cost. The trusted vendor

use high cost Through Silicon Vias (TSVs) to connect di↵erent layers of logic. HAR-

POON (Chakraborty and Bhunia, 2009) provides netlist-level obfuscation, which can

be integrated into the synthesis of Soc designs. Other techniques, (Roy et al., 2008;

Baumgarten et al., 2010) and (Xiao et al., 2014; Xiao et al., 2015) also provide

protective designs by replacing the filler cells with functional cells. That way there

are no empty spaces for inserting HTs. Bao et al. proposed to both prevent and

detect HTs in (Bao et al., 2015), by limiting the useable gate types in the standard

library. All these proposed techniques either use a high-cost method or sacrifice area

in order to protect designs from HTs. On the architecture level, logic state scram-

bling, power signatures in potential tampered logics, and circuitry encoding are the

main techniques in protecting designs from HTs. ODETTE (Banga and Hsiao, 2011)

protects the circuits from HTs by increasing the number and variations of the design.

VITAMIN (Banga and Hsiao, 2009b) utilizes an inverted voltage scheme that aims

to activate some targeted Trojans with a higher triggering rate. The power consump-

tion of HTs will become prominent in the power analysis. Linear Complement Dual

Codes (Ngo et al., 2015) is designed to encode the instructions inside the circuitry
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and to be resistant to error injection and side channel analysis. These methods po-

tentially increase the complexity of logic designs, and they also increase the power

consumptions of the overall system.

Post-fabrication detection includes reverse engineer (RE), timing and power anal-

ysis, and data monitoring during runtime. The generic detection method after fab-

rications is to reverse engineering the fabricated ICs. Scanning Electron Microscope

(SEM) and FIB (Focused Ion Beam) (Tehranipoor and Koushanfar, 2010) have been

proposed for HT Detection. However, the approaches are high in cost and low in

speed. The process of RE the fabricated chip is only a↵ordable to large semiconductor

companies (Tehranipoor and Koushanfar, 2010; Karri et al., 2010). FANCI (Waksman

et al., 2013) and FIGHT (Sullivan et al., 2014), flag possible HT wires, which reduces

the complexity in reverse engineering. To detect HTs without reverse engineering the

IC chips timing analyses and power analyses methods have been proposed. Timing-

based analysis (Li and Lach, 2008; Jin and Makris, 2008; Exurville et al., 2015) de-

tects the delay changes in the circuitry for HT Detection. Dynamic power detection,

such as the sustained vector technique, measures the dynamic power consumption

di↵erence in the circuitry and identifies the gates that may contain Trojans (Banga

and Hsiao, 2009a; Salmani et al., 2012; Wilcox et al., 2015). Such time and power

based analysis (Potkonjak et al., 2009a; Wei et al., 2010; Wei and Potkonjak, 2012;

Wei et al., 2012b; Rad et al., 2008; Alkabani and Koushanfar, 2009; Potkonjak et al.,

2009b; Wei and Potkonjak, 2012) are not suitable at newer technology nodes, because

the impact of process variations is larger than the impact by the HTs on power and

delays. This introduces overhead in the performance in order to detect HTs.

Compared to electrical methods, side channel detection utilizes physical proper-

ties of ICs instead of electrical properties, which can help detect HTs that can hide

from electrical tests. Emission measurements (Song et al., 2011; Stellari et al., 2014)
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and thermal analysis (Nowroz et al., 2014; Forte et al., 2013) are good examples of

side channel analysis. Emission measurements utilize the long wavelength imaging

techniques resulting the low-resolution imaging. Thermal analysis requires the pow-

ering on the logic, which introduces the engineering of testing infrastructures. All

these techniques are either not as fast, easy or high in resolution as our technique.

1.2.2 Cryptographic Engines for IoT Devices

Many previous works have implemented various algorithms on the FPGA to show

the performance improvements, energy savings in these FPGA implementations. The

FPGA implementation of AES was first shown to have benefits on both performance

improvements and energy savings in 2004 (Rouvroy et al., 2004). The performance

reached a speed of 204Mbps stream in AES encryption. Since then, FPGAs were

explored as a potential solution to cryptographic applications for low power devices.

Good et al. proposed a design of AES, which use only on 8-bit data-path in all the

operations in AES (Good and Benaissa, 2006). This design made the entire AES

fit on small programmable areas. Hamalainen et al. presented an upgraded version

with the cost of using 3.1k gates (Hamalainen et al., 2006). With the increasing area

of FPGA, more and more resources could be used for cryptographic designs. One

128-bit AES block operation consists of key expansions and SubBytes operations.

Key expansions increase the key length for further data processing in SubBytes op-

erations. SubBytes is a 16-by-16 matrix operated with a minimum unit of 8-bit for

permutations and substitutions during AES encryption/decryption. SubBytes opera-

tions consist of substitutions of cells, shifts of rows, a mix of columns and exclusive or

with the keys, which are operations to increase the pseudorandomness of the output

text. AES encryption/decryption usually consists of 10 ⇠ 14 rounds of SubBytes

operations according to the required security level. With fully integrated SubBytes

operations in hardware, AES has much higher e�ciency, as AES needs fewer cycles to
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finish the operations. Bulens et al. first put one full round of SubBytes operations in

AES on FPGA in 2008 (Bulens et al., 2008). With pipelined designs, the plain text

can be continuously streamed into the cryptographic units for encryption/decryption

to achieve high throughput. Repetitive use of same hardware block cannot have the

same high performance as pipelined design do since inputs in each round depend on

results of previous round operations. Good et al. showed the designs from the fastest

to the smallest, which can provide di↵erent design points on di↵erent hardware plat-

forms, in order to achieve a trade-o↵ between speed and area (Good and Benaissa,

2005). It achieved the speed of 358Mbps compared to encryption/decryption speed

of 397Mbps in our implementation without streaming throughput. Today, modern

FPGAs have enough programmable logic that can fit the expansion of 10 to 14 rounds

of SubBytes operations. Hoang et al. showed a fast implementation of AES with a

key size of 128-bit, with look-up table of SubByteses (Hoang et al., 2012). There

are also partial and dynamic reconfigurable implementations for more flexible solu-

tions on FPGA (Granado-Criado et al., 2010). As partial configurations are designed

for high-end FPGA applications, low-energy FPGA has not yet widely adopted the

partial configurations for their applications. Side channel attacks use power, time

or other physical properties to break cryptographic algorithms. Once discovered, it

is possible to prevent a given side channel attack by modifying the implementation

of cryptographic algorithms. Robust designs, such as (Oswald et al., 2005; Shah

et al., 2010), are resistant to Di↵erential Power Analysis (DPA) leaking AES keys

in their implementation. However, robustness and DPA resistant designs come at a

higher cost in performance or energy consumption. Other cryptographic algorithms,

such as Hummingbird (Fan et al., 2010) and Whirlpool (Pramstaller et al., 2006),

have also been implemented on FPGA. Recent works have shown that FPGA can

be an ideal solution for modern cryptographic computation. Saarinen et al. im-
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plemented Authenticated Encryption with Associated Data (AEAD), AES-GCM on

Zedboard (Saarinen, 2014). Saarinen et al. also showed one variant implementation of

Whirlpool (Saarinen and Brumley, 2014). These works contain detailed explanations

of implementation and performance analysis, but lack of power and energy analysis

and multi-crypto-engines implementation.

1.2.3 Malware Detection using Hardware Performance Counters with

Machine Learning

Malware detection is the process of detecting malicious programs. Many previous

works commonly utilize sub-semantic features in malware detection (Demme et al.,

2013; Kazdagli et al., 2016; Wang et al., 2016; Ozsoy et al., 2015; Tang et al., 2014;

Khasawneh et al., 2015; Khasawneh et al., 2017; Singh et al., 2017). Ozsoy et al.

defined the term sub-semantic features as “micro-architectural information about

an executing program that does not require modeling or detecting program seman-

tics” (Ozsoy et al., 2015). These sub-semantic features are often aggregated in the

HPCs to record the statistics of low-level events. All these previous works have sev-

eral drawbacks to various extent. We categorize the drawbacks that we observed in

the following classes.

I Dynamic Binary Instrumentation (DBI)

II Virtual Machines (VMs)

III Division of Data By Traces (TTA1 in § 4.4.3)

IV No Cross-Validations or Insu�cient Validations

V Few Data Samples

Besides HPCs, sub-semantic features can be extracted with dynamic binary in-

strumentation (DBI) tools such as Intel’s Pin (Patil et al., 2004; Luk et al., 2005),

QEMU (Bellard, 2005), Valgrind (Nethercote and Seward, 2007), or DynamoRIO (Dyn,

2017). Khasawneh, Ozsoy et al. use Pin to monitor the instructions executed on vir-
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tual machines in their experimental setup (Ozsoy et al., 2015; Khasawneh et al., 2015;

Khasawneh et al., 2017). Though DBI can extract sub-semantic features that are not

available from HPCs, DBI introduces a substantial amount of performance overhead

and is thus not suited to run in an always-on, online protection setting, which is the

default use-case for current anti-malware suites. We denote the drawbacks of DBI as

Drawback I in Table 1.1.

While DBI is not feasible in online detection systems, other methods in sampling

HPCs can incur inaccurate measurements. A plethora of previous works that uses

HPCs for malware detections run the evaluated programs on VMs (Demme et al.,

2013; Ozsoy et al., 2015; Khasawneh et al., 2015; Khasawneh et al., 2017; Singh

et al., 2017). While VMs provide significant benefits to analyze unknown programs

(e.g., strong isolation guarantees), HPCs are limited and shared resource between

the host and all VMs. Thus, virtualizing HPCs is a challenge in itself (Serebrin and

Hecht, 2011). The measured HPC values obtained in VM are substantially di↵erent

from HPC values obtained from the bare-metal environment that real-life users have.

To make matters worse, evasive malware can detect whether it is running in a VM

and ceases to exhibit malicious behavior (Kirat et al. (Kirat et al., 2014)). These

observations motivate our experimental setup (§4.3) to run all experiments on bare-

metal systems. We label the use of VM in the experimental setups as Drawback II

in Table 1.1.

Due to inaccurate HPC measurements (Weaver and McKee, 2008), previous works

(Demme et al., 2013; Kazdagli et al., 2016; Wang et al., 2016; Tang et al., 2014) choose

to maximize the measuring granularity by using HPCs without time-multiplexing.

Recall that as modern CPUs only have 6 (AMD) or 4 (Intel) registers for HPCs,

malware detection methods must select the events from more than 100 available

micro-architectural events (130 in AMD Bulldozer and 196 in Intel Skylake). Previous
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(Demme et al., 2013) ⇧ ⇧ • ⇧ • ⇧ • ⇧ ⇧ ⇧ • • • • ⇧ • ⇧ 3
(Kazdagli et al., 2016) ⇧ ⇧ • ⇧ • • ⇧ ⇧ • ⇧ • • • ⇧ ⇧ • ⇧ 2
(Wang et al., 2016) ⇧ • ⇧ • • ⇧ • ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ • ⇧ 4
(Tang et al., 2014) ⇧ • ⇧ • ⇧ • • ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ ⇧ • ⇧ 3
(Singh et al., 2017) ⇧ • ⇧ • • ⇧ ⇧ • ⇧ ⇧ • ⇧ ⇧ ⇧ ⇧ • ⇧ 4
(Ozsoy et al., 2015) • • ⇧ ⇧ ⇧ • ⇧ • ⇧ ⇧ ⇧ ⇧ ⇧ • ⇧ ⇧ ⇧ 2

(Khasawneh et al., 2015) • • ⇧ ⇧ ⇧ • ⇧ • ⇧ ⇧ ⇧ • ⇧ ⇧ • ⇧ ⇧ 3
(Khasawneh et al., 2017) • • ⇧ ⇧ ⇧ • ⇧ • ⇧ ⇧ ⇧ • ⇧ ⇧ • ⇧ ⇧ 3

? ⇧ ⇧ • • • • ⇧ ⇧ ⇧ • • • • • • ⇧ • -

Table 1.1: Comparison between various previous works: Rows are various works
in HPC-based malware detection and columns are design choices. The alternative
shaded and white background represents di↵erent categories of tool/setup/model
in malware detection using HPCs. Red texts highlight drawbacks, and black texts
express the suggested tool/setup/model from this work. Solid dots (•) indicate the
use of that tool/setup/model (column) by the reference (row), and hollow dimonds
(⇧) indicate the non-use of that tool/setup/model by the reference. Star (?) is our
work. Our work avoids the drawbacks discussed in the table, and quantitatively
analyzes how these drawbacks lead to the conclusion that HPCs can reliably detect
hardware.
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works (Demme et al., 2013; Kazdagli et al., 2016; Ozsoy et al., 2015; Khasawneh et al.,

2015; Khasawneh et al., 2017) have not provided a numerical analysis of how micro-

architectural events are selected. After the selection of events, we need to track these

events and transform the measured HPC values to examples in machine learning

models, i.e. feature extraction. Dividing examples into training and testing datasets

for machine learning models are training-and-testing split. Previous works (Demme

et al., 2013; Kazdagli et al., 2016; Wang et al., 2016; Singh et al., 2017) have training-

and-testing split based on the examples (TTA1 in § 4.4.3) that the testing dataset

can have the same examples produced by programs in the training dataset. However,

in real life, it is unlikely that the o✏ine training dataset can include all the malware

that a user might encounter. We mark the use of data division based on examples as

Drawback III in Table 1.1.

We observe that there is no cross-validation in some of the previous works (Demme

et al., 2013; Wang et al., 2016; Tang et al., 2014), while other works (Ozsoy et al.,

2015; Khasawneh et al., 2015; Khasawneh et al., 2017; Singh et al., 2017) present

insu�cient cross-validation, i.e. not every example in the dataset is validated. None

of these works report standard deviations of detection rates with cross-validations.

Without a substantial amount of cross-validation, we cannot assert the reproducibility

of detection rates, since a model can have its high detection rates with specific training

and testing datasets. We refer to no cross-validation or insu�cient validations as

Drawback IV in Table 1.1.

Previous works reported their results with double decimal precision (Demme et al.,

2013). However, double decimal precision require at least 100 experiments in test-

ing. With 10-fold cross-validation in the experiments, the total number of programs

(benignware and malware) should be more than 1,000 programs. Thus, at least

1,000 programs are required to evaluate the machine learning models within numer-
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ical rounding error of less than 1%. There are several works that use fewer than

1,000 programs leading to over-generalization (training and testing with insu�cient

cross-validation), or over-interpretation of the results (comparisons beyond rounding

errors) (Demme et al., 2013; Kazdagli et al., 2016; Wang et al., 2016; Tang et al.,

2014; Singh et al., 2017). This insu�cient number of programs in the experiments is

Drawback V in Table 1.1.

In addition to the drawbacks of the previous works, we found that there is no public

access to their data or codes, which makes it hard to perform a direct comparison

and examinations of the methods applied in these works.

We present all the tools/setups/models in various previous works in Table 1.1.

In Table 1.1, rows are various works in HPC-based malware detection and columns

are design choices of the tools/setups/models. The alternative shaded and white

background represents di↵erent categories of tool/setup/model in malware detec-

tion using HPCs. Red texts highlight drawbacks and black texts express the sug-

gested tool/setup/model from this work. Solid dots (•) indicate the use of that

tool/setup/model (column) by the reference (row), and hollow diamonds (⇧) indicate

the non-use of that tool/setup/model by the reference. Star (?) is our work. The last

column counts the drawbacks of the corresponding work. Table 1.1 shows that there

are at least 2 drawbacks in each work.

1.3 Completed Research

The following work was completed as part of my Ph.D. Program:

• Hardware Trojan Detection using Backside Optical Imaging: In this

work, we proposed to use backside optical imaging for HT detection. We first

engineered fill cells to have maximum reflectance compared to standard cells.

These highly reflective cells formed watermark. Any shifts, modifications to
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these cells could be detected using backside imaging. By mapping the gate

response to the locations and orientations of all the gates in the layout, we

generated an optical response of the entire chip as the “golden response”. We

applied correlation between imaged results and generated “golden reference” to

determine whether the chip has HTs (Chapter 2).

We then extended our work to create a library of responses of all the cells in the

standard cell library. We illuminated multiple locations on each gate according

to the size of the gates to have a unique response for each gate. We improved the

accuracy and robustness of our method by using noise-based detection method

in the comparisons between “golden reference” and imaged results. We also did

process variation analysis and optimized the detection method.

Our approach does not require costly devices as low throughput techniques, such

as delayering the metal layers and SEM. Compared to the traditional electrical

detection method, our method images the layouts of ICs, which does not depend

on the tests that are able to trigger the HTs. The ICs under test do not need to

be powered up or calibrate for testing environments, such as thermal detection

method. At the same time, backside imaging presents high-resistance against

process variations during manufacturing. The infrared light imaging produces

images with a resolution at the gate level. No previous imaging methods have

been able to achieve.

• High-Performance Low Energy Implementation of Cryptographic Al-

gorithms on a Programmable SoC for IoT Devices: In this work, we

implemented various kinds of cryptographies on a programmable SoC for IoT

devices. We measured the performance, power and energy consumption, and re-

configurability of our implementation. We implemented the same cryptographic

algorithms in software and compared performance, power and energy to evaluate
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the improvements achievable through hardware implementations. Our imple-

mentation showed that the Zedboard platform provided high performance, low

energy consumption and reconfigurability for IoT devices (Chapter 3).

Our proposed FPGA implementation can replace the implementations in the ex-

isting library (OpenSSL), which enables performance boost and energy savings

in various block cipher modes.

• Malware Detection using Hardware Performance Counters with Ma-

chine Learning: We identify the prevalent unrealistic assumptions and the

insu�cient analysis used in prior works that leverage HPCs for malware detec-

tion (Chapter 4). We perform thorough experiments with a program count that

exceeds prior works (Demme et al., 2013; Kazdagli et al., 2016; Wang et al.,

2016; Tang et al., 2014; Singh et al., 2017) by a factor of 2⇥ ⇠ 3⇥, and the

number of experiments in cross-validations that is 3 orders of magnitude more

than previous works. We harvest the HPC traces from 1,924 programs, 962

benignware and 962 malware, on our experimental setups. We achieve an F1-

score (a metric of detection rates) of 83.39%, 84.84%, 83.59%, 75.01%, 78.75%,

and 14.32% for Decision Tree (DT), Random Forest (RF), K Nearest Neighbors

(KNN), Adaboost, Neural Net (NN), and Naive Bayes, respectively. We cross-

validate our models 1,000 times and the F1-score of models in DT, RF, KNN,

Adaboost, NN, and Naive Bayes is 80.22%, 81.29%, 80.22%, 70.32%, 35.66%,

and 9.903%, respectively. To show how fragile the HPC malware detection

system is, we show that one benignware (Notepad++) infused with malware

(ransomware) cannot be detected by HPC-based malware detection. To ease

the reproducibility and advance the community’s e↵orts to assess the utility of

HPC-based malware detection, we release all the code and data produced for

this work under an open-source license.
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Chapter 2

Hardware Trojan Detection Using

Backside Imaging

2.1 Introduction

Integrated circuits (ICs) are the root of the trust in computing systems. Secure mech-

anisms rely on the the trust on the hardware underneath software stacks. However,

the trust is broken due to fragmented supply chain of IC manufacturing. The large

demands for IC chips has led to the globalization of the IC chip supply chain. Over the

past two decades, IC design and manufacturing has become increasingly distributed

across the world (Tehranipoor and Koushanfar, 2010). The standard IC chip pro-

duction process consists of specification, design, fabrication, testing and packaging

phases (Dar, 2019; Chakraborty et al., 2009; Karri et al., 2010). Many U.S. compa-

nies still design their IC chips locally. However, given that overseas manufacturing

can support a range of technology nodes at a significantly lower cost, these companies

prefer to fabricate their IC chips overseas.

Highly fragmented and distributed production brings e�ciency and productivity

to IC design and fabrication (The, 2019). However, given the pervasive use of the

IC chips in both commercial and military domains, it is mandatory to ensure that

the security of these chips has not been compromised. During the di↵erent phases of

IC production, the ICs face threats from HTs (Karri et al., 2010; Tehranipoor and

Koushanfar, 2010; Love et al., 2012; Waksman and Sethumadhavan, 2011; Hicks et al.,
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2010), IP privacy (Roy et al., 2008), IC chip overbuilding (Chakraborty and Bhunia,

2009), reverse engineering (Torrance and James, 2011; electroiq.com, 2019; DARPA,

2019; iPh, 2019; How, 2019; Rev, 2019), side-channel analysis (Kocher et al., 1999;

Schlösser et al., 2012; Koeune and Standaert, 2005; Koeune and Standaert, 2005;

Genkin et al., 2014; Rohatgi, 2009) and IC counterfeiting (Rostami et al., 2014).

HTs are malicious modifications or insertions of unwanted circuitry into the chip

designs to sabotage the functionality or leak secret information. IP privacy discloses

the intellectual properties of IC designs and causes economic damages to the IC

company. Foundries can overbuild ICs and sell them to make illegal profits. Reverse

engineering recovers designs of the chips to steal intellectual property. Side channel

analysis focuses on using physical properties other than electrical signals on the chip to

extract secret information from ICs. IC counterfeiting refers to fabricating unqualified

products but labeling them as products from other companies, which causes indirect

loss to companies that originally design the chip. Among all these threats, HT attacks

are the worst attacks in hardware security. Therefore, our approach targets detecting

the HTs inserted during fabrication.

The HT attacks can directly cause information leakage, system compromise and

failures. HTs can control, modify, disable or monitor the IC chips (Rostami et al.,

2014). Common HT insertion approaches are insertions of the malicious IP cores,

design modifications, and layout modifications during the fabrication phase (Rostami

et al., 2014). We can detect the HTs inserted using the first two approaches with

functional verifications at di↵erent stages of the IC chip design process. In the third

type of HT insertion, the attackers reverse engineer the physical layout and modify

the design during manufacturing. The HTs inserted during fabrication have a very

small impact on the delay and power consumption of the overall IC chip. Besides,

HTs inserted during fabrication are designed to have an extremely low triggering rate
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to hide them from standard tests. Unless manufacturing is closely monitored, the IC

design company needs to use expensive reverse engineering techniques like delayering

the chip, SEM imaging, and etc. to check for HTs. Hence, there is a pressing need for

a new detection method, which can detect and locate HTs inserted during fabrication

in a fast, accurate, and robust manner (Tsoutsos and Maniatakos, 2014).

We propose a novel optical imaging method that can rapidly and accurately de-

tect HTs inserted during the fabrication. In our proposed approach, we use backside

imaging to detect HTs inserted during the fabrication. We measure the optical re-

sponses from post-fabricated ICs, and compare the results to the responses from

FDTD simulations performed on the chip. We can detect any compromises to the

chip by identifying di↵erences between the generated responses and the measured

results. To this end, we have completed the following work:

• Backside Imaging using near-IR light

We propose a new approach to generate a backside image of an IC chip, which

we call the “golden reference”, using the detailed physical layout of the IC chip

and FDTD simulations of individual standard cells. We model the process of

backside imaging of the IC chips by FDTD simulations. We compose the refer-

ence responses by mapping individual gate FDTD responses to the locations of

standard cells and interpolate the response image. Any inconsistencies between

measurements and reference response correspond to changes in the designs.

• Noise-based Detection Method

We implement a noise-based detection method that compares the imaged data

and “golden reference”. This method performs better than our previously pro-

posed correlation-based detection method. The noise -based detection exhibits

robustness against noise, and is e↵ective across di↵erent testbenches.

• Engineering High Reflectance Fill Cells
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We engineer fill cells as high reflectance cells and strategically insert them be-

fore placing the cells of the digital designs to increase the contrast of imaging

responses. We demonstrate that the insertion of extra fill cells improves the HT

detection accuracy against noise.

• Evaluations using Various Hardware Blocks

We show the e↵ectiveness of our approach through a variety of testbenches.

We use standard Cadence tool flows in Nangate 45nm technology to synthesize

and place & route the circuits. The area of inserted HT vary from 0.1% to

12% of the total chip sizes. We use our method to detect the HTs in these

testbenches under di↵erent signal to noise ratios. We also analyze the e↵ects

of process variations, di↵erent resolutions in imaging, and di↵erent detection

window frame sizes on detection rates with di↵erent noise levels.

2.2 Threat Model

In this work, we assume that the attacker can modify, shift or replace the fill cells

in order to accommodate the malicious hardware blocks in the victim’s design. The

attacker can get access to the GDSII files used for fabrication, but cannot change the

RTL, gate level designs or any designs before the victim generates the GDSII files.

We trust the IP blocks in the designs from any third party to be HT free.

2.3 Backside Imaging of IC Chips

We propose a dramatically di↵erent approach to detect HTs inserted in IC chips

during the fabrication phase. Metals in IC chips are strongly reflective to near-

IR light, while silicon is transparent to light at those wavelengths. Backside optical

imaging of the fabricated chip enables us to extract the full standard cell layout of the

chip with the watermarks, which in turn can be validated to detect any modifications
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to the IC layout (Figure 2·1). In addition to the original metal lines of standard cells,

we also embed a maximal amount of metal in the M1 layer in the fill cells during

the design stage to increase the total reflectance of the design to improve detection

accuracy. This strong reflected pattern forms the signature of chip design which will

be used for HT detection.

Figure 2·1: Backside Imaging of IC chips

Our optical measurements are highly modular and independent of the multitude

of connections in the full IC chip. In addition, the physical principles behind the

implementation of our watermarking scheme are also highly distinct from previous

approaches. Although, like the first PUF (Pappu et al., 2002), it is an optical method

that utilizes embedded scatters, their intended design and functionality are funda-

mentally di↵erent. The scattering in (Pappu et al., 2002) was explicitly designed to

be random and impossible to predict and replicate. In contrast, determinism is essen-

tial to the functionality of our approach. We embed the watermark during the design

phase and we can determine the optical response before fabrications. Our designed
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signature must be predictable within our analytical range.

2.3.1 Optical Imaging Method

As the opaque metal layers prohibit front side imaging, backside imaging of inte-

grated circuits is a well-established technique for failure analysis (Ippolito et al., 2004;

Kindereit et al., 2007; Köklü and Unlü, 2010). Bright field images at near-infrared

(IR) wavelengths (e.g. � ⇠ 1� 2µm) can be used for passive measurements for fault

detection and localization, such as for inspecting the fidelity of the metal wires (Ip-

polito et al., 2005). In addition to passive measurements, the active functionality of

the circuit can also be probed via techniques such as thermal imaging (Ippolito et al.,

2004), which records power dissipation via heat generation or laser-voltage imaging

(LVI) (Kindereit et al., 2007), which records the switching response of the transistors.

As integrated circuits shrink in size, a key challenge in these imaging techniques

is to obtain su�cient spatial resolution to resolve each individual structure in each

gate. The di↵raction limit imposes a fundamental restriction on the maximum spatial

frequency that can be imaged using conventional optical systems which limits the

resolution. The resolution of an optical system can be determined by the size of the

impulse response of the system which takes the form of an Airy function (Novotny

and Hecht, 2006),

I(⇢) /


2
J1(2⇡⇢)

2⇡⇢

�2
(2.1)

where ⇢ = NAr/(M�) is the image space coordinate. The size of the impulse

response is

�x = 0.61
�

NA
(2.2)



23

Here, � is the wavelength of the light in free space and NA is the numerical aperture

(NA = n sin ✓) of the system, where n is the refractive index of the material in which

the light propagates. J1 is Bessel Function of the First kind.

Due to their high NA capability (⇠ 3.4), complex solid immersion lenses provide

a high resolution for fault analysis of integrated circuits (Köklü and Unlü, 2010). In

this work, we can eliminate the need for the high resolution and can rapidly and

accurately detect malicious tampering and the presence of an HT at relatively low

NA’s (⇠ 0.8).

Our approach is based on the fact that for low NA’s in the near-IR, we can achieve

impulse response functions with widths on the order of the gate size in 45 nm or lower

technology nodes (see Equation (2.2)). NA’s of 0.14, 0.42 and 0.5 correspond to spot

sizes of approximately 4.6 µm, 1.5 µm and 1.3 µm, respectively at � = 1.064µm.

These correspond to common near-IR commercial objectives capable of imaging over

0.1 – 1 mm fields of view (several thousand to half a million gates simultaneously). An

image collected in this manner (i.e. at low NA, without a solid immersion lens) would,

rather than resolve the detailed substructure of individual gate, produce a slowly

varying image that tracks the average reflectance of each gate over its area. Although

the individual gates are comprised of unique layouts of metal lines, Figure 2·2 shows

that with both 15 nm and 45 nm technology, the responses of three di↵erent gates

have distinctive signatures across the spectrum.

Figure 2·2 shows that fill cells which are engineered to contain maximum amount

of metal, while meeting the metal density design rule constraints. These fill cells

achieve distinguishable stronger response compared to common functional cells. We

can leverage these stronger responses to strengthen the contrast of the response images

in order to achieve higher HT detection rates.

Therefore, backside imaging of IC chips can result in clear patterns depending
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(a) (b)

Figure 2·2: (a) The reflectance spectrum of functional gates and fill cells designed
in 45 nm technology (computed via FDTD simulations). The response is computed
for both X and Y polarizations of the illuminating field (solid and dashed lines,
respectively). For X polarization, the incident electric field is polarized along the
VDD and VSS rails. For Y polarization, the polarization is perpendicular. (b)
The reflectance spectrum of functional gates and fill cells designed using 15nm
technology. Fill cells still show much higher reflectance compared to functional
cells.

on the standard cell layout. These patterns can serve as a robust, easily record-

able optical watermark of IC chip. Any modifications through movement of cells

or insertion of unwanted cells will result in a change in the watermark that can be

measured with high fidelity. Imaging large fields of views provides the potential to

perform these measurements on a large number of gates simultaneously. It also has

the added benefit of considerably simplifying the required optical setup in comparison

with commercial failure analysis tools. Our approach is a simple, rapid test to check

for tampering of the IC chip at the fabrication stage. It utilize o↵-the-shelf tools to

embed our engineered signature and it can be seamlessly integrated into typical IC

fabrications.
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2.3.2 Technology Scalability

While we demonstrate our approach at the 45 nm technology node level, we expect

it to scale well to smaller technology nodes because our technique does not require

high resolution imaging. We can estimate the e�cacy of our proposed technique as

gate sizes are reduced by considering the size of the impulse response of our optical

system as described by Equation (2.2). The gate sizes reduction will limit our ability

to detect a shift in the position or a change in the magnitudes of response of cells,

and therefore the performance of our technique.

We can show that the reflectance di↵erence between di↵erent gates in optical

imaging can be clearly distinguished. Case in point, in a 45 nm technology node (See

Figure 2·2(a)), the reflectance di↵erence between AND gate and OR gate can be as

much as 0.2, which is almost 50% of the total reflectance from AND2. Replacement of

AND gate with an OR gate results in 50% change in reflectance variation. In contrast

to the AND gate and OR gate, the reflectance of fill cells is as high as 90%. The

distinguishable di↵erence between various gates scales in a 15nm technology node

(See Figure 2·2(b)). The gates in 15nm technology node have smaller sizes, and also

the reflectance of all the gate is weaker compared to gates in 45 nm technology node.

The di↵erence between reflectance of di↵erent gates also scales with the technology

nodes. However, the reflectance ratio between AND gate and OR gate still remains

the same. Note that the AND gate is still around 50% of the reflectance of OR gate.

By comparing the relative reflectance, we can detect the changes in the gate type.

Moreover, in our method, the uniqueness of the image of a design is determined using

the responses from individual gates and the neighboring e↵ects. The pixel size of our

optical imaging method is 0.1µm

2 while the smallest gate size of 45 nm technology

node is 0.4 ⇥ 1µm

2. This means that each gate can have multiple comparison points

in HT detection. In our case, the minimum gate size of 45 nm technology is 0.26µm

2,



26

which can contain as much as 30 data points. Even with 15nm technology, each gate

can still have up to ⇠ 15 data points, which is su�cient for HT detection.

By applying interpolations on sampled points, our technique also scales well in

modeling areas much larger than single gate. This enables measurements over a large

field of view and therefore a large number of simultaneously imaged gates. Consid-

ering an IC with ⇠ 1B transistors, an average of 4 transistors per gate corresponds

to approximately 250M gates. For a gate size of 1.3µm2 corresponding to the 45 nm

technology node, using a resolution of ⇡ 400 nm and MHz acquisition rates would

mean that the whole chip would be imaged in a few minutes. This is a significant im-

provement over the high NA imaging methods, where the sample is typically scanned

with a scan size of 10 ⇠ 100nm as opposed to 400 nm that we consider in this work.

2.3.3 Optical Simulation Methodology

FDTD computation for one gate area requires roughly half an hour computation time.

The computational time grows exponentially with areas to simulate, i.e. a larger gate

with area of 5 ⇠ 6 times of single gate takes 1 ⇠ 2 days to finish. Simulating the

response for the whole layout of a typical 3 ⇠ 4 cm

2 IC chip is computationally

infeasible. Thus, in this work, we simulate each individual gate to construct a library

of responses from near-IR excitement. The constructed response library determines

the response of a given layout through simulations. Our method does not require

the need for in-field measurements of “golden reference”. The FDTD method is

widely used in modeling di↵erent microscopes, and it has been shown to work both

analytically and experimentally (Török et al., 2008; Çapoğlu et al., 2011).

In the previous work, we considered the FDTD simulations for each gate with

periodic boundary conditions by simulating illumination on infinite tiling of the same

gate (Zhou et al., 2015). With these boundary conditions, we simulate the response

of each gate separately and obtain their optical response by calculating the reflected
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power of each gate, normalized by the source power. Since the size of the impulse

response is of the order of the size of the gates, the normalized power is then convolved

with the impulse response of the optical system to simulate the image of a chip.

The periodic boundary conditions allow us to obtain the optical response at each

wavelength simultaneously, at a reduced computation time. We consider only the

6 basic gate types (AND, OR, NAND, NOR, XOR, XNOR) in the evaluation of

our optical watermarking technique. In this work, we consider the complete gate

library, which includes gates that are larger than the impulse response. We extract

the internal metal structures and contacts from back-end GDS files and rectlinearly

decompose polygon structures into rectangular structures for FDTD calculations. In

order to calculate the optical response of those gates, we develop a rigorous simulation

method for gates whose sizes are larger than the illumination spots. For this purpose,

instead of using plane wave illumination with the same gate as the boundaries, we

use other gates as boundaries of the illuminated gate and use a focused beam with

a predetermined NA and perfectly matched layer (absorbing) boundary conditions.

The optical response of each gate is obtained by normalizing the power of the reflected

light confined within the predetermined NA by the source power. In this set-up, we

can obtain the optical response of each gate for one wavelength and one polarization.

In addition, since we are using a focused light illumination, the focused spot needs to

be scanned at multiple locations as opposed to the case with plane wave illumination.

Selecting the scan size to be the same as the size of the impulse response allows us to

obtain all information within a gate, while ensuring a rapid acquisition time.

Modeling active regions and polysilicon transistor gates are beyond our scope for

simulations, as their contribution is expected to be significantly less than the metal

structures. Though in modern CMOS process, the polysilicon and di↵usion layers

are metalized through a silicide process, these metalized layers are 5-10 nm thick,
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therefore their contributions towards reflection is negligible. As some of the gates

are larger than the size of the impulse response, the focused spot is scanned starting

from the center of the gate and moving to the sides with the specified step size

until the majority of the illuminated area does not overlap with the gate. Note that

given a layout, placing the responses from the constructed library for each gate at

its location in the layout results in a set of response values on an irregular grid. As

the experimental measurements are taken on a regular grid with predetermined scan

size on the chip, we interpolate the simulated data to a regular grid using bicubic

interpolation (Keys, 1981). To construct the overall layout on a regular grid, we set

the horizontal step size to be equal to the size of the impulse response, and vertical

step size to be equal to the height of the gates.

2.4 HT Detection Process

In this section, we use the AES-T100 circuit from Trust-HUB (Tru, 2014) to explain

our proposed method of HT Detection using near-IR imaging. To detect the HT in

the example circuitry, we need to (i) generate “golden reference” from simulations in

Section 2.4.1 and (ii) automate the cross-comparisons between the measured response

and the ”golden reference” to detection HTs in the chip in Section 2.4.2. We present

the results in Section 2.4.3.

2.4.1 Methodology to Generate “Golden Reference”

To generate the “golden reference”, we synthesize, floor plan and place&route a digital

block, using Cadence RC and Encounter tools. From the final fabrication ready Geo-

metrical database for information exchange (GDSII) file generated from place&route

the designs, we can extract the locations and orientations of each gate and export the

data to a DEF file (Gate Level Descriptive Files). We simulate the near-IR response

of each gate in the standard cell library and create a library of gate responses. Ac-



29

(a)

12 14 16 18 20

12

14

16

18

20

 

 

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2·3: (a) Physical layout of a 10µm ⇥ 10µm region of the AEST100 hard-
ware block. (b) Backside image (reflectance value) of the 10µm ⇥ 10µm region.
The fill cells have the highest reflectance.

cording to the dimensions, locations and orientations of all the gates from the GDSII

file, we map the FDTD calculated responses of individual gates into the locations of

corresponding gates in full-circuitry near-IR image. Figure 2·4(a) and Figure 2·4(b)

presents the layout of original GDSII design and near-IR imaged color map from the

FDTD calculation, respectively. To form the image in Figure 2·3(b), we convolve the

reflectance map of AES circuitry with an impulse response from near-IR imaging.

In our attack model, an attacker needs to replace, remove or shift fill cells to

accommodate room for HTs (Tru, 2014). Any replacements or shift will result in a

di↵erent optical image compared to the one we generated from the original design,

because fill cells are significantly di↵erent from functional cells. In other situations,

when attacker only replaces the functional cells with functional cells of the HTs,

changes in the responses of the cells and the neighboring cells result in changes of

overall optical responses. Since most of the gates have responses of 0.5, the fill cells

enhance the contrast of overall signature to strengthen the resistance against noise. In

both cases, engineered fill cells are critical in improving the accuracies of HT detection.
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Figure 2·4: (a) Backside image (reflectance value) of the 10µm ⇥ 10µm region
where the fill cells are replaced with functional gates that constitute the HTs. (b)
Backside image (reflectance value) of the 10µm ⇥ 10µm region where the bottom
3 rows are shifted by 5 µm to the left to make room for cells that constitute the
HT. (c) Backside image (reflectance value) of the 10µm ⇥ 10µm region when the
functional cells are replaced by a di↵erent set of cells that constitute the HT.

In one example, Figure 2·4(a) and Figure 2·4(b) shows that an attacker replaces/shifts

fill cells, and the response of optical imaging can result in changes compared to the

responses of the design without HTs in Figure 2·3(b). Any modifications or shifts of

these gates (red areas in Figure 2·4) are more prominently observed in the near-IR

image than non-engineered gates (blue and green areas in Figure 2·4). Figure 2·4(c)

shows an example of replacing functional cells with functional cells of HTs. The

responses from engineered fill cells significantly increase the contrast of the overall
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image. Although in Figure 2·4(c), modifications are not easily detectable to the naked

eye, we can calculate the di↵erences between measured results and use the “golden

reference” to discriminate the HT inserted ICs from non-tampered ICs.

2.4.2 Correlation Method

To reliably and accurately detect HTs in large quantities requires an automated com-

parison method to cross-validate between “golden reference” and measured results.

In our previous work (Zhou et al., 2015), we use 2D-correlation coe�cients as the

threshold metric for in HT detection. In this work, we further improve the results by

using noise based detection method.

In image processing, the correlation coe�cient describes the similarity between

two images. If the correlation coe�cient is larger than the threshold, we consider the

circuitry as non-tampered. If the correlation coe�cient is smaller than the threshold,

we consider it to be tampered. Our 2-D correlation metric can be expressed in

Equation 2.3.

⇢

MXMY =
cov(M

X

, M

Y

)

�

MX�

MY

(2.3)

where cov is the co-variance of the two matrices M

x

&M

y

and � is the standard devi-

ation. Here, we use M

X

to denote the near-IR imaged matrix and M

Y

to represent

the imaged matrix with noise. In our previous work (Zhou et al., 2015), in order

to minimize false positives and false negatives in HT Detection, we determine the

threshold on correlation value between the measured results and “golden reference”.

We consider the design tampered, whose correlation results are lower than our prede-

termined threshold. We perform Monte-Carlo simulations of false positive rate and

false negative rate against a variety of detection thresholds on AES-T100 testbench

(AES with HTs from (Tru, 2014) in Figure 2·5). From Figure 2·5, we conclude that
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assuming that the HT inserted in our test chip has an HT of a similar size as HT in

AES-T100, we can optimize the correlation threshold to minimize the error rates at

an SNR at 10.

Figure 2·5: By having Monte-Carlo simulation of detection error rate against
detection threshold, we calculate false positive and false negative error rates versus
threshold. The optimized detection threshold should be 0.65 for a fixed SNR of
10.

2.4.3 Results

We used testbenches from Trust-HUB (Tru, 2014) and (Wei et al., 2012a) to evaluate

our proposed approach. Using 45 nm Nangate library, we generated the GDS files

for testbenches. The area of all testbenches are listed in Table 2.1. Figure 2·6(a) and

Figure 2·6(b) show the error rates versus SNR for the testbenches from (Wei et al.,

2012a) and (Tru, 2014), respectively. The sizes of these HTs range from 0.06% to

9.83% of the total area in the testbenches. Figure 2·6(c) presents the evaluations of

our method in all these testbenches. Each dot in the Figure 2·6(c) represents the error

rate analysis of SNR varying from 10�8 to 0.1. If all error rates in this SNR spectrum
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Testbench Area without Trojan Trojan Area
Trojans Area Percentage (%)
[µm

2] [µm

2]

c1355 266 4.522 1.7
c1908 251.6 0.798 0.317
c2670 333 0.798 0.240
c499 257 4.522 1.760
c880a 197.6 0.798 0.403
PIC100 4215.0 351 8.33
PIC200 4215.0 89.6 2.13
PIC300 4215.0 253.2 6.01
PIC400 2969.9 292.1 9.83
AES100 274177.6 253.2 0.0923
AES200 274177.6 169.5 0.0618
AES700 322705 297.4 0.0922
AES900 318359 267.3 0.0840
AES1000 274177.6 251.1 0.0915
AES1200 323348 450.3 0.1392
AES1700 320670 1388.3 0.4329

Table 2.1: Area (in µm

2) In this table, we show power consumption of all the
testbenches that we implemented in this paper.

fall within the error rate range, we use corresponding color dot to represent it. For

example, all the error rates of c880a testbench are 0% in the SNR ranging from 10�8 to

0.1. We use a blue dot to denote it in the table. We use other 3 kinds of color dots to

represent if all error rates are in 0 ⇠ 1%, 1 ⇠ 3%, and > 3%, respectively. From this

we can see that our correlation detection method presents high performance in c880a,

and c1355. Nevertheless, it does not have the same performance in PIC testbenches,

because the threshold is optimized for small testbenches but not universally all the

testbenches.

2.5 Noise-Based Detection Method

In Section 2.4.2, we presented the correlation coe�cient as an evaluation metric for HT

detection. Correlation enables a straight forward comparison between the reference

and the imaged data. However, it su↵ers three major drawbacks. First, it is hard

for a tester to determine the threshold value for detecting HTs in Device Under Test
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(DUT). Testers do not have prior knowledge of HT sizes. Various HT sizes and

di↵erent SNRs require di↵erent threshold values in order to maintain high fidelity. In

practice, multiple thresholds hinder the flexibility and applicability of this approach.

Second, in correlation detection method, we average out all our information of the

response from the ICs to one metric in comparison, which limits the information for

di↵erentiating tampered chip from benign ones. One metric is suitable in concluding

the overall group behavior; yet it is not ideal for di↵erentiating individuals from the

group behavior. In our case, we need to identify the individual gates in the layout.

The information that we can get from data sampling contains means and variations

of each gate response. Although we cannot use all of the sampled information, using

as much information as possible would yield better HT detection results. Hence, we

propose a noise based detection method to enhance robustness of our method. Noise

based detections evaluate the fitness of the noise introduced to the response image

in our pre-determined model. Di↵erent noise models require corresponding modeling

of the noise in the detection method. Since measurement noise and process variation

is the main source of the noise, we assume that the noise is Additive Gaussian white

noise(AWGN) (Popović and Taflove, 2004; Zjajo, 2014). The discussion of other

modeling of the noise sources is beyond the scope of this work.

2.5.1 Methodology Explanation

To explain our use of the noise-based detection method, we use an example of re-

placing one NAND gate with an AND gate in the c1355 testbench. In Figure 2·7,

the four figures represent results from four phases of this detection method. After

we extract gate locations and orientations from the GDSII files, we combine the data

we calculated from the FDTD simulation of each individual gate, and map each gate

reflectance to a gate location. If we assign values from the FDTD simulation to each

pixel in single gates, we can get Figure 2·7(a). As we discussed in Section 2.3, we
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need to interpolate the image in Figure 2·7(a) in order to generate realistic images.

We apply bicubic interpolations to the image in Figure 2·7(a).

We use M

X

to denote post interpolated results shown, in Figure 2·7(b). M

X

matrix is the “golden reference”. Taking noise into consideration, we use M

Y

to

denote the response image with noise. If M

Y

� M

X

, is AWGN (Figure 2·7(c)), we

consider that the imaged circuit is not tampered, since the di↵erence between the

“golden reference” and measured response consists of noise only. We use M

R

to

denote M

Y

� M

X

. If M

R

is not purely AWGN, then the measured matrix may have

other components in its mean or variation which can indicate a HT. Figure 2·7(d)

presents the imaged figure after the subtraction from the “golden reference”. In the

comparison between Figure 2·7(c) and Figure 2·7(d), we can see the di↵erence in the

top left corner, which indicates an HT. We use the data matrix M

R

to test if the

noise is normally distributed. We show both false positive and false negative tests of

gathered data with di↵erent resolutions. In false negative tests, we expect the M

X

matrix to only have normally distributed noise. We use D’Agostino’s X-squared test

to identify the shape of the expected probability density function (PDF). D’Agostino’s

X-squared test is a metric to evaluate how well one statistic set of data fits normal

distribution’s PDF. D’Agostino’s X-squared test has a suggested p-value to evaluate

the skewness of a data set compared to normal distribution, which is independent

from mean or variation of the data set. In experiment tests here, we use 0.05% as the

p-value threshold as it is commonly adopted in estimation of Gaussian Distributions.

This threshold value describes the skewness of subtracted image, which is independent

from testbenches. For the false positive tests, we consider several examples with HTs

embedded in the layout. A similar testing method is applied to test whether the M

R

matrix can be identified as non-normally distributed signals.

Most side channel HT detection techniques that use a physical property as the
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“side channel” consist of two parts, data gathering and data analysis. In the first part,

under a given excitation on the side channel, a benign chip will have a unique response

which will not match the response of a chip with a HT. For example, when using

thermal imaging (Hu et al., 2013) in HT detection, the thermal map is the physical

property of a chip under test. The physical excitements are the input electrical

signals of the chip, and the output response is the infrared image of the chip. Our

proposed technique utilize near-infrared illumination as the physical property, near-

IR laser signals as excitement and near-IR images as responses. In the second part,

by comparing the simulated results to backside image of DUT image, changes due

to HTs can be detected. Here, our proposed noise based comparison method does

not require any prior assumptions about the HTs before testing and is independent

from any statistical information from any data gathering method. Therefore, a noise

based detection method can also be a generalized method applied in all kinds of data

analysis in HT side channel detection.

2.5.2 Results

In Section 2.4, we discuss the di↵erence between a correlation and noise based de-

tection. Here, we use the noise based detection method for data analysis. We use

false positive and false negative error rate versus SNR(Signal to Noise Ratio) to eval-

uate the performance of our proposed HT detection method. We use small circuits

from (Wei et al., 2012a), PIC circuits and AES large circuits from (Tru, 2014) as our

testbenches. In small circuits from (Wei et al., 2012a), we have di↵erent designs for

each HT testbenches. In PIC and AES circuits from (Tru, 2014), we have two basic

designs, AES and PIC, while the HTs are di↵erent in each testbench.

Similar to the correlation method, for each test case, we synthesize, floor-plan

and place&route each circuit with Nangate45nm technology using Cadence RC and

Encounter tool flow to generate GDSII files. We generate and use those files along
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DEF files, with both location and orientation information of each gate to generate

the optical response data. We interpolate the reflective response image to reference

image for later comparisons. Depending on the resolution used for experiments, we

adjust the image interpolation density accordingly.

We then use interpolated data in the noise-based detection method to determine

whether the circuit has a HT or not. For a given circuit, we divide the imaged

matrices into batches of smaller areas in the layouts. Each batch has the same area

size and represents the reflectance data from a certain area of the image. We denote

one area a detection window frame. If we detect HTs in one of the window frames,

we fail the test of that batch. Considering that the simulation time for area of 1mm

2

is on the order of weeks, we choose a window frame with a size of 10 ⇥ 10 µm

2 for

small test benches, and 250 ⇥ 250 µm

2 for large testbenches. In Section 3.5, we are

going to analyze the impact of the window frame size on detection accuracy.

Figure 2·8(a) shows false positive and false negative rates in c499 and c1908, two

testbenches from (Wei et al., 2012a) at SNR from 10�8 to 108. Since triggers in these

testbenches are designed for low probability triggering rates, they are extremely hard

to detect using functional testing (Wei et al., 2012a). In this work, we illustrate HT

detection in the testbenches of triggers instead of the payload, given that the area

of payload circuits are much larger than the areas of triggers. Figure 2·8(b) shows

the results of evaluations in the AES testbenches from the Trusthub website using

noise detection method. For c1908, c499 from (Wei et al., 2012a) and AES-T1000,

AES-T1200, AES-T1700 from (Tru, 2014), we can see that error rates drop to zero

with SNR starting from 101 in the false negative error rates.

The testbenches in Figure 2·8(c) are AES encryption engines with HTs, and PIC

testbenches are tampered PIC16x64 circuit. In the AES testbenches, we apply a

window frame of 250µm ⇥ 250µm in the simulation setup. Figure 2·8(c), similar to
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Figure 2·6(c), summaries the all the testbenches used in this evaluation. Each dot

in the Figure 2·8(c) represents the error rate analysis of SNR varying from 10�8 to

0.1. If all error rates in this SNR spectrum fall into the error rate range, we use

corresponding color dot to represent it. As we can see from Figure 2·8(c), most of

the false positive and false negative results from various testbenches have low error

rates in our HT detection method.

2.6 Optimizations of HT Detection

To analyze the robustness and applicability of our approach, we consider the im-

pact of: process variations (Section 2.6.1), di↵erent resolutions and window frame

sizes (Section 2.6.2), and di↵erent pattern insertions (Section 2.6.3) on our proposed

method. Process variations have become the major concern for all HT side channel

detection methods. The power and area overhead of HTs can often be smaller than

the power and area variations due to process variations. Since process variations are

inevitable in IC production, detection methods should be robust enough to overcome

that and still have high HT detection rates. In our data analysis method, the de-

tection window frame size determines the number of D’Agostino’s X-squared tests in

one chip test and resolution of sampled data decides the quantity of sampling data in

single test. Both of these two factors a↵ect the detection accuracy in the Monte-Carlo

Simulations. Here, we evaluate the impacts of both of these factors on the detection

accuracy of our method. In addition to engineering fill cells to increase the detec-

tion accuracy, we propose to strategically place the fill cells in the design in order to

improve our method.

2.6.1 Process Variation

In order to model the impacts of process variations on the near-IR reflectance, we

simulate the process variations on the functional cells by stretching or shrinking the
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metal structures in the horizontal and/or vertical direction. In Figure 2·10, we show

the XOR2 X1 as an example gate to explain our methodology to analyze the e↵ect of

process variations. We use ±10% process variations in the horizontal and/or vertical

dimension and perform FDTD analysis on all these structures, except on the power

rails. In Figure 2·10, we show examples of XOR2 X1 cell with no process variation

and with ±10% in the horizontal dimension for the M1 metal layer and M1 con-

tacts. In this modeling, we only consider the process variations happening on the

inner structures of M1 and contacts. We simulate the responses of 8 kinds of basic

cells with/without process variations on the spectrum from 1µm to 3µm on X and

Y polarizations. The results show that the determinism of gate response does not

change due to process variations, which means that the di↵erence in optical response

caused by process variation is smaller than the di↵erence between two di↵erent gates.

In order to minimize the impacts by process variations, we pick the wavelength and

polarization that is the least a↵ected by process variations, which is 1.2µm and Y po-

larization for our evaluation of the noised-based detection method in both Section 2.4

and Section 2.6.4.

2.6.2 Resolution and Window Size

In noise-based data analysis, resolution determine the quantities of data to be pro-

cessed and detection window size decides the number of individual D’Agostino’s X-

squared tests in HT detection of one chip. Intuitively, higher resolution imaging can

better di↵erentiate the details of the designs. Yet the physical property of the side

channel in data gathering constraints the resolution of imaged results. In order to

quantitatively analyze impacts of resolution on accuracy, we use the down-sampled

near-IR imaging matrices to conduct comparisons between di↵erent resolutions, as

we do not have the data from other side-channel techniques. In near-IR imaging, we

use 0.1µm as the resolution for interpolation. Here, we apply 0.2µm and 0.4µm as
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interpolation resolutions in simulations to evaluate the potential lower resolution to

use in HT detection. These resolution comparisons show that the decisive factor in

side-channel HT detection is resolution.

In Section 2.5, for a given testbench, we divide the imaged matrices into batches

of the same size. We denote the area of a batch as the detection window frame size.

If we detect HTs in one of the window frames from the tested circuitry, we assume

that all the batches fail the test. In this way, we utilize much more data than one

value for evaluation. Since our test is based on the distribution of the noise, if one

window frame covers a much smaller area, the data set of white noise is more likely

to fail the noise based test. If one window frame covers much larger area, the HTs

might not be detected since the noise will average out the small modifications in the

data set.

2.6.3 Pattern Insertion

To further improve the detection accuracy of our method, we propose to strategically

place fill cells into the floor plan before place&route the design. We engineer the

fill cells to have higher reflectance than other cells. Compared to other cells, which

have reflectance around 50%, engineered fill cells have reflectance of almost 100%. As

we discussed in the Section 2.4, HTs often replace fill cells with functional cells, or

move fill cells to make room for inserting fill cells corresponding to functional cells.

Extra pre-placed fill cells secure locations on the floor plans, since fill cells are the

most distinguishable gate in backside imaging. Any changes to these cells are more

recognizable than other functional cells. In the case when HTs replace functional

cells with other set of functional cells, the pre-placed fill cells can also contribute to

improvements of the detection rates. The reflectance of cells is not only determined

by its own reflectance but also the reflectance of neighboring gates. Not only these

fill cells can have a more distinguishable signature than functional cells, but they can
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contribute their response to the neighboring cells. Changes of reflectance near fill cells

can lead to more changes on the eventual reflectance image, compared to functional

cells.

In designing the pattern, we ensure the engineered fill cells can cover as much

area as possible. In many of the cases, the pre-placed fill cells do not increase the

overall area of the design, since there are extra spaces in the original design for fill

cells. To design the pattern inserted, we need to use the minimum amount of cells

to maximize the coverage of fill cells. We experimented using multiple designs with

di↵erent sizes of fill cells and di↵erent distances between cells. The optimal solution

without increasing the area of the design, which yielded highest detection rates among

various SNR, gave the pattern in Figure 2·11.

2.6.4 Results

Process Variations

As discussed in Section 2.6, process variations can be minimized by imaging with the

wavelength which is most resistant to process variations. We simulate the responses

of 8 kinds of standard cells with/without process variations on the spectrum ranging

from 1µm to 3µm on X and Y polarizations (Figure 2·9). In Figure 2·9, the thick

red line represents the reflectance of functional cells that are free of process variation.

The other lines represent the reflectance with process variations. At the wavelength

of 1.2µm, the changes to the reflectance for the XOR2 X1 cell is less than ±5% in all

cases. In most of the cells, process variations cause less than ±5% variations in the

reflectance in X polarization imaging, and at most ±10% in Y polarization imaging

at the wavelength of 1.2µm. Only in FILLCELL X1, the reflectance of the fill cell

is unusually low, due to narrow, thin cell shape with much less metal fillings in the

horizontal direction.
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1 2 3 4
0.19 0.266 1.064 2.394 4.256
0.38 0.532 2.128 4.788 8.512
0.57 0.798 3.192 7.182 12.768

Table 2.2: Area of Inserted fill cells[µm

2], 0.19, 0.38, 0.57 represents the width of
each fill cell in the array in [µm], 1, 2, 3, 4 represents number of rows and columns
of the array.

Resolution and Window Size

Here, we use 5 di↵erent testbenches, c1355, c1908, c2670, c499, and c880a to evaluate

the e↵ects of resolution and window frame sizes on the detection rate. Figure 2·12(a)

and Figure 2·12(b) shows error rate versus signal to noise ratio for imaging in three

testbenches from (Wei et al., 2012a). Figure 2·12(a) uses 0.1µm interpolation res-

olution for imaging, while Figure 2·12(b) uses 0.2µm. In the comparison between

Figure 2·12(a) and Figure 2·12(b), the results clearly show that higher resolution

provides performance improvements at lower SNR.

Here, we conclude that in smaller testbenches, improving resolution from 0.1µm to

0.2µm does not a↵ect detection rate much. Figure 2·12(c) summaries the relationship

between resolutions and window frame sizes between di↵erent testbenches. If all error

rates in this SNR spectrum fall into the error rate range, we use corresponding color

dot to represent it. Since we are using 45 nm technology, if we decrease the resolution

to 0.4µm, many of the metal structures with minimum designed sizes become blurry in

imaging. In Figure 2·12(c), error rates in the 0.4µm column are much lower than the

previous two resolutions. In the detection window size analysis, error rates increase

as the detection window size increases, due to the imaged response of the HT can be

averaged out in large detection windows. In Figure 2·12(c) shows that high resolution

imaging can increase the HT detection accuracy.
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Pattern Insertions

By strategically placing the engineered fill cells before placing the designs, we can

further improve detection accuracies. As shown in Figure 2·11, our fill cells starts

from bottom left corner. The distance between left and bottom edges are 1.14µm

and 1.4µm, respectively. We fixed the distance between two fill cells to be 4⇥ the

width of the fill cell in the horizontal direction and 1⇥ the height of the fill cell in the

vertical direction. We vary the size of fill cells and number of the fill cells inserted

in the design to find out the optimal amount of fill cells that we need to place in the

floor plan. In Figure 2·13, the table shows that more fill cells placed in the design do

not necessarily improve HT detection accuracy. Table 2.2 shows all the area increase

for placing fill cells. The extra area cost of all the designs is less than 5% of the design

area. Since our experiments require the aspect ration of the design to be 1 : 1, there

are no extra gates needed to be inserted in the design.

2.7 Nanoantenna Implementations

To further di↵erentiate between various gates, we leverage the uniqueness of farfield

imaging response for designed metal structures embedded in individual gates. We

refer to these metal structures as nano-antennas. We engineer the nano-antennas

as asymmetrical plasmonic structures (metal rectangles), and place them between

two neighboring gates. These structures can reach high reflectance that is unique

to the illumination polarizations, wavelengths and angles. Since our design of nano-

antennas are asymmetrical, the nano-antennas have sharp contrast in polarizations,

with designed illumination wavelengths and angles. We compute the reflectance under

the signature illumination condition (polarizations, wavelengths and angles) and form

a dictionary of gate signatures. After the fabrications of the ICs, we measure the

farfield responses of these individual gates, and form the map of each gate pair on
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the layout. By comparing the locations of pre-fabricated design and the measured

map, we can easily identify the modified, shifted, or replaced gates. Our nano-antenna

designs are resistant to process variations, since the signature of the gate is constrained

by the aspect ratio of the nano-antennas.

In this work, we modified Nangate 45nm libray (nan, 2019) to illustrate the HT de-

tection using backside imaging with nano-antennas. We engineered nano-antennas for

the following gates in the library as examples of modified gates with nano-antennas:

AND, NAND, OR, NOR, XOR, XNOR. We engineer the placement of the nano-

antenna into the empty spaces between the gates, instead of placing the nano-antenna

inside the gate. We achieve a 300% improvements of the gate farfield reflection re-

sponse in the reflectance signature. In addition to the implantation of nano-antennas,

we enhance the optical reflectance of our design using the periodic structures in the

standard gate layout, resembling a grating around the nano-antenna. Figure 2·14(a)

displays the metal one layer layout of AND, OR and XOR logic gates as an example,

with the periodic structures shown in the black frame. Our proposed optical struc-

tures consist of the plasmonic nanoantenna, surrounded by the periodic structures,

shown schematically in Figure 2·14(b).

2.8 Conclusion

In this work, we developed a new technique for HT detection. Our technique uses

near-Infrared light to image the metal structures from the backside of the IC. We use

the FDTD simulations to generate the imaged results from the metal structures in the

library. After the design, we can extract the locations of each gate from our design.

Combined with the near-Infrared image results, we can generate the reflection results

of the design as “golden reference”.

In order to achieve the high contrast in backside imaging to detect HTs, we mod-
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ified the fill cells in the library to fill with metal. Any modifications, shift or replace-

ments of these fill cells can be detected by our technique. We evaluate our techniques

with di↵erent noise levels and di↵erent observation windows. Our analysis shows that

we are able to detect HTs that occupy less than 0.1% of the total chip area (which

makes it very di�cult to detect these HTs using power and delay analysis).

We also engineer the nano-antennas inside the gate pairs to increase the di↵erences

between the signatures of the gates. The nano-antenna enhances the reflectance of the

di↵erent gates under unique di↵erent illumination frequency and angles. The results

have shown that with the multi-illumination method, we are able to di↵erentiate six

di↵erent gate pairs using Nangate 45nm technology.
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(a) (b)

(c)

Figure 2·6: (a) shows false negative error rates versus SNR of c1908 and c499
testbenches from (Wei et al., 2012a) using correlation comparison method. (b)
shows AES-T1000, AES-T1200, and AES-T1700 testbenches from (Tru, 2014) us-
ing correlation comparison method. (c) is a summary of various testbenches from
both (Wei et al., 2012a) and (Tru, 2014). We use colors in the legend to denote
the error rates at SNR from 10�8 to 0.1 belonging to the corresponding range.



47

(a) (b)

(c) (d)

Figure 2·7: (a) shows part of reflectance layout in testbench c1355. We use single
gate FDTD results of the optical responses to represent every pixels in the gate
location. (b) shows the cubic interpolated results from (a) as the reference of non-
tampered circuit, which we denote it M

Y

. (c) is AWGN with a variant 0.01 of the
same area. (d) is one tampered circuit example, in which we replace one NAND
gate with an AND gate. We use the measure response, M

Y

, subtracted by the
”golden reference”, M

X

, to get the image in (d).
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(a) (b)

(c)

Figure 2·8: (a) shows false negative error rates versus SNR of two testbenches
from (Wei et al., 2012a) using noise detection method. (b) shows three testbenches
from (Tru, 2014) using noise detection method. (c) is a summary of various test-
benches from both (Wei et al., 2012a) and (Tru, 2014). We use colors in the legend
to denote the error rates at SNR from 10�8 to 0.1 belonging to the corresponding
range.
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Figure 2·9: Reflectance under ±10% variation in dimensions of metal1 struc-
tures through near-IR laser of wavelength from 1µm to 3µm. X polarization laser
reflectance is on the left and Y polarization laser reflectance is on the right.The
thick red line represents the process variation free reflectance of XOR2 X1 cell.
The other lines are the reflectance with process variation.
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(a) (b)

Figure 2·10: (a) Process variation free XOR2 X1 gate. (b) XOR2 X1 with 10%
process variation in the X dimension. Here, all the metal structures inside of the
gate have been compressed by 10% on the X dimension to model process variations.
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Figure 2·11: Fill cell pattern that we inserted before place&route of the design.
We put this array of fill cells to secure these regions from shifts or replacements of
fill cells and replacement of functional cells with other set of functional cells.
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(a) (b)

(c)

Figure 2·12: (a) shows false negative error rates versus SNR of three testbenches
from (Tru, 2014) with an imaging resolution of 0.1µm. (b) shows three of test-
benches from (Tru, 2014) using noise detection method with an imaging resolution
of 0.2µm. (c) is a summary of various testbenches from both (Wei et al., 2012a).
We use colors in the legend to denote the error rates at SNR from 10�8 to 0.1 be-
longing to the corresponding range. Here, 10, 20, and 30 refer to detection window
sizes 10µm, 20µm, 30µm, On the X axis, 0.1, 0.2, and 0.4 refer to resolutions of
the image as 0.1µm, 0.2µm, and 0.4µm, respectively.
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Figure 2·13: This figure shows a table of detection rate with di↵erent designs of
patterns. In all the patterns, we use same number of rows and columns of fill cell
arrays. On the y axis, the number represents number of rows and columns that
we used in fill cell array. On the x axis, the number represents the size of fill cells
in the array.
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Figure 2·14: (a) shows the metal 1 layer of the AND and NAND gate pair. (b)
shows the metal 1 layer of the AND and NAND with 322 nm distances between
metal structures and 200 nm nano-antenna between the two gates
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Chapter 3

Cryptographic Algorithms on a

Programmable SoC for IoT Devices

3.1 Introduction

IoT devices are low-energy devices that are connected through networks for com-

munication, performing sensing and remote control. They are deployed in our daily

lives as well as municipal and military facilities, which requires secure system oper-

ations. Secure system operation relies on both the computing and storage hardware

of the system and also the communication channels used by the systems to com-

municate with the external world. Most of the IoTs leverage strong primitives to

protect the confidentiality and integrity of the messages sent among themselves. It is

extremely important for the Internet of Things (IoTs) to protect the communication

channels between devices. IoT devices share some properties with embedded systems,

but have unique characteristics and requirements when it comes to their constrained

energy budget and extensive lifetime after deployment. Moreover, IoT devices fre-

quently handle sensitive information, such as command and control signals for smart

homes and factory floors, or alerts from smoke and fire detectors. Thus, to keep this

information safe from prying hands of adversaries, our society would be best served

by leveraging strong cryptographic primitives that can guarantee the integrity and

confidentiality of IoT data. The primitives that provide these features are commonly

classified into symmetric and asymmetric cryptography and secure hash functions.
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While strong cryptographic primitives could have avoided some of the most recent

security breaches in this area (e.g., (Miller et al., 2012; Miller and Valasek, 2014;

Illera et al., 2014; Hernandez et al., 2014; Zonouz et al., 2014)), the thorough use of

cryptography to protect IoT data has not materialized yet. Furthermore, the growth

of data-volume in the IoT space is projected to be unprecedented. For example, Cisco

predicts that the amount of data produced and consumed by 4 ⇠ 5 billion IoT devices

will grow to 15 exabytes (a billion billion bytes) by 2020 (Cis, 2016). Protecting the

data at that scale will become increasingly challenging (Mayer, 2009).

The increasing demand for data has led to the following conflict. On the one

hand, capabilities of IoT devices are constrained by a low power budget, can be

as low as 6.45 µ watts (Klinefelter et al., 2015) in energy harvesting applications.

On the other hand, cryptographic operations are required to protect all the data

produced and consumed by the IoT devices. Unfortunately, vendors of IoT devices

frequently trade-o↵ the increasing demand of power hungry cryptographic operations

by omitting prudent security practices. For example, instead of generating keys for

di↵erent AES block cipher, the vendors use the same key for di↵erent blocks (ECB

block cipher mode), which results in low entropies for the ciphered texts.

The prospect of growth, the device longevity of the IoT devices, and the obser-

vation that cryptographic operations are relatively costly when compared to regular

system functionality, call for novel solutions for IoT devices to provide cryptographic

primitives that are scalable, flexible, and energy e�cient. Historically, energy ef-

ficient and scalable implementations of cryptographic algorithms have been intro-

duced by chip manufacturers as dedicated crypto-engines. For example ARM, Intel,

and AVR, all provide hardware accelerated Advanced Encryption Standard (AES)

crypto-engines in their ARMv8 (ARM, 2016), x86 (Int, 2016a), and Atmel (AVR,

2016) platforms, respectively. These solutions come in the form of dedicated ASIC
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units embedded with the processor. ASIC implementations provide performance and

energy e�ciency advantages but they are not flexible. The longevity of IoT devices ne-

cessitates flexible cryptographic functionality. For example, cryptographic algorithms

that are found insecure (e.g. DES) should be replaced with more secure algorithms

(e.g. AES). Cryptographic algorithms with shorter key length but higher security lev-

els (e.g., Ecliptic Curve Cryptography) can replace outdated algorithms (e.g. RSA)

in order to improve e�ciency.

While the lifespan of a modern cryptographic algorithm hopefully extends beyond

the lifetime of any IoT device, less severe changes and improvements also benefit from

increased flexibility. For example, individual implementations of cryptographic algo-

rithms frequently fall victim to side-channel attacks. Case and point, is a di↵erential

power analysis side channel attack (Kocher et al., 1999), which was countered with a

more robust design (Oswald et al., 2005). However, a side-channel vulnerabilities in

an ASICs cannot be fixed, short of replacing the device. Thus, to achieve high perfor-

mance, energy e�ciency, and flexibility, we propose to implement the cryptographic

primitives in a Field Programmable Gate Array (FPGA). This choice is motivated

by the observation that the CPU architecture of choice for IoT deployments is ARM.

Moreover, many ARM platforms designed for the IoT easily combine general purpose

processors (GPPs) with an FPGA substrate. A similar move is expected to occur in

the commodity PC realm as a consequence of Intel’s recent acquisition of Altera (Int,

2016b). In this work, we design and thoroughly evaluate the performance, energy ef-

ficiency, and flexibility of various cryptographic algorithms. To this end, we evaluate

each algorithm in a realistic setting where the cryptographic functionality is imple-

mented in an FPGA and exposed to Linux user-space programs through a simple

modification of the OpenSSL (Ope, 2016) cryptographic library. Specifically, we per-

form our evaluations on a Digilent Zedboard, a System on Chip (SoC) platform that
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features an ARM core connected to an FPGA. This setup further illustrates that our

solution can seamlessly integrate with existing software that depends on the hugely

popular OpenSSL library. For example, the bare Ubuntu Linux operating system

distribution contains as many as 113 packages depending on the OpenSSL library.

Our implementation seamlessly benefits all these applications without further modi-

fications to these packages. We have completed the following work towards providing

high-performance low-energy implementations of cryptographic operations on SoCs.

• To provide IoT devices with high performance and energy e�cient cryptographic

primitives, we propose a flexible hardware solution based on commodity o↵-the-

shelf FPGAs (Section 3.3.3).

• To demonstrate feasibility, we implement cryptographic engines for symmet-

ric and asymmetric cryptographic algorithms, as well as cryptographic hash

functions on the Zedboard platform in a ready-to-use system. We develop our

functions in application program for evaluations (Section 3.4).

• We achieve flexibility in online re-configuration of FPGA hardware and block

cipher modes in software. As our FPGA-based symmetric encryption engine is

integrated into the OpenSSL library, we inherit support for the various block

cipher modes implemented by OpenSSL (Section 3.4).

• We synthesize implementations of AES, Rivest & Shamir & Adleman (RSA),

Data Encryption Standard (DES) and Secure Hash Algorithm (SHA) hardware

as obtained from Opencores (ope, 2016) (Section 3.5).

• We thoroughly evaluate these implementations along the dimensions of perfor-

mance, energy, and power. To assess improvements along these dimensions, we

also compare the FPGA-based implementations with their respective software-

only counterparts (Section 3.5).
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3.2 Threat Model

We trust the secret sharing system but not the sensor or controller communication

channels. We also trust the physical devices that run the systems. The attacker

can perform eavesdropping, man-in-the-middle, or any other attacks towards the

communication channel.

3.3 Background

3.3.1 Cryptographic Algorithms

The basic classifications of the common cryptographic algorithms are symmetric en-

cryption, asymmetric encryption and hash functions. Cryptographic algorithms are

often found to be flawed and then updated (Curtin, 2005).

Symmetric encryption or secret key cryptography encompasses algorithms that

use the same key to encrypt and decrypt. DES was used as the standard symmet-

ric encryption algorithm for almost 35 years. In 1999, DES was broken in DES I,

DES II and DES III contests (Curtin, 2005). As a result, the National Institute of

Standards and Technology (NIST) o�cially abandoned DES in 2005. In its place, in

2001, NIST introduced AES as a mathematically e�cient and elegant cryptographic

algorithm (why, 2016b). AES became the standard encryption algorithm after DES

is abandoned in 2005. Since then, it has become the standard symmetric encryption

algorithm, and is used to encrypt government documents and daily web browsing

sessions.

Asymmetric cryptography uses di↵erent keys for encryption and decryption, one

public key and one private key. In asymmetric encryption, RSA was developed in

1977. Since RSA has never been broken, it is still being widely used. In 2000, ecliptic

curve cryptography (ECC) was developed, which could provide equivalent security

with much shorter key length than RSA. The NIST reports that the ECC needs



59

224 bit key length to achieve the same level of security as RSA with 2048-bit key

length (Barker et al., 2007).

Many versions of hash functions have been widely implemented and replaced in

the past three decades. In 1990, MD4 was invented, which was later developed into

MD5. In 1993, the National Security Agency (NSA) moved from MD5 to SHA. After

two years, a weakness was found in the algorithm and it was updated to SHA1. SHA1

was a popular hash algorithm for nearly ten years. Hashing collision means that hash

function map to the same value even with di↵erent input values. Hashing collisions

are not acceptable in cryptographic hash functions, since collisions in cryptographic

hashing can be exploited for identity stealing. In 2006, SHA1 was found to have

collisions. In order to achieve collision free, today, SHA256, which is a version of

SHA2, has been widely accepted as secure hash function (why, 2016a). Considering

the constant breaks in hash function, NSA worried that SHA256 may get compromised

some day due to previous breaks in secure hashing functions. Thus, NSA prepared a

back up secure hash function to replace SHA256 later. A SHA3 competition was held

by NIST to find the algorithm that is far di↵erent from SHA2 and AES to reduce

the risk that all these cryptographic algorithms are found broken simultaneously. In

2015, SHA3 competition had a winner, Keccak. SHA3 was o�cially released in (NIS,

2016), while SHA2 is still in use.

3.3.2 Cryptographic Accelerators

In the last decade, crypto-engines have been implemented in hardware in various ways.

Their implementations can be classified into four basic categories according to their

designs in architecture (Bossuet et al., 2013): custom processor, crypto coprocessor,

crypto processor, and crypto array.

Custom processor is a General Purpose Processor (GPP) that has a custom crypto-

unit embedded inside it. Intel, ARM and AVR have adopted this design in their
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processors (ARM, 2016; Int, 2016a; AVR, 2016). The crypto-engines operations have

been included in the ISAs and compilers have been adopted to emit opcodes for the

instructions of cryptographic operations (Bossuet et al., 2013; Sakiyama et al., 2007;

Hämäläinen et al., 2007).

Crypto coprocessors contain a main GPP and several other coprocessors with

each coprocessor containing a custom hardware implementation of a unique crypto

algorithm. In order to achieve a balance between the need for flexibility and data

transfer e�ciency, the crypto coprocessors are often implemented with FPGAs instead

of ASICs (Chaves et al., 2006; Wang et al., 2010; Vaslin et al., 2007; Saarinen, 2014).

None of the coprocessors listed (Chaves et al., 2006; Wang et al., 2010; Vaslin et al.,

2007; Saarinen, 2014) in are shown to be re-configurable.

Crypto processors (Martin et al., 2008; Grand et al., 2009; Theodoropoulos et al.,

2008) are dedicated cryptographic multiprocessor system that include GPP and full

processors with crypto-engine instructions. As a result, crypto processors are not

designed for general purpose computing, but they are dedicated to crypto-related

computing. Many proposed architectures are Very Long Instruction Word (VLIW)

architecture crypto-processors.

Crypto arrays (Theodoropoulos et al., 2008; Elbirt and Paar, 2005) are groups of

GPPs coupled with cryptographic logic units. They are coarse-grained reconfigurable

architectures for large systems. They are designed to have large number of function

units interconnected by the network. The system is not designed for tuning each

single function unit, but for maximizing the system performance.

Most of IoT devices do not need high performance crypto processors or even

large system that has crypto arrays. IoT devices, however, do require GPP as the

main processing unit, and so we propose that the GPP should be implemented with

hardware core designed for general purpose. The encryption engine for the IoT devices
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should however be implemented as an accelerator on FPGA. Unlike custom hardware

designs, the proposed design has reconfigurability properties whereby one can update

the system if the algorithms are upgraded.

3.3.3 A case for FPGA based Crypto

Performance, energy consumption, and security are three major aspects for IoT de-

vices. Using software based cryptographic operations on IoT devices enable us to

upgrade the IoT device security. Nevertheless, these software based cryptographic

operations are expensive in terms of energy for IoT devices. Hence, custom hardware

is used in cryptographic implementations as it has less energy consumption and also

better performance. Custom hardware implementation of the algorithm is a viable

option, as it has performance boost and lower power consumption compared to its

software implementation. Yet cryptography implementations are frequently changing

compared to the lifetime of IoT devices. The IoT devices can be employed for 5-10

years (iot, 2016); on the contrast, the OpenSSL library is updated once a month on

average (Ope, 2016). These custom hardware implementations cannot be reconfigured

with upgrades in the implementations of cryptographic algorithms.

The FPGA clock speed is much slower than the clock in a general purpose pro-

cessor. However, the FPGA can complete the computation intensive functions much

faster than the software implementation. For example, software implementation of

AES can take up to 600,000 cycles on an ARM machine, while a hardware implemen-

tation only needs 20 cycles (ope, 2016). Even though FPGA clock speed can be 10⇥

slower than GPP, the FPGA implementation can still be up to 3,000⇥ faster.

In addition to the performance boost, FPGA implementation also consumes much

lower power to complete the same amount of computation. Compared to GPP, FP-

GAs do not have extra operations such as instruction fetching or instruction decoding.

Once data are loaded in FPGA, all the operations in the FPGAs contribute to the
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computations of the function. Without redundant operations, FPGAs have much

higher energy e�ciency in computational-intensive computations.

FPGA provides a lot of benefits in performance and power, but it also has some

drawbacks. Since the manufacturing technologies are di↵erent for FPGAs and GPPs,

manufacturers only provide GPP and FPGA on di↵erent dies, but connected in the

same package. In some platforms, they are even in di↵erent packages. One of the key

drawbacks is that in order to access discrete FPGA, GPPs are required to use o↵-die or

o↵-chip channels, which have higher latency compared to on-chip channels. System on

chip solutions like Zedboard, where GPP and FPGA have been integrated on the same

chip, can communicate through the Advanced eXtensible Interface (AXI) bus. AXI

ports are used for o↵-die, high speed communications, such as CPU communicating

with main memory. These Zedboard platforms have lower communication cost and

are viable. Thus we have used Zedboard as our target system.
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Figure 3·1: System Architecture for AES Encryption Engine

3.4 Experimental Setup

To evaluate the use of FPGAs as an energy-e�cient re-configurable substrate for

crypto-engines, we use AES, RSA, and SHA as examples of symmetric crypto, asym-

metric crypto and hash functions, respectively. We demonstrate our approach on

Zedboard platform by Digilent. The Zedboard platform uses the Zynq 7000 SoC
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chip containing two ARM9 cores and one Zynq 7000 FPGA. The FPGA substrate

interfaces directly with the system main memory through AXI ports. The persistent

storage on the Zedboard has two partitions, one is the boot partition for loading

FPGA bitstreams and starting the Linux Kernel. The other partition contains an

installation of the Linaro Linux distribution (Lin, 2016). The boot partition contains

three files: one file for mapping bitstreams to FPGA, one file for Linux Kernel, and

the device tree file defines all the devices that are present in the system. To mini-

mize unwanted energy consumption, we select minimum device tree, which boots up

the Linux system and configures the Zynq 7000 FPGA. We build a system with the

device tree we created, which consists of no other functionalities but Linux running

on the ARM core, AXI peripheral blocks and encryption IP cores as it is shown in

Fig 3·1. Vivado provides custom AXI IP core wrapper, which integrates well with

CPU communication channels on the one hand, and wraps the custom design inside

the IP wrapper on the other hand. The ARM core provides 512 32-bit channels as

communication channels for communications at maximum. The interfaces of these

channels on the FPGA side can be synthesized into registers on the programmable

logic. On the ARM core side, these channels are memory mapped I/Os, which can

be accessed by memory operations.

We downloaded the hardware implementation of AES, DES, RSA and SHA for

evaluations, from Opencores (ope, 2016), synthesized them in the custom AXI wrap-

per and mapped them on the Zedboard. The input, output and configuration bits are

connected to communication channel interface registers, and the AXI wrapper along

with our custom designs are mapped to the FPGA. These registers can be addressed

with memory o↵set provided by Vivado after the synthesis of the wrapper. With

the calculated memory locations of these registers, o✏oading encryption operations

consists of the writing phase and reading phase. During the writing phase, plain texts
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and keys are written to the corresponding memory locations. In the reading phase,

encrypted data are copied out to the output of encryption function. With FPGA

acceleration, the cryptographic functions only consists of mapping memory location

pointers to the memory locations of corresponding registers and memory copying.

To explain FPGA algorithm design, we use AES encryption as an example. In

AES encryption, two rounds of SubBytes operations have a “full di↵usion”, which

means that every state bit depends on all the state bits two rounds ago. In practice,

there has never been found a computation faster than brutal force attack within 6

rounds of SubBytes operations, and another 4 rounds are added as security margin.

That makes the AES encryption 10 rounds of SubBytes operations. The more rounds

AES has, the higher security level the algorithm has (Leith, 2010). GPP can only

do permutations or substitutions once per cycle, and as a result, it takes hundreds of

thousands of clock cycles to complete one 128-bit AES encryption/decryption. Com-

pared to GPP, the dedicated hardware implementation has a much higher e�ciency.

In order to maximize the throughput of AES encryption, the encryption block can be

implemented as fast as 20 cycles per 128-bit block encryption. As more operations can

be done in one cycle, more resources are needed to implement all the computational

operations. We implemented the AES hardware block in 20 cycles as a trade-o↵ be-

tween performance and resource utilization. The AES implementation on hardware

can be achieved with identical modules, where each of them includes one round of

SubBytes operations.

In the experiments for evaluation, we use our own application programs to load

data into memory and to encrypt/decrypt/hash for repeated measurements. We

measure AES operations in Electronic Code Book mode (ECB) and block cipher

modes. We use the same crypto-engine core for both modes in cryptography. In block

cipher modes, current block operations depend on previous block results, indicating
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a read-after-write dependency between two operations. As a result, the AES crypto-

engine can not be implemented in a streaming fashion, where plain text data are

continuously fed into crypto-engines and encrypted data are produced at the same

time. We integrate our implementation of the AES crypto function into OpenSSL

to enable other block cipher modes. In order to achieve system re-configuration, we

synthesize all the algorithms and write them to bitstreams on the memory storage.

Our hardware implementation embeds well with existing libraries so that users can

easily utilize our implementations for their designs. All that is needed to upgrade

the cryptographic libraries is to replace the bitstream file with the new bitstream file

through secure channel, such as secure shell (SSH). Whenever a re-configuration is

requested, re-configuration of the FPGA can be achieved by sending the bitstreams

to the configuration device port. After generated crypto-engine bitstreams are copied

to FPGA, the Zedboard system takes less than a second to reconfigure. In this way,

the system can get updated bitstreams and map them to FPGA accordingly.

For the power and energy analysis, we first measure the static power consumption

of the entire Zedboard platform and then record the power consumption for each

individual algorithm. We make sure that fluctuations have been averaged out in

enough number of experiments, meanwhile the measurements can be completed in a

short time. In each algorithm measurements, we record the power consumption of

166 256-bit blocks for SHA, 166 64-bit blocks for DES, 105 1K-bit blocks for RSA

and 107 128-bit blocks for AES for 10 di↵erent runs at a sample rate of 1 sample per

second. After the sampling, we average each data point among 10 runs of experiments

to get the average power for each sampling interval. We deduct the static system

power consumption of both ARM, FPGA and peripheral devices to get the dynamic

power consumption for the measurements with FPGA acceleration. For the pure

software implementation measurements, in addition to the deduction of overall static
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power consumption, we also deduct the static power consumption of FPGA. Since

the software implementation takes much longer time to finish, we use percentages of

processed data to normalize the total time for energy comparisons in the figures.

3.5 Evaluation

In this section, we show the performance, energy and Energy Delay Product (EDP)

based comparison between software implementation and hardware FPGA implemen-

tation of AES, RSA, DES, and SHA. We perform the analysis for both encryption

and decryption for all the symmetric and asymmetric cryptographic algorithm. We

present measurements results of AES Cipher Block Chaining (CBC) and AES Ga-

lois/Counter Mode (GCM) modes as the examples for block cipher modes. AES CBC

use the bit-wise exclusive or between previous encrypted block and current plain text

block as the input for the next block in order to increase pseudo randomness in

the cipher text. AES GCM, in addition, has the authentication of data along with

encryption in block cipher modes.

Look-Up Tables (LUTs) are gate level units that encode any boolean expression by

modeling such functions in truth tables. The number of LUTs decides the resources

that can be used for logic on FPGA. Table 3.1, shows a summary of LUTs utilizations

after crypto-engines are mapped to the FPGA.

AES RSA SHA DES
Number of Gates 41,427 18,687 29,650 1,275
LUTs Utilization 77.87% 35.11% 55.71% 2.4%

Table 3.1: This table shows the LUTs utilizations in FPGA of di↵erent crypto-
engines.

In the measurement tests, we process data ranging from 16 to 268, 435, 456(167)

bytes for SHA and DES blocks, from 1 to 1, 600, 000 bytes for RSA testbenches, and

from 1 to 160, 000, 000 bytes for AES. The Zedboard with the Linaro OS running the
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system consumes 4 watts on average (power consumption of the system with running

no application program but operating system). The programmable components con-

sumes less than 35 m watts (Hosseinabady and Nunez-Yanez, 2014) static power. In

the following subsections, we discuss how much the FPGA implementations improve

on performance, power and EDP in symmetric cryptography (§ 3.5.1), asymmetric

cryptography (§ 3.5.2) and hash functions (§ 3.5.3), compared to software.

3.5.1 Symmetric Cryptography

In DES implementation, the hardware implementation is 1.9⇥ faster in encryption

and 1.6⇥ faster in decryption than software (see Figure 3·2). Though the hardware

implementation does not show a significant performance improvement, the FPGA

consumes much less power. The energy consumption of the hardware implementation,

is 3.9⇥ lower in encryption and 1.9⇥ lower in decryption (see Figure 3·2). The EDP

of FPGA for encryption is 7.6⇥ lower in encryption and 3.0⇥ lower in decryption

than the software implementation (see Figure 3·2).

In the AES implementation, the VHDL code breaks the AES into 10 rounds of per-

mutation and substitution of SubBytes and inverse SubBytes operations. We expand

rounds of operations to achieve maximum throughput. As we can see from Figure 3·3,

the AES encryption has 18.8⇥ better performance and AES decryption has 116.3⇥

better performance than the software implementation. Power consumption in both

cases is almost the same (see Figure 3·3). Since FPGA implementation is much

faster than the software implementation, the energy consumption of FPGA is 13.9⇥

lower in encryption and 6.0⇥ lower in decryption than the software implementation.

Therefore, we can see 261.9⇥ EDP improvements in encryption and 704.6⇥ EDP

improvements in decryption improvement in EDP (see Figure 3·3). We also evaluate

the block cipher modes in a similar fashion (see Figure 3·4). Block cipher modes are

all implemented in software, while the crypto-engines are implemented in hardware.
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AES CBC mode shows 6.2⇥ better performance for encryption and 38.6⇥ better per-

formance for decryption. It also shows a 33.1⇥ energy reduction for encryption and

154.1⇥ performance for decryption. GCM mode exhibit 1.1⇥ performance improve-

ment and 1.2⇥ energy savings. Compared to CBC mode, the additional computation

in software makes GCM have less performance boost and energy savings.

3.5.2 Asymmetric Cryptography

In the case of RSA, the software implementation is much slower compared to the

other encryption algorithms, since RSA requires large amount of multiplications that

can be performed in parallel in hardware. With a key length of 1KB, the FPGA

shows a performance improvement of 71.2⇥ in encryption and 2983.1⇥ in decryption

compared to the software implementation (see Figure 3·5). Figure 3·5 shows that

the power consumption for RSA is less than the software implementation. Hence,

the energy cost in FPGA is 6.5⇥ lower in encryption and 4033⇥ lower in decryption

than software implementation. As a result, the EDP of FPGA shows 462.7⇥ and

12, 000, 000 + ⇥ improvement in encryption and decryption over software implemen-

tation, respectively.

3.5.3 Hash Function

In case of SHA, the FPGA has a higher power consumption (see Figure 3·6), however

the performance is better by a factor of 6.6⇥ (see Figure 3·6). As a result, the energy

consumption is 4.6⇥ less in the FPGA implementation. Therefore the EDP of the

FPGA implementation is 30.3⇥ lower than in the software implementation of SHA.

3.6 Conclusion

The current IoT devices leverage strong cryptographic algorithms (AES, RSA, and

SHA) to secure the communication channel. These cryptographic operations have
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high-performance overheads and energy costs that are not acceptable for low-power

budget IoT devices. Modern processors embed the ASIC implementations of these

cryptographic algorithms to improve the performance and reduce power consumption.

However, the longevity of some IoT devices can exceed the use of algorithms. In order

to have flexibility, high-performance, and low-power implementations, we propose the

use of FPGA based SoC in these IoT devices. The reconfigurability provides the

IoT devices the capabilities of upgrading the algorithms. In our experiments, we

showed that the performance boost, energy savings and EDP reductions in FPGA

implementations compared to software implementations ranges from 1.5⇥ to 2983⇥,

from 1.8⇥ to 4033⇥ and from 3.0⇥ to 12, 000, 000⇥, respectively across a variety of

cryptographic algorithms.
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(a) (b)

(c) (d)

(e) (f)

Figure 3·2: Figures show the comparisons between C implementation (software),
and FPGA implementation (hardware) of DES in encryption (ENC) and decryp-
tion (DEC). We encrypt and decrypt ranging from 16 blocks to 166 blocks. (a) and
(b) show time comparisons. Encryption shows 1.9⇥ faster and decryption is 1.6⇥
faster. (c) and (d) show power consumption and energy comparisons. Encryption
has 3.9⇥ energy reduction and decryption has 1.9⇥ energy reduction. (e) and (f)
show EDP comparisons. Encryption has 7.6⇥ savings and decryption has 3.0⇥
savings. We can see performance boost, energy savings and EDP reductions of
hardware implementation in DES.
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Figure 3·3: Figures show the comparisons between C implementation (software),
and FPGA implementation (hardware) of AES ECB mode in encryption (ENC)
and decryption (DEC). We encrypt and decrypt ranging from 1 block to 107 blocks.
(a) and (b) show time comparisons. Encryption is 18.8⇥ faster and decryption is
116.6⇥ faster. (c) and (d) show power consumption and energy comparisons.
Encryption has 13.9⇥ energy reduction and decryption has 6.0⇥ energy reduction.
(e) and (f) show EDP comparisons. Encryption has 261.9⇥ savings and decryption
has 704.6⇥ savings. We can see orders of magnitude performance boost, energy
savings and EDP reductions of hardware implementation in AES ECB mode.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3·4: Figures show the comparisons between C implementation (software),
and FPGA implementation (hardware) of AES block cipher modes, for both CBC
and GCM. In all the hardware implementations, AES core engine operations use
FPGA, while block cipher modes use c implementation. Thus, we still can see
significant performance boost and energy savings in CBC modes, while much less
benefits in GCM modes. In CBC mode, we encrypt and decrypt data ranging
from 1 block to 107 blocks. In GCM mode, we encrypt data ranging from 4 to
40 blocks. (a), (b) and (g) show time comparisons. CBC encryption is 6.3⇥
faster, CBC decryption is 38.6⇥ and GCM is 1.1⇥ faster. (c), (d) and (h) show
power consumption and energy comparisons. CBC encryption has 33.2⇥ energy
reduction, CBC decryption has 154.8⇥ energy reduction and GCM has 1.2⇥ energy
reduction. (e), (f) and (i) show EDP comparisons. CBC encryption has 82.4⇥
savings, CBC decryption has 233.4⇥ savings, and GCM has 1.3⇥ savings.
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(a) (b)

(c) (d)

(e) (f)

Figure 3·5: Figures show the comparisons between C implementation (software),
and FPGA implementation (hardware) of RSA in encryption (ENC) and decryp-
tion (DEC). We encrypt and decrypt ranging from 1 block to 105 blocks. (a) and
(b) show time comparisons. Encryption is 71.2⇥ faster and decryption is 2983.1⇥
faster. (c) and (d) show power consumption and energy comparisons. Encryption
has 6.5⇥ energy reduction and decryption has 4033.0⇥ energy reduction. (e) and
(f) show EDP comparisons. Encryption has 462.7⇥ savings and decryption has
12, 000, 000+⇥ savings. We can great performance boost, energy savings and EDP
reductions of hardware implementation in RSA decryption, since RSA private key
length is much longer than public key length.
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(a) (b)

(c)

Figure 3·6: Figures show the comparisons between C implementation (software),
and FPGA implementation (hardware) of SHA. We do hash ranging from 16 blocks
to 166 blocks. (a) show time comparisons. (b) show power consumption and energy
comparisons. (c) show EDP comparisons. We can see performance boost, energy
savings and EDP reductions of hardware implementation in SHA. It shows 6.6⇥
faster in time, 4.6⇥ reduction in energy, and 30.3⇥ savings in EDP.
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Chapter 4

Malware Detection using Hardware

Performance Counters with Machine

Learning

4.1 Introduction

Distinguishing between malicious and benign software has been and will continued

to be one of the biggest challenges facing computer security. As signature-based

anti-virus scanners are easily thwarted by polymorphic malware, most commercial

and academic anti-malware solutions rely on behavioral analysis. Behavioral analysis

monitors programs as they execute, collects information on the process, and upon

a violation of a behavioral profile, classifies the program as malware. To this end,

software-based behavioral analysis can draw from a wealth of semantically rich in-

formation sources, such as file names, registry keys, or network endpoints, which

characterize the program’s behavior. As software-level behavioral analysis performs

malware detection at the cost of performance overhead, recent research proposes

to reduce this performance overhead by leveraging Hardware Performance Counters

(HPCs) to classify programs as benignware or malware.

HPCs are hardware units that count the occurrences of micro-architectural events

such as instruction counts, hits/misses in various cache levels and branch (mis-

)predictions during runtime. Modern processors can capture more than 100 micro-

architectural events, but a design-imposed strict limit of 4 (on Intel (Int, 2010)) and
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6 (on AMD (AMD, 2015)) counter registers dictates that HPCs can only monitor a

small subset of these events at one time.

Under these constraints, previous works (Demme et al., 2013; Patil et al., 2004;

Kazdagli et al., 2016; Wang et al., 2016) have proposed to leverage the measured

HPC values to classify an unknown program as either benign or malicious. To this

end, measured HPC values are sampled at a fixed frequency and the resulting data

is aggregated into a time-series. Previous works record data of labeled programs in

time-series, and use the HPC values in time series to train various supervised machine

learning models. The measured HPC values yield classifiers that can subsequently

distinguish unknown programs as either benign or malicious.

The underlying assumption for previous HPC-based malware detectors is that

malicious behavior a↵ects measured HPC values di↵erently than benign behavior.

However, it is questionable, and in fact counter-intuitive, why the semantically high-

level distinction between benign and malicious behavior would manifest itself in the

micro-architectural events that are measured by HPCs. As a concrete example, con-

sider that malware as well as benignware make use of the cryptographic APIs. While

ransomware might maliciously encrypt the user data, the user might rely on encryp-

tion to safeguard privacy and data confidentiality. In both cases, ransomware and

benignware, the program performs cryptographic operations. One cannot discrimi-

nate between malicious and benign usage based on the measured HPC values. The

semantic di↵erence of whether the encryption was performed maliciously or not ex-

clusively depends on who holds the decryption keys, i.e., the attacker or the user.

There is no indication that any HPC event would correlate with the ownership of the

keys.

Given the substantial semantic di↵erence between the high-level malicious behav-

ior and the low-level micro-architectural events, it is expected from previous works
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that assert the utility of HPCs for malware detection to provide a rigorous analysis,

interpretation, and justification of why the extracted features from measured HPC

values identify the maliciousness of programs. This includes, for example, an analysis

of the events found to be the most predictive of malicious behavior and a discussion

of why these features capture behavioral information at all. Unfortunately, existing

works elide any such discussions, and instead commit the logical fallacy of “cum hoc

ergo propter hoc”1 — or concluding causation from correlation. Moreover, the correla-

tions and resulting detection capabilities reported by previous works frequently result

from small sample sets and experimental setups that put the detection mechanism at

an unrealistic advantage.

To shine a light on the feasibility of using HPCs for detecting malicious behavior,

we survey the existing literature in this field, and identify common traits that exhibit

impractical setups and mis-interpretation of data analysis. Subsequently, we design,

implement, and evaluate an experimental setup that allows us to reproduce previous

works in this area, and compare these previous results with results obtained under

more realistic scenarios.

In this work, we build an experimental setup close to the user environment, and

evaluate fidelity of machine learning models. We run all experiments in a bare-

metal environment instead of relying on virtualization techniques. This choice is

motivated by two observations. First, our experiments indicate that measured HPC

values collected for the same program running inside a virtual machine substantially

di↵er from those collected on a bare metal system (comparisons in §1.2). Second,

regular users likely execute programs directly on their systems outside of virtual

machines. Further contributing to the realism of our experiments is the selection of

training data for the machine learning models. Previous works (Demme et al., 2013;

Kazdagli et al., 2016; Wang et al., 2016) test their machine learning models using

1“with this, therefore because of this”
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measured HPC values from the same programs used during training (In §4.4.3, we

refer to this approach as TTA1). In a real-world deployment, this scenario would

reflect a situation where all programs (benign and malicious) are known and labeled

for training. In such situations, machine learning is unnecessary, as each program

could be perfectly identified based on its hash. As Anti-Virus (AV) vendors report

thousands of new malware samples every day, this scenario is highly unlikely to ever

occur in reality. Thus, we test our models with measured HPC values from programs

that have not been observed during training. This reflects a realistic scenario where,

during training machine learning models, malware samples from the same category

or family are available, but not the exact same malware that a user may encounter.

We train 6 di↵erent machine learning classifiers and compare the results obtained

with both realistic and unrealistic approaches. Unsurprisingly, we observe that classi-

fiers trained in the realistic scenario perform worse than those trained in an unrealistic

scenario. To rigorously evaluate the performance of our classifiers, we perform 1,000

iterations of 10-fold cross-validations and consistently observe False Discovery Rate2

of larger than 20%. Such high False Discovery Rates would disqualify HPC-based

malware detectors from real-world deployments, as it would flag 264 programs in a

default Windows 7 installation as malicious. Finally, we illustrate how fragile the

resulting classifiers are by simply composing a benign program (Notepad++) with

malicious functionality (ransomware). This straight-forward composition evades all

our classifiers, even when they are trained with the benign and malicious components

individually. In summary, this work makes the following contributions:

• We identify the prevalent unrealistic assumptions and the insu�cient analysis

used in prior works that leverage HPCs for malware detection (§1.2).

2F+/(F+ + T+), where F+ is number of benignware classified as malware and T+ is number of
malware classified as malware
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• We perform thorough experiments with a program count that exceeds prior

works (Demme et al., 2013; Kazdagli et al., 2016; Wang et al., 2016; Tang et al.,

2014; Singh et al., 2017) by a factor of 2⇥ ⇠ 3⇥, and the number of experiments

in cross-validations that is 3 orders of magnitude more than previous works.

• We train and test dataset similar to what prior works have done, as well as, in

a realistic setting where testing programs are not in the training programs. We

compare the e↵ects of this choice on the quality of the machine learning models

(§ 4.5).

• Finally, to facilitate reproducibility, and enable future researchers to easily

compare their experiments with ours, we make all code, data, and results of

our project publicly available under an open-source license: https://bit.ly/

2F3YRDd

4.2 Threat Model

In this work, we trust the entire system booting up until our detection system starts.

We trust the entire booting process and any hardware running beneath the system.

We do not limit the attackers while the detection system is running. The proposed

HPC system should detect the malicious programs.

4.3 Experimental Setup

In this section, we explain how we set up the experiments to gather values of HPCs

from benignware and malware. We ran our experiments on a cluster with 15 machines

as worker nodes, and a master node to distribute jobs to measure and to collect data

from worker nodes. We dispatched our jobs to the worker nodes using the Rabbitmq

message system (Rab, 2017). We collected the data back from the worker nodes using
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a Samba (Sam, 2017) server on the master node. We used Bindfs (Bin, 2017) to fuse

the permission bits of Samba server storage folder to be writable, not modifiable, not

readable, and not executable. Note that the Portable Operating System Interface

(POSIX) permission structure cannot provide the above-mentioned permission bits.

These permission bits allowed the worker nodes to record the measured HPC val-

ues, while these permission settings prevented malware from overwriting or deleting

the measured HPC values. On the worker nodes, we ran our experiments in Win-

dows 7 32-bit operating system to be compatible with malware experiments in other

works (Ozsoy et al., 2015; Khasawneh et al., 2015; Khasawneh et al., 2017). Previous

works applied time-based HPC sampling, i.e., they gathered values at a fixed sam-

pling frequency (Demme et al., 2013). We used AMD CodeAnalyst APIs to build

a time-based HPC monitoring tool, Savitor, since AMD CodeAnalyst itself cannot

provide time-based measured HPC values (Drongowski, 2008).

4.3.1 Savitor (HPC measuring tool)

We designed Savitor, a tool that monitors a target process and gathers HPC values

related to the process. Savitor runs the target process, pins the process to one

core, reads the HPC values from that core and then writes the measured HPCs

values to files on another core, in order to reduce the noise during the sampling.

Savitor records 6 HPCs at a time, which is the maximum number of HPCs that can

be recorded on the AMD Bulldozer micro-architecture without time-multiplexing.

Savitor performs time-based sampling and kills the target process at the end of each

experiment. Following the frequency limits in CodeAnalyst, we used the maximum

possible sampling frequency of 1 KHz for Savitor. Considering our limited resources

(time and hardware), we only ran each experiment of both malware and benignware

for 1 minute.
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4.3.2 Malware and Benignware

For forming the set of malware, we downloaded 1,000 malware from Virustotal (Virus-

total, 2017), and performed a test run of those 1,000 malware on worker nodes. After

the test run, we identified 962 malware which could run for more than 1 minute and

used them in our malware experiments. According to AVClass tool (Sebastián et al.,

2016), our dataset consisted of 35 distinct malware families.

In order to collect benignware programs, we first installed all the packages and

software from Futuremark (Fut, 2017), python performance module (per, 2017), ni-

nite.com (Nin, 2017), and Npackd (Npa, 2017) on the worker nodes. After installa-

tion, we traversed all the files in “Startup Menu” and “C:\Program Files” folder to

include all the unique executable programs in our benignware dataset. We avoided

the complication of re-installation by excluding all the executable program files with

“uninstall” in their names. We performed a test run of all these programs, and

selected 1,382 benignware that could run for 1 minute.

To avoid the classification bias, we matched the number of malware and benign-

ware used in our experiments. Classification bias exists in classification problems if

the number of items in each class is di↵erent. For example, in a classification prob-

lem with two classes, A and B, if class A makes up 80% of the data set and class

B makes up 20% of the dataset, the baseline of precision in classifying A is 80%.

Any designed machine learning models whose precision is lower than 80% are worse

than the precision estimated with prior probability. In our work, we matched the

number of benignware and malware; at the same time, we reported precision, recall

and F1-score to eliminate any bias.
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Receive Job Run Savitor
Run Program

(Malware/Benignware)

Run Monkey

Reset Environment

Reload Partition

Kill All Spawned Processes

Malware

Benignware

Benignware that has a window

Figure 4·1: Our workflow of benignware/malware experiments: The worker node
receives the dispatched jobs of experiments from the master node. The worker
node spawns a Savitor process, and then Savitor runs the target process (benign-
ware/malware). The dotted arrow (99K) means that the action does not always
happen. If the application has a window for interaction, we attach a monkey tester
to the window. The solid arrow (!) shows that actions always happen. We reset
the environment after each experiment. the worker node kills any other processes
spawned by the target process after each benignware experiment. At the end of
each malware experiment, we reboot the machine into the Debian partition to
reload a clean Windows image.

4.3.3 Method for Running Experiments

We ran our benignware and malware experiments on identical hardware and operat-

ing system. However, there are a few di↵erences between malware and benignware

experiments. We explain the workflow of malware and benignware experiments using

one dispatched job in Figure 4·1. The boxes are the steps that we follow, and the

solid arrow means that the next step always happens. The dotted arrow means that

the action happens under the conditions of the labels.

Malware Experiment

We follow the steps in Figure 4·1 to run the experiments. Before any malware ex-

periments, we dropped all the requests to any network outside the master node to

ensure that malware does not a↵ect other machines. At the beginning of each exper-

iment, the worker node runs a clean copy of Windows and waits for a new job. Once

the worker node receives the job from the master node, Savitor runs the malware
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and records the measured HPC values. After running each malware experiment, we

provide an identical, malware-free environment for the next malware experiment by

reloading the Windows partition. In order to reload Windows image, we installed

Debian 8 in the other partition of the hard drive on each worker node. Whenever a

worker node boots into the Debian partition, the worker node copies a clean Win-

dows image to the other partition. We modified the GNU GRand Unified Bootloader

(GRUB) to make the machine boot into an alternate partition every time it reboots.

After reloading the image, the system reboots into Windows again and runs the next

job dispatched from the master node.

Benignware Experiment

Similar to the malware experiments, benignware experiments also follow the workflow

in Figure 4·1. We connected the worker nodes to the outside network to ensure the

benignware receives network responses. Programs, such as browsers, require network

responses to perform similarly as in a user environment. When the worker node

receives a job from the master node, Savitor starts the target process (benignware

program), and a monkey tester is attached to the target process if the target process

has an interactive window. The Monkey tester works similar to Android’s Monkey

tester (And, 2017), as it interacts with the target process by periodically sending

random keystroke, mouse clicks, and scrolling operations to the window of the target

process. The behavior of the monkey tester simulates the interaction between a user

and the programs. After Savitor samples the measured HPC values, the system resets

by killing any processes spawned during the experiments. Since the benignware does

not try to infect the Windows partition and perform malicious operations, we do not

reload the Windows partition. After killing the spawned processes, the worker node

receives the next job from the master node and starts the next experiment.
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4.4 Machine Learning Models

In this section, we present how we apply machine learning models on measured HPC

values. One of the common problems in machine learning is the Curse of Dimen-

sionality. Curse of Dimensionality means that machine learning models in a high-

dimensional space have lower detection rates compared to models in lower-dimensional

spaces (Goodfellow et al., 2016). The redundant dimensions in high dimensions con-

tribute to the measurement of noise in the training dataset, which result in a decrease

in the detection rates of testing. Curse of Dimensionality motivates the reduction of

dimension; however, reducing dimensions may cause underfitting due to the lack of

representation during training. In order to overcome both overfitting and underfit-

ting, the design of machine learning models requires the minimum number of features

that represent most of the measured HPC values. To this end, we perform a quan-

titative analysis to extract features from the measured HPC values of our selected

micro-architectural events.

4.4.1 Reduction of Dimensions

In this work, we use Principal Component Analysis (PCA) to reduce the dimensions.

By reducing the dimensions, the machine learning models can use the linearly inde-

pendent components to easily classify the examples into di↵erent classes. Here, we

show one synthetic dataset (a subset from our experiments) separated from overlap-

ping measured HPC values by applying PCA results. In the next subsection (§4.4.2),

we explain how we choose the sizes of examples and features.

PCA applies eigen-decomposition to decompose the training standard matrix (A),

where columns are features and rows are examples, into the multiplication of eigenvec-

tors (V ) and eigenvalues (�) in Equation 4.1. The standard matrix (A) is transformed

into lower-dimensional data space by multiplying the eigenvector matrix V , which can
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Event: The number of Load operations dispatched to the Load-Store unit
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Figure 4·2: X axis is the feature number and Y axis is the values of each example.
Red box corresponds to the malware and blue box corresponds to the benignware.
The dashed line is the mean of each distribution. The boxes represent 25% ⇠ 75%
of the distributions. The whiskers (the short, horizontal lines outside the boxes)
represent the confidence interval equivalent to µ ± 3� of Gaussian Distribution
(0.3% ⇠ 99.7%). We measure The number of Load operations dispatched to the
Load-Store unit event 5 times in one benignware (creative2 from Futuremark)
and one malware. The distributions of the two subplots represent 5 examples
in the experiments. (a) Distributions of sampled values before the reduction of
dimensions: We cannot distinguish between the 5 malware examples and the 5
benignware examples. (b) Distributions of sampled values after the reduction
of dimensions: We apply the reduction of dimensions to examples in (a) to get
examples in (b). We can separate all the examples in (b) due to the gaps between
values of malware and benignware in both features.

also be approximated with the major eigenvector matrix (V 0).

A = V �V

�1
⇡ V

0
�V

0�1 (4.1)

We present the distributions of examples before and after the reduction of dimen-

sions, A5⇥32 in Figure 4·2(a) and A5⇥32V
0
32⇥2 in Figure 4·2(b). We measure the number

of Load operations dispatched to the Load-Store unit (Table 4.1) event 5 times in one

benignware (creative2 from Futuremark) and one malware 3. The input matrices (A)

of both benignware and malware have 32 features and 5 examples. In Figure 4·2, X

axis shows the feature number and Y axis shows the values of each example. Red

box refers to the malware and blue box refers to the benignware. The dashed line is

the mean of each distribution. The boxes represent 25% ⇠ 75% of the distributions.

The whiskers (the short, horizontal lines outside the boxes) represent the confidence

3SHA256 hash value: 3737 5106 291b ecca 8427 766e 24f5 4887
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interval equivalent to µ ± 3� of Gaussian Distribution (0.3% ⇠ 99.7% of the total

distributions).

From Figure 4·2(a), we can see overlapping of boxes and whiskers in all the

columns. Figure 4·2(b) shows the results of the data matrix (A) multiplied with

the eigenvector matrix (V 0). We can clearly classify the malware or benignware, since

there are gaps between the distributions of malware and benignware in both features.

By multiplying the eigenvector matrix, di↵erent features contribute to classification

with weights according to their abilities to discriminate data. Hence, we can achieve

higher classification rates with lower dimensional data.

4.4.2 Selection of Events

As discussed in §4.4.1, we reduce the dimensions to extract features from the measured

HPC values to form the machine learning models. At the same time, the hardware

limitation on number of HPCs without time-multiplexing requires the selection of

events from more than 100 available micro-architectural events. Hence, we designed

a method to select our micro-architectural events, while reducing the dimensions of

examples at the same time.

In our method, our selection of events is based on minimizing 3 sources of losses

These 3 main sources of losses in the measured HPC values are:

• Jitter: the timing variations between identical measurements of the measured

HPC values.

• Noise: the amplitude variations between identical measurements at the same

time-stamp of the measured HPC values.

• Approximation error: the loss of the minor eigenvectors.

Jitter and noise are introduced due to the limitations in the measurements. As

we will discuss in §4.6, noise and jitter cannot be eradicated. To minimize the impact
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from jitter, we divide the measured results into 32 equal time intervals, and sum

the gathered values in each time interval to form 32 histogram bins (each bin corre-

sponds to one feature). This is the same design choice as the one used by Demme

et al. (Demme et al., 2013). Histogram bins preserve the sampled information, while

reducing the e↵ects of jitter in the values of HPCs. In addition to jitter, we ob-

serve noise in the measured HPC values, as Weaver et al. do in their work (Weaver

et al., 2013; Weaver and McKee, 2008). To minimize the noise for our selection of

events, we repeat the measurements on the same program and the same events 32

times, and then we calculate the cumulative sum in each bin, in order to increase the

Signal-to-Noise Ratio (SNR). Assuming the noise introduced during the measurement

is Additive White Gaussian Noise (AWGN) (Haykin, 1983), this approach increases

the SNR by a factor of 32.

Approximation error is introduced by the elimination of minor eigenvectors in V

when we transform V to V

0. For each example, we multiply the measured HPC values

to the major eigenvector matrix V

0 instead of V . In our method, by trading o↵ the

number of eigenvectors in the major eigenvector matrix, we reduce the dimensionality

and increase the approximation error in Equation 4.2. We use the product of the

standard matrix A and the eigenvector matrix V

0 as our input matrix in machine

learning model as we described in Equation 4.1.

AV =
mX

i=1

v

(i)
�

(i) +
nX

i=m+1

v

(i)
�

(i) (4.2)

=
mX

i=1

v

(i)
�

(i) + ✏(↵v�) (4.3)

In equation 4.2, �

(i) denotes the i

th largest eigenvalue with n eigenvalues (�). v

(i)

is the corresponding eigenvector of �

(i), and m is the number of reduced dimensions.
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Equation 4.2 represents the separation of m major and n � m minor eigenvectors.

The first term in Equation 4.2 is AV

0. The approximation error is the di↵erence

between AV and AV

0, which is the second term in Equation 4.2. In Equation 4.3, ✏

denotes the upper bound function. ↵ denotes error coe�cient, with the error term

(AV � AV

0) divided by the original input data (AV ). Equation 4.3 expresses that

with a given m value, we can estimate the approximation error using ↵. By having

more eigenvectors in the eigenvector matrix V

0 (larger m), we can reduce ↵, which

corresponds to a lower approximation error. As we observe from Equation 4.3, the

approximation error depends on the choice of eigenvectors. We cannot determine the

eigenvectors before we train and test our dataset. However, we can use a subset of

programs to compute the eigenvectors and choose the parameters in Equation 4.3.

As in real-life, it is impossible to use the entire dataset for the selection of events.

Here, we chose a subset of programs, 7 programs from the Futuremark (Fut, 2017)

benchmark for the selection of events. The choice of programs from Futuremark

benchmark suite is driven by the fact that Futuremark has analyzed user behavior

and automated this behavior in the benchmarks. All the programs of Futuremark

benchmark are real-world applications commonly used in o�ce. We measured the

programs at at the frequency of 1 kHz for 1 minute, as we described in §4.3.1. Our

experimental hardware (AMD Bulldozer micro-architecture) enables us to monitor

130 events (6 at a time). We accumulated the measured HPC values into 32 bins,

with each measurement summed into 32-dimension vector. Thus we ran each of the

7 programs from Futuremark Benchmarks on 130 micro-architectural events 32 times

(130⇥32⇥7).
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Figure 4·3: Error Bound vs the Number of Eigenvetors Plot: when choosing
di↵erent number of eigenvectors for reduction in dimensions, the error bound ↵

changes according to m eigenvectors.
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↵(m) = min
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(4.5)

With the results (130⇥32⇥7) from the experiments, we denote the k

th event as e

k

,

its i

th eigenvalue as �

(i)
ek , and the corresponding eigenvector as v

(i)
ek for k = 1, 2, . . . 130

in Equation 4.3, in order to re-write Equation 4.3 into Equation 4.4. In Equation 4.5,

e

j

corresponds to the 6 events with the minimum ↵ when j = 1, 2, . . . 6, excluding

the events whose measured HPC values are all zeros. We apply Equation 4.1 to

compute v

ek
and �

ek
. We calculate the eigenvalues for 130 events and find out that

there is no event among 130 events with more than 10 eigenvectors (n  10). We

exclude all the events that only have zero values in the measured HPC values, since

these events provide no signal in the measured HPC values. By changing the number

of eigenvectors (m), we can calculate the error coe�cient (↵) in Equation 4.5. We

plotted the error coe�cients for m = 1, 2 . . . 5 in Figure 4·3. The gradient of ↵

decreases when m is more than 2. Subsequently, we consider the optimal trade-o↵

between m and ↵ when m = 2 and ↵(2) = 0.072%, which corresponds to the upper
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Table 4.1: Description of the Selected Events (AMD, 2015)

Events Definition
0x04000 The number of accesses to the data cache for load and store references
0x03000 The number of CLFLUSH instructions executed
0x02B00 The number of System Management Interrupts (SMIs) received
0x02904 The number of Load operations dispatched to the Load-Store unit
0x02902 The number of Store operations dispatched to the Load-Store unit
0x02700 The number of CPUID instructions retired

bound of error as 0.072% AV , with the linear combination of 2 components from v

ej .

The 6 events, which we selected in our experiments, are listed in Table 4.1. We

assemble the eigenvectors of 6 events, 2 for each event, and we get the v matrix in

Equation 4.6.

v192⇥12 =

2

6664

v

(1)
ek1

, v

(2)
ek1

,

v

(1)
ek2

, v

(2)
ek2

,

. . .

v

(1)
ek6

, v

(2)
ek6

3

7775
(4.6)

In Equation 4.6, v(i)
ekj

represents the i

th largest eigenvector in j

th event. Each v

(i)
ekj

is

a 32⇥ 1 eigenvector. By multiplying each example with the v eigenvector, we reduce

the dimensions from 192 (6 events ⇥ 32 bins) to 12 (6 events ⇥ 2 components).

In summary, we list following steps to select the events:

• Run 7 programs 32 times and measure 130 micro-architectural events.

• Divide the total run time of each program into 32 intervals and sum the mea-

sured HPC values in each interval into a separate bin.

• Sum the bins across di↵erent runs of the identical measurements.

• Apply PCA on 130 events with 7 programs.

• Compute the approximation errors for 7 programs.

• Find 6 events with the least approximation errors.
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Four of the selected events in our experiments align with other works that do not

provide any analysis of their selection of events (Demme et al., 2013; Kazdagli et al.,

2016; Ozsoy et al., 2015; Khasawneh et al., 2015; Khasawneh et al., 2017). We observe

that one event is related to data cache load and store references. Two other micro-

architectural events are related to load and store operations, which have also been

used in other works. It is not clear how load and store operations deterministically

contain the information of malicious behavior. Any statistics of memory behavior

should be legitimate in program execution, since the memory accesses inheretly exist

in every program. In our selection of events, we include the events in kernel mode

to capture complete program behavior. The remaining 3 selected hardware events

related to cache flush behavior, system management interrupts and CPUID instruc-

tions. However, we cannot infer any reasons why these instructions/operations by

the kernel can be mapped to any malicious user-level behavior.

4.4.3 Classification Models

In §4.4.2, we selected the 6 events to monitor and formulate the eigenvector matrix

in Equation 4.6. With this method, we can extract features from the measured HPC

values to get examples for machine learning models, i.e. traces in our datasets of

benignware and malware.

To have the same number of measurements on the same program samples as in

§4.4.2, we run each benignware program and each malware program 32 times, and

collect 61,568 measured HPC values(2⇥962⇥32), 30,784 for benignware and 30,784 for

malware (1,026 CPU hours). We sum the measured HPC values into 32 histogram bins

(as described in §4.4.2) for each of 6 events. Each example of histogram binned HPC

values has 192 (6 events⇥32 bins) features. By multiplying each example with the v

eigenvector in Equation 4.6, we reduce the dimensions from 192 (6 events ⇥ 32 bins)

to 12 (6 events ⇥ 2 components). To this end, we convert the measured HPC
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values into histogram bins, and then transform them into traces.

Using the reduction of dimensions (§4.4.2), the input matrix A30,784⇥192 (30,784 ex-

amples and 192 features) of benignware or malware is transformed to lower-dimensional

space as A

0
30,784⇥12 (30,784 examples and 12 features). For training and testing of the

machine learning models, we are going to separate the examples in matrix A

0 into

training and testing datasets (training-and-testing split). In our experiments, we con-

sider 2 Training-and-Testing Approaches (TTA) to divide our dataset into training

set and testing set. The two approaches are as follows:

TTA1 Dividing 30,784 traces with a split of 90:10 ratio, resulting in 27,704 traces (90%

of 30,784 traces) as training dataset and 3,078 traces (10% of 30,784 traces) as

testing dataset both in benignware and malware experiments.

TTA2 Dividing 962 programs with a split of 90:10 ratio, resulting in traces of 866

programs (90% of programs) as training dataset and traces of 96 programs (10%

of programs) as testing dataset both in benignware and malware experiments.

In the first training-and-testing approach (TTA1), we randomly choose 27,704

traces as training dataset and 3,078 traces as testing dataset both in benignware and

malware experiments. In this approach, the traces resulting from the same program

sample can appear in both training and testing datasets. As a result, such an approach

corresponds to a highly optimistic and unrealistic scenario where the testing programs

(benignware or malware) are available during training. Given that thousands of new

malware appearing everyday, it is impossible to include all the malware that user may

encounter. Hence, TTA1 should not be applied in training machine learning models

for malware detection.

In the second training-and-testing approach (TTA2), we randomly choose traces

of 866 programs as training dataset and traces of 96 programs as testing dataset
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Table 4.2: Detection Rates with TTA1 and TTA2: Red means the value is less
than 50% and bold means that the value is more than 90%

TTA1 TTA2
Models Precision[%] Recall[%] F1-Score[%] AUC[%] Precision[%] Recall[%] F1-Score[%] AUC[%]

Decision Tree 83.04 83.75 83.39 89.65 83.21 77.44 80.22 87.36
Naive Bayes 70.36 7.97 14.32 58.11 56.72 5.425 9.903 58.38
Neural Net 82.41 75.4 78.75 84.41 91.34 22.16 35.66 66.43
AdaBoost 78.61 71.73 75.01 80.57 75.78 65.6 70.32 77.96

Random Forest 86.4 83.34 84.84 91.84 84.36 78.44 81.29 89.94
Nearest Neighbors 84.84 82.37 83.59 89.26 82.7 77.88 80.22 86.98

both in benignware and malware experiments. TTA2 corresponds to a realistic case

where during training model, we do not have access to the exact programs, benign or

malicious, that users run in the real life. To validate across our models, we perform

10-fold cross-validations 1,000 times. For each 10-fold cross-validation, we randomly

shu✏e the dataset to ensure di↵erence across 1,000 rounds. In each 10-fold cross-

validation, each example in the dataset is used in training 9 times and testing once.

This ensures the identical times of training and testing for every single example,

compared to randomly shu✏ing the data and validating the machine learning models.

With 1,000 10-fold cross-validations, we can ensure that the standard deviations of

detection rates increase no more with more rounds of validations.

In our experiments, we perform training and testing with both TTA1 and TTA2.

We compare the detection results in terms of precision, recall, F1-score, and Area

Under Curve (AUC) in both approaches. We use the implementations of machine

learning models in scikit-learn package (Pedregosa et al., 2011): DT, RF, NN, KNN,

AdaBoost, and Naive Bayes. The seed for randomness in machine learning initializa-

tion and division of data comes from the random number generator “/dev/urandom”.

During training, we set the parameters of the machine learning models as described

below to prevent the machine learning models from underfitting due to default limi-

tations in computational resources set by scikit-learn. We used default values for the

remaining parameters in scikit-learn.

• DT: We set the maximum depth as 100 to classify the malware and benignware.
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The number of levels is su�cient to avoid any underfitting of the model.

• RF: We set the maximum depth to be the same as in the DT. We enable a

maximum 200 estimators in the RF. The number of estimators is su�cient to

avoid any underfitting of the model.

• NN: The network we use here is a Multilayer Perceptron (MLP) neural network

having 4 layers with 100 neurons in each layer. We apply “tanh” function as

the activation function. We use L2 regularization on the parameters in the NN.

• KNN: We choose 5 as the number of nearest neighbors, and perform experiments

with K value varying from 1 to 20. When K equals to 5, the F1-score reaches

the highest detection rates.

• AdaBoost: Adaboost is an Ensemble classifier, which utilizes a collection of

estimators. Adaboost fits a sequence of classifiers on the training data. The

predictions are decided based on a majority vote (Freund and Schapire, 1995).

The default value of the number of estimators is 50. We use 200 estimators

instead of 50, since our test experiments show that 200 estimators have a higher

detection rate for AdaBoost.

• Naive Bayes: We use the same number of malware and benignware traces in

the model. The prior probability is 50%.

4.5 Experimental Results

In this section, we show our results with the experiments to detect malware using

HPCs and contrast the ones obtained in previous works. We report malware detection

rates in terms of precision, recall, F1-score, and Area Under Curve (AUC) in Receiver

Operating Characteristic (ROC) plots. We use the positive label to denote malware
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Figure 4·4: Receiver Operating Characteristic (ROC) curve of 5 models. (a)
The AUC of DT, NN, AdaBoost, RF, and KNN using (TTA1) is 89.65%, 84.41%,
80.57%, 91.84%, and 89.26%, respectively. (b) The AUC of DT, NN, AdaBoost,
RF, and KNN using (TTA2) is 87.36%, 66.43%, 77.96%, 89.94%, and 86.98%,
respectively.
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and the negative label to denote benignware. True positive samples (T+) are malware

programs that are classified as malware. False positive samples (F+) are benign

programs that are classified as malware. False negative samples (F�) are malware

programs that are classified as benignware. Precision is defined as the number of true

positive samples (T+) divided by the number of all the positive samples, (T++F+) in

Equation 4.7. Recall is defined as the number of true positive samples (T+) divided

by the sum of the number of true positive (T+) and the number of false negative (F�)

samples in Equation 4.7. The F1-score is the harmonic mean of precision and recall

in Equation 4.8.

Precision =
T+

T+ + F+
Recall =

T+

T+ + F�
(4.7)

F1 � score =
2 ⇥ Recall ⇥ Precision

Precision + Recall

=
2T+

2T+ + T� + F�
(4.8)

The ROC curve represents how the true positive rate varies with di↵erent thresh-

olds for the false positive rate. We can reach 100% true positive rate only if we accept

a false positive rate of 100%. Conversely, if we want to achieve a 0% false positive

rate, then that leads to 0% true positive rate. By changing the false positive rate

threshold, we can trade-o↵ the false positive rate with the true positive rate. Thus

we use AUC of ROC curve to measure how e↵ective classifiers are at various false

positive rate thresholds.

4.5.1 Malware Detection

In this section, we report the detection rates (precision, recall, and F1-score) with 2

di↵erent data divisions, TTA1 and TTA2. TTA1 is the division of data according

to the traces ; while TTA2 is the division of data according to the programs, as defined

in §4.4.3.
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Results from TTA1 Experiments

We train and test traces using various machine learning models and determine the

detection rates (precision, recall, and F1-score) with TTA1. Then we plot the ROC

curves and compute the AUCs. Table 4.2 shows the precision, recall, F1-score, and

the AUCs of ROC curves. Any results with a value larger than 90% and smaller than

50% are set in bold and red, respectively. Figure 4·4 shows the ROC curves and the

AUCs of ROC for di↵erent machine learning models.

DT uses the di↵erent features to classify examples at di↵erent tree branches. RF

uses a collection of DTs to perform classifications. KNN determines the classes of

each examples by comparing the number of examples within predefined distances.

DT, RF, and KNN models target classifying outliers in the dataset (John, 1995),

which fit our malware detection problem. According to our results, the detection

rates of precision, recall, and F1-score are higher in DT, RF, and KNN models than

any other models. The F1-scores in DT, RF, and KNN models are 83.39%, 84.84%,

and 83.59%, respectively. Figure 4·4 shows the higher true positive rates of RF and

DT with di↵erent thresholds, compared to other models. Accordingly, the AUCs in

DT, RF, and KNN are 89.65%, 91.84%, and 89.26%, respectively. Figure 4·4(a) shows

that the AUCs of ROC curves in DT and RF are the highest in various thresholds of

false positive rates.

AdaBoost model leverages a collection of machine learning models. AdaBoost

and NN model are designed to classifying clusters of examples. They perform worse

in terms of detection rates compared to DT, RF, and KNN, as these models are

designed to classify outliers. The F1-scores in AdaBoost and NN are 75.01% and

78.75%, respectively. In Figure 4·4(a), AdaBoost and NN models are also worse than

DT and RF models. The AUC values for AdaBoost and NN are 80.57% and 84.41%,

respectively.
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The classification of Naive Bayes is only based on the probabilities of the oc-

currences of malware and benignware, which is a poor assumption to design classi-

fiers (Rennie et al., 2003). In our design, we use the prior probability (50%) to design

the Naive Bayes classifier. Naive Bayes model has many false negatives, which causes

the F1-score value to be as low as 14.32%. The AUC of Naive Bayes is 58.11%. As

a result, Naive Bayes classifies examples between malware and benignware with low

detection rates.

Results from TTA2 Experiments

We perform another experiment of training and testing using various machine learning

models to show the detection rates (precision, recall, and F1-score) with TTA2. The

F1-scores of DT, RF, KNN, Naive Bayes, AdaBoost, and NN models are 80.22%,

81.29%, 80.22%, 9.903%, 70.32%, and 35.66%, respectively, using TTA2, compared

to 83.39%, 84.84%, 83.59%, 14.32%, 75.01%, and 78.75%, respectively, using TTA1

in Table 4.2. By using TTA2, the detection rates are lower compared to the scenario

using TTA1.

Figure 4·4(b) shows the ROC curves and the AUCs of ROC for di↵erent machine

learning models using . The AUCs of ROC of DT, RF, KNN, Naive Bayes, Ad-

aBoost, and NN models are 87.36%, 89.94%, 86.98%, 58.38% 77.96%, and 66.43%,

respectively, using TTA2 in Figure 4·4(b), compared to 89.65%, 91.84%, 89.26%,

58.11%, 80.57%, and 84.41%, respectively, using TTA1 in Figure 4·4(a).

Demme et al. showed precision varying from 25% ⇠ 100% (Demme et al., 2013)

among di↵erent families of malware, without any recall values reported using TTA1.

The median precision among all the families of malware is around 80%, with TTA1.

Precision value of 80% corresponds to the False Discovery Rate4 of 20%. Consider

that a default Windows 7 installation has 1,323 executable files, an AV system with a

4False Discovery Rate (F+/(F+ + T+)
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Figure 4·5: Box plots of distributions of 10-fold cross-validation experiments
using (a) TTA1 and (b) TTA2. Red diamonds are means, and blue box corresponds
to cross-validation experiment results that lie between 25 and 75 percentiles. The
whiskers (the short, horizontal lines outside the blue box) represent confidence
interval equivalent to µ±3� of a Gaussian Distribution. The blue dots are outliers
that are outside the µ ± 3� regime. On the X-axis, Prec is precision, Rec is recall,
and F1 is F1 score. AUC is area under curve in ROC. These 10-fold cross-validation
experiments show that we cannot achieve 100% malware detection accuracy.

20% False Discovery Rate would flag 264 of these files incorrectly as malware – clearly

such a detection system would not be practical. As a result, such a malware detec-
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tion method is not usable in real-life systems. With thousands of malware reported

everyday, the o✏ine training of malware detection cannot capture the same malware

program that a user may encounter. In real-life cases, the malware detection rates

of HPC-based malware detection would be those in columns of TTA2 of Table 4.2

and Figure 4·4(b). These results show that high detection rates and robustness in

detection are over-estimated due to division of data during training. Our comparison

using TTA1 and TTA2 shows that using TTA2 can cause the precisions to be even

lower. Thus, prior works could have even worse precisions by using TTA2. In the

next subsection, we will show that the results presented in this subsection are not an

exception.

4.5.2 Cross-Validation

Cross-validation is a common practice in machine learning for avoiding the overfitting

of machine learning models. Cross-validation is used to validate whether the detection

rates are consistent with repeated training and testing (Kohavi et al., 1995). If

the detection rates fluctuate during cross-validation, we can infer that the machine

learning models are not trained properly. We observe that previous works either have

no cross-validation or report no results from cross-validations. The lack of proper

cross-validation motivates us to further evaluate the machine learning models using

cross-validation. We use 3 times standard deviation (3�) to quantify the fluctuations

in detection rates. 3� refers to 0.3% ⇠ 99.7% of random instances distributed within

the range of 3�. In the context of malware detection, a high value of 3� in detection

rates means that the performance of the model is not stable across di↵erent datasets.

Cross-validations for TTA1 Experiments

A common practice of cross-validation is using 10-fold cross-validation (Kohavi et al.,

1995). 10-fold cross-validation divides the dataset into 10 subsets with equal number
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of examples. It then performs training on 9 subsets and testing on the remaining

one, with each subset as a testing subset. The standard deviations of detection

rates in 10 experiments show whether the detection rates of the model are stable

across 10 experiments. We consider that either a split of 60 � 20 � 20 training-

testing-validation or 10-fold cross-validation is not su�cient cross-validation, since

the standard deviations of the detection rates increase with more examples in the

dataset. We repeated the 10-fold cross-validations until the standard deviations of

detection rates do not increase with more cross-validations. In this work, we perform

cross-validation 1,000 times (randomly shu✏ing the examples before each training-

and-testing split), which is 3 orders of magnitude more than previous works.

Figure 4·5 shows the distributions of detection rates (precision, recall, and F1-

scores) with both TTA1 and TTA2 for various machine learning models. In Fig-

ure 4·5, the red diamonds are the means, and the blue boxes correspond to distribu-

tions of detection rates (Precisions, Recalls, and F1-scores) lying between 25 and 75

percentiles. The whiskers (the short, horizontal lines outside the blue box) represent

the distributions of detection rates lying between 0.3% and 99.7%, which is equivalent

to µ ± 3� of a Gaussian Distribution. The blue dots are outliers that are outside the

µ ± 3� regime. A wide spread of distributions in detection rates means that the de-

tection rates fluctuate across di↵erent training datasets. Conversely, a narrow spread

of distributions means that the detection rates are stable across di↵erent training

datasets. In DT, RF, KNN, NN, AdaBoost, and Naive Bayes models, the mean of

distributions of F1-scores are 82.17%, 83.75%, 82.28%, 74%, 72.27%, 12.15%, respec-

tively, with 3 standard deviations (3�) of 1.416%, 1.326%, 1.388%, 13.2%, 2.365%,

2.392%, respectively.
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Cross-validations for TTA2 Experiments

In DT, RF, KNN, NN, AdaBoost, Naive Bayes models, the mean of distributions

of F1-scores using TTA2 are 82.13%, 83.61%, 82.2%, 73.69%, 73.43%, 12.21%, com-

pared to 82.17%, 83.75%, 82.28%, 74%, 72.27%, 12.15% using TTA1, respectively. In

DT, RF, KNN, NN, AdaBoost, Naive Bayes models, the mean of distributions of F1-

scores using TTA2 are 2.145%, 2.336%, 2.248%, 14.88%, 3.29%, 2.611%, compared to

1.416%, 1.326%, 1.388%, 13.2%, 2.365%, 2.392% using TTA1, respectively. Compar-

ing the results using TTA1 and TTA2, the standard deviations of DT, RF, KNN,

NN, AdaBoost, Naive Bayes models increased by 1.515⇥, 1.762⇥, 1.62⇥, 1.127⇥,

1.391⇥, 1.092⇥, respectively. The overall detection rates using TTA2 have much

higher variations compared to ones using TTA1.

As previous works did not report standard deviations of their cross-validations, we

cannot compare these results. From the Figure 4·5, we can conclude that reporting

results of one training-and-testing experiment does not provide su�cient information

in performance of machine learning models. We can only evaluate the performance

of these models by providing a distribution of detection rates.

The di↵erence between standard deviations in Figure 4·5(a) and Figure 4·5(b) is

due to the unrealistic assumption that the programs in the training set appear in the

testing dataset. Figure 4·5(b) presents the results where the malicious program is not

included in the training dataset. In conclusion, the mean of the distribution using

TTA2 is lower than that using TTA1, while the standard deviation of distribution

using TTA2 is higher than that using TTA1. In order to have a full evaluation on

the machine learning models, it is imperative to use TTA2 and exhibit a distribution

of precision, recall, F1-score, and AUC of ROC curves.
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4.5.3 Ransomware

In previous sections, the machine learning models are trained over the traces of HPCs

to discriminate malware from benignware. We build a malware embedded in benign-

ware and then show that this malware can evade HPC-based malware detection.

We craft the malware simply by infusing Notepad++ with a ransomware. Ran-

somware is malware that maliciously encrypts files and extorts users in exchange for

the decryption keys (Young and Yung, 1996). Since 2016, ransomware has become

one of the most popular malware, as Kaspersky Security Bulletin 2016 has shown that

at least one business is attacked by ransomware every 40 seconds (Kas, 2016). We im-

plement our ransomware to encrypt files when Notepad++ launches. The embedded

ransomware traverses all the files in the “Pictures” folder and encrypts each file every

5 seconds with Microsoft Cryptography APIs (Cry, 2017). We measure the values

of HPCs for modified Notepad++ in our experimental setup (§ 4.3). We randomly

select 90% of the benignware and malware samples as the training set, while we test

on Notepad++ and modified Notepad++. The precision of DT, Naive Bayes, NN,

AdaBoost, RF and KNN is 0%, 0%, 0%, 50.85%, 0%, and 0%, respectively.

These results are not surprising, as machine learning models tolerate the noise and

jitters during training on sampled HPCs, in order to extract the malicious behavior

in the programs. These tolerance necessitates the machine learning algorithms to

have errors even with the training datasets. In our malware example, the changes of

HPC values caused by ransomware is overshadowed in the sampled values of HPCs

from running Notepad++. The variation tolerance results in classifying the modified

Notepad++ as benignware.
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4.6 Discussion

We run Windows 7 32-bit operating system on AMD 15h family Bulldozer micro-

architecture machine. The malware used in our experiments have an average age

of 4.85 years (311 without age records). Weaver et al. performed extensive stud-

ies investigating the determinism of the measured HPC values in various micro-

architectures (Weaver et al., 2013). By comparing the HPC values across di↵erent

micro-architectures, Weaver et al. show that the HPCs in various architectures have

similar levels of variations during sampling. Hence, our conclusions from Bulldozer

micro-architecture are applicable to other micro-architectures. In our benignware

and malware experiments, we chose to allow the access to the network for benignware

and prevent malware from accessing network. This design choice does not a↵ect the

results of HPC measurements, since benignware and malware both function properly

during experiments. For the reduction of dimensions, many other approaches can

serve the same purpose as PCA. We use PCA in our designs as PCA is one of the

most popular methods for reduction of dimensions.

Among all the algorithms that we applied to our detection systems, we chose the

depths of DT the same as the depths of RF. The RF with lower depths can provide

higher detection rate, since the RF performs majority votes among all the trees, which

does not require the same depths as the DT. We decided to use the same depths of

depths in RF as DT for simplicity. This decision should not a↵ect the conclusion of

this work.

4.7 Conclusion

Previous works have shown the use of Hardware Performance Counters in malware

detections. The positive results in the prior works are due to optimistic assumptions

and unrealistic experimental setups. In this work, we rigorously evaluate the malware
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detection using HPCs and machine learning. We perform our experiments with a

program count that exceeds 2 ⇠ 3 times the previous works with 1000 times more

cross-validations compared to the prior works. Our best result shows an F1-score of

80.78%. The corresponding False Discovery Rate (F+/(F+ + T+) is 15%. We believe

that there is no cause-e↵ect relationship between low-level micro-architectural events

and high-level software behaviors. To show how fragile the detection system is, we

infused one of the ransomeware into one benignware. Our system cannot detect the

ransomeware with both benignware and ransomeware trained in the systems.
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Chapter 5

Conclusions and Future Work

The attacks on computing systems at various layers of the computing stack have

driven security researches to develop new techniques for protection at each layer. In

this work, we have presented three di↵erent techniques deployed on di↵erent com-

puting layers to secure the systems: HT detection using backside imaging, mapping

cryptographic engines on the programmable SoC platform, and evaluating malware

detection using HPCs and machine learning. We have addressed the threat models in

each system; however, these areas still have open research problems. In this chapter,

we are going to discuss completed research and the future work.

5.1 Hardware Trojan Detection using near-Infrared Backside

Imaging

In this work, we have proposed a new technique that uses backside imaging for de-

tecting HTs. The challenge of the backside imaging CMOS chips is to image the logic

gates, which are smaller than the imaging wavelengths, 1 ⇠ 3µm for the near-Infrared

light. To address this problem, we must engineer nano-scale metal structures in each

gate to enhance its uniquenesses of the optical responses. We have developed our

technique in two phases: fill cell design phase, and generic functional gate design

phase.

We embed the maximum amount of metal into the fill cells in order to provide

high optical reflectance. By doing so, we can detect any HTs inserted by replacement,
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modification or shifting of the fill cells during the fabrication stage. However, if the

functional gates are replaced with another set of the functional gates, the backside

imaging cannot reliably detect the existence of any HTs. In order to increase the

di↵erences in the reflectance signatures between various gates, we engineer nano-

antenna structures between the logic gate pairs. This nano-antenna structure in

each gate pair can only be illuminated with designed polarizations, frequencies, and

angles. Hence, we can detect any replacements of the function cells by comparing the

locations of the nano-antennas with our simulated “golden references”.

The nano-antenna designs in the generic gate design phase are initial demonstra-

tions of watermarking the digital logic. There are existing open challenges in embed-

ding the nano-antennas. In this work, we manually embed each nano-antenna into the

gate pair designs, which present challenges for the gate designers to incorporate the

nano-antennas. One potential improvement is to automate the nano-antenna embed-

ding process using gate design tools. Another challenge of this work is to minimize

the area overhead caused by the embedded nano-antennas. In our work, inserting

nano-antennas results in as large as 20% increase in the gate area. Moving forward,

novel antenna designs need to be developed to place the nano-antennas into individ-

ual gates in order to reduce the area overhead. For example, designing antennas that

can be embedded in individual gates can be one potential research thrust. Moreover,

by strategic placements of the fill cells and functional cells, we can improve the silicon

area utilization during the chip level place-and-route phase.
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5.2 High-Performance Low Energy Implementation of Cryp-

tographic Algorithms on a Programmable SoC for IoT

Devices

To secure the communication channels of the IoT devices, we must use cryptographic

operations. Unfortunately, cryptographic operations are among the most power-

hungry operations in today’s computing systems. At the same time, IoT devices

have low power budget. Moreover, the longevity of the IoT devices exceeds the cryp-

tographic algorithms. We propose the use of FPGA to provide flexible hardware

solutions for cryptographic operations, including AES-ECB, AES-CBC, AES-GCM,

RSA, SHA, and DES. Our paper evaluates the mapping of crypto-engines to the

FPGA of Zedboard as the FPGA can enable energy-e�cient crypto operations than

in software as well as provide the option to upgrade the cryptographic algorithms

through re-configurations.

There are many other cryptographic algorithms that should be implemented in

the IoT devices. The next step is to implement other cryptographic algorithms on

the FPGA SoC platforms, for example, Elliptic-curve cryptography (ECC). ECC is

the next generation asymmetric cryptographic algorithm that has been proposed as

the replacement for the current asymmetric algorithm, RSA. ECC utilizes shorter key

(256 bits versus 3072 bits in RSA) compared to RSA, at the same time, it provides

the same security level for the computing system as RSA does. The short key size

saves the memory space for low-power devices, such as IoT devices. We can measure

the performance boost, energy savings and EDP reductions of these algorithms on

the Zedboard platform.

Many of the malware in the current systems can modify the boot sequence to

disable the system security in order to launch future attacks. Such malware becomes

threats to the critical systems, such as the command and control system in factories,
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hospitals, and power plants. Once the booting sequences are compromised, any pro-

tection systems launched after booting-up are vulnerable to other attacks. As the

next steps for our security implementations, we can design the secure boot system on

the SoC with FPGA. We can program the FPGA as the first level of the boot loader

for the ARM CPU. This requires the modifications to the Operating System Kernel

to start the booting logics on the FPGA. By embedding the unique signatures inside

the FPGA, ARM processor cannot boot up the system unless the signatures are veri-

fied. The distributions of the signatures require secure channels for such deployments,

which present challenges in developing these systems. These booting sequences can be

deployed into the FPGA substrate, which provides the reconfigurations in the booting

logics. By implementing the secure boot system on the FPGA, we can protect the

boot sequence.

5.3 Malware Detection using Hardware Performance Coun-

ters with Machine Learning

HPCs are hardware units that are designed to count low-level, micro-architectural

events. Many works have investigated malware detection using HPC profiles. How-

ever, we believe that there is no causation between low-level micro-architectural events

and high-level software behavior. The strong positive results in the previous works are

due to a series of optimistic assumptions and unrealistic experimental setups. In this

work, we rigorously evaluate the idea of malware detection using HPCs through real-

istic assumptions and experimental setups. We observe a low fidelity in HPC-based

malware detection when we increase the number of programs by a factor of 2⇥ ⇠ 3⇥

and increase the experiment numbers in cross-validation to 3 orders of magnitude

higher than previous works. Our best result shows an F1-score of 80.78%. The cor-

responding False Discovery Rate (F+/(F+ + T+) is 15%. This means that among
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1,323 executable files in the Windows operating system, 198 files will be flagged as

malware. We also demonstrate the infeasibility in HPC-based malware detection with

Notepad++ infused with a ransomware, which cannot be detected in our HPC-based

malware detection system.

We have evaluated the HPC malware detection on the AMD machines. We can

also apply similar techniques to the Intel, ARM, and other processor architectures.

There are Other processor architectures are di↵erent from AMD processor architec-

ture and have di↵erent micro-architectural events. This will result in di↵erent choices

of the micro-architectural events for detecting malware. A thorough evaluation of

malware detection using HPC on these architectures will help determine if our claims

are applicable to other architectures.

To perform application-level malicious behaviors that are more accurate and can

perform more complicated operations than counting, such as observing architec-

tural, micro-architectural events and perform basic computations. We can embed

these hardware monitors into processor to monitor hardware behaviors. We can use

these monitors to design defense systems against the low-level attacks, such as “row-

hammer”. “Row-hammer” attacks repeatedly rewrite the memory rows in order to

change the stored values in the neighboring rows, which can be used for overwrit-

ing sensitive information, such as passwords. These malicious behaviors should be

captured by low-level monitors. By monitoring the behavior on the memory micro-

controllers, we can identify the statistical increments in the “row-hammer” attacks

on the memory controller side. These monitors should be designed such that they can

perform simple arithmetic operations, such as comparison, addition, and bit shifts,

in order to identify the abnormal memory accesses, at the same time, not trigger any

false alarms.
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