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ABSTRACT

Topological and geometric ideas are now a mainstay of condensed matter physics,

underlying much of our understanding of conventional materials in terms of defects

and geometric frustration in ordered media, and protected edge states in topological

insulators. In this thesis, I will argue that such an approach successfully identifies the

relevant physics in metamaterials and living matter as well, even when traditional

techniques fail. I begin with the problem of kirigami mechanics, i.e., designing a

pattern of holes in a thin elastic sheet to engineer a specific mechanical response. Using

an electrostatic analogy, I show that holes act as sources of geometric incompatibility,

a feature that can fruitfully guide design principles for kirigami metamaterials. Next I

consider nonequilibrium active matter composed of self-driven interacting units that

exhibit large scale collective and emergent behaviour, as commonly seen in living

systems. By focusing on active liquid crystals in two dimensions, with both polar and

nematic orientational order, I show how broken time-reversal symmetry due to the

active drive allows polar flocks on a curved surface to support topologically protected

sound modes. In an active nematic, activity instead causes topological disclinations

to become spontaneously motile, driving defect unbinding to organize novel phases

of defect order and chaos. In all three cases, geometric and topological ideas enable

the relevant degrees of freedom to be identified, allowing complex phenomena to be

treated in a tractable fashion, with novel and surprising consequences along the way.
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Boros, Dillon Cislo, Chaitanya Murthy, Linnea Lemma and Bez Lemma. In addition,

my visits to KITP have exposed me to a number of diverse topics in physics, allowing

me to develop an appreciation for fields vastly different from my own. I strongly believe

that this is KITP’s greatest strength and I am incredibly grateful for having received

the opportunity to come here. I heartily enjoyed the varied excursions I embarked

on with Soorya Gopal and Rachel Redberg and the classical music expositions with

Puneet Chakravarthula. I would also like to sincerely thank the administrative staff,

particularly Patty Whitmore and Yudaisy Salomón Sargentón at Syracuse, and Bibi

Rojas, Lori Staggs and Lisa Stewart at KITP for being ever welcoming, helpful and

always cheering up everyone around them.

Finally, but most importantly, I would like to thank my parents and family for

unconditionally believing in me and letting me freely follow my passion. Thank

you for bearing with my impatience, the missed and bad quality Skype calls, the

time difference and the geographical separation. Without your constant support and

encouragement, this would not have been possible.

vii



Contents

1 Introduction 1

1.1 Topology, order and phase transitions in condensed matter . . . . . . 1

1.1.1 Topological defects in ordered media . . . . . . . . . . . . . . 2

1.1.2 Topological insulators and beyond . . . . . . . . . . . . . . . . 5

1.2 Geometry, mechanics and frustration in two-dimensional matter . . . 7

1.2.1 From membranes to metamaterials . . . . . . . . . . . . . . . 8

1.3 Active matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Mechanics of kirigami metamaterials: stress relief by elastic charges 17

2.1 Geometry in elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Geometric mechanics of kirigami . . . . . . . . . . . . . . . . 20

2.2 Table-top observations: Multistability and curvature localization . . . 21

2.3 Image charges in thin plate elasticity . . . . . . . . . . . . . . . . . . 24

2.3.1 Planar frames: Sheared annulus . . . . . . . . . . . . . . . . . 25

2.3.2 Arbitrary planar frames: General strategy . . . . . . . . . . . 29

2.3.3 Buckled frames: Screening of charges . . . . . . . . . . . . . . 33

2.4 Nonlinear mechanics of a square frame . . . . . . . . . . . . . . . . . 36

2.4.1 Pre-buckling planar mechanics . . . . . . . . . . . . . . . . . . 38

viii



2.4.2 Post-buckling mechanics: Multiscaling . . . . . . . . . . . . . 39

2.4.3 Buckling transition . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.4 Local deformation field . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Kirigami as interacting charges: Relaxing pre-stress . . . . . . . . . . 45

3 Melting the active nematic: defect unbinding and the motile BKT

class 49

3.1 Active nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The paradox: do ordered active nematics exist? . . . . . . . . . . . . 52

3.3 Defects as quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Hydrodynamic model . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Defect positional dynamics . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Defect orientational dynamics . . . . . . . . . . . . . . . . . . 58

3.3.4 Including noise . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Defect unbinding and re-entrant melting . . . . . . . . . . . . . . . . 64

Appendix 3.A Derivation of equations of motion for ±1/2 disclinations . . 70

Appendix 3.B Derivation of polarization dynamics of the +1/2 disclination 78

Appendix 3.C Non-quasistatic solution for +1/2 disclination: Rotational

diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Topological sound modes and collective motion on curved geome-

tries 86

4.1 Flocks, curvature & quantum Hall fluids . . . . . . . . . . . . . . . . 86

4.1.1 Toner-Tu equations on a curved surface . . . . . . . . . . . . . 90

4.2 Polar flock on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 The steady state of a polar flock on the sphere . . . . . . . . . 92

4.2.2 Linearizing about the steady state . . . . . . . . . . . . . . . . 96

ix



4.3 Symmetry protected topological sound . . . . . . . . . . . . . . . . . 101

4.4 Polar flock on a negatively curved surface . . . . . . . . . . . . . . . . 108

Appendix 4.A Spherical flock: steady state and linearization for λ2, λ3 6= 0 112

Appendix 4.B Polar flock on the catenoid . . . . . . . . . . . . . . . . . . 115

4.B.1 Linearizing about the steady state . . . . . . . . . . . . . . . . 116

5 Discussion and conclusion 119

Bibliography 184

x



List of Tables

1 A summary of the effective spring constants keff for different frame

aspect ratios w/L, for planar and buckled configurations. . . . . . . . 41

2 A summary of the parameters redefinitions in the model. . . . . . . . 99

xi



List of Figures

1 Lowest strength topological defects in two-dimensional orientationally

ordered media. The red dots indicate the defect cores. In the case of

polar order in the plane, the order parameter manifold is the circle

S1 and defects are classified by the fundamental group π1(S
1) = Z

(the integers). For planar nematic order, the order parameter manifold

is instead the real projective line RP 1 whose fundamental group is

π1(RP 1) = Z/2 (half-integers). . . . . . . . . . . . . . . . . . . . . . . 3

2 The quantum Hall triumvirate (reproduced from Ref. [57]) in electronic

media. The years refer to the corresponding time of discovery. Unlike

the quantum Hall effect that requires an external magnetic field to

supports charge currents on the edge, both quantum spin and anomalous

Hall effects rely on spin-orbit coupling. In addition, the quantum spin

Hall effect being time-reversal invariant supports spin currents on the

edge, while the anomalous Hall effect breaks time reversal symmetry

due to ferromagnetic ordering. . . . . . . . . . . . . . . . . . . . . . . 6

3 Graphene kirigami structures (reproduced from Ref. [150]) patterned

by lithography compared against their macroscopic counterparts in paper. 10

xii



4 Some examples of active matter displaying the diversity in scale and

of constituent active units. Images of the active colloids and vibrated

grains have been reproduced from Ref. [224] and Ref. [225] respec-

tively. The active metamaterial example is a topological lattice with

individually motorized gyroscopes, taken from Ref. [226]. . . . . . . . 12

5 Kirigami and frames. (a) A periodic kirigami pattern composed of

square frames. (b) The response of the pattern in (a) to a large

deformation when stretched along the x direction, enabled by the escape

of the frame elements into the third dimension. (c) An individual square

frame of size L, frame width w and hole dimension H = L−2w, forming

the building block of the pattern in (a). (d-f) Different locally stable

configurations of a square frame subjected to an external force along

its diagonal (in the horizontal direction), distinguished by the relative

orientations of the four inner corners: (d) The left and right inner

corners are curved up and down, respectively (denoted by + and −,

respectively), whereas the top and bottom inner corners point to the

left (as shown by the red needles normal to the surface and denoted

by L. This configuration is thus denoted by + : L/L : −). (e) The left

and right corners both point up here, while the top and bottom corners

point in opposite directions, hence denoted by + : L/R : +. (f) Here

both the left and right corners once again point up, but the top and

bottom corners point in the same direction, hence + : L/L : +. The

remaining configuration + : L/R : − is not stable at this hole size. . . 22

6 The analytic solution (in red) for an annulus subjected to pure external

shear (σ0) on its external boundary. The undeformed annulus is shown

in a dashed black line. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



7 The geometric function Φ1,2(w/L) that captures the aspect ratio depen-

dence of the induced quadrupolar charge under plane-stress conditions

(a), or plane-strain conditions (b). . . . . . . . . . . . . . . . . . . . . 32

8 The deformation of a square frame (as calculated by Eq. 2.15) con-

strained to be planar and subjected to a fixed force F/(Y L) = 0.1 along

the diagonal (from the lower left to the upper right). The frame size

is fixed at L = 1 and hole size varied with (a) H = 0.5, (b) H = 0.6

and (c) H = 0.8. The configurations are colored by the energy density

on a linear scale from blue (low) to white (high). Although the force

is fixed, for an appropriate choice of the effective thickness, and if

allowed to escape into the third dimension, configuration (a) remains

planar, (b) is planar but at the buckling threshold, and (c) is beyond

the critical force threshold for buckling. Note that the interior angles of

the frames deviate from π/2 with the application of the force, signalling

the formation of localized partial disclinations that concomitantly focus

stresses as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xiv



9 Three dimensional energy minimizing configurations after buckling,

obtained by a finite element computation. (a) Triangular and (b) circu-

lar frames subjected to uniaxial forces applied at opposing ends. The

colour refers to the local energy density ranging from blue (low) to white

(high). The screening charges responsible for this energy distribution

are still of a quadrupolar nature, though they are evenly smeared out

in the annular geometry. The triangular hole being incommensurate

with the symmetry of the quadrupole, frustrates it and as a result,

part of the charge is spread on one side of the triangle, while the rest

concentrates at the three corners. This leads to the observed curvature

localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 The effective spring constant keff for a planar frame as a function of the

aspect ratio w/L. Parameter values used are L = 1 and t = 5× 10−4.

The blue dots are from the numerical simulations. The solid line is the

analytical prediction in Eq. 2.22 with no fitting parameters. . . . . . 39

xv



11 Experimental measurements of square frames subjected to tensile load

along the diagonal. (a) Force-displacement curves for frames with

w/L = 0.25 and thicknesses varying between 0.01 and 0.02 cm. (b)

When normalized by thickness, curves collapse at small displacement,

confirming that the frames are planar at this regime. (c) When normal-

ized by thickness cubed, curves collapse in the post-buckling regime,

confirming that energy increase is predominately bending. (d) Effective

spring constant in the post-buckled regime as function of frame aspect

ratio w/L in the intermediate and large hole regimes for a frame of thick-

ness t = 0.0198 cm, confirming the multiscale behavior in (Table 1). The

curve in the large hole regime (w/L < 1/8) is linear as given in Eq. 2.26,

while the curve in the intermediate hole regime (1/8 < w/L < 1/4)

corresponds to Eq. 2.24, with the prefactor c and regularizing cutoff

a taken as fitting parameters. (e) Critical displacement as function

of thickness for a frame of w/L = 0.25, growing as t1.9 (solid line), in

good agreement with Eq. 2.27. (f) Critical displacement as function of

the frame’s aspect ratio for a frame of thickness t = 0.00794 cm in the

intermediate hole size regime, in agreement with Eq. 2.27 (solid line). 42

12 Comparison between the predicted and observed deformations in a

pulled frame right after buckling (a) An undeformed frame with a laser

printed Cartesian mesh (gray) and a set of parametric lines (red) fitted

to the printed mesh. (b) A deformed frame. Here, the red lines are

computed from theory using the original parametric lines as a starting

point and the fictitious elastic charges as fitting parameters. . . . . . 45

xvi



13 A regular conical annulus with an angle deficit. When flattened under a

piece of acrylic with a small gap, the thin sheet forms wrinkles. Including

azimuthal slits (middle row) does not affect the pattern of wrinkles,

while a radial array of slits (bottom row) results in azimuthally aligned

quadrupoles that minimize the interaction energy with the background

stress. Hence when flattened, the radial kirigami pattern locally relaxes

stresses allowing the material to accommodate the curvature of the

cone without wrinkling. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 A conical annulus with an angle surplus (e-cone). In the three images

on the left, the e-cone (with and without the kirigami slit pattern)

achieves its equilibrium shape in 3D. On the right, the same annulus is

flattened under an acrylic plate. Both the intact non-perforated e-cone

as well as the one with azimuthal slits develop wrinkles when flattened,

while the radial kirigami pattern of slits relaxes stresses in the flattened

e-cone (as in the case of the regular cone shown in Fig. 13), leaving it

devoid of wrinkles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvii



15 (a) Phase diagram in the noise (η) and density (ρ0) plane, obtained from

a numerical investigation of a particle model for 2D active nematics,

reproduced from Ref. [348]. Disclinations in two experimental model

systems - (b) Reconstituted active nematics assembled from microtubule

bundles and kinesin motor complexes depleted to an oil-water interface

[349], (c) cellular nematics organized by proliferating a monolayer of

spindle shaped fibroblasts [258]. The spontaneous propulsion of +1/2

defects in active nematics shown as temporal snapshots (from top

to bottom) in two distinct systems - (d) Microtubule-kinesin active

nematic film [273] and (e) vibrated granular nematic [225]. In both (d)

and (e), the +1/2 defect (red) is self-propelled, while the −1/2 defect

(green) remains largely static. . . . . . . . . . . . . . . . . . . . . . . 50

16 Potential V (r) for a neutral defect pair for the configuration in which

the direction of motility of the +1/2 disclination points away from the
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1

Chapter 1

Introduction

1.1 Topology, order and phase transitions in condensed mat-

ter

The central goal of condensed matter physics is to classify and categorize the various

possible phases of matter, along with their properties and the nature of phase transi-

tions between them. Landau [1] gave structure to this endeavour by introducing the

paradigmatic notion of an order parameter whose non-vanishing value characterizes a

phase of matter. He consequently developed a phenomenological theory to describe

continuous phase transitions, with superconductivity being an early application [2].

This foundational work firmly set the basic idea of phase transitions resulting from the

spontaneous breaking of symmetry [3]. The modern theory of critical phenomena was

eventually refined, culminating in Wilson’s sophisticated theory of the renormalization

group [4, 5] that could account for all of the singular scaling features observed in a

vast number of equilibrium continuous phase transitions.

Although incredibly successful both conceptually and quantitatively, it became

clear rather early on itself that this paradigm had its limitations. In the late 1960’s,
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independent results [6–9] had rigorously shown the absence of spontaneous continuous

symmetry breaking at finite temperature in low (one and two) dimensional systems.

This is now the celebrated Mermin-Wagner-Hohenberg-Coleman theorem in equilibrium

statistical mechanics. Now, for a two dimensional (2D) superfluid or superconductor,

the relevant order parameter is a complex scalar field with a continuous U(1) symmetry.

So one might immediately conclude that a two dimensional superconducting or

superfluidity transition never occurs at finite temperature and the corresponding

ordered phase does not exist in the thermodynamic limit. The same näıve conclusion

is reached for the planar XY ferromagnet (O(2) classical spins on a 2D lattice), a

two dimensional crystal or a nematic liquid crystal film. Soon after, in the early

1970’s, Berezinskii [10, 11] and later Kosterlitz and Thouless [12, 13] showed that a

finite temperature continuous phase transition (with a diverging correlation length)

was nevertheless possible in these systems, without breaking symmetry and violating

the theorem. This important discovery is remarkable from the point of view of

the Landau-Ginzburg-Wilson paradigm which associates critical phenomena with

spontaneous symmetry breaking. The resulting Berezinskii-Kosterlitz-Thouless (BKT)

phase transition is ubiquitous in two dimensional systems and it surprisingly requires

non-perturbative effects (topological defects) to be realized.

1.1.1 Topological defects in ordered media

Topological defects are distinctive singular distortions of the order parameter field

that cannot be removed by any local deformation. The order parameter itself vanishes

at the core of a defect. Defects in ordered media have been studied for over a century,

initially constructed as elastic singularities in continuum solids by Volterra [14] and

later as dislocations and line disclinations in both crystals [15, 16] and liquid crystals

[17, 18]. Such defects are often characterized by a nontrivial winding or twisting of
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Figure 1 : Lowest strength topological defects in two-dimensional orientationally ordered media.

The red dots indicate the defect cores. In the case of polar order in the plane, the order parameter

manifold is the circle S1 and defects are classified by the fundamental group π1(S1) = Z (the integers).

For planar nematic order, the order parameter manifold is instead the real projective line RP 1 whose

fundamental group is π1(RP 1) = Z/2 (half-integers).

the order parameter around the defect core. More technically, topological defects are

classified using homotopy theory [19] by broadly considering equivalence classes of

maps from physical space into the order parameter manifold [20, 21]. Translationally

ordered materials such as crystals, smectics and cholesterics can support defects with

more complex geometric and topological structure as well [22–25]. For orientational

order in two dimensions, disclinations are point defects labelled by the winding angle

of the broken symmetry variable relative to the angle traversed by a loop around the

defect core. Hence spin models with vectorial order support integer strength defects

(vortices), while nematic liquid crystals, being apolar (head-tail symmetric), can have

disclinations of half-integer strength (see Fig. 1). Although topological defects are

often energetically expensive, they constitute elementary yet nontrivial excitations of

the homogeneous ordered state. When viewed as effective quasiparticles, the statistical

mechanics and dynamics of defects offers a dual picture to that of the conventional

order parameter.

Kosterlitz and Thouless’ crucial insight was that neutral pairs of topological

defects can entropically unbind at a finite temperature leading to the possibility of
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a continuous transition without breaking symmetry. The BKT scenario sets aside a

characteristic universality class of defect-driven phase transitions that now encompasses

a wide range of disparate equilibrium phenomena, including, superfluid He4 films [26],

disordered superconducting thin films [27] and coupled arrays of superconducting

junctions [28]. Furthermore, the classical 2D XY model (which canonically exhibits

the BKT transition) can be mapped onto a two dimensional Coulomb gas [13] and the

sine-Gordon model [29, 30]. Hence conductor-insulator transitions in a dilute ionic

film [31] and two dimensional surface roughening transitions [32] also fall in the BKT

class. In a series of papers [33–35], Nelson and Halperin expanded on the ideas of

defect mediated phase transitions to the problem of melting in two dimensions. In

doing so, they discovered the hexatic liquid crystal along with a two-step melting

transition that has since been observed in colloidal experiments [36, 37] and simulations

[38]. A recent review summarizes many of these connections along with the relevant

experimental verification of BKT phenomenology [39]. The basic idea of topological

defects controlling a phase transition has had far reaching consequences in various

contexts outside condensed matter as well. Shortly after the BKT papers, Polyakov

extended their scenario to gauge theories with the hope of describing confinement

in quantum chromodynamics. Although unsuccessful in the nonabelian case, he

showed that topological excitations can proliferate in 2+1D quantum electrodynamics,

generating a photon mass without breaking gauge invariance [40, 41]. A similar

topological effect also allows fermions in the SU(N) Thirring model to condense and

develop a mass gap without breaking chiral symmetry [42]. More recently, topological

defects that acquire additional quantum numbers have been found to be instrumental

in “deconfined” quantum phase transitions in planar antiferromagnets [43, 44]. Such

novel quantum criticality mirrors the original BKT scenario by allowing a direct

continuous transition between two unrelated ordered phases, once again outside the
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conventional Landau-Ginzburg-Wilson paradigm.

1.1.2 Topological insulators and beyond

Although both the phases on either side of the BKT transition have a vanishing

local order parameter (in the thermodynamic limit), they are still distiguished by

the nature of correlations in local observables. The next topological revolution in

physics occured when even this constraint was finally given up. In 1980, von Klitzing

[45] discovered that the Hall conductivity in a silicon MOSFET was fully quantized

in the presence of a strong magnetic field, which Laughlin [46] ingeniously argued a

year later on the basis of gauge invariance. Nonetheless, it wasn’t until the landmark

paper by Thouless et al. [47] that the integer quantization of the Hall conductivity

was identified with a topological invariant, a Chern number [19]. The quantum

Hall state breaks no symmetry, yet each integral plateau of the Hall conductivity

corresponds to a different phase of matter. Hence these phases cannot be distinguished

by any local order parameter within the Landau-Ginzburg-Wilson framework, but

they instead correspond to ground states with differing wavefunction topologies [48–

51]. A remarkable departure from conventional wisdom, topology then provided a

dramatically new way to organize exotic states of matter. A few years later, Haldane

[52] proposed a model of noninteracting fermions without time-reversal symmetry

that exhibited a quantum Hall effect in the absence of an external magnetic field.

The Haldane model is a prototypical Chern insulator [53], i.e., a bulk insulating state

of matter adiabatically disconnected from a trivial insulator (including conventional

Mott and Anderson insulators [54]) with metallic surface or edge states [55] protected

by a bulk Chern invariant. The topological nature of the edge states endows them

with a particular robustness against disorder and backscattering from impurities [55],

an attractive feature for technological applications [56] .
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Figure 2 : The quantum Hall triumvirate (reproduced from Ref. [57]) in electronic media. The years

refer to the corresponding time of discovery. Unlike the quantum Hall effect that requires an external

magnetic field to supports charge currents on the edge, both quantum spin and anomalous Hall

effects rely on spin-orbit coupling. In addition, the quantum spin Hall effect being time-reversal

invariant supports spin currents on the edge, while the anomalous Hall effect breaks time reversal

symmetry due to ferromagnetic ordering.

In the last decade or so, there has been an incredible surge in uncovering topological

materials (Fig. 2) initiated partly by Kane and Mele’s [58, 59] discovery of a time-

reversal invariant topological insulator with a quantum spin Hall effect [60], and

also three dimensional topological insulators with conducting surface states [61, 62],

and topological Weyl semimetals [63]. A general symmetry and dimensionality based

classification scheme [64, 65] has been proposed to categorize various topological

insulators and superconductors [66]. More recently, it has been recognized that such

topological phenomena1 are not specific to just quantum electronic systems but apply

to classical photonic [71–73], acoustic [74, 75], and mechanical [76–79] systems equally

well. This has lead to intense efforts in realizing exotic topological metamaterials to

provide robust waveguides and designer mechanical properties [79, 80].

It is clear from the previous subsection and above that topological ideas have

1Here we only refer to symmetry-protected topological phases [67] which lack long-ranged quantum
entanglement [68], so called “topological order” that is present in more exotic phases of matter such
as the fractional quantum Hall effect [69, 70].
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fundamentally changed the way we think of materials in general. Thouless, Kosterlitz

and Haldane received the Nobel prize in 2016 [81] in due recognition of their pioneering

work on topological matter and phase transitions. This field of research continues

to hold exciting promise and is growing rapidly, with both fundamental and applied

interests. Having focused on the topological aspects of condensed matter, I will now

switch to discuss an older, but intimately related cousin - geometry and its prominent

role in describing structure and order, crucially in two-dimensions.

1.2 Geometry, mechanics and frustration in two-dimensional

matter

While topology only concerns properties related to the shape of an object that remain

immutable under continuous deformation, geometry on the other hand deals with both

shape and size. In 1966, M. Kac [82] famously asked if one can “hear the shape of a

drum?”, popularizing the concept that background geometry often strongly imprints

on physical phenomena. When considering more complex ordered structures, the

notion of geometric frustration or incompatibility starts becoming relevant. Perhaps

one of the earliest geometric descriptions of a physical model involving frustration was

that of an Ising spin glass [83, 84] and of a simple liquid as a random sphere packing

problem [85–88]. An important characteristic of geometric frustration is curvature, a

property most easily visualized in two-dimensional surfaces. Much like the curvature of

the earth makes planar map projections in cartography impossible without distortion,

spatial curvature in general frustrates order and often necessitates the presence of

topological defects even in the ground state. Furthermore, there is deep relation

between the topological ideas discussed earlier in Sec. 1.1 and the presence of (a

possibly abstract) geometric curvature. A canonical example of such a relation is the
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Gauss-Bonnet theorem [89] for a closed surface, that relates the integrated Gaussian

curvature to a topological invariant, the Euler characteristic.

The frustration associated with the interplay of curvature and order [90–92] has

many remarkable consequences for crystals [93–97], colloidal assemblies [98], tethered

[99, 100] and liquid crystalline [101, 102] membranes, and jammed or glassy systems

[103, 104]. In particular, geometric effects take on a central role in the mechanics

(statistical or otherwise) of extended objects, such as polymers [105] and membranes

[106]. Focusing on two-dimensional membranes below, I will highlight the impact of

geometric nonlinearity on the rich physics of thin elastic sheets.

1.2.1 From membranes to metamaterials

Random surfaces have long been known to show very rich phenomenology, ranging from

their use in string theory [107] and quantum gravity [108, 109] to thermally fluctuating

physical membranes [106, 110]. In particular, elastic or polymerized two-dimensional

membranes rather famously exist in a flat phase at non-zero temperature, achieving

long-ranged order of their normals (which breaks continuous rotational symmetry) [99].

This of course flies in the face of the Mermin-Wagner-Hohenberg-Coleman theorem

mentioned earlier in Sec. 1.1. The presence of elasticity (more precisely a non-vanishing

shear modulus) mediates a long-ranged interaction between the Gaussian curvature at

distant points on the membrane, allowing it to evade the theorem2. In turn, the bending

2This argument involves integrating out the soft in-plane displacements of phonon modes in favour
of the out-of-plane height fluctuations [99]. While physically reasonable and correct, it obscures the
underlying technical mechanism by which thin sheets evade the Mermin-Wagner-Hohenberg-Coleman
theorem. This was first pointed out in a different context by Polyakov [111], where he noted that
at low temperatures, the unit normal to the 2D surface embedded in 3D has the real Grassmanian
Gr(2, 3) = O(3)/(O(2)× O(1)) as an order parameter manifold. Unlike standard non-linear sigma
models used to treat spin systems, the inextensibility of the sheet due to the large cost to stretch
leads to a nontrivial isometry constraint that is differential in nature. In terms of the normals, this
then translates to a nonlocal Frobenius integrability condition [112] that forces the unit vectors to
be a genuine normal to the surface. It is hence this deep geometric feature of surfaces that permits
fluctuating elastic membranes to have a flat phase.



9

rigidity renormalizes strongly in the thermodynamic limit, diverging as a power law

on large scales [99]. Hence, elastic (phantom) membranes have a stable flat phase and

a finite temperature crumpling transition, beyond which they entropically crumple.

The flat phase also exhibits auxetic behaviour with a universal negative Poisson

ratio of −1/3 [106], which is extremely rare in natural materials. There have been

numerous theoretical studies of this phenomenon including ε-expansions [113, 114],

large-d expansions [115–117], and the self-consistent screening approximation [118]

along with the inclusion of a possible buckling transition for a sheet with constrained

boundaries [119, 120]. In the crumpled phase, self-avoidance becomes relevant for real

membranes and this happens to completely eliminate the crumpled phase, stabilizing

the flat phase for all finite temperature [121–123]. It is worth emphasizing the salient

role of geometry here. Thin elastic sheets favourably trade energetically expensive

in-plane stretching for easy bending deformations [124], but at the same time, any

nontrivial out-of-plane deformation necessarily generates local Gaussian curvature

that in turn induces elastic stresses in the material. This inevitable consequence of

geometry coupling to mechanics lies at the heart of many of the dramatic properties

of thin elastic bodies [125].

Apart from the impressive finite temperature properties, the geometric nonlinearity

of thin sheets also has many ramifications for its zero temperature mechanics. Under

external load, a thin sheet relieves stresses by either buckling [124] or wrinkling [126–

128], possibly followed by secondary instabilities [129–131]. All of these mechanical

instabilities are accompanied by complex morphological characteristics [131–134],

providing an attractive combination of form and mechanical functionality. Harnessing

such behaviour to design three-dimensional shapes and structures in elastic materials

with novel mechanical properties is the realm of mechanical metamaterials [135–137].

This is often achieved via local prescriptions of material geometry, and has been
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Figure 3 : Graphene kirigami structures (reproduced from Ref. [150]) patterned by lithography

compared against their macroscopic counterparts in paper.

explored in a variety of systems, like nematic elastomers [138–141], hydrogels [142–

145], shape memory polymers [146, 147] and 4D printed composites [148, 149]. The

creation of three-dimensional shapes from planar sheets is particularly interesting as

out-of-plane deformations provide highly responsive routes to locally relax stresses.

Shape change is then naturally viewed as a mechanism by which an elastic material

accommodates geometric incompatibility. Tuning and controlling the intrinsic geometry

then automatically furnishes both adaptive and programmable responses.

In this regard, the ancient paper-based art forms of origami (‘ori’, fold; ‘kami’,

paper) and kirigami (‘kiru’, cut) offer intriguing solutions to the deployment of complex

3D geometries with distinctive mechanics [151, 152]. Since both origami and kirigami

are scale invariant (Fig. 3), they can be combined with rapid miniaturization to design

metamaterial response and structures at the smallest scales [153, 154]. The design

of origami [155–172] and kirigami [173–193] metamaterials has hence emerged as a

powerful geometry based tool to dramatically modify, reconfigure and program material

properties. Such approaches were recently demonstrated in monolayer graphene
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[150, 194] and now provide unprecendented opportunities for designing devices with

novel electronic and mechanical properties. With the advent of such technologies, it

has become increasingly important to characterize and understand the various ways

material deformations accomodate and relax stress through instabilities in thin 2D

elastic sheets. In addition, as described in Sec. 1.1.2, topological mechanics [78, 79, 195]

is a rapidly developing field that has brought the notion of topological robustness to

control and direct material response [196, 197, 197–206], failure [207–210] and buckling

[184, 211]. As a result, classical elasticity has been reinvigorated within the context of

such designer materials [135].

It is amply evident from all of the previous discussions that both topology and

geometry have been vastly influential in an extraordinarily diverse range of fields.

While most progress has been made in the context of passive or inert materials, the

inclusion of nonequilibrium driving permits many new possibilities that were otherwise

forbidden by requirements of thermal equilibrium. The significance of geometric and

topological ideas in such systems has only slowly begun to be appreciated. In the

next section, I will introduce active matter and discuss the possibility of topology and

geometry playing an important role in our understanding of nonequilibrium physics.

1.3 Active matter

Living organisms distinguish themselves from passive inanimate matter through their

ability to adapt, reproduce and evolve, and also autonomously move, perform work

and process information. Although the vast complexity of biological systems has

posed enormous challenges to any general theoretical description, progress can be

made by restricting our attention to a relatively common feature of living matter,

its capacity to self-propel. By doing so, we shall delineate a distinct category of
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Figure 4 : Some examples of active matter displaying the diversity in scale and of constituent active

units. Images of the active colloids and vibrated grains have been reproduced from Ref. [224] and

Ref. [225] respectively. The active metamaterial example is a topological lattice with individually

motorized gyroscopes, taken from Ref. [226].

nonequilibrium systems characterized by the sustained uptake and dissipation of

free-energy by individual particles, which in turn execute sustained motion [212].

Collections of such active agents [213, 214] constitute an active material [215–220]

whose large scale collective and emergent [221] properties are of great interest and

wide applicability (see Fig. 4). As a novel class of internally driven nonequilibrium

systems, active matter provides a framework to fruitfully view living systems as a

material [222, 223], amenable to the methods of condensed matter physics.

It is important to note the defining feature of active matter is that the drive is local

and it consequently breaks detailed balance [227] at the microscopic scale. In other

words, the endeavour of active matter may be regarded as elucidating the material

consequences of locally broken detailed balance. This is fundamentally different from

external bulk forcing as encountered in problems of sedimentation [228] or periodic
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Floquet systems [229]. It is also distinct from the case of boundary driving, as in

sheared turbulent fluids [230] or systems in contact with differing heat baths or particle

reservoirs (for instance, dissipative patterns in Rayleigh-Bénard convection [231]). In

all of these situations, the drive acts externally and breaks time-reversal (and perhaps

spatial) symmetry globally. A third manner of being out of equilibrium is through

relaxation phenomena [232] that focuses on the transient dynamics to (eventual)

equilibrium. If the relaxation time-scale is very large, then one is in the realm of

glassy physics associated with kinetic traps [233] or meta-stable states that can lead

to broken ergodicity [234]. Once again, this differs from the basic premise of active

matter3 and we shall not address it any further.

In the past few years, there have been a growing number of experimental realizations

of active matter with both living and synthetic analogues [238]. Examples span a

wide range of scales from natural bird flocks [239, 240], fish schools [241, 242], insect

swarms [243–246] and human crowds [247–250] to bacterial suspensions [251–254],

cellular monolayers [255–263] and sub-cellular structures as well [264, 265]. There

has been equal amount of progress in developing synthetic model active systems,

including vibrated grains [225, 266, 267], self-propelled colloids [224, 268], artificial

robots [269–271] and reconstituted biofilament liquid crystals [272–277], allowing for

quantitative tests of various active matter theories. As active units such as cells or

bacteria are often elongated in shape, they can organize in active liquid crystalline

states with orientational order. Although liquid crystal textures had been identified

in the biological setting very early on [278], their active and energy transducing

nature had been overlooked, thereby missing all of their dramatic nonequilibrium

consequences [218].

3Of course, a given active system may also exhibit glassy dynamics and arrest into jammed states
[235–237].
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1.4 Outline

In this thesis, I will focus on two classes of problems. The first will deal with the

mechanics of kirigami metamaterials and the second will address active liquid crystals

with both polar (ferromagnetic) and apolar (nematic) order, primarily restricted to two

dimensions. In a metamaterial, accounting for the detailed microstructure in a general

fashion and answering the notoriously difficult inverse design question are the main

challenges. Traditional methods of classical elasticity and mechanics [124] are often

ill-suited to address these problems. Nonequilibrium active driving further complicates

the issue as the tools of equilibrium statistical mechanics [279] remain inapplicable

to active systems, unlike their well understood passive counterparts. An important

lesson learnt from Sec. 1.1 is that geometric and topological tools that transcend

notions of equilibrium, can have manifest physical ramifications and often provide a

natural description of a system. This is the central tenet of this thesis. My goal is

to substantiate this by illustrating how novel topological and geometric phenomena

can arise in metamaterials and active systems, which in turn succinctly capture the

relevant physics of the problem. By emphasizing the geometric and topological aspects

of the problem, difficult to intuit phenomena may acquire a simple explanation and

one may uncover many surprising and unexpected effects as well.

In Chapter 2, I will begin with kirigami metamaterials and present the problem

of kirigami mechanics. It is evident even from simple table-top experiments that a

given kirigami hole pattern has a dramatic effect on the effective elastic properties of

a thin sheet. While much of the novel mechanics of kirigami relies on local bending

modes, treating the same within conventional elasticity is mired by nontrivial boundary

conditions and the extreme nonlinearity of far from threshold buckling. Hence I adopt

a different approach that instead highlights the geometric incompatibility of a hole as
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the appropriate mechanical degree of freedom in a perforated thin elastic sheet. The

method of strain-dependent image elastic charges recognizes the buckling response of

a hole under external load as a geometrically tuned mechanism of stress relief. Using

a diagonally pulled square paper frame as a model system, I find a strong softening

of the force response accompanied by curvature localization at the inner corners of

the buckled frame, in addition to nontrivial multiscaling behaviour and defect driven

buckling phenomena. A single frame can now be viewed as a modular element to build

more complex kirigami structures. Upon extending the framework to many holes, I

demonstrate that interacting elastic image charges can also provide a useful kirigami

design principle to selectively relax stresses in elastic materials, a first step towards

addressing the inverse problem.

Moving on from metamaterials to active matter, in Chapter 3, I will introduce

the active nematic [280, 281]. An important consequence of the nonequilibrium drive

is that the +1/2 disclination in an active nematic is spontaneously motile or self-

propelled [282]. Given that defects play a key role in two dimensional passive matter,

it is natural to ask how defect motility changes the equilibrium story. A paradox

immediately arises regarding the survival of nematic order in the face of ballistic

defects. To address this puzzle, I develop a systematic description of defects as effective

particles, expanding on a vastly successful venture in equilibrium [283–292]. The

stochastic dynamics of defects thus derived faithfully captures the important physics

of an active nematic and allows us to comprehensively address defect unbinding and

proliferation. The resulting “motile”-BKT phase transition leads to spatio-temporal

defect chaos and active turbulence. The extension of a canonical defect mediated phase

transition to the active realm allows us to then finally resolve the original paradox,

providing insight into mechanisms that maintain order in active systems.

In the Chapter 4, I will switch to describe an active polar fluid and the phenomenon
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of flocking [293]. While rotating vortices and asters are present in active polar films

[294–297], they remain strongly confined with diffusive translational dynamics4 and

the order-disorder transition is not mediated by topological defects. Instead, the onset

of collective motion is now best understood as a liquid-gas like transition with an

intermediary coexistence phase of travelling smectic bands [301–306]. Upon ordering

into a collectively moving state, the active polar fluid breaks time-reversal symmetry

macroscopically. When considered on a curved surface, one necessarily finds topological

defects due to the geometric frustration imposed by the curvature [91, 92], but another

more intriguing topological defect also arises, one in Fourier space. I will demonstrate

that polar fluids on curved surfaces are analogous to quantum Hall states in the precise

sense that the flock supports localized sound waves that are topologically protected.

Ordered lattices [226, 307] and amorphous networks [308] with active units such as

spinning gyroscopes or annular cells with circulating active fluids have been shown to

support localized edge states that are topologically protected. Unlike these structured

metamaterials with broken time-reversal symmetry, the polar flock provides a natural

and spontaneous realization of topological protection far from equilibrium.

Finally in Chapter 5, I will summarize the various results presented. To conclude,

I will end with a discussion of future directions and implications of geometry and

topology in both designer and living matter.

4An ordered polar flock in two dimensions has long-ranged order [293, 298, 299] unlike an
equilibrium planar magnet, violating the Mermin-Wagner-Hohenberg-Coleman theorem by virtue
of being active. As a consequence, vortex-antivortex pairs are expected to experience a strongly
confining attractive potential ∼ r0.8, where r is the pair separation (there is some indication for this
in Ref. [300]).
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Chapter 2

Mechanics of kirigami

metamaterials: stress relief by

elastic charges

This chapter is based on work primarily presented in the articles “Kirigami mechanics

as stress relief by elastic charges” [192] and “Nonlinear mechanics of thin frames”

[193] co-authored by Michael Moshe, Edward Esposito, Suraj Shankar, Baris Bircan,

Itai Cohen, David R. Nelson and Mark J. Bowick, and published in the journals

Physical Review Letters and Physical Review E respectively, in the year 2019. Both

Michael Moshe and I performed the theoretical analysis and wrote the primary draft

of both papers together, barring the experimental sections. All our co-authors provided

valuable suggestions and edits to improve the presentation and the content of both

papers.
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2.1 Geometry in elasticity

Classical elasticity is a scale-free continuum theory [124] and yet scale-dependent

features are routinely observed in elastic materials [125]. The elastic theory of thin

plates and shells [309] is a good example: the plate/shell thickness, compared to

the overall size, is a purely geometric dimensionless parameter controlling both the

structural bendability and the degree of nonlinearity. As a result, one often finds

complex mechanical behavior and rich pattern formation in these structures. Thin

sheets, for example, display compressional buckling [124], wrinkling [126–128, 310],

folding [130, 311, 312] and crumpling [129, 131], all as a result of the interplay between

the external load and the sheet thickness. In addition to these instabilities with a

characteristic length scale, geometric nonlinearities can also lead to unusual scale-free

instabilities, a well known example of which is the surface instability of compressed

soft solids leading to cusped sulci [313, 314].

Another class of elastic solids characterized by multiple length scales are non-

euclidean thin sheets [315]. Here the (preferred) curvature of the sheets provides

an additional length scale. Structures with a non-euclidean geometry are widely

prevalent in nature and play an important role in determining the morphology of

flowers [316, 317], leaves [132, 318], growing tissues [319] and seed pods [320, 321].

This has also inspired the design of mechanically-responsive materials [322, 323] and

actuators [145].

A common feature in all these examples is the presence of multiple widely-separated

length scales that affect both mechanics and structure. Such multiscale behavior can

also show up in the scaling of the total energy with system size [324]. From this point

of view, kirigami - the Japanese art of cutting and folding paper, is a powerful means of

manipulating the geometry and intrinsic length scales of an elastic sheet. The presence
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of holes then provides a new handle for controlling both the onset of instabilities and

the effective mechanical response. One finds that the conventional linear response of

the planar state transitions to a mechanically softer nonlinear response as the applied

force increases due to force-induced buckling. The effective elastic properties that arise

here may be tuned by varying the geometry of the holes. Eventually, for large loads the

displacement eventually reaches the order of the hole size itself and we find a cross-over

to a stiffer, but still nonlinear, response. This pattern of mechanical responses, passing

from a linear regime through an instability-induced softening to eventual nonlinear

stiffening, is seen in other systems as well, such as the force-induced denaturation

of double-stranded DNA [325], metal alloys, solid polymeric foams [326, 327], and

nematic elastomers [328].

The properties noted above have recently been exploited to generate mechanically

actuated 3D configurations [178, 179, 187, 188] and highly stretchable devices [177,

180, 182]. Blees et al. [150] succesfully demonstrated that kirigami can be performed at

the extreme nanoscale to modify the effective mechanical properties of atomically-thin

graphene in the presence of strong thermal fluctuations. For small feature sizes,

the geometry and deformation of a nanoscale graphene kirigami structure might

modify its electronic transport properties as well [329]. Lattice kirigami structures

have also been used, although without direct reference to their mechanics, to create

complex 3D macro-structures [181, 186], much in the spirit of origami-based designs.

Unlike previous studies of mechanical metamaterials involving in-plane instabilities of

periodically perforated thick sheets [173, 175, 330–332], here we shall focus primarily

on thin elastic sheets that easily buckle into the third dimension, as is most relevant

for kirigami.

The mechanics of thin elastic sheets is controlled by the dimensionless Föppl-von

Kármán (FvK) number γ = Y R2/κ [124] that indicates the relative ease of in-plane
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stretching versus out-of-plane bending. Here R is a characteristic linear dimension

of the sheet, Y the 2D Young’s modulus and κ the bending rigidity. By introducing

holes or cuts, kirigami now provides a distinct route to locally relieve stresses through

these geometric features, though a general characterization of its effective mechanical

response is not known. The much harder inverse problem of predicting the correct

kirigami pattern to relax a given pre-stress in a material also remains an open problem,

complicated by the notorious nonlinearity inherent to thin sheet elasticity.

2.1.1 Geometric mechanics of kirigami

Here we develop a geometric framework to address some of the general mechanical

consequences of kirigami and later compare with experimental measurements of force-

extension curves of pulled paper frames. Starting with a single square frame, we use

the technique of strain-dependent image elastic charges to show that a hole under

external load acts as a geometrically tunable source of local stress, which is relaxed by

local buckling. This method crucially recognizes the fact that holes provide a source

of geometric incompatibility. The lowest order image elastic charge induced in a hole

is a quadrupolar singularity in Gaussian curvature [25, 333]. When permitted by the

shape of the hole, this singularity can fractionalize into partial disclinations, naturally

explaining the curvature localization at interior corners seen experimentally for square

frames. Thus, the buckling response of the sheet can be viewed as the sheet screening

the image charges by adopting a curved 3D configuration thereby leading to a softer

force response. By exploiting the quasiparticle nature of these geometric charges, this

method naturally explains the geometry tuned buckling threshold and the multiscale

behaviour of the force response in the most economical fashion possible.

Similar buckling induced softened mechanical response has been previously inves-

tigated in periodic arrays of slits under uniaxial tension [180, 185, 188]. Motivated
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by Ref. [187], we go beyond slits and use square holes as a nontrivial yet simple

illustration of our framework. This rationalizes previous results, extends to arbitrary

hole shapes1, and provides a systematic approach to handle many holes. In addition,

collective effects arising from interactions between holes are neglected in previous

works that just analyze the unit cell of a periodic lattice, but are easily captured

using the elastic charge framework. Using a flattened cone as an example, we will

later demonstrate how interactions between image charges can guide the design of

appropriate kirigami patterns to relax the pre-existing stress in the system. It is worth

emphasizing that the formalism of interacting image elastic charges offers general

principles to organize the mechanics of kirigami structures, and the mechanics of a

single frame [Fig. 5(c)] provides a modular building block for more complex arrays

[Fig. 5(a)].

2.2 Table-top observations: Multistability and curvature lo-

calization

As mentioned above, we will focus on the mechanics of isolated square frames, whose

edge length (L), hole size (H), and frame width (w = (L − H)/2) are shown in

Fig. 5(c). Pulling on such a square frame along diagonally opposite ends, we first note

that the frame readily buckles out of the plane but can adopt multiple configurations

in doing so. In Figs. 5(d-f) three locally stable configurations of a diagonally pulled

square frame are shown, distinguished just by the relative orientations of the buckled

inner corners: corners with angles less than π/2 in the stretched configuration (before

buckling) are positive partial disclinations, and can either buckle up or down (±).

1Our focus is mainly on square holes, because the concentration of elastic charges at sharp corners
simplifies the analysis; elastic charges are delocalized around the rim when one considers, say, circular
holes instead (see Fig. 9).
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Figure 5 : Kirigami and frames. (a) A periodic kirigami pattern composed of square frames. (b) The

response of the pattern in (a) to a large deformation when stretched along the x direction, enabled

by the escape of the frame elements into the third dimension. (c) An individual square frame of

size L, frame width w and hole dimension H = L− 2w, forming the building block of the pattern

in (a). (d-f) Different locally stable configurations of a square frame subjected to an external force

along its diagonal (in the horizontal direction), distinguished by the relative orientations of the four

inner corners: (d) The left and right inner corners are curved up and down, respectively (denoted

by + and −, respectively), whereas the top and bottom inner corners point to the left (as shown

by the red needles normal to the surface and denoted by L. This configuration is thus denoted by

+ : L/L : −). (e) The left and right corners both point up here, while the top and bottom corners

point in opposite directions, hence denoted by + : L/R : +. (f) Here both the left and right corners

once again point up, but the top and bottom corners point in the same direction, hence + : L/L : +.

The remaining configuration + : L/R : − is not stable at this hole size.
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Corners with angles greater than π/2 in the stretched configuration before buckling

are negative partial disclinations, and the associated square plaquettes can tilt either

to the left or right (L or R). The configurations in Figs. 5(d-f) can thus be compactly

denoted as + : L/L : − (d), + : L/R : + (e), and + : L/L : + (f).

Here we focus primarily on the global energy-minimizing configuration for a given

strain, and the associated energy landscape of the planar and buckled configurations

for varying hole sizes and loading conditions. We neglect the effects of strong thermal

fluctuations uncovered in Ref. [150]. In principle, for the square frame, there could be

24 = 16 different buckled configurations in all, with many related by global rotations

and reflections. The relative parity of opposing corners (+ versus − and L versus R)

completely classifies the 4 distinct buckled configurations, up to symmetry-related

degeneracies. However, the configuration + : L/R : − (and its symmetry related

cousins) is unstable in the parameter range we study. The other three locally stable

ones are shown in Figs. 5(d-f). Such multistability induced by geometric frustration

can yield programmability [163, 175, 334] when coupled in large complex kirigami

arrays. As an aside, we do note that the presence of such multiple local energy

minimizers (metastable states) and their associated degeneracies would also play an

important role when thermal fluctuations are present, and might have nontrivial

consequences for, say, the free-energy of thermalized kirigami microstructures under

stress (see for instance Ref. [335]).

There are three main observations that drive our work. First, as demonstrated

in Fig. 5(b),(d) ,the presence of a hole, or an array of holes, significantly softens the

response of a frame to external forces. Quantifying this softening as a function of

frame width, or equivalently hole size, is an important prerequisite for a thorough

understanding of kirigami mechanics. Second, we find that the frame localizes curvature

in the vicinity of the inner corners of a hole, much like that of a conical surface. Similar
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singularities and softened force-response have been observed previously in the buckling

of other shapes such as slits [185, 188]. Third, for small hole sizes the frame does

not buckle, implying that there is a threshold hole size for buckling (at a fixed

displacement). Alternately, the buckling transition may be triggered by varying the

external diagonal displacement (δx), for a given hole geometry. We shall denote the

critical displacement for the buckling transition in a fixed geometry by δxc. Guided by

these observations, we now proceed to develop a theoretical framework which naturally

captures and emphasizes these features of frames and kirigami.

2.3 Image charges in thin plate elasticity

The mechanics of an elastic frame is governed by an elastic energy functional composed

of a stretching term depending on the 2D Young’s modulus Y and a bending term

proportional to the bending modulus κ. For a Hookean material, both the stretching

and bending terms are quadratic in the stress (σ) and extrinsic curvature (b) tensors,

respectively. Upon minimizing the total energy, we obtain the covariant Föppl-von

Kármán (FvK) equations [309, 336],

1

Y
∆∆χ = KIm −KG , (2.1a)

κ∆tr(b) = σµνbµν . (2.1b)

Here ∆ ≡ ∇2 is the Laplacian and we have used the 2D Airy stress function χ

(σαβ = εαµεβν∇µ∇νχ, εαβ is the 2D Levi-Civita tensor) to simplify the force balance

equation. The extrinsic curvature tensor is defined by bαβ = n̂ · ∇αtβ, where n̂ and

tβ are the local normal and tangent vectors to the surface, and whose determinant

gives the Gaussian curvature KG of the surface. Note that these equilibrium equations

reduce to the standard Föppl-von Kármán (FvK) system [124] upon geometrically
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linearizing the 3D configuration in a Monge patch.

The two elastic moduli together define a characteristic length scale, commonly

interpreted as the effective thickness of the sheet. Working in terms of a 3D Young’s

modulus Ȳ , we have Y = Ȳ t and κ = Ȳ t3/[12(1− ν2)], where t is the effective sheet

thickness (from now on referred to only as thickness) and ν is the Poisson ratio [125].

Unlike the conventional FvK equations for thin plates, we have additionally included a

source of Gaussian curvature KIm that plays the same role that defects play in crystals

[92], though in our case this function describes a distribution of image elastic charges

that are induced within the hole and depend on the external load, serving to enforce

the appropriate boundary conditions required by the hole. Here the analogy with

electrostatics helps, in that the hole under external stress functions like a conductive

shell in an external electric field.

To understand the precise meaning of KIm, we shall now look at the plane-stress

problem for an annulus and set b = 0 (KG = 0). The annulus being circularly

symmetric, the planar problem is exactly solvable in terms of the Michell solution

[337]. Below, we will reinterpret this classic solution in terms of image charges instead,

and give a concrete calculation for KIm in the annular geometry and then generalize

it for other hole shapes.

2.3.1 Planar frames: Sheared annulus

The primary complication in solving the plane-stress problem is the presence of a

nontrivial hole geometry and the corresponding boundary conditions that come with

it. As the circular hole is most amenable to a simple solution by virtue of its high

symmetry, we will use that to compute expressions for the induced image charges

and later argue an analogous expression for the square hole as well. The inner and

outer radii of the annulus are denoted by R1 and R2 (R2 > R1), respectively as shown
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Figure 6 : The analytic solution (in red) for an annulus subjected to pure external shear (σ0) on its

external boundary. The undeformed annulus is shown in a dashed black line.

in Fig. 6. Working in polar coordinates {r, θ}, the plane-stress problem reduces to

solving the biharmonic equation ∆∆χ = 0 (Eq. 2.1a with KG = 0 = KIm) on the

annulus, with boundary conditions

σrr|R2
= − σθθ

∣∣
R2

= σ0 sin 2θ , σrθ
∣∣
R2

= σ0 cos 2θ , (2.2)

σrr|R1
= σrθ

∣∣
R1

= 0 . (2.3)

Here we only treat the case of an imposed diagonal pure shear stress controlled by σ0

for simplicity, with simple shear and isotropic tension or compression being trivial to

include. The well known solution for the stress function is [337]

χ(r, θ) =

[
ar4 + br2 + c+

d

r2

]
sin 2θ , (2.4)
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where the coefficients are

a =
2R2

2 − 3R2
1

12 (R2
2 −R2

1)
2σ0 , b =

2R2
1 −R2

2

4 (R2
2 −R2

1)
2R

2
1σ0 , (2.5)

c = − R6
1

4 (R2
2 −R2

1)
2σ0 , d =

R6
1R

2
2

12 (R2
2 −R2

1)
2σ0 . (2.6)

The corresponding equilibrium configuration is plotted with a red outline in Fig. 6 .

At this stage we note that the same problem can be solved formally using the method

of image charges, often used for solving the Laplace equation in the context of classical

electromagnetism [338]. In electrostatics, the electric charge density provides a source

for the Coulomb potential (via Gauss’s law) which makes them dual to each other

as generalized conjugate variables. Eq. 2.1a tells us that the Airy stress function χ

and the Gaussian curvature are related to each other in a similar fashion [339]. This

identification allows a straightforward generalization of the electrostatic image charge

procedure to elastic problems. Hence for the problem at hand, instead of solving

Eq. 2.1a on an annulus with stress free boundary conditions on the boundary of the

hole, the same solution can be obtained by solving

1

Y
∆∆χ = KIm , (2.7)

in the whole disk of radius R2, where KIm is now non-zero and compactly supported

in the region that was previously the hole (circular disk of radius R1). By doing

this, we have traded the annulus for a simply connected disc by introducing a source

term KIm in the force balance equation, which precisely corresponds to the image

elastic charges required to enforce the requisite boundary conditions on the hole. It is

useful to compare against the electrostatic analogue, where the equipotential boundary

condition of a conducting surface in a background electric field can be equivalently
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replaced by an appropriate image charge distribution that serves to enforce the same

boundary condition.

The first two terms (a and b) in Eq. 2.4 can be viewed as resulting from image

charges at infinity. For now, we shall let these be as they are. The remaining two

terms (c and d) can be viewed as being induced by a singular source term at the origin

of the form

KIm(x) = 2Q∂x∂yδ (x) + 2D∂x∂y∆δ (x) , (2.8)

where x is the position vector in the plane and ∆ ≡ ∂2
x + ∂2

y is the planar Laplacian.

There are two induced image charges, with magnitudes given by

Q = −σ0

Y

[
πR6

1

(R2
2 −R2

1)
2

]
, D = −σ0

Y

[
πR6

1R
2
2

6 (R2
2 −R2

1)
2

]
. (2.9)

The two singularities in Eq. 2.8, when viewed as part of a multipole expansion,

correspond to a fictitious quadrupolar charge (Q) and a fictitious hexadecapolar charge

(D). In general, for more complicated hole shapes and external loading conditions,

one can perform a multipole expansion of KIm [333] and an infinite number of terms

are present. Topological constraints, though, require that the monopole and dipole

terms in KIm, corresponding to a global disclination and dislocation, respectively,

must vanish [25]. The lowest order allowed multipole in KIm is therefore generically

the quadrupole [333].

For the case of a circular hole under pure shear, only two image charges (Eq. 2.9) are

required to exactly solve the full plane-stress problem, and the image charge procedure

being entirely equivalent to the classical solution, offers no apparent advantage. The

benefit of using image charges becomes evident once we begin looking at less symmetric

hole shapes, such as the square hole. For a square frame pulled along its diagonal,

one has to include higher order multipoles to exactly solve the problem, though the



29

quadrupole is most often still the dominant contribution2. The crucial point here is

that the mechanics of a frame can be accurately captured by a finite (and hopefully

small) number of image charges. The magnitude and number of these charges will

of course depend on the shape and size of the hole along with the external loading

conditions. In this way the geometric formulation of elastic charges characterizes

perforations in an elastic sheet under stress as sources of geometric incompatibility

and provides a useful solution technique even for situations where traditional elasticity

methods are inapplicable.

2.3.2 Arbitrary planar frames: General strategy

The basic idea, a kind of variational ansatz for the frame configuration, is then to

guess a distribution of image charges, interpreted as sources of Gaussian curvature.

This distribution determines the stress function such that it satisfies the appropriate

boundary conditions on the hole. Since Eq. 2.7 is linear in χ for planar frames, we

can superpose the different multipolar image charges to obtain a KIm that satisfies

the appropriate boundary conditions. The displacement field ui and the stress tensor

σi generated by the ith elastic charge λi, is then

uµ(x) =
∑
i

λiu
µ
i (x) , (2.10a)

σµν(x) =
∑
i

λiσ
µν
i (x) . (2.10b)

2For very thin frames (large holes) higher order multipole terms can be as important as the leading
quadrupolar image charge. A different approach is needed in this ribbon or ring-polymer like limit
(see Sec. 2.4.2).
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Note that ui and σi are explicit functions for each individual image charge3, and

different hole geometries only correspond to including a different number of terms

with different charge magnitudes in the above sums. The functions ui and σi can be

found separately for each multipole as shown in Ref. [339]. Here these charges can

be thought of as physically motivated variational parameters, one for each force or

displacement imposed on a frame.

The elastic energy in a domain Ω, including forces at the boundaries, is then

E =
1

2

ˆ
Ω

AµνρσσµνσρσdS −
˛
∂Ω

Tµu
µd` (2.11)

Here A is the elastic tensor [315], Ω is the domain of the entire frame, and T is the

boundary force. For an intrinsically flat, isotropic and homogeneous material with a

2D Young’s modulus Y and Poisson ratio ν,

Aµναβ =
1

Y

[
(1 + ν)

2
(δµαδνβ + δµβδνα)− νδµνδαβ

]
. (2.12)

Writing the stress and displacement fields in terms of the elastic charges yields

E =
∑
i,j

Mijλiλj −
∑
i

miλi (2.13)

with

Mij =
1

2

ˆ
Ω

Aµνρσσµνi σ
ρσ
j dS (2.14a)

3The stress tensor σi, and the corresponding strain tensor, generated by each individual charge
is linear in the charge λi itself for a Hookean material. On the other hand, the displacement field
ui in general depends nonlinearly on the charge λi due to geometric nonlinearities in the metric
tensor. For fixed load applied at the boundary, the linear charge approximation is only valid for
small charges. For fixed external displacement, the most relevant case here, the variational problem
is exactly linear in the membrane limit.
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mi =

˛
∂Ω

Tµu
µ
i d` (2.14b)

Since all the σi and ui are known explicitly, given a specific frame geometry, we can

integrate over the domain Ω and obtain an expression for the matrix M and the vector

m. After minimizing the energy with respect to the image charges λi, simple linear

algebra leads to an explicit formula for the magnitude of the ith charges, namely

λi =
1

2

∑
j

M−1
ij mj (2.15)

This is the general expression to compute the image charges for a given hole geometry

and external loading conditions. In practice, the sum is truncated to a finite number of

terms approximating the exact solution. For single frames, often times, the quadrupole

alone is the most dominant contribution and all other terms can be neglected. In the

case of the sheared annulus, as we have direct access to the exact solution (Eq. 2.4),

we can compare it to the pure quadrupole approximation, i.e., setting D = 0 in

Eq. 2.8. We find that the error in the total energy is less then 5% for moderately large

frame widths (R2 − R1)/R2 > 0.3, which provides a guide for the pure quadrupole

approximation when applied to other hole shapes as well. A similar analysis can

be done for the plane-strain problem as well, and one finds that a pure quadrupole

approximation works well (to ∼ 5% accuracy) for (R2−R1)/R2 & 0.125. The difference

arises because a vanishingly narrow frame has a diverging deformation under fixed

tension (plane-stress), but not so under fixed external displacement (plane-strain).

We can repeat the above procedure to compute the induced quadrupole charge

in a square frame. First we consider the more complex setup of a square frame with

two localized tensile forces F acting along a diagonal, that is the analogue of the

plane-stress problem. The induced fictitious quadrupolar charge as a function of the
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Figure 7 : The geometric function Φ1,2(w/L) that captures the aspect ratio dependence of the

induced quadrupolar charge under plane-stress conditions (a), or plane-strain conditions (b).

external force is

Q(F ) =
FL

Y
Φ1 (w/L) , (2.16)

where Φ1(w/L) is a dimensionless rational function of the frames aspect ratio w/L,

plotted in Fig. 7(a). As can be seen Φ1(w/L) vanishes in the absence of a hole

(w/L → 1/2) and diverges for a vanishingly narrow frame (w/L → 0). As noted

above, the divergence of the induced charge as the frame width w → 0 is due to the

unbounded deformation of a vanishing amount of material in the narrow frame, under

fixed tension. For the quite different setup of fixing the displacement (δx) of the two

diagonal ends of the frame (akin to the plane-strain problem), the quadrupolar charge

induced instead becomes

Q(δx) = L2Φ2 (w/L)
δx

L
. (2.17)

In this case the dimensionless geometric function Φ2(w/L) [plotted in Fig. 7(b)]

remains finite for a narrow frame (w/L→ 0), and vanishes as before in the absence

of a hole (w/L → 1/2), as expected. An explicit expression can be obtained for

both Φ1,2(w/L), but the functional form itself is not very illuminating apart from the

above discussed limits. Similar expressions hold for higher order charges as well. The
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important point is that all the details of the shape and geometry of the hole and the

loading condition are concisely subsumed by this single geometric function Φ1,2(w/L).

Solutions parametrized with just a few image charges become more accurate for

weak charges; the regime of validity of the approximation depends on the specific

protocol of the prescribed deformation. For a given narrow frame (w/L � 1/2),

the corresponding charge induced by a prescribed force will be much larger than

that induced by a prescribed displacement. A small prescribed displacement, for

example, results in charges that decrease as the frame narrows. Hence using the

estimates obtained for the annulus, we expect that for a fixed prescribed force, the

pure quadrupole approximation is valid for 0.3 . w/L < 0.5 (within ∼ 5% accuracy),

while for prescribed displacements, 0.125 . w/L < 0.5 is perhaps more appropriate as

the validity range.

Before we move on to treating buckled frames within this framework, we note

that the analogy with electrostatics provides simple interpretations of various features

of these image elastic charge as well. The hole plays the role of a conductor in

electrostatics. Just as induced electric charges concentrate at regions of high curvature

on conductors in an external electric field, the elastic charges induced within a hole

in response to an external load tend to localize at the sharp corners of the hole. In

the planar case, this is evident in energy density plots of Fig. 8 resulting in stress

localization at the corners. In the 3D case, as we shall see below, this elastic charge

localization in turn leads to curvature localization upon buckling, explaining the

observations from the table-top demonstrations.

2.3.3 Buckled frames: Screening of charges

A 2D elastic sheet embedded in 3D space may also escape into the third dimension

to relieve any local stresses. Under load, it will first stretch and then buckle beyond
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Figure 8 : The deformation of a square frame (as calculated by Eq. 2.15) constrained to be planar

and subjected to a fixed force F/(Y L) = 0.1 along the diagonal (from the lower left to the upper

right). The frame size is fixed at L = 1 and hole size varied with (a) H = 0.5, (b) H = 0.6 and (c)

H = 0.8. The configurations are colored by the energy density on a linear scale from blue (low) to

white (high). Although the force is fixed, for an appropriate choice of the effective thickness, and if

allowed to escape into the third dimension, configuration (a) remains planar, (b) is planar but at the

buckling threshold, and (c) is beyond the critical force threshold for buckling. Note that the interior

angles of the frames deviate from π/2 with the application of the force, signalling the formation of

localized partial disclinations that concomitantly focus stresses as well.

the instability threshold. As mentioned earlier in Sec. 2.1, the relevant dimensionless

parameter that quantifies the ease with which an elastic sheet can bend rather than

stretch is the Föppl-von Kármán (FvK) number (γ). For a frame, as will be explained

below, the appropriate definition of γ involves the frame width w as the macroscopic

length scale, which gives γ = Y w2/κ. When γ � 1, the frame preferentially stretches

in-plane, while for γ � 1, it more easily trades stretching energy for bending energy

and buckles out of plane instead. Let’s take the case when bending is energetically

much easier than stretching for a given area sheet (γ � 1). In this post-buckling or

far from threshold regime the 3D configuration will be approximately stretchless. As

a consequence, the frame adopts curved shape with spatially inhomogeneous Gaussian

curvature, particularly on the boundaries and near the corners. This allows KG 6= 0

in Eq. 2.1a. The presence of the hole can still be captured by the same image charges

in KIm as computed in the planar problem (Sec. 2.3.1 and Sec. 2.3.2). Hence we
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immediately see that

KG = KIm =⇒ χ = 0 , (2.18)

and the zero stress state becomes accessible to the buckled sheet. In other words, the

frame trades energetically expensive stretching for bending by adopting a 3D shape

with Gaussian curvature (KG) that screens out the induced image charges in the hole

(KIm). By buckling, the frame thereby accommodates the geometric incompatibility

of the hole generated by the external load. This screening effect strongly resembles

the one found for the buckling of topological defects in crystalline membranes [100].

Importantly, the image charge approach affords an immediate simplification wherein

the complex mechanical properties of the buckled configuration can be directly inferred

by virtue of screening the induced charges, which are themselves computed in the

much simpler planar setting. By relating the post-buckling solution to the pre-buckled

one through screening, we circumvent the primary hurdle of thin plate elasticity, its

geometric nonlinearity. The screening argument naturally also explains the localization

of curvature at corners upon buckling.

In Fig. 9(a), one sees a clear manifestation of this phenomenon even in a triangular

hole, whose shape is incommensurate with the symmetry of a quadrupole. For the

annulus with no sharp corners, the charge instead distributes smoothly with curvature

following suite [Fig. 9(b)]. Having fixed the Gaussian curvature of the 3D shape, the

configuration of the buckled frame is now determined upto isometries (that preserve

KG). The energy minimizing configuration is then picked out by requiring it satisfy

the second FvK equation (Eq. 2.1b). As χ = 0, so is σ = 0, and the equation simplifies

to

∆H = 0 , (2.19)

i.e., the mean curvature H = tr(b) is harmonic (under the constraint of KG = KIm).
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Figure 9 : Three dimensional energy minimizing configurations after buckling, obtained by a finite

element computation. (a) Triangular and (b) circular frames subjected to uniaxial forces applied at

opposing ends. The colour refers to the local energy density ranging from blue (low) to white (high).

The screening charges responsible for this energy distribution are still of a quadrupolar nature, though

they are evenly smeared out in the annular geometry. The triangular hole being incommensurate

with the symmetry of the quadrupole, frustrates it and as a result, part of the charge is spread on

one side of the triangle, while the rest concentrates at the three corners. This leads to the observed

curvature localization.

This completes the solution procedure to analyze both the planar and buckled states

of frames with arbitrarily shaped holes. In the next section, we will use this procedure

to study in detail the mechanics of an isolated square frame that is pulled along its

diagonal.

2.4 Nonlinear mechanics of a square frame

In this section, we shall characterize the mechanics of pulled square frames and compare

it against experimental measurements of force-extension curves (Fig. 11) in paper

frames. We will focus exclusively on the setup involving a prescribed displacement

(δx) of diagonal corners of the square frame. Extensive comparisons to numerical

finite element computations are given in Ref. [193], while details of the experimental

setup and protocol are provided in Ref. [192]. As noted earlier in Sec. 2.3.2 and 2.3.3,

in the presence of sharp corners in the hole geometry, the induced image elastic charge
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can fractionalize into partial disclinations that localize at the corners, just as in the

electrostatic analogue. These partial disclinations generate stress fields similar to their

topological counterparts [100], but unlike them, these induced partial disclinations

have a charge that continuously depends on the external strain or stress imposed. The

choice of a square frame as a model system to study kirigami mechanics then becomes

clear in light of the image charge framework, as its shape is commensurate with the

symmetry of a quadrupole allowing for complete unfrustrated fractionalization, unlike

in triangular or circular frames (Fig. 9).

The fractionalized quadrupole naturally delineates different geometric regimes. As

the deformation induced by each partial disclination is mainly confined to a plaquette

region of size ∼ w (the frame width), we obtain three different regimes depending on

the aspect ratio w/L. For w/L < 1/4, the partial disclinations remain well separated

and are essentially non-interacting, allowing one to approximately superpose their

planar or buckled solutions. In contrast for w/L > 1/4, the hole size is small and

the interaction between overlapping partial disclinations becomes important. We

shall not treat this case of small hole sizes, where other effects involving fracture and

crack propagation also become relevant allowing the material to fail before it buckles.

The relevant regime for kirigami is w/L < 1/4, which can be further split into two

sub-regimes -

• Narrow size frames (w/L < 1/8): The single quadrupole approximation breaks

down and higher order charges become equally important as the quadrupole (see

Sec. 2.3.2).

• Intermediate size frames (1/8 < w/L < 1/4): Here the single quadrupole

approximation is accurate and can be treated entirely in terms of its fractionalized

degrees of freedom, i.e., non-interacting partial disclinations localized at the
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corners.

Both these size regimes are discussed in Sec. 2.4.2 in the context of post-buckling

mechanics. The charge of the partial disclination is given by

s =
Q(δx)

H2
= Φ(w/L)

δx

L
, (2.20)

where Φ(w/L) = (L/H)2Φ2(w/L) [see Eq. 2.17 and Fig. 7(b)] now encodes the hole

geometry in terms of the aspect ratio. As w → L/2 (H → 0; no hole), Φ(w/L) ∝

(1−2w/L)2 vanishes as expected and remains finite in the opposite narrow frame limit

(w → 0, H → L). We shall use this setup to understand both the buckling instability

and the force response curve as measured in the experiment (Fig. 11).

2.4.1 Pre-buckling planar mechanics

For very small diagonal displacements (δx < δxc, with δxc the buckling threshold), it

is clear that the frame responds linearly by stretching [Fig. 11(b)]. Though the frame

is still planar, the effective spring constant is modified by the hole geometry. Setting

b = 0 (KG = 0) in Eq. 2.1a, we only have KIm, the image elastic charge, present

within the hole. Having noted the localization and complete fractionalization of the

induced quadrupole at the corners, we can easily estimate the total energy as of four

unbuckled partial disclinations,

E ≈ 4
Y w2

32π
s2 , (2.21)

where s = (δx/L)Φ(w/L) is the partial disclination charge (Eq. 2.20). Using this we

can compute the force F = dE/dδx and the effective linear spring constant
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Figure 10 : The effective spring constant keff for a planar frame as a function of the aspect ratio

w/L. Parameter values used are L = 1 and t = 5 × 10−4. The blue dots are from the numerical

simulations. The solid line is the analytical prediction in Eq. 2.22 with no fitting parameters.

keff =
d2E

dδx2

∣∣∣∣
0

∝ Y
(w
L

)2

[Φ(w/L)]2 , (2.22)

where we have neglected all geometry independent order unity numerical prefactors.

As the pre-buckling regime in the paper experiments is very narrow, an accurate

estimation of the effective spring constant is not possible. Instead we compare the

above expression in Eq. 2.22 to the effective spring constant from numerical finite

element simulations (as used for example in [321, 340]) of a planar frame (Fig. 10) and

we find perfect agreement (except for very small holes), without any fitting parameters.

For small holes (w/L > 1/4), we can improve the agreement if we consider the full

quadrupole without any fractionalization into partial disclinations (not shown).

2.4.2 Post-buckling mechanics: Multiscaling

The energy of the buckled 3D configuration of the frame is estimated by following

arguments similar to those used in the planar case. Unlike the planar case, however,

the buckled quadrupoles controlling force-extension curves have multiple locally stable

configurations corresponding to various combinations of up-down buckling of each
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partial disclination (see Sec. 2.2 and Fig. 5). Although, each of these states have a

different energy due to interactions between the buckled partial disclinations, in the

intermediate hole size regime (1/8 < w/L < 1/4), these differences can be neglected.

Moreover, the different modes of buckling that lead to multistability all scale the same

way with both thickness (t) and the hole geometry (w/L), only differing from each

other in numerical prefactors. By virtue of the localized partial disclinations, the

buckled frame adopts a locally conical shape near the inner corners. Therefore, just

as in the planar case, we estimate the total energy as the sum of now conical buckled

partial disclinations at each corner [100, 341, 342]

E = 4κ ln
(w
a

) [
c1s+ c2s

2 + · · ·
]
, (2.23)

where a ∼ t is a microscopic core cutoff regularizing the conical singularity, and c1, c2

are order unity numerical coefficients that depend on the precise mode by which each

partial disclination buckles. The partial disclination charge s remains the same as

before (Eq. 2.20). We have additionally neglected additive δx independent constants

to the energy that are irrelevant to mechanics. Note the logarithmic dependence

of the energy on the frame width w, which is typical for conical surfaces, and is a

direct consequence of the curvature localization. We emphasize that the above energy

estimate is valid only in the post-buckled regime (δx� δxc).

Once again, since F = dE/dδx, we obtain the linearized force-displacement relation

F = keffδx, that defines the effective linear spring constant keff in the post-buckled

regime to be

keff ∝
κ

L2
[Φ (w/L)]2 ln (w/a) . (2.24)

Comparing Eq. 2.24 to the planar case (Eq. 2.22), we recognize that the dramatic

softening of the mechanical response in the post-buckled plateau can be seen as
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Configuration Aspect ratio keff

Planar – ∝ Y [Φ (w/L)]2
(w
L

)2

Buckled


1

8
<
w

L
<

1

4
∝ κ

L2
[Φ (w/L)]2 ln

(w
a

)
w

L
<

1

8
∝ κ

L2

(w
L

)
Table 1 : A summary of the effective spring constants keff for different frame aspect ratios w/L, for

planar and buckled configurations.

replacing Y → κ/w2 (upto a logarithmic correction). As Y w2/κ = γ � 1, this

essentially corresponds to the buckled linear response being a factor γ smaller than

the planar response. Note that this response is appropriate for intermediate hole sizes

(1/8 < w/L < 1/4) whose buckling is controlled by the buckling of localized partial

disclinations.

To calculate the buckled force response of narrow frames (w/L < 1/8) we use

an alternate approach. Here, an infinite series of multipolar charges higher than the

quadrupole become important, suggesting that the relevant weakly interacting degrees

of freedom are not elastic charges. Instead, we treat the frame edges as quasi-1D

ribbons joined in a ring. Neglecting the high energy splay modes, the bending and

twisting elastic energy of a ribbon is approximated by

E ≈ 4κ wL

(
δθ

L

)2

, (2.25)

where δθ ∝ δx/L is the net rotation of the ribbon across its length [125]. Once again

computing the effective linearized spring constant for buckled narrow frames, we

obtain

keff ∝
κw

L3
. (2.26)
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Figure 11 : Experimental measurements of square frames subjected to tensile load along the diagonal.

(a) Force-displacement curves for frames with w/L = 0.25 and thicknesses varying between 0.01 and

0.02 cm. (b) When normalized by thickness, curves collapse at small displacement, confirming that

the frames are planar at this regime. (c) When normalized by thickness cubed, curves collapse in

the post-buckling regime, confirming that energy increase is predominately bending. (d) Effective

spring constant in the post-buckled regime as function of frame aspect ratio w/L in the intermediate

and large hole regimes for a frame of thickness t = 0.0198 cm, confirming the multiscale behavior in

(Table 1). The curve in the large hole regime (w/L < 1/8) is linear as given in Eq. 2.26, while the

curve in the intermediate hole regime (1/8 < w/L < 1/4) corresponds to Eq. 2.24, with the prefactor

c and regularizing cutoff a taken as fitting parameters. (e) Critical displacement as function of

thickness for a frame of w/L = 0.25, growing as t1.9 (solid line), in good agreement with Eq. 2.27. (f)

Critical displacement as function of the frame’s aspect ratio for a frame of thickness t = 0.00794 cm

in the intermediate hole size regime, in agreement with Eq. 2.27 (solid line).

Upon contrasting Eq. 2.24 and Eq. 2.26, we find a clear signature of multiscale

behaviour in the disparate geometric dependence of keff on the aspect ratio, for

different hole size regimes. We fit the experimentally measured spring constants of

the buckled frames to the theoretical expressions for keff as shown in Fig. 11(d), with

good agreement. The geometric dependence of the various linearized spring constants

is also summarized for both buckled and planar frames in Table 1.
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2.4.3 Buckling transition

Since F = dE/dδx, we rescale the measured force-extension curve by t and t3 for a

given aspect ratio (w/L = 0.25) in Fig. 11(b),(c). We find excellent collapse in the

pre-buckling and post-buckling regimes, which are controlled by Y and κ respectively.

The t3 scaling in the post-buckling plateau [Fig. 11(c)] indicates that the force response

is governed by κ and the hole geometry alone, as explained above in Sec. 2.4.2.

For intermediate frame widths 1/8 < w/L < 1/4, given that the frame mechanics

is dictated by the partial disclinations, we can estimate the geometry dependence of

the frame’s buckling threshold δxc by adapting previous results on the buckling of

topological disclinations [100]. In Ref. [100] it was shown that a single disclination

of charge s in a finite crystalline membrane (of linear size ∼ R) buckles only when

the defect charge exceeds a critical threshold |sc| = γc/γ with γc ≈ 120. Note that

γ = Y R2/κ→∞ as R→∞ which means the threshold vanishes and all topological

disclinations buckle in the thermodynamic limit. In our case, the partial disclination

charge s = Φ(w/L)δx/L clearly depends on both the prescribed displacement and the

frame’s geometry, the latter feature having no analogue in the topological case. As

the region of influence of the partial disclination is a corner plaquette of area ∼ w2,

using the relevant FvK number γ = Y w2/κ, we obtain a threshold charge |sc| ' γc/γ

in order to buckle (γc is a numerical geometry independent constant). Upon using the

expression for the charge, we find the critical strain,

δxc
L
≈ γc

Φ(w/L)

(
t

w

)2

, (2.27)

where we have used the fact that κ/Y ∝ t2. The quadratic scaling of δxc with t is

consistent with the observed data [Fig. 11(e)], with δxc determined by the intersection

of linear fits to the data just before and after the transition. From numerical simulations
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of buckled frames, we estimate γc ' 75− 80 which is smaller than the value expected

for topological disclinations (γc ' 100− 120) [100]. The precise value of γc is of course

hard to determine and is likely to be different for different frame shapes.

The dependence of δxc on the frame width w crucially captures the geometric

tunability of the local propensity to relax stresses via buckling. Though we expect

ultra-narrow frames (w → 0) to have a vanishing threshold for buckling4 due to sheer

loss of material, within the intermediate range of hole sizes Eq. 2.27 in fact suggests a

counterintuitive trend, with wider frames buckling prior to narrow ones. This feature

is observed for a thin enough sheet in Fig. 11(f).

2.4.4 Local deformation field

Apart from the above global characterizations of frame mechanics in terms of effective

spring constants, we also probe local measures such as the nonuniform displacement

field over the entire frame, thereby allowing for a stronger test of the theory. Using

grid lines etched into the paper, painted black to improve the contrast in imaging,

we measure the displacement field of the frame by comparing its projected mesh just

past buckling to a reference undeformed mesh. As the uniaxial tensile load prescribes

the orientation of the induced quadrupoles, with just the scalar charge magnitudes

as fitting parameters5, we find the entire spatial deformation field is well captured

within our image charge framework (red lines in Fig. 12).

4The buckling of narrow frames modeled as a series of coupled ribbons cannot be estimated by a
simple crossover argument. In this case, both bending and stretching energy are quadratic in δx and
the transition is not determined by balancing the two energy estimates. Instead, nonlinearity and
local buckling become important in setting the buckling threshold.

5As we are close to the buckling threshold, there is significant amount of in-plane stretching and
hence the image charges are only partially screened, and the extent of screening is aprioi unknown.
As a consequence, we cannot fit for the charge magnitudes independently using force-extension
measurements and then use the same parameter values to obtain the mesh distortion. Note the
deformation is nonetheless still described by a quadrupole.
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Figure 12 : Comparison between the predicted and observed deformations in a pulled frame right

after buckling (a) An undeformed frame with a laser printed Cartesian mesh (gray) and a set of

parametric lines (red) fitted to the printed mesh. (b) A deformed frame. Here, the red lines are

computed from theory using the original parametric lines as a starting point and the fictitious elastic

charges as fitting parameters.

2.5 Kirigami as interacting charges: Relaxing pre-stress

The quantitative success of our theory in describing the mechanics of isolated frames

encourages us to take a step further and exploit the method of charges to analyze

kirigami patterns, which now involves interactions between the charges in different

holes. In 2D, the quadrupole is written as Qij = Q(d̂id̂j−δij/2) with d̂ = (cosψ, sinψ),

ψ being its orientation and Q its magnitude. The elastic interaction energy of two

planar quadrupoles Q1,Q2 a distance r12 apart is given by [331, 339]

Eint =
Y Q1Q2

πr2
12

cos(2ψ1 + 2ψ2) , (2.28)

where the quadrupole orientations ψ1, ψ2 are with respect to the pair separation r12.

To demonstrate that interacting elastic charges can fruitfully guide design of kirigami

metamaterials, we shall focus on the simple problem of a flattened cone as an example
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Figure 13 : A regular conical annulus with an angle deficit. When flattened under a piece of acrylic

with a small gap, the thin sheet forms wrinkles. Including azimuthal slits (middle row) does not

affect the pattern of wrinkles, while a radial array of slits (bottom row) results in azimuthally

aligned quadrupoles that minimize the interaction energy with the background stress. Hence when

flattened, the radial kirigami pattern locally relaxes stresses allowing the material to accommodate

the curvature of the cone without wrinkling.

of the inverse problem in kirigami mechanics. A conical frustum (either with an angle

deficit or excess) when confined with a small gap in the plane is stressed due to its

intrinsic geometry, a state that can be relaxed for a sufficiently thin sheet by wrinkling

(Fig. 13 and Fig. 14, top row). Patterning an appropriate kirigami design affords the

sheet a new mechanism of locally relaxing in-plane stress without wrinkling.

In the case of both an angle deficit (regular cone) or an excess (e-cone) [341], the pla-

nar state of the cone is stressed and the Airy stress function is χ = (Y∆ϕ/8π)r2 ln(r/R)

[100], where ∆ϕ is the angle excess or deficit from 2π and R is the size of the sample.

Both radial σrr and hoop σϕϕ stresses are non-vanishing, while σrϕ = 0. For not too

big samples with a sufficiently large core excised out, these stresses are relaxed in the

absence of kirigami patterns by the formation of radial wrinkles when the sample is

flattened in the plane, as seen for the regular cone in Fig. 13 and for e-cones in Fig. 14.

Considering a periodic kirigami pattern of slits, as the quadrupole-quadrupole

interaction decays quadratically with their separation [331, 339], we restrict our
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Figure 14 : A conical annulus with an angle surplus (e-cone). In the three images on the left, the

e-cone (with and without the kirigami slit pattern) achieves its equilibrium shape in 3D. On the

right, the same annulus is flattened under an acrylic plate. Both the intact non-perforated e-cone

as well as the one with azimuthal slits develop wrinkles when flattened, while the radial kirigami

pattern of slits relaxes stresses in the flattened e-cone (as in the case of the regular cone shown in

Fig. 13), leaving it devoid of wrinkles.

analysis to nearest neighbour quadrupole interactions, which is the dominant term. By

flattening the cone, as we are interested in the possibility of local buckling as permitted

by the kirigami pattern, the relevant interaction to consider is the one between buckled

quadrupoles. Upon buckling, the curvature of the buckled configuration screens out

the induced quadrupolar charge and the interaction between two buckled quadrupoles

is no longer long-ranged ∼ 1/r2, but instead becomes effectively short-ranged due

to screening. This justifies our use of only nearest neighbour interactions in our

calculation. In addition, even in the plane, Matsumoto and Kamien [331] have

shown that the effective interaction between quadrupoles can be screened by other

quadrupoles as well, which leads to a short ranged interaction after angular averaging.

This justifies our consideration of only nearest neighbour interactions. Hence we have

a pair of quadrupoles Q1 and Q2 at a separation of r12 in the presence of a background

stress. Aligning the local coordinate frame so that the x-axis conincides with the
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azimuthal direction, we have the total elastic energy given by

E =
Y

πr2
12

Q1Q2 cos(2ψ1 + 2ψ2 − 4θ12)− Q1

4
σ0 cos 2ψ1 −

Q2

4
σ0 cos 2ψ2 , (2.29)

where σ0 = σrr − σϕϕ = ∆ϕY/(4π), θ12 is the angle made by r12 with the x-axis

and ψ1, ψ2 are the angles of the quadrupoles measured from the x-axis. As the two

holes are otherwise identical, the magnitudes of the two induced charges are the same

(Q1 = Q2 = Q). This energy is minimized when the quardupoles align with the

external field (ψ1 = ψ2 = 0) and the angle of their pair separation is θ12 = π/4. So a

staggered array of quadrupoles aligned in the azimuthal direction relaxes the stressed

state of a flattened cone (both regular and excess). The geometry of a slit is such that

when pulled, negative partial disclinations form at its ends and the positive partial

disclinations are spread around its length leading to the induced quadrupole direction

being essentially orthogonal to the long axis of the slit. Unlike square holes that lock

the quadrupole orientation to either diagonal, slits only permit quadrupolar charges

perpendicular to their long axis. Hence, while azimuthal slits leave the wrinkles

unaltered (Fig. 13 and Fig. 14, middle row), radial slits in a staggered array around

the cone locally relax stress when flattened (Fig. 13 and Fig. 14, bottom row).
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Chapter 3

Melting the active nematic: defect

unbinding and the motile BKT

class

This chapter is based on work primarily presented in the article “Defect Unbinding in

Active Nematics” [343] co-authored by Suraj Shankar, Sriram Ramaswamy, M. Cristina

Marchetti, and Mark J. Bowick and published in the journal Physical Review Letters

in the year 2018. I was responsible for doing most of the work and the paper itself was

equally written by all co-authors.

3.1 Active nematics

Liquid crystals exhibit remarkable orientationally ordered phases, the simplest being

the nematic phase in which particles macroscopically align along a single preferred

orientation, without a head-tail distinction. The name nematic itself comes from νηµα,

meaning thread, for the line-like topological defects (disclinations) that are inevitably

produced in quenches from the high-temperature disordered phase to the nematic phase
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Figure 15 : (a) Phase diagram in the noise (η) and density (ρ0) plane, obtained from a numerical

investigation of a particle model for 2D active nematics, reproduced from Ref. [348]. Disclinations in

two experimental model systems - (b) Reconstituted active nematics assembled from microtubule

bundles and kinesin motor complexes depleted to an oil-water interface [349], (c) cellular nematics

organized by proliferating a monolayer of spindle shaped fibroblasts [258]. The spontaneous propulsion

of +1/2 defects in active nematics shown as temporal snapshots (from top to bottom) in two distinct

systems - (d) Microtubule-kinesin active nematic film [273] and (e) vibrated granular nematic [225].

In both (d) and (e), the +1/2 defect (red) is self-propelled, while the −1/2 defect (green) remains

largely static.

[344–347]. In two dimensions though, as already noted in the Sec. 1.1.1, disclinations

are point-like defects, and so may be thought of as localized particles. The nematic

pattern around a disclination is a distinctive fingerprint of the spontaneous symmetry-

breaking that characterizes nematic order and distinguishes the elementary defects

from, say, integer strength vortices in two-dimensional spin systems (see Fig. 1). The

nematic director rotates through a half-integer multiple of 2π as one circumnavigates

a defect. Thus, the lowest-energy defects are referred to as carrying strength ±1/2.

As summarized in Sec. 1.1.1, the entropic unbinding of such point disclinations drives

the nematic to isotropic (NI) transition in two dimensional equilibrium nematics

[10, 12, 13, 350].

In recent years there has been much focus on nematics composed of elongated
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units that are self-driven - hence active nematics [280, 351]. An active nematic is

by far the simplest realization of an active system that can display orientational

order. Unlike its polar counterpart, where the appearance of macroscopic polar order

results in collective directed motion or flocking [215, 293], the active nematic involves

driven apolar constituents, which means on average the system goes nowhere [280]

making its properties far more subtle. Examples include collections of living cells

[253–256, 259, 260, 352], synthetic systems built of cellular extracts [273, 274, 276], and

vibrated granular rods [225]. Active nematics exhibit enormous density fluctuations and

complex spatio-temporal dynamics, accompanied by spontaneous defect proliferation,

features that have all come to be viewed as characteristic of this phase of matter [281].

The theoretical study of active nematics began with coarse-grained approaches

[280, 353], followed by numerical agent-based [348, 354] or lattice gas simulations [355]

of minimal microscopic models. In two dimensions, numerical work by Ngo et al. [348]

revealed an order-disorder transition that involved three phases - (i) a homogeneous

disordered gas at high noise and low density, (ii) an intermediate locally banded,

chaotic, macroscopically isotropic but segregated phase, and (iii) a homogeneous

but fluctuating (quasi)-ordered nematic phase at low noise and high density. The

numerically obtained phase diagram is given in Fig. 15(a). The segregated phase

[purple region in Fig. 15(a)] is presumably a result of the instability of the homogeneous

nematic phase to band formation close to the mean-field transition [356–359]. The lines

delimiting the chaotic band phase determine the binodal lines. The linear instability

of the ordered phase then corresponds to the spinodal (not shown) which falls well

within the band forming region. The inhomogeneous bands are themselves unstable

to transverse fluctuations (in a large enough system), leading to the intermediate

chaotic and phase-separated but isotropic phase between the binodals. This should

be contrasted with the polar case, where a spatially periodic phase of coherently
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moving stable bands is seen just past the flocking transition [306]. An analytical

understanding of the transition from the chaotic biphasic state to the ordered nematic

phase is unavailable, and strong density fluctuations obscure its character even in

numerical studies [348]. The defect unbinding transition presented here provides a

candidate scenario, although the impact of density inhomogeneities remains unclear.

In “metric-free” models, in which the interaction neighbourhood is the first Voronoi

shell, numerical studies [348] find only two phases, both homogeneous: a quasi-long-

range ordered nematic and an isotropic phase, separated by a transition of BKT type.

There has also been a lot of previous work at the continuum level (in the absence

of noise) on “wet” active nematic systems, i.e., including flow and hydrodynamic

interactions [282, 360–365].

Although much progress has been made in understanding the properties of the

ordered phase [280, 348, 358, 359, 366, 367], a complete theory of order, fluctuations,

defects and phase transitions of active nematics still eludes us. The nematic itself

has no net polarity, but the director pattern around a strength +1/2 defect has

a local comet-like geometric polarity (Fig. 16). In an active system this renders

+1/2 defects motile [225, 282] with a self-propelling speed proportional to activity

[282] [see Fig. 15(d),(e)]. Both experiments [253, 273–276, 349, 368] and simulations

[282, 361–363, 365, 369–371] have shown that motile defects play a key role in driving

self-sustained active flows.

3.2 The paradox: do ordered active nematics exist?

The spontaneous motility of +1/2 disclinations immediately raises a puzzle with

regard to the existence of a low-activity quasi-long-range ordered active nematic in

2D [366, 367]. A näıve yet physical argument (detailed below) suggests that defect
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Figure 16 : Potential V (r) for a neutral defect pair for the configuration in which the direction of

motility of the +1/2 disclination points away from the −1/2 and is held fixed. This näıve picture

suggests that incipient active defect pairs have an exponentially small, but finite, rate ∝ e−V (rc)/T

(T is the temperature) to overcome the barrier at low temperature, and hence always unbind.

motility always causes incipient defects to unbind destroying any nematic order in an

active system. In an equilibrium nematic, two ±1/2 defects at a distance r experience

an attractive interaction V0(r) = (πK/2) ln (r/a), with K a Frank elastic constant and

a the size of the defect core. Hence, neglecting inertia, they are drawn towards each

other according to ṙ = −µ∂rV0, with µ a defect mobility. One could then argue that

the dynamics of a suitably oriented ±1/2 defect pair in an active nematic is governed

by relaxation in an effective potential [282]

ṙ = −µ∂rV , V (r) =
πK

2
ln
(r
a

)
− |v|

µ
r , (3.1)

where |v| > 0 is the self-propelling speed with which the +1/2 disclination is mov-

ing away from the −1/2 disclination (see Fig. 16). The resulting barrier V (rc) =

(πK/2) [ln (πµK/(2|v|a))− 1] at distance rc = πµK/(2|v|) is finite, which means that

the defect pair is always unbound, and active nematic order thus destroyed, at any

nonzero temperature (Fig. 16). As activity is increased, more and more defect pairs



54

will be liberated [273, 282, 362] suggesting that nematic order would be completely

destroyed by the swarming disordered cores, much like driven vortices in supercon-

ducting films can destroy superconductivity. In this simple argument, motility acts

analogous to an external electric field in a superfluid or superconducting thin film,

that would dissociate vortex pairs at a finite rate ∝ e−V (rc)/T , given by a thermally

assisted Kramer’s escape process [372]. Yet, defect free active nematic order has been

reported in both simulations [348] and experiments [254], indicating that the simplistic

one-dimensional picture of defect unbinding in Fig. 16 is incomplete.

Evidently the resolution of this paradox relies on ingredients not included in the

heuristic argument. In particular, in Sec. 3.4, we show that the above argument

fails because rotational noise, by disrupting the directed motion of the +1/2 defects,

counterintuitively restores the ordered nematic phase. We do this by precisely mapping

the dynamics of active defects onto that of a mixture of motile (+1/2) and passive

(−1/2) particles with interaction forces and aligning torques, putting on firm ground

previous phenomenological models [274, 282, 373]. A key new result is the derivation

of the angular dynamics of the +1/2 defects. Below, we shall explicitly derive these

effective equations for defect dynamics that can also provide a simple model capable

of quantifying the dynamics of interacting active defects in confined geometries.

3.3 Defects as quasiparticles

3.3.1 Hydrodynamic model

We begin with the hydrodynamic equations of a two-dimensional nematic liquid crystal

written in terms of the tensor order parameter Qµν = S(2n̂µn̂ν − δµν) and the flow

velocity u, where S is the scalar order parameter and n̂ is the director field. We ignore

density fluctuations, although we expect this restriction could be dropped without
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qualitatively changing the results. The Q equation is as for passive nematics [374],

γDtQ =
[
a2 − a4 tr(Q2)

]
Q +K∇2Q , (3.2)

where Dt = ∂t + u ·∇− [·,Ω] is the comoving and corotational derivative with the

vorticity tensor Ωµν = (∇µuν −∇νuµ)/2. Only the relaxational part of the dynamics

is retained in Eq. 3.2, with γ a rotational viscosity, K a Frank elastic constant and

a2, a4 the parameters that set the mean-field NI transition at a2 = 0. A treatment

including various flow alignment terms is given in Appendix 3.A. At equilibrium, the

homogeneous ordered state for a2 > 0 has S0 =
√
a2/(2a4) and an elastic coherence

length ξ =
√
K/a2. For an isolated static ±1/2 defect in equilibrium, the director

n̂(ϕ) = (cos(ϕ/2),± sin(ϕ/2)) rotates by ±π with the azimuthal angle ϕ, and S

vanishes at the core of the defect, assuming its bulk value on length scales larger

than the defect core size a ∼ ξ. Activity enters in the force balance equation, which,

ignoring inertia and in-plane viscous dissipation, is given by −Γu +∇ ·σa = 0, where

Γ is the friction with the substrate and σa = αQ is the active stress tensor that

captures the internal forces generated by active units [216, 218]. We neglect elastic

and Ericksen stresses as they are higher order in gradients. The system is extensile

for α < 0 and contractile for α > 0. For a +1/2 disclination, the active backflow at

its core gives rise to a self-propulsion speed ∼ |α|/(Γa) [282, 373].

The +1/2 disclination has a local geometric polarization ei = a∇·Q(r+
i ) (evaluated

at the core of the defect), defined here to be dimensionless. Note that ei is not a unit

vector. Our treatment does not require the mode expansion used in Ref. [375] to treat

multi-defect configurations. An isolated +1/2 defect has a non-vanishing flow velocity

at its core (u(r+
i ) = vei, v = αS0/Γa), while the −1/2 defect does not, due to its
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Figure 17 : The active backflow due to the nematic distortion of a ±1/2 disclination. The white

lines indicate the nematic director orientation n̂ and the black arrows, the flow velocity u (with

the colour map being |u|). The red arrow is e = a∇ ·Q(r+), the geometric polarity for the +1/2

disclination. The flow field for the +1/2 disclination has a characteristic double vortex structure,

while the −1/2 disclination presents a six-fold symmetric flow field. The flow at the core of the +1/2

defect is non-vanishing and is directed towards the comet head here (opposite to e), as is the case

for an extensile active nematic (α < 0) plotted here. For a contractile active nematic (α > 0), the

arrows of flow reverse direction.

three-fold symmetry (u(r−i ) = 0)1. The self-induced active backflow generated by an

isolated defect is shown in Fig. 17.

3.3.2 Defect positional dynamics

Combining the defect motility with the passive interaction2, the resulting equations

for the positional dynamics of defects is given by

ṙ+
i = vei − µ∇iU +

√
2µTξi(t) , (3.3a)

1Including a “second” active force ∼ α′Q · (∇ ·Q) does not affect the ballistic motion of the +1/2
defect [376].

2Apart from the motility of the +1/2 defect, both charge disclinations are also entrained by
active flows generated by other defects. This leads to ṙ±i ∼ ασ3 ·∇i

∑
j 6=i qj ln |(ri − rj)/a|, where

σ3 is a Pauli matrix, and provides an anisotropic active correction to bend and splay elasticity.
Including fluctuations, this term is ∼ O(r−1−η

ij ) [367] where rij is the distance between two defects
and η = T/(2πK), so it is subdominant to the passive interaction ∇iU .
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ṙ−i = −µ∇iU +
√

2µTξi(t) , (3.3b)

where µ ∝ 1/γ is a defect mobility, ξi(t) Gaussian white noise and

U = −2πK
∑
i 6=j

qiqj ln

∣∣∣∣ri − rj
a

∣∣∣∣ , (3.4)

is the usual Coulomb interaction between defects, with qi = ±1/2 the strength

of the ith defect. The elastic constant K includes corrections from hydrodynamic

flows linear in activity which can destabilize the nematic state even in the absence

of topological defects [376, 377]. Here we take K > 0 (permitted in a domain of

parameter space [376, 377]) to guarantee an elastically stable nematic. Note that

v ∝ α can be of either sign. The translational noise strength T arises from thermal or

active noise in the Q equation (Eq. 3.2).

The defect mobility µ can be computed explicitly in a more sophisticated cal-

culation given in Appendix 3.A, by adapting similar computations performed for

defect motion in equilibrium and dissipative systems [289, 292, 378–383]. Such a

calculation proceeds via a perturbative solution of Eq. 3.2 for a slowly moving isolated

defect whose far-field distortion is matched onto that of other distant defects. When

computed correctly, no divergences are encountered and the defect velocity is obtained

as an explicit combination of motility from active flow (only for the +1/2 defect) and

motion due to an imposed phase gradient (corresponding to the passive interaction).

This calculation gives exactly Eqs. 3.3a, 3.3b with the defect mobility weakly (loga-

rithmically) dependent on the defect speed. To simplify things, we neglect the weak

logarithmic correction and take µ to be a constant, valid for slowly moving defects or

when screening is present.
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3.3.3 Defect orientational dynamics

The important feature of activity is that it elevates the geometric structural polarity

of the +1/2 disclination to a dynamical degree of freedom, one that drives motion. In

turn, ei also has its own dynamics, which is, in principle, contained in the Q equation.

Neglecting noise for now and using the quasistatic approximation in a frame comoving

with the +1/2 defect, i.e., [∂tQ]r+i (t) = 0, we have ėi(t) = a[vi(t)·∇]∇·Q(r+
i (t)), where

vi = vei−µ∇iU is the deterministic part of ṙ+
i (Eq. 3.3a). Our approximation neglects

elastic torques on ei due to smooth director distortions, shown to be unimportant

for the dynamics of neutral pairs [384, 385] [this is justified in greater detail when

considering noise in the non-quasistatic solution (see Appendix 3.C)]. Assuming a

dilute gas of slowly moving defects, we perturbatively expand Eq. 3.2 about the

equilibrium defect configuration and solve for Q. Using this solution, we evaluate

∇∇ ·Q at the core of the defect to obtain (the details are given in Appendix 3.B)

ėi = − 5γ

8K
[vi · (vi − vei)] ei −

vγ

8K
(vi × ei) ε · ei , (3.5)

where vi = vei − µ∇iU is the deterministic part of the +1/2 defect velocity and ε is

the two-dimensional Levi-Civita tensor. Since ei is not a unit vector, its deterministic

dynamics has a term along ei fixing its preferred magnitude and one transverse to it

aligning the polarization to the force. Note that Eq. 3.5 remains unchanged even when

flow alignment terms are included in the hydrodynamic description (Appendix 3.B),

in particular both longitudinal and transverse active terms in Eq. 3.5 arise exclusively

from the convective term (u ·∇Q) in the dynamics of Q (Eq. 3.2), i.e., the fact that

active flows are genuine velocities that cause motion. This is an exceedingly general

and fundamental feature of active driving and hence we expect analogous orientational

dynamics of active defects in other situations as well, such as upon including viscous
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flows, density variations or incompressibility.

To elucidate the nature of the torques on the polarization, we write ei = |ei|(cos θi, sin θi)

and decompose the elastic force acting on the ith defect (Fi = −∇iU) as Fi =

|Fi|(cosψi, sinψi). For the defect orientation θi, Eq. 3.5 then reduces to

∂tθi = v
µγ

8K
|Fi||ei| sin(θi − ψi) . (3.6)

Active backflows tend to align the defect polarization with the force acting on the

defect. A similar alignment kernel has been used previously to phenomenologically

model flocking and jamming in cellular systems [235, 257], but here it arises naturally

from the active dynamics of a two-dimensional nematic. Importantly, here the torque

is controlled by activity (v ∝ α). An extensile system (v ∝ α < 0) favors alignment

of the polarization with the force, while a contractile system (v ∝ α > 0) favors

anti-alignment of polarization and force (Fig. 18). The equations obtained here also

predict patterns for four +1/2 defects on a sphere as obtained in Ref. [274].

For configurations in which the +1/2 is running away from the −1/2 in an isolated

neutral defect pair, the active aligning torque (Eq. 3.6) stabilizes the +1/2 defect

polarization against transverse fluctuations [see Fig. 18(a),(b)], irrespective of the sign

of activity. Hence activity not only renders the +1/2 defect motile, but enhances the

persistence of defect motion through the torques, favoring the unbinding of defect

pairs. This feature breaks the symmetry between pair creation and annihilation

events for both extensile and contractile systems and justifies the one-dimensional

cartoon in Fig. 16. As we will see below, however, the stochastic part of the defect

dynamics (neglected so far) can disrupt these configurations, preventing unbinding. We

finally remark that one can also obtain configurations for pairs of +1/2 disclinations

[Fig. 18(c),(d)] that are stable against transverse deflections of either polarization.
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Figure 18 : Configurations of defect pairs whose orientations, for an imposed fixed separation, are

stable to transverse fluctuations of the +1/2 polarization(s). The active backflow is shown in blue

and the director configuration in black. The polarization and force on each +1/2 defect is shown in

red and in purple respectively. The top row shows a neutral ±1/2 defect pair orientationally stable

for (a) extensile (v < 0) and (b) contractile (v > 0) systems. Similarly, in the bottom row we have a

pair of +1/2 defects that are orientationally stable. The far field nematic texture for these two-defect

configurations has an aster-like structure when (c) extensile (v < 0) and a vortex-like structure when

(d) contractile (v > 0).
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As shown, in the far-field of these two-defect configurations, aster-like structures are

favored in an extensile system while vortex-like structures are favored in a contractile

one, as seen in confined fibroblasts [258].

3.3.4 Including noise

The stochastic part of the dynamics of ei also derives from noise in the dynamics of

Q, but a full calculation is challenging and beyond the scope of the present work. As

ei is a two-dimensional vector, its dynamics has two kinds of noise, longitudinal and

transverse. Including both noise terms, we write the full stochastic equation for the

polarization dynamics as,

ėi =
5µγ

8K
[∇iU · (vei − µ∇iU)] ei +

vµγ

8K
(∇iU × ei) ε · ei−

√
2DR ε · ei ηi(t) + νi(t) ,

(3.7)

where we have written vi in terms of the force −∇iU . Smooth director phase

fluctuations can be shown (see Appendix 3.C) to generate rotational noise ∼ DR

that changes the direction of ei, while keeping |ei| fixed (this is hence the transverse

component of the noise). Here ηi(t) is unit white noise and DR = µT/`2
R is the

rotational diffusivity of the +1/2 defect, with `R ∼ a. At low activity, rotational noise

is primarily thermal in origin with DR ∝ T , but it can receive nonequilibrium and

nonthermal corrections at higher activity.

Unlike rotational noise that is more systematically derivable from smooth “spin-

wave” like director fluctuations, the longitudinal component of the noise νi(t) is much

harder to derive explicitly from noise in the Q equation of motion. This noise generates

fluctuations in the magnitude of the polarization |ei| and derives predominantly from

noise in the scalar order parameter S instead of the director phase. Within the low

activity expansion, the properties of the longitudinal component νi(t) of the noise
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are inferred from its equilibrium limit, determined by requiring that the probability

distribution of the defect gas relaxes to the corresponding equilibrium form where (for

one Frank constant) defect position and polarization are decoupled in the absence

of activity (i.e., for v = 0). To do this, we first look at the derived deterministic

dynamics for ei (Eq. 3.5), which in equilibrium, setting v = 0, reduces to

ėi = −5µ2γ

8K
|∇iU|2 ei . (3.8)

As the dynamics is overdamped and relaxational, both positional and orientational

(polarization) dynamics must derive from a single energy functional.

In the one-Frank constant approximation at equilibrium, spatial rotations and

order parameter rotations get decoupled and become independent symmetries of the

system. By virtue of this enhanced symmetry, the joint probability distribution of

defect positions and polarizations must then decouple, with the positions governed by

a Boltzmann weight with respect to the pair potential U . This is also consistent with

the derived deterministic dynamics, where the positional dynamics (Eqs. 3.3a, 3.3b) is

independent of ei when v = 0. Hence the |∇iU|2 term in Eq. 3.8 is naturally viewed

as being part of a kinetic coefficient governing the relaxation of the polarization.

In order to really determine what constitutes the thermodynamic force in Eq. 3.8,

we need to write down the energy involving ei. As ei = a∇ ·Q(r+
i ), to lowest order,

the energetic contribution involving the polarization is ∼ |ei|2. This term penalizes

gradients of the alignment tensor as is expected of the elasticity of a nematic liquid

crystal. Note that, a more complicated symmetry breaking Mexican hat like potential

for ei is unnatural as it favours the spontaneous creation of gradients and modulation

of nematic order. Including higher order even polynomials is possible but it complicates

the noise statistics by making it multiplicative. The simplest choice that retains just
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additive noise is the quadratic energy, which is what we choose. The polarization

ei itself being dimensionless, we use K for units of energy (the only thermodynamic

parameter available). With this in place, the energetic contribution from ei is written

as K|ei|2/2, where the factor of two (fixing an overall scale for ei) is chosen for

convenience. In this form, ei being an internal degree of freedom that depends on the

defect core structure, the term K|ei|2/2 then represents the simplest contribution to

the defect core energy [279].

Putting it all together, we obtain the joint probability distribution of defect

positions ri and polarizations ei at equilibrium to be

P 2N
eq =

1

Z2N

e−U/T
N∏
i=1

(
K

2πT
e−K|ei|

2/2T

)
, (3.9)

where Z2N is the Coulomb gas partition function for N neutral defect pairs. Using

this probability distribution and the fluctuation-dissipation relation [386] fixes the

kinetic coefficient in Eq. 3.8 to be (5µ2γ/8K2)|∇iU|2 which upon multiplying with

2T gives the two point correlation of the longitudinal noise νi(t) to be

〈νi(t)νj(t′)〉 = 1δijT
5µ2γ

4

|∇iU|2

K2
δ(t− t′) . (3.10)

No summation on repeated indices is implied. As written, the noise has no stochastic

ambiguity and is independent of any thermodynamic parameters, involving only the

defect mobility µ and rotational viscosity γ, as it should. This completes the derivation

of effective equations for the dynamics of defects as particles, with the crucial inclusion

of both defect polarization dynamics and noise.
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3.4 Defect unbinding and re-entrant melting

To study defect unbinding, we now examine the dynamics of an isolated ±1/2 defect

pair governed by coupled Langevin equations for the pair separation r = r+ − r−

(obtained from Eqs. 3.3a, 3.3b) and the +1/2 polarization e (Eq. 3.7). These are given

by

ṙ = ve− 2µ∇U +
√

4µTξ(t) , (3.11)

ė = −µγ
K

ζ ·
[
µe|∇U|2 − v|e|2∇U

]
−
√

2DR ε · e η(t) + ν(t) , (3.12)

where ζ = (1 + 4êê)/8 has been used to simplify notation and U(r) = (πK/2) ln(r/a)

is the pair potential. Both ξ(t) and η(t) are unit Gaussian white noise and ν(t) has

correlations given in Eq. 3.10. The corresponding Fokker-Planck equation for the joint

probability distribution P (r, e; t) is given by

∂tP+ve ·∇P +
vµγ

2K
∇e ·

[
(e ·∇U)eP +

1

4
|e|2∇UP

]
= DR(e×∇e)

2P + 2µ∇ · [P∇U + T∇P ] +
5µ2γ|∇U|2

8K2
∇e · [KeP + T∇eP ] .

(3.13)

Taking moments of the polarization and suppressing the temporal argument, ρ(r) =
´

d2e P (r, e), w(r) =
´

d2e eP (r, e) and M(r) =
´

d2e eeP (r, e), we have

∂tρ+ v∇ ·w = 2µ∇ · [ρ∇U +T∇ρ] , (3.14)

∂tw + v∇ ·M− vµγ

2K

[
M ·∇U +

tr(M)

4
∇U

]
= −

(
DR +

5µ2γ|∇U|2

8K

)
w

+ 2µ∇ · [∇Uw + T∇w] ,

(3.15)
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∂tM = −4DR

(
M + tr(M)

1

2

)
+ 2µ∇ · (∇UM + T∇M)− 5µ2γ|∇U|2

4K2
(KM− Tρ1) ,

(3.16)

where in the final Eq. 3.16, we have neglected the third and all higher moments of

the polarization e by setting 〈eee〉 ' 0 as a closure ansatz for the moment hierarchy.

As we shall see below, this closure is well-controlled in a small activity expansion.

Upon integrating out the polarization, by rotational symmetry, we have ρ = ρ(r),

w = w(r)r̂ and M = A(r)1 +B(r)r̂r̂, where r = |r| and r̂ = r/r.

At equilibrium (v = 0), w = 0, B = 0 and all higher order odd moments vanish

as well. Hence for small activity, we can estimate that to leading order the third

moment decays at least as quickly as 〈eee〉 ∼ vρ/r, as any anisotropy must derive

from ∇U ∼ 1/r. Similarly, the anisotropic part of M, i.e., B must also decay at least

as fast as ∼ v2ρ/r2 at leading order in v (it is even in v as M is even in e). We shall

use these estimates below to argue their neglect.

We now wish to eliminate the fast dynamics of w and M to obtain a steady state

solution for the density ρ. We let tr(M) = 2A+B ≡ m and obtain an equation for m

as

∂tm = 2µ∇ · (∇Um+ T∇m)− 5µ2γ|∇U|2

4K2
(Km− 2Tρ) . (3.17)

Balancing the order of various terms in this equation, we obtain that m ∼ ρ in terms

of scaling. Comparing this against the estimate for the anisotropic part B ∼ v2ρ/r2,

we find that B is negligible at large distances and small activity and hence it can

be safely discarded. In addition, all the third order moments enter Eq. 3.17 with an

additional factor of ∼ v/r (from either active advection or the active torques), which

in total combines to give a correction of order ∼ v2ρ/r2. Just like B, this contribution

is also negligible compared to the terms retained and justifies our closure scheme to
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leading order in activity and at large distances.

On large scales, the fast mode w relaxes on time scales ∼ D−1
R and can be slaved

to m by neglecting ∂tw, with the result, to leading order in gradients,

w = − v

2DR

[
∇m− 3µγ

4K
m∇U

]
+O

(
v
m

r3

)
. (3.18)

This equation can then be used to also eliminate w from the equation for ρ, which

gives

∂tρ = 2µ∇ ·
[(
ρ− 3γv2

16KDR

m

)
∇U + T∇ρ+

v2

4µDR

∇m

]
. (3.19)

We now seek a steady state solution of the coupled Eqs. 3.17 and 3.19 by letting

∂tm = ∂tρ = 0. Since we are interested in the behavior of the defect pair for large

pair separation, we seek to solve the equations to leading order in gradients. Näıvely

one may be tempted to write a solution of Eq. (3.17) as mss = (2T/K)ρss, but

the fact that the last term on the right hand side of Eq. (3.17) is proportional to

|∇U|2 invalidates this simple approximation. We then have the following two coupled

equations for ρss and mss

ρss =
K

2T

{
mss −

8K

5µγ

∇ · [∇Umss + T∇mss]

|∇U|2

}
. (3.20)[

ρss −
3γv2

16KDR

mss

]
∇U + T∇ρss +

v2

4µDR

∇mss = c , (3.21)

where c is an arbitrary constant. In the absence of currents at steady state, c = 0.

Substituting Eq. 3.20 into Eq. 3.21 and using U(r) = (πK/2) ln(r/a), we obtain a

homogeneous differential equation of Cauchy-Euler form,

(8DRK
2 − 3Tv2γ)mss(r) = 8r

[
−v

2T

πµ
+

2DR

5π3µγ

(
8(Kπ + 2T )2 − 5Kπ2Tµγ

)]
m′ss(r)
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+
512DRT

5π3µγ
(Kπ + 3T ) r2m′′ss(r) +

512DRT
2

5π3µγ
r3m′′′ss(r) ,

(3.22)

where we have set c = 0 and the prime denotes a derivative with respect to r.

This equation is solved by a power law solution, mss(r) = m0(r/a)−J , where the

undetermined exponent J satisfies the following cubic equation,

512DRTJ
2(Kπ−TJ)+8π2J [5v2Tγ+2DRK(5Tµγ−8K)]+5π3µγ(3v2Tγ−8DRK

2) = 0 .

(3.23)

Of the three roots to this equation, only the branch that connects to the equilibrium

exponent J = Kπ/2T when v = 0 is physical. Perturbatively expanding the exponent

J around v = 0, we obtain

J =
Kπ

2T
− πv2

4µDRT

(
1 + µγ

3T

4K

)
+O(v4) . (3.24)

The next order correction to J at O(v4) will also involve the neglected terms B and

the third moment 〈eee〉. Using the power law form of mss(r) in Eq. 3.20 we also have

ρss(r) ∝ (r/a)−J with the prefactor fixed by normalization (
´

drρss(r) = 1). Assuming

a Boltzmann like form, we identify an effective pair potential that governs the defect

pair separation, defined as Ueff(r) = −T ln[ρss(r)]. Hence, writing J = πKeff/2T , we

obtain Ueff(r) = (πKeff/2) ln(r/a) with

Keff(v) = K − v2

2µDR

[
1 + µγ

3T

4K

]
+O(v4) , (3.25)

to leading order in activity. Hence, for large pair separation, the defect interaction is

weakened by activity. A small activity reduces the entropic BKT transition temperature

T eq
c = πK/8 to Tc(v) = πKeff(v)/8. Inverting this equation for small |v|, we obtain
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Figure 19 : Phase boundary in the |v| − T plane (Eq. 3.26) for different values of µγ. The region

enclosed by the curve |vc(T )| for a given µγ corresponds to the ordered nematic.

the phase boundary below which the ordered nematic is stable,

|vc(T )|
v∗

=

√√√√ 16 T̃ (1− T̃ )

π
[
1 + (3π/32)µγT̃

] , (3.26)

with T̃ = T/T eq
c and v∗ = µT eq

c /`R. This identifies a temperature-activity locus of

a BKT-like active-nematic/isotropic transition, with a nematic dome below which

homogeneous order exists. As shown in Fig. 19, this implies re-entrant behavior3 as a

function of T . Rotational diffusion (DR) of the +1/2 defect is suppressed at low noise,

where self-propulsion directly drives defect unbinding with a threshold that vanishes

as DR goes to zero. This yields a disordered phase at low enough temperatures for

any nonzero activity, as also predicted by the simplified model in Fig. 164. If the

rotational diffusivity DR has a nonthermal part Da
R, then there is a nonzero activity

threshold ∼
√
Da
R for unbinding as T → 0 and no re-entrance at low activity. If Da

R

3Ananyo Maitra and Mike Cates, personal communication.
4Many-body screening enhances the stability of the ordered phase at low temperatures, but

does not change the qualitative structure of the phase diagram (Shankar et al., in preparation). In
particular, re-entrance persists as DR ∝ T → 0. A similar situation is encountered in 2D equilibrium
spin models with random Dzyaloshinskii-Moriya couplings [387] or crystals with random impurities
[388].
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Figure 20 : Steady-state statistics for a ±1/2 defect pair in a periodic box of size L = 50a

(T/T eq
c = 0.51, all other parameters are unity). (a) The pair separation distribution ρss(r) for low

(|v| = 0.5, 1.2, bound phase) and high (|v| = 1.5, unbound phase) activity, suggesting that Eq. 3.26

which gives |vc| ' 2.06, overestimates the unbinding threshold. (b) The distribution of the relative

angle (∆ = θ − ψ) between the polarization e and the force F on the +1/2 defect for extensile (�)

and contractile (©) systems.

is large enough then re-entrance is abolished altogether.

For |v| > |vc(T )|, the effective pair potential Ueff develops a maximum as in Fig. 16,

thereby implying that incipient defect pairs unbind for arbitrarily small temperature.

The physical picture is then quite clear. At low activity, rotational diffusion randomizes

the orientation of the +1/2 disclination and makes its motion less persistent, allowing

the defect pair to remain bound. It is in this way that noise counterintuitively

stabilizes the ordered nematic phase, resolving the paradox. At higher activity, the

active torques compete with rotational diffusion, but ultimately enhance the persistent

nature of defect motion. In this case, rotational noise becomes irrelevant and we

recover the scenario sketched in Fig. 16. The simple one-dimensional model predicts

defect unbinding self-consistently if the persistence length of the +1/2 disclination

(|v|/DR) is greater than the position of the barrier in the potential (rc = K/(|v|γ)).

Equating the two lengths, we obtain the same threshold scaling as in Eq. 3.26 at low

T . We have verified this scenario by numerically integrating Eqs. 3.3 and 3.7 for either
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sign of v, as shown in Fig. 20. Of course, at large enough activity, active forces always

exceed thermal ones and defects always remain unbound leading to a disordered state

of defect chaos5.

Appendix 3.A Derivation of equations of motion for ±1/2

disclinations

Consider the following general continuum equations for the hydrodynamics of a nematic

liquid crystal written in terms of the tensor order parameter Q = S(2n̂n̂− 1) and the

flow velocity u.

∂tQ + u ·∇Q− [Q,Ω] = L(Q,u) +
1

γ

[
a2 − a4 tr(Q2)

]
Q +

K

γ
∇2Q , (3.27)

L(Q,u) = λ1D + λ2Q∇ · u− λ3Qtr(Q ·∇u) ,

where [A,B] = AB − BA is the matrix commutator, 2Ωµν = ∇µuν − ∇νuµ is the

vorticity tensor and 2Dµν = ∇µuν +∇νuµ− δµν∇ ·u is the symmetrized and traceless

strain rate tensor. We work in the one Frank elastic constant (K) approximation, but

have included various flow alignment terms (λ1,2,3) in L(Q,u). Since the system is in

contact with a substrate, we neglect inertia and determine the flow velocity through

the Stokes equation that balances friction and active stresses as

Γu = ∇ · σa , (3.28)

5It has been suggested that there are two dynamical routes to spatio-temporal chaos in active
nematics [389], one of which is related to the well known linear bend-splay instability of active
nematics [376, 377]. The second route presumably relates to our motility driven defect unbinding
scenario presented here.
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where Γ is the friction with the substrate and σa = αQ is the active stress. We neglect

the passive elastic and viscous stresses as they are all higher order in gradients. We

assume the nematic density to be constant even though, in distinction from previous

work [370, 373], we do not consider the flow to be incompressible (∇ · u 6= 0). We

will explore elsewhere the effect of incompressibility or a density field with conserving

dynamics, but do not expect these to introduce drastic differences with respect to the

behavior described here. We assume we are deep in the nematic state where a2 > 0.

We rescale r→ r/ξ, t→ t/τ and Q→ Q/Smax, where

ξ =

√
K

a2

, τ =
γ

a2

and Smax =

√
a2

2a4

. (3.29)

The active stress is also non-dimensionalized as ᾱ = ατSmax/(Γξ
2). The order

parameter Q is a rank-2 symmetric and traceless tensor. Hence it can be rewritten in

terms of a single complex variable χ = Qxx + iQxy = Se2iθ, where θ is the angle of

the director n̂ = (cos θ, sin θ). In terms of χ, Eq. 3.27 now becomes (in dimensionless

form)

∂tχ+u ·∇χ− i(∇×u)χ = (λ̄1− λ̄3|χ|2)D− λ̄3χ
2D∗+λ2χ(∇ ·u)+(1−|χ|2)χ+∇2χ ,

(3.30)

where D = Dxx + iDxy = [∂xux − ∂yuy + i(∂xuy + ∂yux)]/2 is the strain rate tensor D

in complex notation. Additionally, we have rescaled the flow alignment parameters as

λ̄1,3 = λ1,3/2Smax.

Finally, we boost to a frame which is comoving and corotating with an isolated

slowly moving ±1/2 disclination. To do this, we perform the following coordinate and
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field transformations,

r = R(t)·r′(t)+b(t) , u(r, t) = R(t)·u′(r′(t), t) , Q(r, t) = R(t)·Q′(r′(t), t)·R(t)T ,

(3.31)

where R(t) = 1 cosωt + ε sinωt with ε as the Levi-Civita tensor is the rotation

matrix rotating the frame counter-clockwise at a constant rate of ω (Ṙ(t) = ωε ·R(t)

and RT · R = 1), which is taken to be the angular rotation rate of the defect.

The translational shift is determined to be b(t) = −R(t) · ε · v/ω by requiring

ṙ′(t) = −ωε · r′(t) − v, where v is the constant translational velocity of the defect.

The same transformation in terms of the complex field χ is given as

χ(r, t) = χ′(r′(t), t)e−2iωt . (3.32)

Using this, we obtain ∂tχ = e−2iωt[∂tχ
′ − v ·∇′χ′ + ωr′ ×∇′χ′ − 2iωχ′] and ∇χ =

e−2iωtR·∇′χ′ and similar expressions involving u. Assuming the dynamics is quasistatic

in this moving frame of reference (∂tχ
′ = 0), we neglect any explicit time dependence

and drop the primes on all the variables to get

(u− v) ·∇χ+ ωr×∇χ− i(2ω +∇× u)χ = (λ̄1 − λ̄3|χ|2)D − λ̄3χ
2D∗ + λ2χ(∇ · u)

+ (1− |χ|2)χ+∇2χ , (3.33)

where v and ω are the velocity and angular rotation rate of the ±1/2 disclination.

Assuming the defect is moving and rotating slowly, and the activity is also small, we

take v, ω, ᾱ = O(η), where η � 1 will be used as a book-keeping parameter to do

perturbation theory in. This allows us to treat all the backflow terms perturbatively.
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Expanding χ = χ0 + ηχ1 +O(η2) and u = u0 + ηu1 +O(η2), we have at O(η0),

u0 = 0 , and ∇2χ0 + (1− |χ0|2)χ0 = 0 . (3.34)

This is the static equilibrium equation which is easily solved to obtain the con-

figuration of a single stationary disclination. For a ±1/2 disclination, we have

χ0(r) = S0(r)e
±iϕ+2iθ0 , where r, ϕ are standard polar coordinates in the plane with

the defect centered at the origin and θ0 is a constant related to the orientation of the

±1/2 disclination. S0(r) satisfies the following differential equation

S ′′0 +
S ′0
r

+

(
1− 1

r2
− S2

0

)
S0 = 0 . (3.35)

whose solution can be written in terms of a Padé approximant (with upto 3% error)

with the correct asymptotic behavior (S0 ' 1− 1/2r2 as r →∞ and S0 ' 0.5831r as

r → 0), given by [382]

S0(r) = r

√
0.34 + 0.07r2

1 + 0.41r2 + 0.07r4
. (3.36)

We shall use this approximate form of S0(r) later on to compute the defect mobility.

The equations for the first order corrections χ1(r) and u1(r) are obtained by

retaining terms of O(η) in Eqs. (3.33) and (3.28),

∇2χ1 + (1− 2|χ0|2)χ1 − χ2
0χ
∗
1 = I(r) (3.37)

I(r) = (u1 − v) ·∇χ0 − i(2ω + ∇× u1)χ0 + ωr×∇χ0 − (λ̄1 − λ̄3|χ0|2)D1

+ λ̄3χ
2
0D
∗
1 − λ2χ0(∇ · u1) (3.38)

u1 = ᾱ∇·Q0 , (3.39)
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where Q0 is the tensor form of χ0 corresponding to the static defect solution and D1 is

the corresponding complex deviatoric strain rate computed using u1. The first order

velocity correction is easily determined to be

u1 = ᾱ

(
S ′0(r) +

S0(r)

r

)
(cos 2θ0, sin 2θ0) . (3.40)

The corresponding first order corrections to the vorticity (∇× u), divergence (∇ · u)

and deviatoric shear in complex form (D) are also easily obtained to be

∇× u1 = ᾱ sin(ϕ− 2θ0)S0(r)
[
1− S0(r)2

]
, (3.41)

∇ · u1 = −ᾱ cos(ϕ− 2θ0)S0(r)
[
1− S0(r)2

]
, (3.42)

D = −ᾱS0(r)
[
1− S0(r)2

]
ei(ϕ+2θ0) . (3.43)

These terms contribute to the inhomogeneity I(r) as shown in Eq. 3.37,3.38. The

linear complex differential operator on the left-hand side of Eq. 3.37 given by

L(f, f ∗) = ∇2f + (1− 2|χ0|2)f − χ2
0f
∗ , (3.44)

has three zero modes, denoted by Ψ: two corresponding to translations (Ψ = ∇χ0)

and one for rotation (Ψ = iχ0) of the defect. Multiplying Eq. 3.37 by a complex

conjugated zero mode Ψ∗ and integrating by parts, we get the following solvability

condition for χ1 (Fredholm alternative)

Re

[ˆ
Σ

d2r I(r)Ψ∗(r)

]
= Re

[˛
∂Σ

(Ψ∗∂⊥χ1 − χ1∂⊥Ψ∗)

]
, (3.45)

where Σ is any region of space and ∂⊥ is the normal derivative along the boundary ∂Σ.

We shall apply this solvability condition on a circular region of radius r0 = O(η−1/2).
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This choice of r0 is motivated by the fact that the perturbative expansion of χ breaks

down in the very far-field (r ∼ η−1), while a pure phase analysis performed later is

valid on scales all the way from infinity down to r ∼ η−1/2. So for r0 = O(η−1/2), both

inner and outer expansion can be asymptotically matched.

Projecting onto the rotational zero mode (Ψ = iχ0), we find that all the terms

involving the flow (independent of ω) in the I integral have a vanishing real part

as required in the left hand side of Eq. 3.45 and so ω = 0 at this order. Using the

translational eigenmodes (Ψ = ∇χ0), as u ∼ 1/r for r →∞, all the integrals involving

the flow velocity are convergent for large r (so we extend the integral to infinity),

while only the term involving the defect velocity v is log-divergent. So we have for

the +1/2 disclination

Re

[ˆ r0

0

d2rI(r)∇χ∗0

]
= ᾱ ê0(5.735 + 0.6284λ2)− πv ln

( r0

1.126

)
, (3.46)

where ê0 = (cos 2θ0, sin 2θ0) is the unit polarization of the +1/2 disclination. Note

that, as expected by symmetry, the active backflow terms don’t contribute for the

−1/2 disclination (the ᾱ term is absent). Interestingly, we find that both λ̄1 and λ̄3

don’t contribute to the mobility calculation at this order, though they do enter the

linear stability analysis of fluctuations about the homogeneous ordered state [377].

For the line integral on the RHS of Eq. 3.45, we have to evaluate χ1 at r0 = O(η−1/2).

For arbitrary v and ᾱ (O(η0)), we now have for large r0, S = 1−O(η) and ∇u1 = O(η)

on the scale of r0. So in the very far-field, we set S = 1 and have only the phase θ at

leading order,

v ·∇θ +∇2θ = 0 . (3.47)

This equation, when solved with the correct winding condition on θ (
¸

dθ = ±π

around the origin for the ±1/2 defect), gives rise to a highly anisotropic phase profile
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given by [382]

∇θ = ±1

2
e−v·r/2ε ·

[
vK0

(
|v|r

2

)
− |v|r̂K1

(
|v|r

2

)]
+ ε · vA , (3.48)

where ε is the antisymmetric Levi-Civita tensor; K0(x), K1(x) are modified Bessel

functions of the first kind and A is a constant that we will later relate to a weak

external phase gradient. This gives the far-field phase solution for both +1/2 and

−1/2 defects when moving. Expanding this outer solution for small r to match the

inner solution at r ∼ r0, we use it in the line integral in Eq. 3.45 to get

Re

[ˆ 2π

0

dϕ r0 (∇χ∗0∂rχ1 − χ1∂r∇χ∗0) |r=r0
]

= −πv ln

(
|v|r0

4
eγE−1/2∓2A

)
, (3.49)

where γE is the Euler-Mascheroni number. Putting all this together into Eq. 3.45 and

writing vA = −ε ·∇θext (a weak external phase gradient orthogonal to the defect

motion), the r0 dependence cancels out leaving us with the following defect mobility

relation for both +1/2 and −1/2 disclinations (denoted using ± correspondingly),

v± ln

(
3.29

|v±|

)
= ±2ε ·∇θext + δqi,1/2 ᾱ ê0(5.735 + 0.6284λ2) . (3.50)

The −1/2 disclination unlike the +1/2 disclination, moves only under the influence

of passive phase gradients through a Magnus like force. The active self-induced flow

vanishes for the −1/2 disclination. Also note that, the numerical prefactors present in

Eq. 3.50 are not universal (though the structure of the equation is) and they can change

by using a different model for the profile of the defect core. One can restore dimensions

appropriately using the length and times scales used previously (see Eq. 3.29). In the

presence of other distant defects, ∇θext is given by the cumulative phase gradient at

the core of the considered defect due to the presence of other defects, which in the
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pure phase approximation can be obtained by linear superposition as

∇θext(ri) = −ε ·∇ri

∑
j 6=i

qj ln

∣∣∣∣ri − rj
a

∣∣∣∣ , (3.51)

where qj = ±1/2 is the charge of the jth defect and a ∼ ξ is the defect core size that

functions as a microscopic cutoff. The motion of the defect transverse to the phase

gradient at its core is a manifestation of the equilibrium Magnus like force, which when

eventually written in terms of the defect positions using Eq. 3.51, exactly corresponds

to a force arising from the equilibrium Coulombic interaction between defects. In

general, we find that the mobility relation is nonlinear with a logarithmic correction

depending on the speed of the defect. As this correction is rather weak, to simplify

matters, we use a constant mobility in the main text which should be valid for slowly

moving defects or when the defect density is large enough that the interactions are

screened.

Note that the above calculation still misses some features of active defect motion.

As can be seen from Eq. 3.40, though the velocity field is frictionally screened, it

decays slowly as u1 ∼ 1/r. Hence, along with the self-induced active backflow of the

+1/2 defect that leads to its spontaneous motility, one must also include in u1 the

instantaneous active flow generated by all other distant ±1/2 defects, as this flow is

of the same order as the phase gradient that generates the equilibrium passive defect

interaction (Eq. 3.51). One can write u1 = ᾱ∇ · Q0 + ũ1, where Q0 is the defect

configuration for the ith defect and ũ1 includes the entrainment of the ith defect

by the flow of other defects. A full calculation of ũ1 including many defects is not

analytically tractable as of now, but for weak phase gradients if we approximately

linearize Q assuming S ' 1 to be constant in the far-field, then the phase due to

various defects just adds up linearly. In this case, ũ1 ' 2ᾱ(∂yθ, ∂xθ) and using Eq. 3.51
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for the phase gradient gives

ũ1(r) = 2ᾱσ3 ·∇
∑
j 6=i

qj ln

∣∣∣∣r− rj
a

∣∣∣∣ , (3.52)

where σ3 is the third Pauli matrix (so σ3 ·∇ = (∂x,−∂y)). Including a “second” active

coefficient [376], we have an additional force contribution to the right hand side of the

flow equation (Eq. 3.28) ∼ α′Q · (∇ ·Q). This term does not affect the self-propulsion

of a +1/2 defect, but it does contribute a term ∼ α′∇θ to the flow entrainment term

ũ1. As is evident, both active terms are comparable to the passive elastic one and

in general generate an anisotropic, linear in activity, correction to the Frank elastic

constant. This is akin to effectively having a different bend (K3) and splay (K1) elastic

constant. Depending on where one is in parameter space, the linear active corrections

to nematic elasticity may be stabilizing or destabilizing in nature, recovering the same

effect obtained in a linear stability calculation about the homogeneous ordered state

[376, 377]. In all of our work, we shall remain in the regime where both K1 and K3

are always positive even after including the linear activity corrections, allowing for

a stable base nematic. Additionally, upon including fluctuations in a homogeneous

active nematic, following the arguments in Ref. [367], the ᾱ contribution to ũ1 in

Eq. 3.52 being anisotropic, is irrelevant on large scales, hence we neglect it in our

calculations and discussion in the main text.

Appendix 3.B Derivation of polarization dynamics of the +1/2

disclination

Here we obtain the dynamics of the polarization vector ei(t) = a∇ · Q(r+
i (t)) for

the ith +1/2 defect. Let E(r, t) = a∇ ·Q. Then ei(t) = E(r+
i (t), t). Taking a time
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derivative we get

dei(t)

dt
= ∂tE(r+

i , t) +
dr+

i

dt
·∇r+i

E(r+
i , t) . (3.53)

From Appendix 3.A, we found the self-induced rotation of the +1/2 defect to be zero

(ω = 0) at the order we are working, so we do not include it here and don’t consider

it further. This simplifies things greatly as it allows us to set the time-dependent

rotation matrix to the constant unit tensor (R = 1). As ∂tE = 0 in the quasistatic

approximation, we only have the second term. We shall address the implications of

relaxing this upon including smooth director distortions in Appendix 3.C. Writing

vi(t) = ṙ+
i (t) (the +1/2 defect velocity) and using the definition of E, we have

dei(t)

dt
= avi(t) ·

(
lim

r→ri(t)
∇∇ ·Q(r, t)

)
. (3.54)

Computing ∇∇ ·Q perturbatively about the stationary equilibrium defect, we expand

Eq. 3.33 as before to O(η) (where v, ᾱ ∼ η). As we eventually have to take the

r→ ri(t) limit (at the center of the defect core), we find it easier to expand in S and

θ instead of the complex variable χ. Using the same notation as before and setting

ω = 0, Eq. 3.33 in terms of S and θ is given as

(u− v) ·∇S = (λ̄1 − λ̄3S
2)Re

{
e−2iθD

}
− λ̄3S

2Re
{
e2iθD∗

}
+ λ2S∇ · u

+(1− S2)S +∇2S − 4S|∇θ|2 , (3.55)

2(u− v) ·∇θ −∇× u =

(
λ̄1

S
− λ̄3S

)
Im
{
e−2iθD

}
− λ̄3S Im

{
e2iθD∗

}
+ 2∇2θ +

2

S
∇S ·∇θ . (3.56)

We have dropped the subscript i to keep the notation uncluttered. Writing S =

S0(r) + ηS1 +O(η2) and 2θ = ϕ + 2θ0 + η2θ1 +O(η2) (θ0 is a constant setting the
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orientation of the +1/2 defect polarization), we use Eqs. 3.41, 3.42 and 3.43 to get

the following linearized equations

−ᾱ
(
S ′0 +

S0

r

)
sin(ϕ− 2θ0)

r
+
|v| sinϕ

r
+ ᾱ sin(ϕ− 2θ0)

(
S ′′0 +

S ′0
r
− S0

r2

)
= 2∇2θ1 +

2

S0

S ′0∂rθ1 +
1

S0

∂ϕS1

r2
, (3.57)(

1− 3S2
0 −

1

r2

)
S1 +∇2S1−

2S0

r2
∂ϕθ1 = ᾱ

(
S ′0 +

S0

r

)
S ′0 cos(ϕ− 2θ0)− |v|S ′0 cosϕ

−ᾱ
[
λ̄1 − 2λ̄3S

2
0 + λ2S0 cos(ϕ− 2θ0)

](
S ′′0 +

S ′0
r
− S0

r2

)
.

(3.58)

Here the defect is centered at the origin and v has been taken along the x-axis without

loss of generality. Note that for θ0 6= 0, π, the defect polarization e is not aligned

with its velocity v. We note, by inspection that the following ansatz solves the above

equations,

S1 = ψ0(r) + ψ1(r) cosϕ+ ψ2(r) cos(ϕ− 2θ0) , (3.59)

θ1 = Θ1(r) sinϕ+ Θ2(r) sin(ϕ− 2θ0) . (3.60)

The first order corrections (ψ0,1,2(r) and Θ1,2(r)) satisfy the following equations.

2

(
Θ′′1 +

Θ′1
r
− Θ1

r2

)
+

2S ′0
S0

Θ′1 −
ψ1

S0r2
− |v|

r
= 0 , (3.61)

ᾱ

[
S0(1− S2

0) +
1

r

(
S ′0 +

S0

r

)]
+ 2

(
Θ′′2 +

Θ′2
r
− Θ2

r2

)
+

2S ′0
S0

Θ′2 −
ψ2

S0r2
= 0 ,

(3.62)(
1− 3S2

0 −
1

r2

)
ψ0 + ψ′′0 +

ψ′0
r

= ᾱS0(λ̄1 − 2λ̄3S
2
0)(1− S2

0) , (3.63)(
1− 3S2

0 −
2

r2

)
ψ1 + ψ′′1 +

ψ′1
r
− 2S0

r2
Θ1 + |v|S ′0 = 0 , (3.64)
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(
1− 3S2

0 −
2

r2

)
ψ2 + ψ′′2 +

ψ′2
r
− 2S0

r2
Θ2 = ᾱ

[
S ′0

(
S ′0 +

S0

r

)
+ λ2S

2
0(1− S2

0)

]
.

(3.65)

Using the first order solution, we expand de/dt to O(η) (not counting the explicit

factor of v multiplying ∇∇ ·Q in Eq. 3.54). Projecting de/dt along and transverse to

e, we have

1

|e|2
e · de

dt
= η|v|

[
2S ′0(0)Θ′1(0) + 3ψ′′1(0)

4S ′0(0)
+ cos 2θ0

(
2S ′0(0)Θ′2(0) + 3ψ′′2(0)

4S ′0(0)

)
+O(η)

]
,

(3.66)

1

|e|2
e× de

dt
= −η|v|

(
sin 2θ0

6S ′0(0)Θ′2(0) + ψ′′2(0)

4S ′0(0)
+O(η)

)
. (3.67)

As r → 0 (at the core of the defect), the scalar order parameter must vanish (S → 0).

Taking the r → 0 limit of the first order equations (Eqs. 3.61-3.65), we can deduce

the leading behaviour of all the first order corrections for small r. Requiring that the

physical solution not blow up at the core and χ be single valued, we obtain

ψ0(0) = ψ1(0) = ψ2(0) = 0 , Θ1(0) = Θ2(0) = 0 , (3.68)

ψ′0(0) = λ̄1ᾱS
′
0(0) , ψ′1(0) = ψ′2(0) = 0 , (3.69)

ψ′′1(0) = −|v|S ′0(0) , ψ′′2(0) = 2ᾱS ′0(0)2 , ψ′′0(0) = 0 , (3.70)

Θ′1(0) =
|v|
4
, Θ′2(0) = − ᾱ

2
S ′0(0) . (3.71)

Using this, along with the fact that |e| = 2S ′0(0)+O(η) (a ∼ ξ) and writing |v| cos 2θ0,

|v| sin 2θ0 in terms of scalar and cross products of v and e, we obtain for the ith +1/2

disclination (now setting the book-keeping parameter η = 1)

dei
dt

= −5

8
vi · (vi − ᾱei) ei −

ᾱ

8
(vi × ei)ε · ei , (3.72)
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with vi = ṙ+
i (t) as the +1/2 defect velocity. Restoring appropriate dimensional units,

we obtain the equation quoted in Sec. 3.3.3.

Appendix 3.C Non-quasistatic solution for +1/2 disclination:

Rotational diffusion

In the previous section, the systematic part of the polarization dynamics was derived

from the deterministic equations for the evolution of Q. In particular the equation

was derived under the assumption of having a single isolated +1/2 defect in whose

comoving and corotating frame, the dynamics is stationary. There are two effects that

invalidate this assumption - the presence of noise which induces random fluctuations

in the local frame and the contribution of the motion of other distant defects (over and

above their effect included in vi through the passive Coulomb interaction). We shall

include both here. As we are interested in the term ∂tE (Eq. 3.53) in the local defect

frame, the main contribution comes from the slow relaxation of director distortions

and not from the fast relaxation of the scalar order parameter. Working then in the

pure-phase approximation, we have

θ(r, t) =
∑
i

qiϕ(r− ri(t)) + δθ(r, t) + θ0 , (3.73)

where θ0 is a constant, ϕ(r) = tan−1(y/x) is the angle function and qi = ±1/2 are the

defect strengths. The decomposition of θ(r) is unambiguous if we demand δθ to be

smooth and univalued everywhere so that ∇×∇δθ = 0. This captures all the smooth

distortions of the director field present along with the topological defects. Deep in

the ordered phase of a fluctuating 2D nematic liquid crystal (even when active), the

smooth and single-valued director distortions analogous to “spin-waves” in magnets
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are a broken symmetry variable and so they are long-lived and easy to excite at low

noise. These fluctuations cause random rotations of the +1/2 defect polarization. The

smooth phase fluctuations in a 2D dry active nematic (number conserving [367] or

not [366]) satisfy

∂tδθ =
K

γ
∇2δθ + f(r, t) , (3.74)

at long wavelengths, where f(r, t) is non-conserving white noise with zero mean and

correlation 〈f(r, t)f(r′, t′)〉 = 2∆δ(r − r′)δ(t − t′). Using Eq. 3.73 we obtain for

∂tE(r, t) = ∂t∇ ·Q(r, t) evaluated at the ith defect core,

lim
r→r+i (t)

∂tE(r, t) = −ε · ei

(
ωi + 2

∑
j 6=i

qjωj + 2∂tδθ(r
+
i )

)
, (3.75)

where we have ωj = r̂j × ∂tr̂j as the rotation speed of the jth defect (both ±1/2).

Note that all the terms above being purely transverse, correspond to a torque on the

polarization ei. At leading order in perturbation theory, as shown in Appendix 3.A,

we obtain the self-induced rotation ωi = 0 for all the defects6. That leaves us with the

torque due to the elastic director distortions encoded in ∂tδθ. Note that specifying

the positions and orientations of defects does not uniquely define the smooth director

distortion to interpolate between the defects. For a given configuration of defects

and an independently specified smooth director phase δθ, one can solve Eq. 3.74

setting the noise f = 0, to obtain the torque experienced by the defects due to the

particular imposed director configuration. This is precisely the computation performed

by Vromans and Giomi [384], albeit numerically. Tang and Selinger [385] recognize the

fact that for a given orientation of defects, there exist multiple interpolations of the

6This is a subtle point. In reality, even when passive (v = 0), there is relative rotation of defects
about other defects. The real reason it does not contribute to an orientational torque at leading order
is that the pure-phase approximation is only valid in the far-field, and this contribution from ωj does
not survive when the far-field solution is matched onto the near-field solution around the defect core.
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smooth director field, all with differing energies. In the absence of noise (f = 0), one

can recover what both Refs. [384, 385] call “elastic torques” by rephrasing Eq. 3.74 as

an initial value problem to compute the torque 2∂tδθ for the given configuration.

In the presence of noise, all the smooth director distortions must be accounted

for (even those with a higher energy), just with the appropriate statistical weight.

Hence at steady state the relevant “elastic” contribution to the torque in a fluctuating

description is actually stochastic and not deterministic. Using Eq. 3.74, we have

∂tδθ(ri(t), t) =

ˆ
d2q

(2π)2

ˆ
dω

2π
(−iω)

fq,ω e
−iωt+iq·ri(t)

−iω + (K/γ)q2
. (3.76)

One trivially has 〈∂tδθ(ri)〉 = 0 and evaluating its two-point correlation, we obtain

〈∂tδθ(ri(t), t)∂t′δθ(rj(t′), t′)〉 = 2∆

ˆ
d2q

(2π)2

ˆ
dω

2π

ω2

[ω2 + (K/γ)2q4]
e−iω(t−t′)+iq·[ri(t)−rj(t′)] ,

(3.77)

= 2∆

{
δ(t− t′) δij

4πa2
− K

2γ

ˆ
d2q

(2π)2
q2 e−(K/γ)q2|t−t′|+iq·[ri(t)−rj(t′)]

}
(3.78)

=
∆

2πa2

{
δ(t− t′)δij + a2

γ2
[
r2
ij − 4(K/γ)|t− t′|

]
8K2|t− t′|3

e−γr
2
ij/(4K|t−t′|)

}
,

(3.79)

where rij = |ri(t) − rj(t
′)| (rij ≥ 2a for t = t′, i 6= j) with a as the defect core size.

The random torque due to smooth director fluctuations has two parts, one that is

delta-correlated and the other which retains memory of the past trajectory of defects

and is exponentially small for well separated defects. Deep in the ordered phase, as a

is a microscopic length scale, the second term in Eq. 3.79 is negligible in comparison

to the white noise part. Neglecting memory effects, we write 2∂tδθ(ri) =
√

2DRηi(t)
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and obtain the required rotational diffusion constant to be DR = ∆/(πa2). Neglecting

active corrections to the noise, the translational noise in the defect dynamics is then

µT ∼ ∆ and hence DR ∼ µT/a2 which gives `R ∼ a as stated in Sec. 3.3.4.
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Chapter 4

Topological sound modes and

collective motion on curved

geometries

This chapter is based on work presented in the article “Topological Sound and Flock-

ing on Curved Surfaces” [390] co-authored by Suraj Shankar, Mark J. Bowick and

M. Cristina Marchetti, and published in the journal Physical Review X in the year

2017. I was responsible for doing most of the work and preparing the entire first draft

of the paper, and my co-authors provided valuable suggestions and corrections to add

both to the conceptual understanding and the presentation of the work.

4.1 Flocks, curvature & quantum Hall fluids

Flocking, defined as the self-organized and spontaneous ordered motion of a large

collection of self-propelled units [215, 391], is one of the most classic phenomena

seen in active matter. Large murmurations of starlings are a familiar example, but

such collective motion can also be found on much smaller scales, as for instance in
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groups of cells advancing en masse during growth and development [392]. In many

biological processes, collective cellular motion occurs on curved surfaces, such as

during gastrulation and tissue morphogenesis [393–396], or when cells migrate in the

folds of the gut [397, 398], or on the surface of a growing cornea [399]. Recent in

vitro work has also demonstrated a direct effect of substrate curvature on cytoskeletal

alignment and cell motility in epithelial cells [400]. Understanding the physical aspects

of such active processes in the presence of curved geometries hence remains crucial to

developing insight into the organizational principles of living matter.

There has been growing recent interest in understanding this at a fundamental

level, with the focus divided between the effect of curved confining walls on so-called

scalar (non-aligning) active matter [401–405] and on aligning active matter systems,

of either nematic [273, 274, 406] or polar [407, 408] symmetry. Even at the level

of non-interacting self-propelled particles, the curvature of confining walls can yield

surprising features, such as inhomogeneous density and pressure profiles [401, 404] and

the breakdown of an equilbrium interpretation [402, 403]. In the presence of aligning

interactions that promote orientational order, curvature has an even more profound

effect since it frustrates such order, often requiring topological defects [92] that in

active systems can become dynamical and are capable of driving spatio-temporal

patterns and complex motion [274]. With flexible walls or membranes present, activity

can also lead to ratchet effects and rectification [409, 410].

What does this, if at all, have to do with electronic quantum Hall systems? To

answer that, we need to think a bit more carefully about the physics of flocking in

the presence of curvature. An ordered flock breaks continuous rotational symmetry,

though unlike an equilibrium ferromagnet, this symmetry breaking is dynamical.

While the microscopic motile units constituting the flock individually break detailed

balance (DB), polar order realizes this DB violation on macroscopic scales by allowing



88

directed currents and fluxes, i.e., collective motion, to emerge. As a consequence,

a generic property of the ordered state of polar active matter is spontaneous flow

and thus, the large scale breaking of time-reversal symmetry [218]. Although the

active fluid considered here is overdamped due to a frictional substrate, the ordered

flock also supports long-wavelength propagating sound modes [411]. The presence

of curvature then introduces an additional length scale in the problem that gaps the

sound spectrum at long wavelengths. This is a distinct property of active polar fluids

and it arises because the polarization field plays the dual role of the order parameter

and flow velocity and is therefore subject to the same lensing effect that forces flow

to move along geodesics on curved surfaces [408, 412]. The analogy with the integer

quantum Hall effect is completed by recalling that, in the electronic system, the

external magnetic field breaks time reversal symmetry (TRS) and the spectral gaps

provided by the discrete Landau levels cause the Hall conductance to be quantized

[47], and the sample supports chiral conducting edge states while the interior bulk

remains insulating [55]. These edge states are protected by a bulk topological invariant,

the Chern number [19], and exist in systems that lack TRS (though, even without a

magnetic field), as in the Haldane model [52]. In a similar fashion, for the polar flock,

the spectral gap opened by curvature coupled with the broken TRS of the moving state

leads to topologically protected sound modes that are localized to special geodesic

curves on the surface (at which the gap in the sound spectrum closes).

In classical systems, it is known that carefully engineered lattice structures with

flows induced either spontaneously by activity [307], or through an external drive [74,

413], can host such exotic unidirectional sound modes that are localized at the edges

of the sample and are similarly topologically protected. The presence of topologically

protected edge states in phononic [76, 77] and photonic [72] systems has lead to an

extensive exploration of topological metamaterials, with properties akin to electronic
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topological insulators and quantum Hall states [53]. Note that the topological modes

we find instead occur in a fluid system and do not require any underlying periodicity

or carefully designed metamaterial structured on an artificial lattice. The phenomenon

reported here is akin to the one recently found in geophysical flows of oceans or

the earth’s atmosphere, where equatorially trapped Kelvin and Yanai waves were

reinterpreted as topologically protected modes [412]. In that case the background flow

is imposed externally by the earth’s rotation that breaks TRS. In the active fluid, in

contrast, flow occurs with no external drive, resulting in spontaneous topologically

protected sound modes.

The presence of these topological modes relies on three important ingredients:

• the spontaneous polar order and associated flow that breaks TRS;

• the fact that in polar active fluids the order parameter also plays the role of a

flow velocity, resulting in distinctly non-equilibrium self-advection not present

in equilibrium polar fluids [218];

• the non-zero Gaussian curvature of the underlying substrate.

We emphasize that the long-wavelength topologically protected modes discussed

here are generic, in the sense that they occur for active polar flow on any curved

surface of non-vanishing Gaussian curvature. Recent work has considered active polar

patterns on a cylinder [414]. In this case as the Gaussian curvature vanishes, there are

consequently no topologically protected sound modes. In the following we demonstrate

the phenomenon explicitly for flocking on the sphere, which has constant positive

curvature, and on the catenoid, which has negative, spatially varying curvature.
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4.1.1 Toner-Tu equations on a curved surface

We consider an active polar fluid on a 2D surface. To make generic predictions

independent of specific microscopic realizations, we work in the continuum limit and

use the well-tested hydrodynamic description of a fluid of overdamped self-propelled

particles provided by the Toner-Tu equations [215, 293, 298], appropriately modified

to account for the curvature of the underlying substrate [407]. Mass conservation

implies a continuity equation for the density field, ρ,

∂tρ+∇µp
µ = 0 , (4.1)

with µ = 1, 2 labelling the two internal coordinates of the surface and p = ρu is the

polarization density of the active fluid. Due to the presence of a frictional substrate,

momentum is not conserved and the particles’ velocity is assumed to be aligned

with their direction of self-propulsion, leading to the identification of u with the flow

velocity of the active fluid. Note that on a curved surface parallel transport of vectors

requires the use of covariant derivatives [89],

∇µp
ν = ∂µp

ν + Γναµp
α , (4.2)

where Γναµ are the appropriate Christoffel symbols. The equation for the polarization

density is given by

∂tp
µ+λpα∇αp

µ =
[
a(ρ− ρc)− b gαβpαpβ

]
pµ+ν (∆pµ +KGp

µ)+ν ′∇µ∇αp
α−χ∇µρ ,

(4.3)

where gαβ is the metric tensor of the surface and ∆ = ∇µ∇µ is the scalar Laplace-

Beltrami operator. Note that u here plays the dual role of an order parameter field
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(polarization) and velocity, as discussed in Ref. [218]. The transport coefficients ν and

ν ′ are the shear and bulk viscosities (or anisotropic elastic constants when viewed as

a liquid crystal), respectively, a, b > 0 are coefficients setting the magnitude of the

mean field polarized state for ρ > ρc (the critical density for the flocking transition),

λ is a kinematic convective parameter and χ > 0 is a compressional modulus. The

last term on the right hand side of Eq. 4.3 is the leading term in a density expansion

of the gradient of the swim pressure [415, 416] that describes the flux of propulsive

forces across a unit plane of material. There are other nonlinear terms present in

the original Toner-Tu equations, but we only retain the most important ones here.

In particular, we keep the convective nonlinearity λp ·∇p that is responsible for

long-ranged order in 2D [298, 299] and the leading density dependence in the symmetry

breaking (aρp) and pressure like terms (χ∇ρ) that lead to dynamical self-regulation

[417], phase-separation [304, 305, 418] and long-wavelength instabilities of the ordered

phase [302, 419]. The absence of Galilean invariance means that λ 6= 1/ρ. Additional

nonlinear “advection-like” terms ∼ λ2p∇ · p, λ3∇|p|2 are also present in general, but

do not qualitatively change our results below (see Appendix 4.A for an analysis with

λ2, λ3 6= 0).

Geometry enters Eq. 4.3 in two crucial places (apart from the covariant derivatives):

(i) the cubic term setting the magnitude of the polarization explicitly involves the

metric tensor g (|p|2 = gαβp
αpβ) and (ii) the Gaussian curvature KG explicitly appears

in the viscous term because the strain rate tensor is a symmetrized derivative of the

velocity and the covariant derivatives do not commute. The presence of KG 6= 0 is

a direct dynamical consequence of the Poincaré-Hopf theorem [420] from which it

follows that topological defects or vortices are required to accommodate vector order

on a curved closed surface like the sphere. A covariant hydrodynamic treatment of

active fluids on a curved surface has also been developed by Fily et al. [407]. These
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authors derived the continuum equations by coarse-graining a microscopic model

of self-propelled particles, which allowed an explicit computation of the transport

coefficients in terms of microscopic parameters. The form of the continuum equations

obtained in Ref. [407] is identical to those used here, the only distinction being that

O(∇2) terms are neglected in that work, including the explicit KG term. In the

following, we shall similarly neglect ∇2 terms.

4.2 Polar flock on a sphere

As an example of a curved surface with constant positive curvature, we consider an

active polar flock on the surface of a sphere of radius R. In local spherical polar

coordinates {θ, ϕ}, the canonical metric and curvature on S2 are

g = R2(dθ ⊗ dθ + sin2 θdϕ⊗ dϕ) , KG =
1

R2
. (4.4)

The only non-vanishing Christoffel symbols are

Γθϕϕ = − sin θ cos θ and Γϕθϕ = cot θ . (4.5)

4.2.1 The steady state of a polar flock on the sphere

At low mean density (ρ0 < ρc), the isotropic phase with constant density and p = 0 is

stable. For ρ0 > ρc, where the mean-field solution in flat space is a state of constant

density and finite, but uniform polarization, on the sphere one obtains polar, spatially

varying states. Since the particle number is conserved, there can be no sinks or sources

of flow. The geometric frustration forces polar order to develop inhomogeneous profiles,

but the global topology of the sphere additionally necessitates the presence of vortices

as per the Poincaré-Hopf theorem [420]. The simplest configuration allowed by the



93

required conservation of topological defect charge that must sum up to the Euler

characteristic χ = 2 of the sphere is then a circulating band wrapping around an

equator, with two vortices of charge +1 at opposing poles. This yields a density band

with polarization in the azimuthal direction that vanishes at the poles, consistent with

the band state reported recently in simulations of polar particles on the sphere [408].

An explicit solution can be found analytically by assuming azimuthal symmetry,

with ρ = ρss(θ), p
θ = 0 and pϕ = pϕss(θ). The continuity equation is then satisfied

identically. To simplify the polarization equation, we neglect the viscous terms as they

are higher order in gradients (suppressed by 1/R2) compared to the other terms arising

from self-propulsion. In the microscopic realization of self-propelled polar particles

with short range repulsive forces and aligning interactions studied in Ref. [408], this

approximation corresponds to the regime where inter-particle repulsion (contributing

to the pressure) and active self-propulsion dominate over viscous and elastic stresses.

We then neglect the laplacian terms entirely by setting ν = 0 (the bulk viscosity ν ′

drops out with our assumption of azimuthal symmetry). This leaves us with

λ sin θ cos θ (pϕss)
2 =

χ

R2
∂θρss , (4.6)

pϕss[a(ρss − ρc)− bR2 sin2 θ (pϕss)
2] = 0 . (4.7)

Writing X(θ) = ρss(θ)− ρc, and seeking a solution with pϕss 6= 0 we can eliminate pϕss

from the two equations to obtain

dX

dθ
=

(
aλ

bχ

)
cot θX =⇒ X(θ) = X(π/2)(sin θ)η , (4.8)

where

η =
λa

bχ
(4.9)
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Figure 21 : (a) The normalized density profile of a polar flock on a sphere given in Eq. 4.12, for

η = 0.5 (blue), 1 (orange) and 2 (green). (b) The density and polarization profiles for η = 2, now

shown on the sphere. The color describes the density from the maximum (red) at the center of the

polar band to ρc (blue) at the poles of the sphere. The polarization also vanishes at the poles.

is a dimensionless parameter that controls the shape of the solution, with η > 0

for the density profile to be a physical solution (as sin θ > 0 over the entire range

θ ∈ [0, π]). By symmetry, the density will be maximum at θ = π/2 (the equator).

Letting ρss(π/2) = ρmax we find

ρss(θ) = ρc + (ρmax − ρc) sinη θ . (4.10)

We stress that the dependence on R has dropped out from Eq. 4.10, which therefore

represents a universal density profile for an ordered flock on any size sphere. Finally,

we express ρmax in terms of the average density ρ0 ≡ 〈ρss〉 by requiring

ρ0 =
1

4π

ˆ 2π

0

dϕ

ˆ π

0

dθ sin θρss(θ) . (4.11)

to obtain the final expression for the density profile as

ρss(θ) = ρc + (ρ0 − ρc)Aη sinη θ , (4.12)
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with Aη = 2Γ((3 + η)/2)/[
√
πΓ(1 + η/2)]. In order for this density profile to exist, we

additionally require that |pss|2 > 0 and obtain

|pss|2 =
a

b
(ρ0 − ρc)Aη sinη θ . (4.13)

As expected, an ordered flock only exists for ρ0 > ρc, and the magnitude of the steady

state polarization and the density have the same inhomogeneous profile as shown in

Fig. 21(a), with the direction of polarization chosen spontaneously. As required by the

topology of the sphere, a vortex inhabits each pole, with the polarization vanishing at

their core.

This latitudinal band solution is unrelated to the traveling bands found in flat space

[302, 304, 305], which occur close to the mean-field transition and are absent deep in

the ordered phase. The inhomogeneous solution obtained is simply the ordered flocking

state on a sphere. The spatially inhomogeneous profile arises from the interplay of

mass fluxes (∼ χ∇ρ) and convective fluxes (∼ λp ·∇p) that cannot be set to zero on

a curved surface, when ordered. Hence the spatial inhomogeneity is made inevitable

by curvature. Note that a similar although single vortex solution is obtained when an

active polar fluid is circularly confined in the plane [421]. The spatial profile of the

confined vortex is qualitatively the same as the one obtained here with curvature, in

particular, the density at the core is found to be ρc (the critical density for the mean

field transition) just as reported in Ref. [421]. In both cases, self-propulsion induced

advection balances pressure forces to set this notrivial steady state.

The present solution is expected to break down within a region of angular width

θm ∼ exp(−aρcR2/ν) (hence exponentially small on a large sphere) around the poles

of the sphere, at the core of the vortices, as the elastic stresses will become important

at short scales. Therefore the profile obtained is a robust and universal prediction



96

of the continuum theory, similar to the rotating band seen in particle simulations

of Ref. [408]. Note that the depth of the double well symmetry-breaking potential

is, amongst other things, controlled by a/b ∝ v2
0, where v0 is the self-propulsion of

the motile constituents of the flock. Anticipating ourselves, we can use the fact that

c|| ∼ λv0 sets the longitudinal sound speed and c⊥ ∼
√
χ sets the transverse sound

speed [411], to also get η ∼ v0c||/c
2
⊥. As sound speeds have been experimentally

measured in 2D flocks of active colloidal rollers [422], one can directly obtain η as

a material property of the active fluid from flat space measurements alone. This

would then provide a concrete prediction for the profile of the active fluid on a sphere,

allowing for a nontrivial test of our theory.

For an equilibrium polar or ferroelectric liquid crystal (say, a compressible lyotropic

smectic-C film [344]), where the polarization is strictly an order parameter field and

does not play the role of a velocity, the important convective nonlinearity in Eq. 4.3

is absent (λ = 0, though λ2 and λ3 can be present [423]) and the band solution we

have here is absent (η = 0, see Fig. 22). In this case, even in the ordered phase, the

density remains homogeneous and on a large enough sphere, we have nearly uniform

polar order everywhere (|pss| ' const.), except for two isolated defects at the poles,

whose core size ξ ∼
√
ν/a(ρ0 − ρc) is a microscopic length scale deep into the ordered

state. The vortex core size in an equilibrium polar liquid crystal is set by the elastic

constant (which is a thermodynamic parameter) and not by a kinematic transport

coefficient λ, implying the steady flocking band solution obtained here is a distinctly

nonequilibrium phenomenon.

4.2.2 Linearizing about the steady state

Well below the mean-field transition (ρ0 < ρc), the isotropic disordered state (ρss = ρ0

and pss = 0) is linearly stable at long wavelengths with fluctuations in the polarization
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Figure 22 : The peak (maximum) density at the equator on a sphere, as we vary the mean density

ρ0. For ρ0 < ρc, we are in the disordered phase with ρss(π/2) = ρ0. For ρ0 > ρc, we have a polar

band with the density profile given in Fig. 21. The density reaches its maximum at the center of

the band and grows with ρ0, with a slope Aη > 1. When the convective parameter λ→ 0, η → 0,

resulting in Aη → 1 and we go back to the homogeneous profile as in the flat plane.

relaxing quickly and density perturbations relaxing diffusively at long time, just as in

the plane [424]. The curvature does not affect the disordered phase in any important

way. It is only in the ordered state that we find novel excitations with nontrivial

topological properties.

Here we consider the linearized dynamics of small amplitude perturbations about

the steady ordered flock, letting ρ = ρss(θ) + δρ and p = pss(θ) + δp. We focus on

the long-wavelength propagating sound modes that are present even in the plane for

an ordered flock [411], and continue to neglect all the viscous and elastic couplings.

These are higher order in gradients and only give rise to damping of the sound modes.

As the base state we are linearizing about is inhomogeneous, we additionally confine

ourselves to a tangent plane linearization about a fixed latitude away from the poles

(a preferred local coordinate system is picked out spontaneously by the polar order

allowing for an unambiguous notion of latitude). Setting θ = θ0 +y for a given latitude

θ0, with θ0 < π/2 corresponding to the northern hemisphere and θ0 > π/2 to the



98

southern hemisphere, relabelling ϕ as x, and letting δpθ → v and δpϕ → u, we obtain

∂tδρ+ ∂xu + ∂yv + v cot θ0 = 0 , (4.14)

∂tu + λp0∂xu +
χ

R2 sin2 θ0

∂xδρ

= p0(aδρ− 2bR2p0 sin2 θ0 u)− v
λp0(η + 2)

2
cot θ0 , (4.15)

∂tv + λp0∂xv +
χ

R2
∂yδρ = 2uλp0 sin2 θ0 cot θ0 , (4.16)

with p0 = pϕss(θ0) the azimuthal polarization at latitude θ0, which is finite as long as

we are away from the poles (θ0 6= 0, π). Note that stability of the steady state requires

η > 0, hence λ > 0. The only terms that can be negative are those proportional to

cot θ0, arising from the Christoffel symbols, which changes sign as one crosses the

equator at θ0 = π/2.

Next we perform a Galilean boost to a comoving frame by letting x→ x− λp0t

(comoving with the logitudinal sound and not the flock itself), and suggestively relabel

parameters as c|| = λp0, α = ap0 > 0, β = 2bp2
0R

2 sin2 θ0 > 0, c2
⊥ = χ/R2 > 0 and

m = − cot θ0 . (4.17)

The redefined parameters are summarized in Table 2. Since the flock breaks Galilean

invariance, this is not a symmetry operation, and yields

∂tδρ− c||∂xδρ+ ∂xu + ∂yv = m v , (4.18)

∂tu +
c2
⊥

sin2 θ0

∂xδρ = αδρ− βu +
c||(η + 2)

2
m v , (4.19)

∂tv + c2
⊥∂yδρ = −2c|| sin

2 θ0m u . (4.20)

Here m is a constant of fixed sign at any given non-equatorial latitude and changes
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sign across the equator, with m < 0 in the northern hemisphere and m > 0 in the

southern half, vanishing only at the equator where θ0 = π/2. We show below that

a non-vanishing value of m leads to a band or “mass” gap [Fig. 23(b) and 23(c)] in

the sound mode spectrum that acquires the necessary structure for nontrivial band

topology. This, along with the vanishing of m at the equator, naturally suggests

that the equator behaves as a “boundary” between two different “bulk” media (the

northern and southern hemispheres), thereby allowing for localized topologically

protected excitations on it.

λ a b χ

c|| = λp0 α = ap0 β = 2bp2
0R

2 sin2 θ0 c2
⊥ = χ/R2

Table 2 : A summary of the parameters redefinitions in the model.

To simplify the notation we let |δΨ〉 ≡ (δρ, u, v) and recast the linearized equations

that control the linear stability of the steady state in the form of a Schrödinger like

equation (in Fourier space, with Ψ(q) =
´

d2r e−iq·rΨ(r)), as

i∂t|δΨ〉 = H|δΨ〉 , (4.21)

H(q) =


−c||qx qx im+ qy

iα +
c2
⊥qx

sin2 θ0

−iβ imc||

(η
2

+ 1
)

c2
⊥qy −2imc|| sin

2 θ0 0

 . (4.22)

The eigenvalues of H(q) directly give the sound mode frequencies (|δΨ〉 ∝ e−iωt).

An important distinction compared to the Schrödinger equation is that the matrix H

is not Hermitian and therefore the linearized mode spectrum is not purely real, due to

dissipative terms describing the overdamped dynamics and the absence of Galilean



100

Figure 23 : The relevant (slow) sound modes. (a) m = 0 and the gap between the two bands is

closed. (b) and (c) are the dispersion bands for m = 0.2 (Eq. 4.26) and we directly see that a gap

has opened in the real part of the spectrum, while the imaginary part of the frequency has a single

crossing line at qy = 0. The variables are chosen to be θ0 ' 78◦, α ' 2.03, c|| ' 1.03 and β = c⊥ = 1.

invariance. For m = 0 (θ0 = π/2) the equations reduce to those of the planar case.

Fluctuations in the polarization magnitude (u) are controlled by a fast mode that

decays on microscopic time scales ∼ β−1,

iω0(q) = β − iα
β
qx +O(q2) . (4.23)

The density (δρ) and the transverse Goldstone mode (v) are the only slow modes that

remain propagating at long wavelengths (as q→ 0),

ω±(q) =
1

2

[
(vs − c||)qx ±

√
(vs − c||)2q2

x + 4c2
⊥q

2
y

]
+O(q2) , (4.24)

where vs = α/β is proportional to the speed of the flock. For qy = 0, there are two

sound modes that propagate in the direction of the flock. Density excitations travel

with a linear dispersion ω+(qx) = (vs − c||)qx, which in the lab frame corresponds to a

longitudinal sound speed vs = α/β set by the speed of the flock itself. Orientational

fluctuations travel with a different linear dispersion ω−(qx) = c||qx (in the lab frame),

where c|| = λp0 is the second longitudinal speed of sound. The fact that the two

longitudinal sound speeds vs and c|| are in general unequal signals the absence of
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Galilean invariance [411]. Orthogonal to the motion of the flock, for qx = 0, both

density and orientational perturbations travel with the same transverse sound speed

given by c⊥ =
√
χ/R.

For non-zero but small m 6= 0 (θ0 6= π/2), corresponding to the regions close to

the equator in either hemisphere, the dispersion relations can be written as

iω0(q) = β − ivs
(
qx +

2mc||
β

sin2 θ0qy

)
+O(q2) , (4.25)

ω±(q) =
1

2

[
qx(vs − c||)±

√
q2
x(vs − c||)2 + 4(m− iqy)(2mvsc|| sin2 θ0 + ic2

⊥qy)

]
,

(4.26)

valid upto O(m2, q2,mq) terms. In the next section we analyze this mode structure.

4.3 Symmetry protected topological sound

From Eq. 4.26, we immediately see that the two branches of the propagating modes

have a spectral gap at q = 0 of width ∆ = |ω+(0)− ω−(0)| proportional to |m|, with

∆ = 2|m| sin θ0

√
2vsc|| +O(|m|3) . (4.27)

The gap vanishes in the absence of ordered collective motion (vs = 0) and in the

absence of active convection (λ = 0 =⇒ c|| = 0). Writing it in terms of the original

variables, we have

∆ = 2
|m|
R

√
aλ

b
+O(|m|3) ∝

√
KG , (4.28)

where we directly see that Gaussian curvature KG introduces a new length scale

that controls the gap in the sound spectrum. Additionally, we note that the gap is

also directly controlled by the depth of the double well potential through a/b. The
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terms explicitly involving m in the dispersion relations, responsible for the opening of

the gap, are obtained only in the presence of both curvature and spontaneous active

flow. In the plane, static long-wavelength deformations of both the density and the

broken symmetry mode leave the system unchanged. On a curved surface, in contrast,

spatially uniform deformations of either “slow” field (δρ and v) cannot be static and

invariably lead to dynamics in the system. As a result of curvature-induced forces,

long-wavelength deformations of would be slow modes are required to have a finite

frequency, resulting generically in the q = 0 gap of the sound spectrum, in sharp

contrast to the conventional behavior of hydrodynamics in a flat geometry [425].

It is useful to compare the effect at hand with one that occurs in geophysical flows.

In a frame comoving with the flock, the finite curvature of the sphere in conjunction

with fluid advection plays a role similar to the Coriolis force that would be present for

a passive fluid on a rotating sphere. In the case of the earth’s atmosphere, this has

recently been shown to give a gapped sound spectrum and equatorially confined Kelvin

and Yanai waves [426] that are topological in origin [412]. In our active system, no

external flow or rotation needs to be imposed and the absence of Galilean invariance

allows for independent tuning of the material parameters (such as λ) in order to probe

regimes that are not accessible to passive fluids.

On times scales t � β−1 we can slave the fast mode u to the slow fields, u '

αδρ/β +O(∇δρ)1. Upon eliminating u we get a reduced set of dynamical equations

involving only δρ and v. The linear matrix controlling the dynamics of δρ, v fluctuations

is compactly given by

D(q) =

 (vs − c||)qx qy + im

c2
⊥(qy − iηm) 0

 , (4.29)

1The term involving c||(η+2)mv is not relevant as its contribution to the dispersion is subdominant,
as can be seen from its absence in Eq. 4.26.
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where η = λa/(bχ) > 0 is the same exponent as before. One can easily check that

the eigen-frequencies of D(q) are exactly given by ω±(q) in Eq. 4.26. As D(q) is still

non-Hermitian, we need to evaluate its right and left (adjoint) eigenvectors

D(q)|ψi〉 = ωi(q)|ψi〉 , (4.30)

D†(q)|χi〉 = ω∗i (q)|χi〉 , (i = ±) (4.31)

with the biorthogonality relation 〈χi|ψj〉 = δij. It is important to keep in mind the

regime in which D(q) provides a valid approximation to the complete dynamics. For

1

β
� t� β

ηc2
||m

2
,

c|||m|
β
� 1 , (4.32)

we can neglect the fast u mode and not worry about higher order terms in both q

and m. This can be achieved deep in the ordered phase on a large enough sphere,

in which case β is large, allowing for a large window of time in which the dynamics

is dominated by D(q). With this set of simplifications, the linear dynamical matrix

is always diagonalizable and ω+ 6= ω− as long as m 6= 0 or q 6= 0 allowing one to

adiabatically deform our model to have purely real eigenvalues by smoothly taking

η → 1. In the process, the spectral gap remains open as long as m 6= 0.

In order to establish the topological nature of the band structure, we compute the

associated U(1) Berry gauge connection and curvature [427]

A± = i〈χ±|∇q|ψ±〉 , F±(q) = ∇q ×A± . (4.33)

The Berry curvature itself is plotted as a heat map in Fig. 24 and is localized essentially

near the center of the band (around q = 0). In addition, the Berry curvature in the

two bands is of opposite sign, as expected. Finally computing the Chern numbers [19]
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Figure 24 : The Berry curvature F±(q) plotted as a function of wavevector q as a heat map on top

of the two bands ω±(q). The colour ranges from blue (positive) to red (negative). Parameters used

are m = 1, vs = 1.5, c|| = 1.

for each band, we get

C± =

ˆ
d2q

2π
F± = ±1

2
sgn(vs − c||) sgn(m) . (4.34)

The Chern number here is only quantized to a half integer as we work directly in the

continuum long-wavelength approximation and we only account for the single Dirac

cone like structure at q = 0 that arises when the gap closes [347, 428]. This is the

contribution to the “parity anomaly” or Hall conductance associated to a single Dirac

cone in a Chern insulator [52]. An appropriate regularization for large q guarantees the

Chern number to be an integer [53, 429]. This calculation though still does have worth

in predicting the correct number of topologically protected edge modes present when

we stitch two regions with different Chern numbers together, via the bulk-boundary

correspondence. So each gap closing (change in sign of m) leads to a single localized

edge mode which, as we shall see, is unidirectional.
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We briefly digress to address a subtle but important technical point. As both the

hemispheres along with their respective steady state density and polarization profiles

are related to each other by a reflection symmetry (ρss and pss are symmetric about

the equator), the Chern numbers of the respective bands must be of opposite sign in

each hemisphere2. As the microscopically regulated Chern number has to be an integer

by the Nielsen-Ninomiya theorem [430], this immediately tells us that the number of

equatorial modes must be even by virtue of reflection symmetry across the equator.

Instead our calculation above only predicts a single equatorial mode. In order to

resolve this discrepency, we regulate D(q) by using a discrete lattice that respects the

reflection symmetry for all q, by writing qx,y → sin qx,y and m→ m(3−cos qx−cos qy).

For q→ 0, we recover the continuum D(q) in Eq. 4.29, but at the edge of the Brillouin

zone, there are now three additional gap closings at (±π, 0), (0,±π) and (±π,±π)

as m→ 0. These provide the missing contribution to the Chern number to make it

an integer. In a real active fluid though, the edge modes that reside at the special

high q points will be rapidly dissipated on short time scales ∼ (νq2)−1, where ν is

the viscosity of the fluid. Note that in an active chiral fluid, the absence of local

parity allows an odd or Hall viscous term [431–433] to be present that provides a

non-dissipative regularizer at short distances (albeit still in the continuum) [434, 435].

Hence in our achiral polar fluid, the only long-lived topological mode that survives is

the single mode at q = 0, which is the only one we shall focus on.

As expected, the Chern number of the acoustic band is different in the northern

(m < 0) and southern (m > 0) hemispheres, vanishing at the equator (m = 0). Hence

going across the equator, we have one gap closing (at q = 0) with a band inversion,

leading to a single topological sound excitation localized at the equator. Note that

the Chern number also vanishes when vs = c||, leading to a topologically trivial band

2We thank Cenke Xu for pointing this out.
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structure. The case vs = c|| = 0 corresponds to the absence of spontaneous active flow

while when vs = c|| 6= 0, we have a partial restoration of Galilean invariance (in this

limit, both density and Goldstone mode excitations propagate with the same speed

in the direction of the flock). So the vanishing of the Chern number and associated

band triviality for vs = c|| is not due to the closure of a gap, but is instead due to the

restoration of a protecting symmetry. As both vs = α/β and c|| = λp0 depend on the

latitude θ0 at which we are, setting vs = c|| provides a condition on the polar angle θ0.

There is a critical density

ρ∗ = ρc +
1

2Aηλ
, (4.35)

such that for ρc < ρ0 < ρ∗, vs 6= c|| on the entire sphere. Deeper into the ordered state

(ρ0 > ρ∗), there are two latitudes at angles θ± such that sinη θ± = (ρ∗ − ρc)/(ρ0 − ρc),

at which vs and c|| coincide. Even though the band topology changes as we cross the

latitudes at θ± (Eq. 4.34), the spectrum remains gapped throughout and hence we do

not have any gapless excitations localized at θ±. The change in the Chern number

across these special latitudes is due to an accidental additional symmetry (Galilean

invariance) instead of the gap closing, thereby circumventing the bulk-boundary

correspondence. This is a well known point in quantum topological insulators, only

realized here in a peculiar fashion as the protecting “symmetry” varies spatially in a

single sample.

To summarize, there are three crucial ingredients in this system that lead to and

protect the topologically nontrivial band structure-

• Breaking of time-reversal symmetry and Galilean invariance by the active polar

flow.

• The presence of the convective nonlinearity λ 6= 0; an equilibrium passive polar

liquid crystal will therefore not exhibit these modes.
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Figure 25 : The bulk and edge mode spectrum in the frame comoving with the longitudinal sound

with speed c||, for the case when vs > c|| and vs < c|| (shown here for the simple case when η = 1)

and m(y) varying from −1 to +1. This is the situation when KG > 0 (as on the sphere), where the

density mode is equatorially localized and topologically protected.

• The curvature of the base surface which opens up a gap in the sound spectrum.

Changing the Gaussian curvature exchanges the regions with positive and

negative “mass” m.

This is entirely analogous to the Haldane model [52] where the closing of the gap

at the Dirac point is protected by time-reversal symmetry, which when broken by the

local magnetic field leads to a band structure with a nontrivial topology. Though

the active system is not Hermitian with purely real frequencies, the structure of the

localized equatorial mode for varying m(y) is adiabatically connected to its Hermitian

analogue [436], the Jackiw-Rebbi soliton [437].

|δΨedge〉 = ψ0e
−η
´ y
0 m(y′)dy′+iqx[x−(vs−c||)t]

1

0

 , (4.36)

where ψ0 is a normalization constant. The edge mode spectrum ωedge(qx) = (vs− c||)qx

corresponds, in the comoving frame, to a pure one-way density wave that connects the

two bulk bands (see Fig. 25). This edge mode is valid when m(y)→ ±m0 (m0 > 0)

for y → ±∞.



108

On the sphere, reverting back to angular coordinates {θ, ϕ}, m(θ) = − cot θ, which

is positive in the southern hemisphere for θ > π/2 (y > 0). This gives a chiral

equatorial density mode (v = 0) propagating with speed vs, which in the lab frame

looks like

δρedge(θ, ϕ; t) = sinη θ
∑
n≥0

[
an e

in(ϕ−vst) + c.c.
]
, (4.37)

where an are complex constants depending on the initial perturbation applied and

vs = α/β is evaluated at θ = π/2 (the equator), where the edge state is localized.

A snapshot of this density mode is shown in Fig. 27 for n = 6 (and all other an

vanishing). Equation 4.37 defines a localization length `loc = R/
√
η ∼ Rc⊥/

√
v0c||

set by the curvature and material parameters of the active fluid involving a ratio of

the longitudinal and transverse sound speeds, and diverging as self-propulsion v0 → 0

(no localized mode in the passive system). Note that the result given in Eqs. 4.36

and 4.37 applies for λ3 = 0. The general case of λ2, λ3 6= 0 is given in Appendix 4.A

and yields a different localization width for the equatorial mode. This topological

edge mode propagates unidirectionally in the direction of the flock and is robust to

disorder and obstacles because there are no reverse channels into which it can scatter

(though it will eventually dissipate due to viscous and elastic damping). Unlike a

Galilean invariant fluid for which η = 1, here η and therefore the localization length

can be tuned separately by varying the system’s parameters, although the shape of

the steady state profile remains unchanged.

4.4 Polar flock on a negatively curved surface

The presence of such topological excitations is generic in that they will always be

present when one has a polar flock on a curved surface, with the topologically protected
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modes localized to geodesics that coincide with streamlines of the flock3. We illustrate

this point on a catenoid, a surface with non-constant negative Gaussian curvature.

In local coordinates {y, ϕ} (ϕ once again being the periodic azimuthal direction),

the metric and Gaussian curvature on a catenoid are

g = R2 cosh2 y(dy ⊗ dy + dϕ⊗ dϕ) , (4.38)

KG(y) = − 1

R2
sech4y , (4.39)

where R is the radius of curvature at the neck of the catenoid. In contrast to the

sphere, the Gaussian curvature here is both negative and spatially varying. The only

non-vanishing Christoffel symbols are

Γϕϕy = Γyyy = −Γyϕϕ = tanh y . (4.40)

Taking the same approach as for the sphere, neglecting viscous and elastic stresses,

we consider an azimuthally symmetric ansatz for the steady state polar flock: ρ =

ρss(y), py = 0 and pϕ = pϕss(y). One can easily verify that for ρ0 > ρc the steady state

density profile is then

ρss(y) = ρc + (ρ0 − ρc)Bη coshη y , (4.41)

where Bη < 1 is a constant that depends on η and the height of the catenoid (which

unlike the sphere is not compact and has to be taken finite). The details of the

computation are given in Appendix 4.B. In contrast to the sphere, which had a polar

3For the case of surfaces of revolution that we study, we have a Killing field on the surface dictating
a symmetry direction, which naturally provides a vector field along which a flock can condense at
steady state. This structure is sufficient for the existence of such topological modes, but it is unclear
if it is necessary as well.
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Figure 26 : (a) The normalized density profile of a polar flock on a catenoid given in Eq. 4.41, for

η = 0.5 (blue), 1 (orange) and 2 (green). Note that, in contrast to the sphere, the density grows near

the edge of the catenoid. (b) The density and polarization (for η = 2) now shown on the catenoid.

As before, blue corresponds to low density regions (at the neck) and red to high density.

band with maximum density at the equator, the polar flock density is lowest at the

neck of the catenoid (y = 0), increasing on either side as one moves away from it. The

corresponding polarization profile is given by

|pss|2 =
a(ρ0 − ρc)

b
Bη coshη y . (4.42)

The density and polarization profiles are plotted in Fig. 26(a),(b). Below the mean-field

transition (ρ0 < ρc), we recover the isotropic disordered phase (ρss = ρ0, pss = 0).

Linearizing about this steady state, one finds that the equations governing the

propagation of sound modes on the catenoid are essentially identical to that on the

sphere (Eqs. 4.14, 4.15, and 4.16), but with modified parameters (see Appendix 4.B).

As a consequence of the negative curvature, the most important change is that

m = −2 tanh y is positive below the neck of the catenoid (y < 0) and negative above

(y > 0), vanishing right at the neck (y = 0). This leads to a chiral unidirectional wave

of Goldstone mode fluctuations localized at the neck of the catenoid (δρ = 0), which
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Figure 27 : A representative snapshot of the equatorial density mode on a sphere (Eq. 4.37) and

the localized Goldstone mode on the catenoid (Eq. 4.43). For clear visualization we have chosen the

perturbation a6, b6 = 0.5 and all other an, bn = 0 (n 6= 6). We have also taken η = 2 in both cases.

written in the lab frame is given by

vedge(ϕ, y; t) = sech2y
∑
n≥0

[
bn e

in(ϕ−c||t) + c.c.
]
. (4.43)

As before, c|| = λp0 has to evaluated at the neck of the catenoid (y = 0) where

the mode is localized, and bn are complex coefficients determined by the initial

perturbation. A snapshot of this mode is shown as well in Fig. 27. This mode is

topologically protected and propagates in the same direction as the flock, but with a

different speed (c||). The localization length `loc = R/
√

2 is controlled by the scale of

the curvature in the system and is seemingly independent of the material parameters

of the flock.
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Appendix 4.A Spherical flock: steady state and linearization

for λ2, λ3 6= 0

Including the two additional λ2p∇ · p and λ3∇|p|2 nonlinearities, the equation for

the polarization order parameter is modified to

∂tp
µ + λpν∇νp

µ =
[
a(ρ− ρc)− b gαβpαpβ

]
pµ + λ2p

µ∇νp
ν + λ3∇µ(pνpν)− χ∇µρ .

(4.44)

We don’t include the viscous terms ν, ν ′, consistent with our approximations in

Sec. 4.2.1. For the azimuthally symmetric ansatz (on the sphere and the catenoid),

∇µp
µ
ss = 0 identically and hence the λ2 term does not affect the steady state profile.

On the contrary, the λ3∇|p|2 term acts as an additional polarization dependent

contribution to the scalar pressure P ∼ χρ− λ3|p|2, which if large can lead to density

and splay instabilities [417]. We shall disregard this instability and only work in the

regime where λ3 is not large enough to destabilize the entire system. Including it, the

steady state equations on the sphere (Eqs. 4.6, 4.7) get modified to

λ sin θ cos θ(pϕss)
2 =

χ

R2
∂θρss − λ3∂θ(sin

2 θ(pϕss)
2) , (4.45)

pϕss
[
a(ρss − ρc)− 2bR2 sin2 θ(pϕss)

2
]

= 0 . (4.46)

Once again, setting X(θ) = ρss(θ)− ρc, we get the same equation as before, only now

with a modified coefficient depending on λ3.

dX

dθ
=

λa

χb− aλ3

cot θX =⇒ X(θ) = X(π/2) sinη
′
θ , (4.47)

with the exponent now changed to η′ = λa/(χb− aλ3). For η′ > 0 (to have a physical

density profile), we require χb > aλ3, which is nothing but a condition to have stable
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pressure and a positive compressibility. Hence the effect of λ3 6= 0 is to only change

the density profile through the η exponent, the functional form remaining the same.

This is true even for the catenoid where the exponent is the same as on the sphere and

given by η′ = λa/(χb− aλ3). Note that this inhomogeneous profile does not exist for

an equilbrium polar liquid crystal for which λ = 0 (but possibly λ2, λ3 6= 0 allowing

for spontaneous splay [423]), leading to η′ = 0. Hence the inhomogeneous steady state

we obtain is only possible in an active system.

Linearizing about the steady state (on the sphere), now including the λ2 and λ3

terms, we get

∂tδρ+ ∂xu + ∂yv = m v , (4.48)

∂tu + (c|| − λ̄2 − 2λ̄3)∂xu +
χ

R2 sin2 θ0

∂xδρ =

αδρ− βu + v m

(
c||
η′ + 2

2
− λ̄2

)
+ λ̄2∂yv , (4.49)

∂tv + c||∂xu +
χ

R2
∂yδρ = −

(
2c|| + (4 + η′)λ̄3

)
sin2 θ0m u

+ 2λ̄3 sin2 θ0∂yu . (4.50)

We use the same notation as we used in Sec. 4.2.2 (along with λ̄2,3 = λ2,3p0). At long

times (t� β−1), the polarization magnitude u is still a fast mode and to leading order,

it gets slaved to the density fluctuations in the same fashion as before (u ' αδρ/β).

Consistent with the level of approximation stated in Eq. 4.32, the long time and

long wavelength dynamics is governed only by the two slow modes δρ and v, with a

dynamical matrix D(q) of the same form as found in the absence of λ2 and λ3. In a
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frame comoving with the longitudinal sound speed c|| = λp0, we have

D(q) =

 (vs − c||)qx qy + im

c2
⊥qy − iµm 0

 , (4.51)

with vs = α/β as before. The only modification is in the transverse sound speed c⊥

and the coefficient µ, given by

c2
⊥ =

χ

R2
− 2vsλ̄3 sin2 θ0 =

χb− aλ3

bR2
, (4.52)

µ = vs(2c|| + (4 + η′)λ̄3) sin2 θ0 = [2λ+ (4 + η′)λ3]
a

2bR2
. (4.53)

It is easy to see now that the profile of the localized equatorial density mode on the

sphere, which is ∝ sinµ/c
2
⊥ θ (for λ2,3 = 0, the exponent coincided with η as given

in Eq. 4.37) is no longer the same as the steady state density profile of the flock

(∼ sinη
′
θ), when λ3 6= 0.

µ

c2
⊥

= η′
[
1 +

(
2 +

η′

2

)
λ3

λ

]
6= η′ . (4.54)

A similar result also holds true for the catenoid. Hence we find that, even upon

including additional nonlinearities of same order as the convective term (but lower

order in gradients compared to the viscous terms), all of the qualitative properties of

the steady state and the topologically protected modes remains the same, with the

only modification being a more detailed dependence of the localization length on some

of the material parameters of the system.
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Appendix 4.B Polar flock on the catenoid

For an azimuthally symmetric ordered steady state on the catenoid, just as on the

sphere, we neglect the viscous and elastic stresses, and use the ansatz: ρ = ρss(y),

py = 0 and pϕ = pϕss(y). Plugging this into the Eqs. 4.1 and 4.3, we find that the

continuity equation is satisfied identically and Eq. 4.3 reduces to (for ν = 0)

λ tanh y(pϕss)
2 =

χ

R2 cosh2 y
∂yρss , (4.55)

pϕss
[
a(ρss − ρc)− bR2 cosh2 y(pϕss)

2
]

= 0 . (4.56)

Setting X(y) = ρss(y)− ρc, we solve the equations in the same fashion as before to

get ∂yX = η tanh yX, where η = λa/bχ (the same exponent as on the sphere). The

steady state density profile is then

ρss(y) = ρc + (ρmin − ρc) coshη y . (4.57)

where ρmin is the minimum density of the flock attained on the neck of the catenoid

(y = 0). Unlike the sphere, the catenoid is not a compact surface, so in reality one

would have a finite sample with boundaries. The mean density ρ0 is given by the

spatial average of the steady state profile,

ρ0 = ρc + (ρmin − ρc)〈coshη y〉 , (4.58)

where 〈·〉 denotes a spatial average over the entire surface. For a catenoid of height L

(Euclidean height in the z-direction when embedded in R3) and radius of curvature R
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at the minimal neck, we have

〈coshη y〉 '


1 +

η

6

(
L

R

)2

, L/R� 1

21−η

2 + η
eηL/R, L/R� 1

. (4.59)

Writing Bη = 1/〈coshη y〉 < 1, we obtain the density profile quoted in Eq. 4.41.

We expect the viscous and elastic stresses to be less important on a weakly curved

surface close to the neck, in particular when the characteristic scale of curvature

(∼ R) is much greater than the equilibrium correlation length (ξ ∼
√
ν/a(ρ0 − ρc)).

Additionally the density and polarization (along with their gradients) grow larger as

we go away from the neck. So close to the boundaries of a large sample, one would

have to account for higher order nonlinearities along with the elastic stresses, which

would then become important.

4.B.1 Linearizing about the steady state

One can perform the same kind of analysis as we did before, for the flock on a sphere.

Linearizing about the ordered flock, ρ = ρss(y) + δρ and p = pss(y) + δp within the

tangent plane at a distance y0 from the y = 0 neck, we get (with x = ϕ, u = δpϕ and

v = δpy just as before)

∂tδρ+ ∂xu + ∂yv + 2v tanh y0 = 0 , (4.60)

∂tu + λp0∂xu +
χ

R2 cosh2 y0

∂xδρ

= p0(aδρ− 2bR2p0 cosh2 y0 u)− v
λp0(η + 2)

2
tanh y0 , (4.61)

∂tv + λp0∂xv +
χ

R2 cosh2 y0

∂yδρ = 2uλp0 tanh y0 , (4.62)
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where p0 = pϕss(y0). Galilean boosting to a moving frame x→ x− λp0t and relabelling

our parameters as before: c|| = λp0, α = ap0 > 0, β = 2bR2p2
0 cosh2 y0 > 0, c2

⊥ =

χ/(R2 cosh2 y0) and m = −2 tanh y0. Having done this, all the arguments used in the

case of the sphere apply here as well.

At long time (t � β−1), the fast polarization magnitude u decays and is slaved

to the density field u ' αδρ/β (to lowest order) and the slow dynamics at long

wavelengths is dominated by

∂tδρ+
(
vs − c||

)
∂xδρ+ ∂yv = mv , (4.63)

∂tv + c2
⊥∂yδρ = −1

2
ηc2
⊥m δρ . (4.64)

Hence at the same level of approximation used earlier for the sphere (neglecting viscous

stresses and the parameter regime given in Eq. 4.32), the long time dynamics of sound

excitations in a polar flock on a curved surface is generically described by equations of

the form given above, or consequently by the linear dynamical matrix D(q) (Eq. 4.29),

possibly upto some irrelevant parameter redefinitions.

As the only modifications are in the definitions of the parameters, many of the

predictions made in the case of the sphere apply here too. In particular the sound

mode spectrum is still gapped at q = 0 for non-zero m and the bands have a nontrivial

topology given by the Chern numbers C± (see Eq. 4.34). As m = 0 at the neck of the

catenoid (y = 0), changing sign on either side, we have one topologically protected

mode localized at the neck. A consequence of the negative curvature of the surface is

that, in contrast to the sphere, m < 0 for y > 0. Due to this, the edge mode takes on
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a different form (in the comoving frame)

|δΨedge〉 = ψ0e
´ y
0 m(y′)dy′+iqxx

0

1

 . (4.65)

Now the edge mode is a localized unidirectional wave of transverse Goldstone mode

fluctuations with density fluctuations completely absent. Additionally, the edge mode

spectrum is ωedge = 0 to lowest order in qx implying that the edge mode is stationary

in the comoving (with speed c||) frame. This too connects the two bulk bands and

is topologically protected. Using m(y) = −2 tanh y for the catenoid, this gives the

profile of the localized mode, the lab frame version of which is quoted in Eq. 4.43.
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Chapter 5

Discussion and conclusion

In this thesis, we have reviewed some recent efforts that extend geometric and topolog-

ical tools developed for conventional condensed matter to describe metamaterials and

active matter. In doing so, we traversed a diverse landscape of phenomena spanning

the regimes of classical and quantum physics in both equilibrium and nonequilibrium

matter. This ineluctably establishes the power of geometry and topology, let alone

their unreasonable effectiveness (paraphrasing Wigner [438]) in distilling the physical

nature of a problem.

The first problem we tackled was that of kirigami mechanics. While classical

elasticity and continuum mechanics are over two and a half centuries old, they continue

to inspire new problems, particularly in the design of mechanical metamaterials. The

problem of kirigami mechanics is fairly easy to state per se, it is after all just the

question of determining the force response of a perforated thin sheet. Yet, in practice,

theoretically analyzing this problem is frought with difficulties inherent to thin sheet

elasticity and one is forced to resort to a cumbersome case by case numerical treatment.

Such an approach though valuable prevents easy access to the general underlying

principles of kirigami mechanics that would be essential to developing a conceptual
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framework that guides kirigami metamaterial design. It is here that a geometric

approach provides significant advantage in representing the relevant physics in a

tractable and generalizable formulation.

By working within the geometric formulation of elasticity, we propose a useful elastic

charge framework to understand kirigami mechanics in thin sheets with perforations.

Image elastic charges correspond to fictitious singularities in Gaussian curvature

and hence they encapsulate the most important feature of a hole, its geometric

incompatibility in the presence of an external load. The image charges are hence

geometrically identified to be the relevant physical degrees of freedom in the problem

that serve as a convenient variational basis to express the effective mechanics. This

basic property underlies the success of the image charge framework. Furthermore, by

relating the challenging nonlinear problem of post-buckling mechanics to the simpler

pre-buckling computation within the planar problem, we are able to quantitatively test

the analytical predictions against experimental measurements through both global and

local measures of deformation. Although in all the comparisons presented in Chapter 2

we focused almost exclusively on square frames, the image charge framework is not

restricted by the specific simplifications afforded to us by the square hole geometry,

and is general enough to handle arbitrary hole shapes as well. In addition, the analogy

with electrostatics provides an appealing intuitive picture which now allows us to

easily interpret much of the phenomenology of buckled frames and kirigami in general.

One of the interesting characteristics of these stress-induced image charges is that

they can fractionalize into partial disclinations within a hole with sharp corners. As

this behaviour is intimately linked to the shape of the hole, one promptly realizes

that the geometry and topology of the prescribed kirigami design can be used to

preferentially pattern, on demand, both the positions and orientations of image charges.

This has immediate functionality as a design principle for kirigami structures as image
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charges characterize the propensity of a hole to generate or screen (upon buckling)

local stresses. In recent years, there has been a lot of interest in using geometry

to program and control 3D shapes and morphologies in origami [168] and kirigami

[181, 189, 439] materials. We envision that the mechanics of more elaborate kirigami

structures under stress can profitably be thought of as a problem of interacting elastic

charges. This perspective then provides a powerful organizational framework to think

about the mechanics of kirigami metamaterials. As a small illustration of this point, we

tackle the simple problem of designing an appropriate kirigami pattern to permit the

flattening of a cone without wrinkling. The inclusion of interactions between charges

furnishes a systematic procedure to predict such a pattern affirming the method’s

usefulness. It also suggests that our framework can advise possible design strategies

to pattern kirigami metamaterials with engineered pathways to locally relax elastic

stresses.

A very promising direction for future work in this field is the inclusion of thermal

effects on such metamaterials. Strain engineering 2D materials such as graphene [440–

443] has emerged as an exciting platform to manipulate electronic states, in addition to

providing controlled routes to spontaneously generate complex 3D structures [150, 444].

In order to employ kirigami techniques on such small scales as appropriate for NEMS

and MEMS [444] requires an understanding of thermal fluctuations and how they affect

both form and functionality of kirigami devices. As is well known, thermal fluctuations

have a strong impact on the physics of intact elastic membranes resulting in a dramatic

size and geometry dependent scale-up of the flexural rigidity [99, 150, 445–447]. The

effect of holes and slits on the renormalization of the bending rigidity and the thermal

crumpling transition remains largely unexplored. Recent numerical simulations [448]

show that the crumpling transition temperature can be tuned by the geometry of

a periodic kirigami pattern, while isolated slits in ribbons can counterintuitively



122

stiffen the system [449]. Such varied and unexpected effects suggest that the interplay

of thermal fluctuations, geometry and topology in kirigami structures will provide

new avenues for breakthroughs in both fundamental and applied aspects of designer

metamaterials.

Until now, we only discussed passive materials. Shifting focus to active matter, we

examine how topology may impact nonequilibrium physics. Topology provides us with

novel though sometimes unconventional tools to characterize and understand physical

phenomena. Although topological defects are the oldest features of a material that have

a topological description, they continue to provide fertile new avenues for exploration.

Topological disclinations that dominate the physics of a 2D nematic liquid crystal,

turn out to be all the more important when active. The nonequilibrium active drive

elevates the geometry and structure of the +1/2 disclination to a dynamical variable,

endowing the topological defect with additional internal degrees of freedom that

govern its properties. The spontaneous motility of +1/2 disclinations is a remarkable

consequence of activity which, in competition with noise, can lead to a nonequilibrium

variant of the BKT transition in active nematics. The nature of defect mediated

phase transitions in far from equilibrium settings has been a long standing open

question. While the equilibrium BKT universality class primarily distinguishes only

disclinations (scalar Coulomb gases) from dislocations (vector Coulomb gases)1, its

broad phenomenology is essentially the same in all equilibrium systems. In contrast,

given the great plurality of nonequilibrium driving, defect mediated phase transitions

in active and driven matter are expected to have many more diverse possibilities.

1The difference in the two classes arises because dislocations permit neutral configurations with
an odd number of defects when allowed by the underlying lattice, but point defects can only occur in
pairs to enforce neutrality [33, 35, 450]. The correlation length diverges in the same essential fashion

in both cases ξ ∝ econst.(T−Tc)−ν , with ν = 1/2 for scalar defects [13, 29], while for vector defects, ν
carries an additional nonuniversal dependence on angular terms in the energy [450], ranging between
0.3696 · · · ≤ ν ≤ 0.4.
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Our treatment of active defects follows a long tradition of considering defects as

particles with effective interactions. We also develop a systematic derivation of the

reduced equations for defect dynamics by perturbatively solving for a singular solution

of the continuum hydrodynamic equations for an active nematic. An important point

is that, by construction, our theoretical framework, though based entirely on dynamics,

smoothly recovers the known equilibrium static results when activity is turned off.

This is a crucial requirement and ensures the derived equations are well founded

and not ad hoc. Through a Fokker-Planck treatment of an isolated neutral defect

pair, we predict the phase boundary beyond which defects unbind in a motile BKT

transition, leading to spatio-temporal defect chaos. Although the defect unbound

phase is disordered in that the nematic order parameter vanishes, it is in fact not a

conventional isotropic fluid. Defect motility generates finite currents even at steady

state, breaking detailed balance through the swirling motion of unbound defect pairs2.

This motivates the name for the universality class of this phase transition - motile BKT,

as it separates a quiescent yet fluctuating ordered active nematic from an isotropic

liquid with chaotic flows and finite entropy production rate. The motile BKT scenario

can also be mapped onto a two temperature Coulomb gas model, defining a unique

universality class distinct from other nonequilibrium defect mediated transitions that

have been recently considered elsewhere. A prominent class to contrast against is that

of defect unbinding in the 2D compact Kardar-Parisi-Zhang (KPZ) [451, 452] equation

that is expected to describe spiral turbulence in pattern forming systems [453, 454],

2D driven dissipative superfluids or exciton-polariton condensates [455–458] and also

the melting of driven vortex lattices in disordered superconducting films [459]. Here

the KPZ nonlinearity [460] breaks detailed balance and topological defects are found

to always proliferate at any temperature. An anisotropic version of the same model

2Shankar et al., in preparation.
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(also related to 2D active smectics [461, 462]) permits a stable ordered phase with a

finite temperature vortex unbinding transition [463]. Vortices in these compact KPZ

models do not lead to large scale spontaneous flows upon unbinding, vastly distinct

from the motile BKT scenario. Different from all the above, recent numerical work

[464] on a 2D XY model driven by correlated noise was shown to map onto an effective

equilibrium system, with the transition occuring at the equilibrium BKT point in the

thermodynamic limit. It is an open question if the newly identified motile BKT class

applies to other active systems that perhaps also contain similar excitations such as

active dislocations [465, 466] in the melting of active crystals [467].

Increasing activity well beyond the defect unbinding threshold leads to another

remarkable transition in the 2D active nematic. The active torques that orient the

+1/2 disclinations, when strong enough, can lead to spontaneous condensation of

the motile +1/2 defects into a polar collectively moving liquid3. The appearance

of a defect ordered polar flock has only been reported in numerical simulations

[377, 468, 469], but our theoretical model naturally explains it through the active

torques on defects. Unlike the Abrikosov vortex lattice in Type II superconducting

films [470], the alignment of +1/2 defects gives rise to a novel spontaneously flowing

defect ordered liquid that forces the underlying nematic to develop periodic kink-wall

distortions, breaking translational symmetry as well. Having uncovered a wealth of

phenomena in active nematics, it is immediately clear that defects play a central role

in governing the properties and response of this mesoscopic phase. Furthermore, our

particle model for active defect dynamics may be easily extended to achieve both

targeted response and directed transport in living matter. Defects have already been

used as intrinsic micro-rheological tracers of the active nematic flow field [349] and

their chaotic motion can be rectified through confinement [275, 368, 471–475]. In

3Shankar and Marchetti, in preparation.
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addition, recent works have emphasized the role of active topological defects in the

biological context. Disclinations in cellular monolayers viewed as active nematics

have been suggested to provide preferential sites for biological functionalization [259]

and apoptosis [260], or drive expansion in growing bacterial colonies [476–478]. A

quantitative description of these diverse features is incumbent on a comprehensive

theory of active defects, as the one we have systematically developed here. Finally,

we note that, defects on textured passive colloids can be chemically functionalized

[479] opening doors to the design of supra-molecular chemistry [480]. Making such

functionalized defects active paves the way to unexplored engineering possibilities,

such as the directed self-assembly of active and adaptive metamaterials.

We now move on to the active polar fluid. Unlike the rather standard case of

topological defects in ordered media, here topology enters through reciprocal space

via an analogy to quantum Hall systems and topological insulators. The active polar

fluid is peculiar as the polarization order parameter is also a velocity that advects the

fluid around [218], with this dual role being at the heart of many of the phenomena

we have explored in Chapter 4. In particular, unlike a superfluid film on a curved

substrate (where the order parameter can be parallel transported trivially) [481], the

fact that the order parameter of the flock is a physical velocity implies that it advects

itself nontrivially in the presence of curvature. This is nothing but a restatement of

the physical fact that self-propelled particles move persistently along geodesics (in

the absence of interactions), which get “lensed” by curvature, whereas passive polar

particles don’t do any such thing. While the frustration associated with the interplay

of curvature and order has been previously explored extensively in passive matter

[92, 482], the presence of activity adds an entirely new nonequilibrium dimension to

the whole story, allowing for completely new physics arising from competing order,

curvature and the active drive.
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Having generalized the Toner-Tu model for an active polar fluid to an arbitrary

curved surface, the continuum model now affords us the privilege of having predictions

independent of microscopic details. We find many of the features of the steady ordered

state of a polar flock are in fact, quite generic, with positive curvature surfaces having

density profiles with a maximum, decreasing on either side of the peak, while negative

curvature surfaces have density profiles of the opposite kind, being minimal in the

interior and increasing towards the boundary. This is entirely due to the fact that

geodesics converge or diverge depending on whether the Gaussian curvature is positive

or negative, respectively. Finding such spatially inhomogeneous exact solutions to the

covariant Toner-Tu model provides a crucial starting point to being able to understand

how the phenomenology of active matter in flat space translates to its curved variants.

In addition to the steady state with spontaneous flow, flocks in flat space also

have dissipative sound modes with a linear (but angle dependent) dispersion [411].

It is here that all three players: curvature, order and activity come together with

dramatic consequences. The presence of curvature gaps the sound mode spectrum

at long wavelengths leading to a band structure with nontrivial topology protected

by the broken time-reversal and Galilean symmetry in the system. We demonstrate

this by computing the Chern number for the bands and show that this is a generic

feature of flocks on curved surfaces. The most interesting and exotic consequence

the nontrivial band topology has, is to localize “edge” modes of density or Goldstone

mode fluctuations along special geodesics on the surface, where the gap in the sound

spectrum vanishes. The rather novel feature here is that the system is not artificially

engineered as a metamaterial with some underlying lattice structure [226, 307], nor

does it require any external forcing or fields of any kind [74]. The spontaneous

flow is generated by activity, breaking both time-reversal and Galilean invariance

simultaneously, while curvature is responsible for the spectral gap in the ordered
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phase.

Topological excitations of the type described here are “protected” in the sense

that they are immune to backscattering by static perturbations and heterogeneities

in the medium through which they propagate, providing unidirectional channels for

information transport, robust against disorder. While quantifying the limits of such

topological protection in active systems will require more detailed numerical and

theoretical work that remains to be explored, our work demonstrating that such

topologically protected propagating modes are a generic consequence of active flows

on curved surfaces raises the question of whether nature may use this mechanism

to guide and direct the robust transmission of intercellular physical forces in curved

environments. It is therefore tempting to offer some speculation to the possible

relevance of our findings to biology.

In a number of developmental phenomena, from wound healing to morphogenesis

and organ development, living cells migrate collectively, offering an intriguing real-

ization of a polar active fluid. While a full understanding of the mechanisms that

regulate collective cell migration is still out of reach, it is now widely recognized that

the transmission of physical forces plays an important role, alongside biochemical

signalling. For instance, propagating mechanical waves have been shown to mediate

cooperative force transmission among epithelial cells in wound healing assays [483].

In many biological processes cellular motion takes place on curved surfaces, as in

cell renewal and repair in the highly folded intestine [484] and the shaping of the

early limb bud in developing embryos [485]. The effect of curvature on the dynamics

of epithelial cells is beginning to be explored in vitro by examining collective cell

migration on cylindrical capillaries of varying radii [400]. While cylinders have zero

Gaussian curvature which would not yield topologically protected states, these experi-

ments clearly demonstrate that curvature affects cell morphology and dynamics by
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enhancing cell speed and cell extrusion. Recent theoretical work also predicts that

certain stochastic reaction networks may support novel topological states that might

play a role in the fault-tolerance of some biochemical processes [486], suggesting that

topological phenomena in non-equilibrium and biological systems may be more general

than previously expected.

A more direct application of the work described here would be to a polar version of

the active nematic vesicles reported in Ref. [274]. Here active vesicles were engineered

by confining an active suspension of microtubule-kinesin bundles to the surface of a

lipid vesicle. The interplay of activity and curvature yields a number of dynamical

structures, including spontaneously oscillating defect textures and folding nematic

bands, and ultimately activity-driven shape deformations of the vesicle. Our work

may also be relevant to the physics of cell membranes that are activated through

coupling to the polymerizing acto-myosin cortex, as modeled in recent work by Maitra

et al. [409]. Finally, in the spirit of colloidal crystals on curved interfaces [94, 95] and

reconstituted active systems [272–274], one might also envision synthetic experimental

realizations of the topological sound modes investigated here, by depositing active

Janus colloidal particles [224] or active bio-filament motor complexes [273] on the

surface of a droplet or a vesicle shell.
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