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Abstract 

Bacterial biofilms can form on medical implants and cause serious device-associated infections 

that are incurable by conventional antibiotics because of high-level tolerance to antimicrobials. 

Common strategies for controlling device-associated infections, such as coating with 

antimicrobials and modification of surface properties, can reduce or delay biofilm formation, but 

the inhibitory effect can be overcome by bacteria over time, and eradicating mature biofilms 

remains challenging. Direct currents (DCs) have been shown to have bactericidal effects and 

synergy with conventional antibiotics in concurrent treatment has been demonstrated for killing 

biofilm cells. However, these systems require a direct connection between electrodes and a power 

source, which requires skin-piercing wiring for current delivery. This is an invasive process that 

causes discomfort and can lead to secondary infections. In this study, we developed a new method 

to achieve DC treatment wirelessly towards the non-invasive control of device-associated 

infections. Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ALC2085 were used as 

model organisms to investigate the killing efficacy of wirelessly delivered DC.  

In the proof-of-concept experiments, we demonstrate that antibiotic tolerant biofilm cells can be 

effectively eradicated by electromagnetically induced DC from a remote power source. For 

example, the number of viable P. aeruginosa and S. aureus biofilm cells was reduced by 

approximately 3.4 and 2 logs, respectively, after treatment with 60 µA/cm2 of wirelessly delivered 

DC using stainless steel electrodes for 6 hours. DC generated with graphite-based TGONTM 

electrodes was also effective especially against S. aureus. For example, the viability of P. 

aeruginosa and S. aureus biofilm was reduced by 1.4 and 2.5 logs, respectively, after treatment 

with the 30 µA/cm2 of wirelessly delivered DC for 3 hours. Synergy in biofilm killing was also 



observed between lower level DC and antimicrobials (tobramycin and chlorhexidine for P. 

aeruginosa and S. aureus, respectively). These conditions were found safe to both human lung 

epithelial cells and mouse fibroblast cells. Additionally, the viability of S. aureus and 

Streptococcus mutans biofilms on the denture material were also reduced by 5 and 4 logs, 

respectively, by the concurrent treatment with the 28 µA/cm2 of DC and 50 µg/mL chlorhexidine 

for 1 hour.  

To further evaluate the potential of this technology, we engineered a prototype device after 

comparing different device designs with varying shapes, electrode layouts, and electrode materials. 

The prototype device based on the selected design demonstrated 1.0 and 2.6 logs of killing of P. 

aeruginosa and S. aureus biofilms, respectively, with 6 µA/cm2 of wirelessly delivered DC for 6 

h using an ex vivo model with porcine skin. Further in vivo test using a rabbit model showed that 

the prototype device inserted under the dermis tissue killed S. aureus biofilm cells by 65 % in vivo 

when receiving a magnetic field from outside of the body to generate DC. No tissue damage was 

found according to the histological analysis. 

The killing mechanism of DC treatment was investigated in this study by comparing the killing 

effects of different electrochemical products. The results show that DC treatment using TGON 

electrodes killed bacterial cells by generating hypochlorite from the anode; while the DC treatment 

using stainless steel electrodes induced Fenton reaction and generated free radicals that have potent 

bactericidal effects. 

In summary, the findings from this study indicate that wirelessly delivered DC has promising anti-

biofilm effects on bacterial pathogens, both in vitro and in vivo.  To our best knowledge, this is the 

first study to report the bactericidal activity of wirelessly delivered DC treatment. With the 

capability to kill bacterial biofilm without using a directly connected power source, this platform 



technology has potential applications for noninvasive treatment of biofilm infections associated 

with orthopedic, cochlear and other implanted medical devices. 

 



  

 
 
 
 
 
 

WIRELESS ELECTROSTIMULATION TO ERADICATE BACTERIAL BIOFILMS 
 
 
 
 

by 
 

Hao Wang 
 
 
 

B.S. Pharmaceutical Engineering, Southeastern University, 2006 
M.S. Chemical Engineering, University of Dayton, 2011 

 
 
 
 
 

Dissertation 
Submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Chemical Engineering. 
 
 
 
 
 

Syracuse University 
May 2019 

 
 
 
 
 
 
 
 
 
 
 
 



  

 

 

 

 

 

 

 

 

 

Copyright © Hao Wang 2019 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

This is dedicated to my family and homeland 

 

 

 

 



vii 
 

Acknowledgments 

First, I would like to express my gratitude to my research advisor, Dr. Dacheng Ren, for having 

me in his Lab since 2014. I thank he invited me to join the group in the summer of 2014, which 

was a very hard time for myself. His generous supports, productive advice and encouragement 

support me to finish my Ph.D. career. I sincerely appreciated the countless time he spent on my 

study, and the invaluable knowledge he taught me. 

Second, I would like to thank the committee members of my dissertation defense, Dr. Anthony 

Garza, Dr. James Henderson, Dr. Shikha Nangia, Dr. Pranav Soman and Dr. Zhen Ma to their 

invaluable suggestions and helps to my research. Through them, I would love to appreciate 

Syracuse University, the office of Research, the College of Engineering, the Department of 

Biomedical and Chemical Engineering. 

Third, I would like to thank our collaborators, Dr. Brian Nicholas, Dr. Juntao Luo, and Dr. Guirong 

Wang, for their generous help during the research. I want to especially appreciate Dr. Alex Tampio. 

It’s a very good experience to work with him, and I can’t finish the animal study without his 

excellent knowledge and skills. I want to thank Dr. Changying Shi for the help in histology analysis. 

I want to acknowledge Dr. Duane L. Marcy, Dr. Eric Finkelstein, Dr. Pun To Yung, Sally Prasch, 

Michael Brandt, Timothy Breen and William Dossert for their technical support in my research. 

Then I would like to express the grateful thank to all the group members in Ren lab. It is my 

pleasure to work with Dr. Huan Gu, Dr. Fangchao Song, Dr. Geetika Choudhary, Dr. Ali Adem 

Bahar, Dr. Xiangyu Yao, Grace Altimus, Li Zhang, Nicholas Kelly, Bo Peng, Sang Won Lee, 

Yousr Dhaouadi, Yanrui Zhao, Shuyuan Ma, Xinran Song, Zhaowei Jiang, Xikang Xu, Hao Li, 



viii 
 

Melissa Gerwitz and Diego Cordero. I want to especially thank Sweta Roy for kindly helping me 

in the animal study.  

My grateful thanks also go out to Dr. Tagbo H. R. Niepa for initiating and establishing the 

fundament of the research of electric stimulation in our group.  

I would also like to acknowledge the generous help provided by Jason Markle, Mario Montesdeoc, 

Karen Low, Amy Fobes, Sabina Redington, Dawn Long, Kristin Lingo. And I want to express my 

thanks to the financial support from the Gerber endowment funding of Syracuse University. 

My upmost gratitude goes to my parents and parents in law Quanyu Wang, Xinlian Zhao, Jianguo 

Wang and Qihong Zhang for their love, and encouragements in my Ph.D. career. Special thanks 

are given to my wife, another Hao Wang, for loving, supporting and inspiring me in these years. 

Also, thank Leo for your patience and cooperation. 

 

 

 

 

 

 

 

 

 



ix 
 

Table of Contents 

Acknowledgement……………………………………………………………………………….vii 

Table of contents…………………………………………………………………………………ix 

List of figures……………………………………………………………………………….......xvii 

List of tables…………………………………………………………………………………......xxi 

Chapter 1 Motivation and hypothesis……………………………………………………………...1 

1.1 Implant device-associated infections………………………………………………………......2 

1.2 Central hypothesis and specific aims…………………………………………………………..3 

1.3 Reference……………………………………………………………………………………...5 

Chapter 2 Literature review……………………………………………………………………….7 

2.1 Microbial biofilm formation…………………………………………………………………..8 

2.2 Biofilm formation on the implanted medical devices…………………………………………9 

2.3 Representative implant device-associated infections………………………………………...10 

2.4 Current antifouling and antimicrobial approaches for controlling device-associated 

infections…………………………………………………………………………………………12 

2.5 Limitation of present antifouling and antimicrobial approaches…………………………….16 

2.6 Electrochemical control of biofilm…………………………………………………………..17 

2.7 Killing mechanisms of DC…………………………………………………………………...21 



x 
 

2.8 Limitation of conventional DC treatment……………………………………………………23 

2.9 Wireless charging technologies……………………………………………………………...23 

2.10 Materials and methods used in research……………………………………………………25 

2.10.1 Strains…………………………………………………………………………………….25 

2.10.2 Substrate material for biofilm formation…………………………………………………26 

2.10.3 Wireless charging system………………………………………………………………...26 

2.10.4 Cytotoxicity test…………………………………………………………………………..27 

2.11 Reference…………………………………………………………………………………...29 

Chapter 3 The proof-of-concept study of wirelessly delivered DC treatment on biofilm cells….47 

3.1 Abstract………………………………………………………………………………………48 

3.2 Introduction…………………………………………………………………………………..49 

3.3 Materials and methods……………………………………………………………………….50 

3.3.1 Bacteria strains and growth media…………………………………………………………50 

3.3.2 Biofilm formation………………………………………………………………………….51 

3.3.3 Wirelessly delivered DC treatment………………………………………………………...51 

3.3.4 DC treatment of biofilms…………………………………………………………………..52 

3.3.5 Scanning Electron Microscopy (SEM)…………………………………………………….53 

3.3.6 Cytotoxicity to human cells………………………………………………………………..53 



xi 
 

3.3.7 Statistical analysis………………………………………………………………………….54 

3.4 Results………………………………………………………………………………………..54 

3.4.1 Engineering a new system for wireless delivery of DC at therapeutic levels……………...54 

3.4.2 Effects of DC on P. aeruginosa and S. aureus biofilms using stainless steel electrodes…..55 

3.4.3 Synergy between DC and antimicrobials in killing P. aeruginosa and S. aureus biofilms 

using stainless steel electrodes…………………………………………………………………...56 

3.4.4 Effects of DC on P. aeruginosa and S. aureus biofilms using TGONTM 805 electrodes…57 

3.4.5 The effective DC levels for bacterial killing are safe to human cells……………………...57 

3.5 Discussion……………………………………………………………………………………58 

3.6 Conclusion…………………………………………………………………………………...61 

3.7 Acknowledgments……………………………………………………………………………61 

3.8 Reference…………………………………………………………………………………….62 

3.9 Figures………………………………………………………………………………………..69 

Chapter 4 Designing and engineering a prototype device of wirelessly delivered DC treatment.73 

4.1 Abstract………………………………………………………………………………………74 

4.2 Introduction…………………………………………………………………………………..75 

4.3 Method and materials………………………………………………………………………...77 

4.3.1 Simulation of the electric field with COMSOL……………………………………………77 

4.3.2 Fabrication of the prototype device……………………………………………...………...78 



xii 
 

4.3.3 Treatment of biofilms with the prototype device in vitro………………………………………79 

4.3.4 Treatment of biofilms with the prototype device in an ex vivo model with porcine skin…….80 

4.3.5 Statistical analysis………………………………………………………………………….80 

4.4 Results………………………………………………………………………………………..81 

4.4.1 Distribution of the electric field with different layouts and the shapes of the prototype 

device…………………………………………………………………………………………….81 

4.4.2 Evaluating the prototype device in vitro and ex vivo for biofilm control……………………82 

4.5 Discussion……………………………………………………………………………………83 

4.6 Conclusion…………………………………………………………………………………...85 

4.7 References……………………………………………………………………………………86 

4.8 Figures……………………………………………………………………………………….91 

Chapter 5 Killing mechanism of DC treatment………………………………………………...104 

5.1 Abstract……………………………………………………………………………………..105 

5.2 Introduction…………………………………………………………………………………106 

5.3 Methods and materials……………………………………………………………………...109 

5.3.1 Killing assay of P. aeruginosa biofilm with metal ions, sodium hypochlorite and hydrogen 

peroxide…………………………………………………………………………………………109 

5.3.2 DC treatment of P. aeruginosa biofilms in different concentrations of NaCl solution…...110 

5.3.3 DC treatment of P. aeruginosa biofilms in the dual chamber system…………………….111 



xiii 
 

5.3.4 DC treatment of P. aeruginosa planktonic cells in the presence of chromium (III)……...111 

5.3.5 DC treatment of S. aureus planktonic cells in agarose gel……………………………….112 

5.3.6 Hammerhead ribozyme-catalyzed cleavage reaction……………………………………...112 

5.3.7 Statistical analysis……………………………………………………………………..….114 

5.4 Results……………………………………………………………………………………....114 

5.4.1 Killing effect of DC in solutions with different concentrations of sodium chloride……….114 

5.4.2 Killing effect of chlorite and hydron peroxide on P. aeruginosa biofilm………………..114 

5.4.3 Killing effect of DC treatment on P. aeruginosa biofilm in dual chamber system………114 

5.4.4 The role of chromium ions in the killing mechanism of DC……………………………….115 

5.4.5 The killing effects of DC on S. aureus planktonic cells in agarose gel…………………..116 

5.4.6 The enhanced affinity between RNA and tobramycin-chromium (III) complex………...116 

5.5 Discussion…………………………………………………………………………………..117 

5.6 Conclusion………………………………………………………………………………….123 

5.7 Reference……………………………………………………………………………………124 

5.8 Figures………………………………………………………………………………………129 

Chapter 6 Controlling dental plaque with direct current and chlorhexidine…………………….140 

6.1 Abstract……………………………………………………………………………………..141 

6.2 Introduction…………………………………………………………………………………142 



xiv 
 

6.3 Materials and methods………………………………………………………………………144 

6.3.1 Bacteria strains and growth media………………………………………………………..144 

6.3.2 Biofilm formation………………………………………………………………………...144 

6.3.3 Electrochemical treatment………………………………………………………………..144 

6.3.4 DC treatment of biofilms…………………………………………………………………145 

6.3.5 Live/Dead staining………………………………………………………………………..146 

6.3.6 Statistical analysis………………………………………………………………………...146 

6.4 Results………………………………………………………………………………………146 

6.4.1 Effects of DC and CHX on S. mutans and S. aureus biofilms in 0.85% NaCl solution….146 

6.4.2 Effects in the presence of artificial saliva…………………………………………………147 

6.5 Discussion…………………………………………………………………………………..148 

6.6 Conclusion…………………………………………………………………………………..151 

6.7 Acknowledgements…………………………………………………………...…………….152 

6.8 References…………………………………………………………………………………..153 

6.9 Figures………………………………………………………………………………………157 

Chapter 7 Wirelessly delivered DC treatment of S. aureus biofilms in a rabbit model…………162 

7.1 Abstract………………………………………………...…………………………………...163 

7.2 Introduction…………………………………………………………………………………164 



xv 
 

7.3 Materials and methods………………………………………………………………………165 

7.3.1 Experimental setup of wirelessly delivered DC treatment in a rabbit model……………..165 

7.3.2 Rabbit model……………………………………………………………………………...165 

7.3.3 Treatment with wirelessly delivered DC………………………………………………….166 

7.3.4 Sample collection…………………………………………………………………………167 

7.3.5 Histological analysis………………………………………………………………………167 

7.3.6 Viability of biofilm cells………………………………………………………………….167 

7.3.7 Statistical analysis……………………………………………………………………...…168 

7.4 Results………………………………………………………………………………………168 

7.4.1 Experimental design of the treatment by wirelessly delivered DC in vivo……………….168 

7.4.2 Efficacy of wirelessly delivered DC treatment in vivo……………………………………169 

7.4.3 Safety of the treatment by wirelessly delivered DC………………………………………169 

7.5 Discussion…………………………………………………………...……………………...170 

7.6 Conclusions…………………………………………………………………………………172 

7.7 Acknowledgments…………………………………………………………………………..173 

7.8 Reference……………………………………………………………………………………174 

7.9 Figures………………………………………………………………………………...…….177 

Chapter 8 Conclusions and Future work………………………………………………………..184 



xvi 
 

8.1 Conclusions…………………………………………………………………………………185 

8.2 Future work…………………………………………………………………………………187 

8.2.1 Optimizing the prototype device………………………………………………………….187 

8.2.2 Roles of the electrochemical products in bacterial killing by DC………………………..188 

8.2.3 Wireless electric impendency scanning…………………………………………………..188 

8.3 References…………………………………………………………………………………..189 

Appendix A. Growing S. aureus biofilm on the PDMS surface of different stiffness………….191 

Appendix B. Supplementary data Chapter 3: The proof-of-concept study of wirelessly delivered 

DC treatment on biofilm cells…………………………………………………………………..195 

CV……………………………………………………………………………………………....196 

 

 

 

 

 

 

 

 

 



xvii 
 

List of figures 

Chapter 3 

Figure 1. Engineered system for wireless delivery of DC. (A) Block diagram of wireless DC 

delivery system. Alternating current (AC) is generated by an AC power source, which is 

transferred to a changing magnetic field by coil 1. Next, coil 2 receives the magnetic field and 

transfers back to AC by induction coupling. The AC is converted to DC by a rectifier, followed by 

delivery of DC to the treatment petri dish with electrodes and attached biofilm samples. (B) 

Schematic of the DC delivery system including the power transmitter unit, receiver unit, and 

treatment unit. (C) The current density of the wireless DC delivery system with varying distance 

between the transmitter and receiver coil. The system was able to deliver DC over 10 mm under 

our experimental condition, which can be increased by using larger transmitter coil and higher 

frequency.   

Figure 2. Viability of bacterial cells after treatment with wirelessly delivered DC in absence or 

presence of antimicrobials. (A)&(B): Viability of P. aeruginosa (A) and S. aureus (B) biofilm 

cells after treatment with 6, 30, 60 or 120 µA/cm2 DC in 0.85 % NaCl for 2 or 6 h. (C)&(D): 

Viability of P. aeruginosa (C) and S. aureus (D) biofilm cells after treatment with antimicrobials 

alone (4.5 µg/mL Tob or 10 µg/mL CHX), DC (6 or 12 µA/cm2) alone or concurrent treatment for 

6 h in 0.85 % NaCl solution. (E)&(F): Viability of P. aeruginosa (E) and S. aureus (F) biofilm 

cells after treatment with 12 or 30 µA/cm2 DC conducted by TGONTM 805 electrodes in 0.85% 

NaCl for 3 h. 

Figure 3. Representative SEM images of untreated (A) and DC treated (B) P. aeruginosa and S. 

aureus biofilms. Wirelessly delivered DC at 60 μA/cm2 was used to treat biofilm cells using 

stainless steel electrodes. Bars = 1 μm. 

Figure 4. DC treatment of CLR-5803 epithelial cells and C3H/10T1/2 mice fibroblast cells 

attached on the glass bottom petri dishes in RPMI medium supplemented with 10% FBS. (A)&(B): 

The epithelial cells were treated without (A) or with (B) 60 µA/cm2 DC conducted by stainless 

steel electrodes for 6 h. (E)&(F): The samples were treated without (E) or with 30 µA/cm2 DC (F) 

using TGONTM 805 electrodes for 3 h. (C)&(D): The fibroblast cells were treated without (C) or 

with (D) 60 µA/cm2 DC conducted by stainless steel electrodes for 6 h. (G)&(H): The samples 

were treated without (G) or with 30 µA/cm2 DC (H) using TGONTM 805 electrodes for 3 h. Bar 

= 50 µm. 

Chapter 4 

Figure 1. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the oval-shaped device with the sandwich layout of electrodes 

Figure 2. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the oval-shaped device with the circular/center layout of electrodes 

Figure 3. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the square-shaped device with the sandwich layout of electrodes 



xviii 
 

Figure 4. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the square-shaped device with the circular/center layout of 

electrodes 

Figure 5. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the circular/center layout of 

electrodes 

Figure 6. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the small sandwich layout of 

electrodes 

Figure 7. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the large sandwich layout of 

electrodes 

Figure 8. Experimental setup and killing effects of S. aureus biofilms at different locations of the 

oval-shaped device with the sandwich layout of electrodes. (A): The experimental setup of S. 

aureus biofilm samples on the surface of a prototype device. (B): Viability of S. aureus biofilm 

cells on the surface of the prototype device after treatment with wirelessly delivered DC (12 

µA/cm2) for 6 h 

Figure 9. Experimental setup and killing effects of S. aureus biofilm on different locations of the 

round-shaped device with flat-side electrodes. (A): The viability of S. aureus biofilm on the surface 

of the prototype device after treatment with wirelessly delivered DC for 6 h. (B): The experimental 

setup of prototype device  

Figure 10. The final design of the round-shaped prototype device with a circular cathode and center 

anode. (A): The internal circuit including receiver coil, rectifier chip, and internal resistor. (B) The 

layout of electrodes on the surface of the prototype device 

Figure 11. In vitro test of the selected prototype device. (A): Schematic of the experimental setup. 

The PDMS blocks with biofilm were placed on the top of the device and around the central 

electrode for DC treatment. (B): Viability of P. aeruginosa and S. aureus biofilm cells after 

treatment with 6 µA/cm2 for 6 h in vitro (***, p < 0.001; **, p = 0.01) 

Figure 12. Ex vivo test of the selected prototype device. (A): Schematic of the experimental setup 

in model. The device was fixed into the 3D-printed cavity and covered with porcine skin. The 

wireless power transmitter was placed on the top of the skin. (B): Viability of P. aeruginosa and 

S. aureus biofilm cells after treatment with 6 µA/cm2 for 6 h in ex vivo model (***, p < 0.001; *, 

p < 0.05) 

Figure 13. COMSOL simulation of electric potential (color surface) and current density (arrows 

map) distribution in a petri dish with the flat stainless steel electrode (0.5 cm width, 0.01 cm 

thickness) positioned on opposite side. Three PDMS coupons with biofilm were placed in the 

electric field between two electrodes. The total DC level was approximately 100 µA 

 



xix 
 

Chapter 5 

Figure 1. Viability of P. aeruginosa biofilm cells after treatment in saline solutions with different 

concentrations of NaCl (with 30 µA/cm2 DC, TGON electrodes) and NaOCl solution (without DC) 

Figure 2. Viability of P. aeruginosa biofilm cells after treatment in saline solutions with different 

concentrations of NaCl (with 30 µA/cm2 DC, TGON electrodes) and H2O2 solution (without DC) 

Figure 3. Viability of P. aeruginosa biofilm cells after treatment with 60 µA/cm2 DC in 0.85 % 

NaCl solution in dual chamber system with TGON electrodes. 

Figure 4. Viability of P. aeruginosa biofilm cells after treatment with 60 µA/cm2 DC in 0.85 % 

NaCl solution in dual chamber system with stainless steel electrodes. 

Figure 5. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (10 µM), 

DC (60 µA/cm2) alone or concurrent treatment for 1 h in 0.001% NaCl solution 

Figure 6. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (100 µM), 

DC (60 µA/cm2) alone or concurrent treatment for 1 h in 0.001% NaCl solution 

Figure 7. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (10 µM), 

DC (20 µA/cm2) alone or concurrent treatment for 1 h in 0.1 % NaCl solution in dual chamber 

system 

Figure 8. Representative images of agarose gel with embedded S. aureus planktonic cells after 

being treated with 60 µA/cm2 DC for varying duration of time 

Figure 9. Living/Dead images of S. aureus planktonic cells in the agarose after DC treatment. 

(A)&(B): The cells in the precipitation band region. (C)&(D): The cells outside of the precipitation 

band region. (E): The untreated planktonic cells mixed with the precipitates produced by DC 

treatment. (F): The untreated planktonic cells 

Figure 10. Cleavage of substrate RNA by the hammerhead ribozyme. Only the fluorescently 

labeled RNA was visible. The upper bands were un-cleavage substrates and lower bands were 

cleavage products. From left: 1) Negative control (reference band); 2) Positive control; 3-5) Cr3+ 

alone (320 µM, 160 µM, 32 µM); 6-8) Mixture of Cr3+ and tobramycin (Cr3+: 320 µM, 160 µM, 

32 µM, Tobramycin: 320 µM); 9) Tobramycin alone (320 µM) 

Figure 11. The ratio of cleavage in samples of negative control, positive control, Cr3+ alone (320 

μM, 160 μM and 32 μM), a mixture of Cr3+ (320 μM, 160 μM and 32 μM) & tobramycin (320 μM) 

and tobramycin alone (320 μM) 

Chapter 6 

Figure 1. Viability of S. mutans biofilm cells after 1 h treatment with CHX alone (A), DC alone 

(B) or concurrent treatment with CHX and DC (C). All treatments were tested in 0.85 % NaCl 

solution 



xx 
 

Figure 2. Viability of S. mutans biofilm cells after treatment with CHX alone, DC alone or 

concurrent treatment with CHX and DC. A: treatment medium: 0.85 % NaCl, DC level: 28 µA/cm2, 

CHX dosage: 50 µg/mL. B: treatment medium: artificial saliva, DC level: 28 µA/cm2, CHX dosage: 

500 µg/mL 

Figure 3. Viability of S. aureus biofilm cells after treatment with CHX alone, DC alone or 

concurrent treatment with CHX and DC. A: treatment medium: 0.85 % NaCl, DC level: 28 µA/cm2, 

CHX dosage: 50 µg/mL. B: treatment medium: artificial saliva, DC level: 28 µA/cm2, CHX dosage: 

500 µg/mL 

Figure 4. Living/dead staining of S. mutans biofilms treated with 5 μg/mL CHX (B), 7 μA/cm2 DC 

(C), 5 μg/mL CHX plus 7 μA/cm2 DC (D) and no treatment (A). Bar = 20 μm 

Figure 5. Living/dead staining of S. aureus biofilms treated with 20 μg/mL CHX (B), 28 μA/cm2 

DC (C), 20 μg/mL CHX plus 28 μA/cm2 DC (D) and no treatment (A). Bar = 20 μm 

Chapter 7 

Figure 1. The setup of the wirelessly delivered DC treatment in the rabbit model. (A): The 

prototype device was placed in the pocket under the dermis layer of the rabbit. (B): A transmitter 

coils were put on the skin to deliver DC wirelessly. (C): Two rabbits were tested in parallel 

Figure 2. Representative pictures of the rabbits that were in direct contact with the prototype device. 

(A): The skin tissue without DC treatment. (B): A dermis tissue treated with wirelessly delivered 

DC for 6 h. (C): The surficial muscle tissue without DC treatment. (D): The surficial muscle tissue 

treated with 12 µA/cm2 of wirelessly delivered DC for 6 h 

Figure 3. Representative picture showing the residue saline solution 

Figure 4. The total impedances and total current level between anode and cathode in 0.1% saline 

solution with different internal resistors 

Figure 5. Viability of total S. aureus cells in the rabbits after 12 µA/cm2 wireless delivered DC 

treatment for 6 h 

Figure 6. HE staining of the dermis tissues in direct contact with the devices. The specimen was 

collected, and undergone cryosection. H &E staining was performed to evaluate the histology of 

the untreated (A) and treated (B) specimen with 12 µA/cm2 DC wirelessly delivered for 6 h 

Figure 7. HE staining of the surficial muscle tissues in direct contact with the devices. The 

specimen was collected, and undergone cryosection. H &E staining was performed to evaluate the 

histology of the untreated (A) and treated (B) specimen with 12 µA/cm2 DC wirelessly delivered 

for 6 h 

 

 

 



xxi 
 

List of tables 

Chapter 2 

Table 1. Examples of antimicrobial coating and biomaterials  

Table 2. The examples of researches used electric current to eradicate bacteria cells 

Chapter 4 

Table 1. The list of different shapes and layouts were simulated by COMSOL 

Table 2. The working parameters in the 3D printing of the case 

Chapter 5 

Table 1. Conditions tested for treatment of P. aeruginosa biofilms 

Chapter 7 

Table 1. Bactericidal effects of electric current in vivo 

 



 
1 

 

 

 

 

 

Chapter 1 

Motivation and hypothesis 

 

 

 

 

 

 

 

 

 

 

 



 
2 

 

1.1 Implant device-associated infections 

The application of surgically implanted medical devices is on the rise due to advances in device 

design and improvement in patients’ life quality 1. However, device-associated infections remain 

challenging despite the improvement in sterilization techniques during the last decade 2. 

Approximately 4.3% of the total 2.6 million orthopedic devices implanted in the United States 

every year are infected 3. The risk of hearing aid implants (e.g. cochlear and bone anchored implant) 

associated infection is also approximately 4%; but more detrimental to younger patients  4, 5. Such 

infections lead to ulcer, swelling or inflammation of affected tissues  6, and further surgeries for 

implant relocation, fixation and even explanation 7. 

The standard therapeutic approach for controlling and curing the bacterial infection is antibiotic 

treatment. Since the discovery of penicillin in the 1940s, antibiotics have saved millions of lives 

from microbial infections.  However, bacterial pathogenic also developed resistance to all kinds 

of commercially available antibiotics, which has become one of the most serious threats to public 

health. Based on CDC’s report in 2013, there are at least 2 million people infected by the antibiotic-

resistant strains annually and at least 23,000 people die in the U.S. alone 8. Bacteria have multiple 

strategies to survive the killing of antibiotic resistance including acquired mechanism based on 

resistant genes and intrinsic mechanisms due to the formation of dormant persister cells and 

surface-attached biofilms. Among these factors, biofilms play an important role in recalcitrant 

device-associated infections since the abiotic surface of implanted medical devices are fairly 

susceptible to microbial adhesion 7 9. 
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1.2 Central hypothesis and specific aims 

Due to the high-level antibiotic resistance, biofilm infections present serious challenges to 

infection control. Consequently, the use of conventional antimicrobials constantly fails to eradicate 

the biofilm cells on the implant surfaces even at high concentrations. Instead, treating biofilms at 

sub-lethal levels can promote the development of antibiotic-resistant strains, such as superbugs 

that resist all currently available antibiotics.  

In 1994, Costerton et al. 10 demonstrated that low-level direct current (DC) had antimicrobial 

effects, and DC had synergy with the antibiotic in bacterial killing. This phenomenon, known as 

bioelectric effects, provides a new direction for engineering new antimicrobial strategies. However, 

the electric current must be delivered by wires in conventional electric treatment, which requires 

skin-piercing in clinical application. This could bring the risk of secondary infection and pain or 

discomfort. This severely limits the application of electric treatment. Using implantable battery is 

an option without skin-piecing, but the capacity of a battery limits the in vivo lifetime of the device 

and brings the risk of battery leak. We were motivated to develop a wireless system to deliver 

electric current from an external power to the implant device in vivo. We hypothesize that 

therapeutic levels of direct electric current (DC) could be delivered from a power source the 

medical device wirelessly. To test this central hypothesis and explore the underlying mechanisms, 

this study was conducted to systematically investigate the effects of wirelessly delivered DC on 

bacterial biofilms using in vitro, ex vivo and in vivo models. The proposed study was carried out 

in three specific aims: 

Aim 1. To evaluate the effects of wirelessly delivered DC on bacterial biofilms by varying the 

electrode materials and treatment conditions and testing the synergy between DC and antibiotics 
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in vitro. P. aeruginosa and S. aureus were selected as model species and treated with the different 

levels of wirelessly delivered DC with or without antibiotics. Both graphite-based TGON and 

stainless steel coupons were tested as electrode materials. The mechanism of bacterial killing by 

DC was investigated by testing the effects of ions, solutions, and redox reactions.  

Aim 2. To design a prototype device that integrates the wireless DC delivery and electric treatment 

system and evaluate its antimicrobial activities. The design was optimized to reduce the size to fit 

in a <30 mm3 case, which is the same as cochlear implants, pacemakers and GI tract stimulators. 

The layout of the electrodes was also optimized.  

Aim 3. To evaluate the effects of skin tissue on electromagnetic coupling and the killing effects of 

the DC treatment device in both ex vivo and in vivo models. The killing effects of the prototype 

device on biofilms was evaluated in an ex vivo model with porcine skin as the barrier and an in 

vivo model using rabbits. The cytotoxicity to host tissues was also studied by histological analysis. 
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2.1 Microbial biofilm formation 

Biofilms are a complex structure composed of bacterial cells and an extracellular matrix produced 

by the attached cells. Biofilms are constantly formed on implanted biomaterials and medical 

devices. When a device is implanted in a host, it is coated quickly coated with proteins such as 

fibrin and fibronectin, which provide a better anchor for bacterial adhesion 1. Once a mature 

biofilm is established, it is difficult to eradicate due to slow growth and high level of antimicrobial 

tolerance 2.  

Extracellular polymeric substance (EPS) is a major contributor to the antimicrobial resistance of 

biofilm cells, which prevents the common antimicrobial agents from effectively penetrating. This 

extracellular matrix is composed of polysaccharide, proteins, nucleotides, and lipids, which could 

protect cells from the oxidizing biocides, some antibiotics and metallic cations 3 by retarding the 

diffusion or neutralization 4.   

Another mechanism of antimicrobial resistance of biofilm cells is its lower metabolic activities of 

biofilm cells. While EPS retards penetration of hazardous compounds into biofilm, the nutrients 

are also depleted in the biofilm, especially in deep layers, along with the accumulation of toxic 

metabolism wastes 5. These factors lead to dormancy of biofilm cells and the formation of persister 

cells, a subpopulation with extremely high-level antibiotic tolerance but without genotype changes. 

In 1944, Joseph Bigger 6 first found that there was a small but constant subpopulation of 

Staphylococcus, which could survive after long-time treatment with high-concentration penicillin 

and named this subpopulation “persisters”. Resistant cells didn’t cause significant attention due to 

the success of antibiotic therapies until 2000s. Kim Lewis reported persister phenotype in 

Escherichia coli 7. Numerous studies have shown that the persister cells formation is not due to 
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genetic mutation but rather phenotypic variants 8-12. When the cells survived were sub-cultured in 

the absence of antibiotics and rigorously antibiotic treatment, the new culture exhibits the same 

level of antibiotic susceptibility, which indicates it is tolerance, rather than resistance.  

2.2 Biofilm formation on the implanted medical devices 

Microbial pathogens that cause biofilm-associated infections usually come from the patients’ skin, 

surgical equipment or hospital environment 13. The infection may occur immediately after surgery 

or during the post-surgery period ranging from several months to years depending on the causative 

agents and the patient’s immunity. The standard treatment of such conditions is using antibiotics. 

If the antibiotic therapy fails, the patient needs two-step surgeries. This requires explanation, 

cleaning the infected area with a high concentration of antibiotics, and implantation of a new 

device 14. This procedure is expensive and negatively impacts the life quality of the patient.  

Biofilm formation is a dynamic process including initial attachment, microcolony formation, 

maturation and dispersion 15. The concept of “race for the surface” well describes the nature of 

biofilm-associated infections on implants; e.g., if bacterial adhesion occurs on implanted 

biomaterial before tissue integration, it is difficult to prevent further biofilm formation by host 

defense 16.  There are many factors that affect bacteria adhesion, such as the roughness 17-19, 

topography 20-22, hydrophobicity 23-25, net charge of the surface 25, 26 and van der Waals forces 

between cells and surface 27.  Bacterial cells can produce specific proteins and other molecules to 

enhance the initial attachment on medical device surfaces 27-29.  

After bacterial cells irreversibly attach to the surface, the cells proliferate to form clusters with 

multiple layers of cells in mature biofilms. During this stage, the extracellular polysaccharide is 

produced, and form an extracellular matrix along with proteins and extracellular DNA 28, 30, 31. 
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Bacterial cell-cell signaling system, such as quorum sensing (QS) system is also active in the 

biofilms, which have major impacts on biofilm formation, motility, and production of EPS 32. For 

example, S. aureus uses the Agr QS system to regulate the production of virulence factors that 

promote surface attachment and protect the cells from clearance by the host immune system 33.  

Along with biofilm maturation, bacterial cells become inactive (e.g. persister formation) or due to 

the lack of nutrient and accumulation of toxin 34, 35. Under certain conditions, biofilm cells may 

dispense from the biofilm matrix, and migrate to another location with motility and/or flow 5, 36, 37. 

This leads to the spread of infection from the implant site to the bloodstream and other organ 

tissues, which can be life-threatening 38, 39. As a result, even if the patient has received the anti-

infection therapy or new implantation, bacterial cells may come back from surrounding tissues and 

cause infection again, leading to chronic infections with recurring symptoms 40. Most causative 

agents of device-associated infections are opportunistic pathogens, consistent with the protection 

of biofilms. These species include P. aeruginosa 8, 40, S. aureus 16, 41, Klebsiella pneumonia 42 and 

Acinetobacter baumannii 43.  

2.3 Representative implant device-associated infections 

Dental implants are widely used implanted devices serving for different purposes. Unfortunately, 

the human mouth is an ideal environment for microbial growth; e.g. there are approximately 109 

bacterial cells of more than 1,000 species in each mL human saliva 15, 44. Because the dental 

surfaces are coated with saliva which contains mucus, varying enzymes and many other 

components, such as epithelial cells, lysozyme and secretory IgA 15, these surfaces are prone to 

microbial attachment, growth and the formation of dental biofilms (also known as dental plaques) 

in the oral cavity. One pathogen with significance in dental biofilm is S. aureus. Unlike other 
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common oral species, such as Streptococcus mutans and Streptococcus gingivitis that produce acid 

to cause tooth decay, S. aureus is frequently linked to infections associated with the dental implant 

infection 45, 46. S. aureus biofilms cause inflammation of surrounding tissues (e.g. gum), pain, and 

may lead to implant failure. Because infections often happen in the deeper site of soft tissue, daily 

oral hygiene has limited impact 45. 

Orthopedic implants are another type of devices facing challenges by biofilms. The surfaces of 

commonly used orthopedic components contain stainless steel, titanium, ceramic, cobalt-

chromium alloy, hydroxyapatite, and polymethylmethacrylate (PMMA) cement. All these 

materials are susceptible to colonization by bacterial cells 47, 48. In general, 34% of infections are 

caused by S. aureus, followed by S. epidermidis (32%), and P. aeruginosa (7%) 49. It is alarming 

that the Methicillin-resistant S. species (MRSA S. aureus) is fund in increasing cases orthopedic 

infections 50. The conventional strategies to prevent orthopedic implant infections focus on 

controlling environmental and personal factors related to the surgical operation. In recent research, 

antifouling/antimicrobial techniques have been applied to modify orthopedic materials, such as 

bactericidal coating or antifouling surface modification by altering charges, roughness, 

hydrophobicity of the implanted materials.  

Modern devices, such as cardiovascular implants, cochlear implants, insulin pumps, and GI tract 

stimulators, are also susceptible to biofilm-associated infections. Due to their rather short history 

of application, there are only a few epidemiological reports about the infections of these electronic 

devices; however, the problem is expected to become more serious due to the rapid increase in the 

use of electronic implants. Based on the limited data from the recent literature, Staphylococcal 

biofilm is still the primary cause 4, 51, 52, and P. aeruginosa is more correlated with chronic 

infections 53. Infections associated these devices could lead to more serious or even life-threatening 
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conditions than orthopedic and dental infection since the implant sites are usually close to 

important organs or central nervous system (e.g. brain, heart). As other device-associated 

infections, Antibiotic treatment is the primary choice for therapy. If antibiotic treatment fails, 

patients have to take surgeries to explant the devices.  Because these devices usually have essential 

life-saving functions, the surgery of electronic medical devices have higher risks, and thus are 

complicated than orthopedic or dental surgery. Those surgeries bring more suffering to patients 

due to longer recovery time from the surgical trauma 54.  

In summary, biofilm-associated infections have a significant risk for medical implants because 

these devices are widely applicable in the human body to improve life quality, facilitate therapies 

process or sustain life. High-level resistance to antibiotics of biofilm cells necessitates 

multidisciplinary research to develop more and more comprehensive solutions to these challenging 

problems.   

2.4 Current antifouling and antimicrobial approaches for controlling device-associated 

infections  

An effective approach to preventing infection is to use materials that have antimicrobial activities. 

Some metals have intrinsic bacterial killing activities, such as silver, zinc, and copper. Multiple 

mechanisms are involved in bacterial killing. For examples, silver ions can interact with thiol 

(sulfhydryl) groups and interfere with the respiratory chain of bacterial cells 55. Zinc oxides 

nanoparticles can cause morphological changes and measurable membrane leakage of bacterial 

cells 56. However, the bactericidal effect of metal ions is not highly specific to prokaryotic cells, 

which lead to cytotoxicity to host cells 57-59. Moreover, the corrosion of metal materials in vivo 

could accumulate excessive metal ions and possibly precipitates, which have detrimental effects 
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on host tissue and organs. For example, silver ions and silver chloride precipitates were found to 

have cytotoxicity to red blood cells and human mesenchymal stem cells 57. Although the metals 

are not used as bulk for implanted devices, these materials are promising candidates for using in 

nanoparticles, hydrogel or bioactive alloys with other non-toxic metal materials. Chitosan is 

another biomaterial with promising antimicrobial activities. It is a polycationic polymer compound 

derived from chitin. By modifying the chitosan structure, a number of derivatives have been 

developed with improved functions 60, 61.  

Another strategy for combating device-associated infections is coating the metal (e.g. titanium) or 

polymerase material (e.g. silicone, hydrogel) of the device with a bioactive antibacterial layer. 

Most commonly used coating materials include antibiotics, chlorhexidine, chitosan and the derives, 

antimicrobial peptides, and materials that can release copper and silver ions (See Table 1). The 

bactericidal substances are loaded into the bulk materials via covalent bonding, charging force, or 

forming a complex. These coatings kill bacterial cells either via direct contacting or by releasing 

antimicrobial agents to surroundings.  

An alternative strategy to modification antimicrobials surface for killing is preventing attachment 

of cells or disturbing biofilm formation by altering chemical and physical properties of the surface. 

Biofilm formation can be prevented by changing the topography, charge, hydrophobicity, 

roughness, or stiffness of the materials 15, 72, 73. 
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Table 1. Examples of antimicrobial coating and biomaterials 

Coating substance Surface material Target bacterial species Reference 

Chlorhexidine  Titanium S. aureus 62 

Benzalkonium 

chloride 

Polyurethane S. epidermidis 63 

Antimicrobial 

peptide 

Hydroxyapatite S. aureus 

P. aeruginosa 

S. epidermidis 

64 

Antimicrobial 

peptides 

Hydrogel S. aureus 65 

Chitosan Titanium alloy E. coli 66 

Chitosan Collagen 

hydrogel 

S. aureus 60 

Copper and fluorine Polyester S. aureus 67 

Silver Hydroxyapatite S. epidermidis 

S. aureus 

68 

Chlorhexidine CHG gel S. aureus 

E. coli 

69 

Trimethylammonium 

chloride 

Silicone S. aureus  

Enterococcus faecalis 

70 

S-nitrosothiol Xerogel P. aeruginosa 71 

 

Most bacterial cells have a negative charge on the outer membrane. Thus, a surface with a positive 

charge is more attractive for bacterial cells than the negative charge that can repulse bacterial cells 

from attachment 15. Based on this principle, many coating materials have been developed to modify 

the surface charge of biomaterials to prevent biofilm formation. For example, polyethylene (PE) 

surfaces were modified with a large of negatively charged sodium sulfite using glycidyl 

methacrylate (GMA) as the linking agent, which reduces E. coli cell density by 10 times compared 

to positively charged surface 74. Similarly, Carmona-Ribeiro et al. 75 reported that the cationic 

antimicrobial substances such as dioctadecyldimethylammonium bromide (DODAB), could 

reduce the viability of E. coli, P. aeruginosa, S. aureus as well as C. albicans. However, the 
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antimicrobial and antifouling properties of surface charge could be hindered by dead cells, which 

cover/neutralize the charges and provide protection to later colonies.  

Hydrophobicity is another important factor influencing the antifouling property of biomaterials. In 

general, a hydrophilic surface could provide high affinity to water and tissue cells but is also prone 

to attachment of bacterial cells. However, the superhydrophilic surface is non-fouling due to the 

strong dipoles of the zwitterions and electrostatic interactions 76.  Making some materials 

hydrophobic or superhydrophobic was also found to affect biofilm formation. For instance, 

Tripathy et al. 77 showed the coating of copper hydroxide nanowires on polydimethylsiloxane 

(PDMS) could reduce the cell density of E. coli up to 5 logs compared to the uncoated surface. 

Loo et al. 78 also found the reduced attached P. aeruginosa cells on the polyvinyl chloride (PVC) 

surface with the micron-sized particulates and porous structures made by ethanol (35% (v/v) ) 

treatment. In contrast to typical gram-negative strains, some gram-positive strains demonstrated a 

lower affinity to hydrophilic surfaces than hydrophobic ones because of their different surface 

proteins 79.  Streptococcus mutans biofilms were reduced by 8 times on the surface of resin blended 

with 2,2-bis[4-(2-hydroxy-3-methacryloylpropoxy)]-phenyl propane (bisGMA), bis[2-

(methacryloyloxy)ethyl]phosphate (BisMP) and 2-hydroxyethyl methacrylate (HEMA) than 

hydrophobic resin. S. epidermis biofilm formation was also reduced on the hydrophilic Pluronic 

F127 coated polystyrene surfaces 80.  

Surface topography is another feature that attracted much attention, and the specific topographic 

patterns can control bacterial cell attachment and biofilm formation. Gu et al. 79 reported the 

hexagon-shaped topographic patterns with 15 μm side length, 10 μm height and 2 μm inter-pattern 

distance could reduce 85% of biofilm formation and 46% of associated conjugation than a smooth 

surface. They also found that the topographic pattern could affect interfere cells cluster formation 
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81. Manabe et al. 82 demonstrated the porous polystyrene surface could prevent P. aeruginosa 

attachment when the pore size was 5 to 11 µm although the pores out of this range promoted cells’ 

attachment. Xu et al. 83 reported that the adhesion of S. epidermis cells on the polyurethane urea 

surface was reduced by micro- and nano-size pillar patterns on the surface. The nano-size patterns 

not only reduced bacterial adhesion but also exhibited biocidal effects. Yi et al. 56 reported the 

significant killing of bacteria and fungi using the ZnO nanopillar coated surfaces that was inspired 

by dragonfly wings.  

Although stiffness is an important material property, the effects of stiffness on biofilm formation 

have not been systematically studied until recently. Song et al. 15, 84, 85 reported that the attachment 

of E. coli and P. aeruginosa was 1 – 2 logs lower on the stiff (5:1) PMDS surface than soft (40:1) 

in early biofilm (5h). Besides attachment, bacterial motility was also found differences between 

stiff and soft surfaces, which suggests that these cells preferred to settle down on soft PDMS 85. 

However, the antifouling effect of surface stiffness seems also to be affected by material types. 

For example, Kolewe et al. 86 found softer hydrophilic PEGDMA and agar hydrogels had less 

attached E. coli and S. aureus cells. 

2.5 Limitation of present antifouling and antimicrobial approaches 

Although many materials have been demonstrated for antimicrobial/antifouling activities during 

the last decades, most of these techniques still have drawbacks that limit applications in vivo. For 

example, some new bactericidal materials can eradicate pathogens efficiently by direct-contact or 

releasing biocidal agents into surroundings, but those materials could also induce the drug-resistant 

species during the treatment 87, 88. Furthermore, a few studies reported the cytotoxicity of surface-

coated antimicrobial peptides 89, 90 and silver nanoparticles (Ag-NPs) 91-93 in mammalian cells. The 
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antifouling materials with alternated surface chargers, hydrophobicity, topography or stiffness may 

be limited to the effect on early biofilm formation, and less effective against later colonizer. Also, 

the effects are not complete eradication. Once a few cells have attached and established early 

biofilm colonies, they will overcome the antifouling effects over time 15, 85. Thus, it is important 

to develop new techniques that not only have long-term antimicrobial/antifouling effects to present 

biofilm formation but also can eradicate existing biofilms. This is of particular importance to 

medical device-associated biofilm infections because all the patients have established biofilms. 

2.6 Electrochemical control of biofilm  

Bacterial control by electrochemical approaches has been explored as an alternative strategy. An 

early approach to electric sterilization approach is utilizing high energy electric pulse, also called 

pulsed electric field (PEF), to eradicate the microorganisms in a liquid 94. PEF was also found to 

inactivate yeast cells in 1980s 95. Since PEF is a nonthermal process, it has been applied in the 

food industry to achieve decontamination of liquid or semi-liquid products, such as milk, juice and 

beverages 96-98. The process of PEF shows little effects on proteins, so it could also be applied to 

biological products like porcine plasma 99.  The potential of the external electric field for PEF 

treatment ranges from volts to kilovolts 98, 100. The killing mechanism of PEF is believed to changes 

in membrane permeability and integrity leading to cell lysis 101. When a microbial cell is in a strong 

electric field, it could induce a transmembrane potential that is proportional to the external electric 

field strength. The cell membrane could break once the transmembrane is over critical value (1V) 

102. If the change is applied for a fairly short time, the cell membrane may still return to normal 

state (still weaker than normal cell) when the external electric field is removed, which is a well-

known process of electroporation. However, if the strength and duration of electric field exceed 

the critical values, the cell membrane would incur permanent damages that lead to the lysis of the 
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cell 94, 101. Recently, Pillet 103 reported that PEF also led to cell wall deterioration, such as 

decreasing stiffness and hydrophobicity. According to the technique specifications, PEF is not 

suitable for applying in human body directly because of its high energy that exceeds the safety 

limit.   

In 1915, Beattie 104 reported the use of alternating current (AC) to control bacterial cells. It was 

found that biocidal effects of AC can be obtained when a very high potential (3000 – 4000 V) was 

applied to sterilize milk. In 1962, Brandt et al. 105, 106 first proposed that the free radicals generated 

during electric treatment contribute to the killing of bacteria.  Rosenberg 107 reported that E. coli 

could be killed with 2 A of AC using platinum electrodes. Low-level AC was also found to have 

bactericidal effects. Pareilleux et al. 105 reported that the viability of E. coli was reduced after 

treatment with 10 to 200 mA of AC in 10s, using stainless-steel electrodes.  

Compared to AC, direct current (DC) has received more attention as an alternative antimicrobial 

method recently. Rowley 108 first showed the biocidal effects on E. coil with 1- 140 mA DC 

conducted with platinum electrodes in 1970s. Baranco 109 demonstrated the killing of S. aureus 

cells using 400 µA DC delivered with silver, platinum, gold or stainless steel electrodes. In general, 

DC requires lower current levels for bacteria-killing compared to AC. Table 2 shows the 

representative examples of studies on controlling bacteria cells using electric current. Most of these 

researches used metal electrodes because of their high conductivity, stable electrochemical 

properties (e.g. platinum, titanium, gold) 110, 111, application in medical device (e.g. titanium, 

stainless steel) 112, 113, and antimicrobial effects (e.g. copper, silver). The carbon materials recently 

become attractive in the researches due to its good corrosion resistance 114 and biocompatibility 

115. Both metal and carbon electrodes show potent bactericidal effects in DC treatment on 

pathogenic cells, such as P. aeruginosa, S. aureus, S. epidermidis, and E. coli, although their 
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electrochemical products could be different 116, 117. The reported reduction effects of electric 

current on bacterial cells varied in different experimental conditions (current level, treatment 

duration and position of samples). In general, the longer treatment duration could kill more 

bacterial cells than short treatment 118-120, and the biofilm on the electrode surface was more 

vulnerable to DC treatment than biofilm away from the electrodes 116, 117, 121, 122. Although a higher 

level of electric current absolutely has stronger bactericidal efficacy 118, the recent researches focus 

on controlling biofilm with a lower level of DC (1-500 µA) because of the safety issues 116, 117, 120-

125. 

It is exciting that bacterial killing by DC/AC can be enhanced through synergistic effects with 

antibiotics. For example, 2 additional logs of killing of E. coli effects by gentamicin and 

oxytetracycline were obtained with concurrent treatment with 6 mA/cm2 of DC 126. Similar 

synergistic effects were also found for AC although the current level of AC was up to 150 mA 126. 

In 1994, Costerton et al. 30 also reported that low-level DC could also promote the killing of 

antibiotics against bacterial biofilms using P. aeruginosa as the model species.  
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Table 2. The examples of researches used electric current to eradicate bacteria cells. 

Current/Voltage 

Level  

AC/DC Electrodes 

material  

Bacterial Species  Findings Ref  

3000 – 4000 V AC Copper Mixed species in 

milk 

Bactericidal effect 104 

2 A  AC  Platinum wire  E. coli  Division inhibition  107 

10 - 200 mA AC Stainless steel E. coli Bactericidal effect 105 

1 - 140 mA  DC  Platinum wire  E. coli  Growth inhibition 108 

40 and 400 μA  DC  Silver, platinum, 

gold, stainless steel 

wires 

S. aureus  Bactericidal effect 109 

5 – 10 μA  DC  Silver wires Mixed Oral bacteria  Growth inhibition 127 

0.7-1.8 mA/cm2 DC  Platinum wires S. epidermidis  

P. aeruginosa 

6-7 logs reduction 128 

50 µA DC  Platinum wires K. pneumoniae 

P. fluorescens 

P. aeruginosa  

74% reduction to biofilm 

via anodic current 

123 

60 - 100 μA  DC  Stainless-steel  S epidermidis  76% reduction to biofilm 124 
125 

20-2000 μA  DC  Stainless steel or 

graphite  

P. aeruginosa 

S. aureus 

3.5 – 5 logs reduction in 2-

7 days treatment 

118 

200 μA  DC  stainless steel  S. epidermidis  3 logs reduction in 24 h 

treatment 

129 

1 – 5 mA DC  Stainless steel E. coli and S. aureus 5 logs reduction in 40 min 

treatment 

130 

2 - 2000µA DC Stainless steel, 

graphite, titanium 

or platinum 

S. aureus,  

P. aeruginosa   

S. epidermidis 

0.2 – 4.8 logs reduction to 

biofilm in 4-7 days 

treatment  

119 

100 - 500 μA DC platinum S. aureus 

S. epidermidis 

P. aeruginosa   

E. coli 

Candia species 

1.5 – 3 logs reduction to 

biofilm in 24 h treatment. 

3 – 5 logs reduction to 

biofilm in 4 days treatment. 

120 

800 mV DC Gold E. coli, S. aureus 0.5 – 1 logs reduction in 24 

h treatment 

131 

−1.8 V for cathode DC Titanium S. aureus  97% reduction in vitro 

98% reduction in vivo 

132, 

133 

1.25 – 2V/cm DC/AC stainless steel E. coli Bactericidal effect  134 

10 mA DC Titanium Anaerobic species 4-7 logs reduction to 

biofilm 

135 

1.5 V DC Carbon nanotube E. coli 32 - 67% reduction 136 

-0.6V DC Carbon fabric P. aeruginosa 7.8 logs reduction to 

biofilm with antibiotics 

137 

70 µA/cm2 DC Stainless 

steel/Graphite 

P. aeruginosa 2-7 logs reduction to 

persister cells 

116, 

117, 

121 

30 µA/cm2 DC Stainless steel S. mutans and S. 

aureus 

4-5 logs reduction to 

biofilm with antimicrobial 

122 
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2.7 Killing mechanisms of DC 

The exact killing mechanism of electric current is still unclear though there are many proposed 

theories. For the treatment with high voltage (kV) level electric pulses, the permanent damage of 

the cell membranes was observed 101. In comparison, the effects of low-level DC are thought to 

occur via electrochemical products, rather than directly affecting cell membrane integrity. There 

are many possible redox reactions that happen at the interface between electrode and electrolyte 

solution during electrolysis procedure: 

Oxidation reactions on the anode 138: 

2𝐻2𝑂 → 4𝐻+ + 𝑂2 + 2𝑒− 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

𝐹𝑒2+  → 𝐹𝑒3+ + 𝑒− 

𝐶𝑟 → 𝐶𝑟3+ + 3𝑒− (Trace in steel anode) 

2𝐶𝑙 − → 𝐶𝑙2 + 2𝑒−  

𝐶𝑙− + 𝐻2𝑂 → 𝐻𝐶𝑙𝑂 + 2𝑒− + 𝐻+ 

   𝐶𝑙2 + 2𝐻2𝑂 → 2𝐻𝐶𝑙𝑂 + 2𝑒− + 2𝐻+  

Reduction reactions on the cathode: 

𝐻2𝑂 +  2𝑒− → 𝐻2 + 2𝑂𝐻− 

𝑂2 + 2𝐻+ +  2𝑒− → 𝐻2𝑂2 

𝑂2 + 𝐻2𝑂 +  𝑒− → 𝐻𝑂2 ∙ +𝑂𝐻− 
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𝑂2 + 2𝐻2𝑂 +  2𝑒− → 𝐻2𝑂2 + 2𝑂𝐻− 

Redox reactions in the electrolyte solution 139: 

𝐹𝑒2+ + 𝐻2𝑂2  → 𝐹𝑒3+ + 𝑂𝐻 ∙ +𝑂𝐻− 

𝐹𝑒3+ + 𝐻2𝑂2  → 𝐹𝑒2+ + 𝑂𝑂𝐻 ∙ +𝐻+ 

2𝐹𝑒3+ + 2𝐻2𝑂 → 2𝐹𝑒2+ + 𝐻2𝑂2 + 2𝐻+ 

During DC treatments, the anode material, especially silver, copper or steel, is oxidized and metal 

ions (Ag+, Cu2+/Cu+, Cr3+, Fe2+/Fe3+, et al.) are released 121. These ions could accumulate and 

become toxic to bacterial cells by interrupting cells’ and metabolic activities. Moreover, the 

generated metal ions could move under an electric field, which can disrupt the integrity of cell 

membrane 116, 121. Based on the principles of electrochemistry, reactive oxygen species (ROS) and 

free radicals are also generated from the redox reaction involving electrodes. However, this is 

difficult to prove directly since many of these species react quickly and thus only have the transient 

presence.  Hydrogen peroxide (H2O2) is one of several proofed ROS generated in electric treatment. 

H2O2 affects the structure and permeability of the cell membrane 140. The concentration of H2O2 

closed to electrode surface ranges from 1ppm to more than 15ppm depending on the current density 

141. However, the concentration decreases quickly over the distance away from the electrode 141. 

Another reported ROS generated during DC treatment is hypochlorite if the electrolyte solution 

contains chloride ions. The chloride ions are oxidized on the anode to produce chlorine and 

hypochlorite 135. Hypochlorite could disrupt a series of metabolic activities of bacteria, such as 

oxidative phosphorylation and sulfhydration, as well as DNA synthesis 142.  The generation of 

hypochlorite depends on the current level and concentration of chloride 135.  
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The mechanism of synergy between antibiotics and electric current treatment is of research interest. 

It is speculated that DC weakens the cell membrane leading to higher permeability to antibiotic 

molecules 30. Electrochemical products could also disrupt extracellular matrix, and expose biofilm 

cells more to antibiotics molecules 143. Many antibiotics have charges after dissolved, and these 

cationic or anionic antibiotic molecules have better penetration to the cell membrane in the 

presence of electric field 144. Moreover, some anionic molecules could interact with metal ions to 

form a complex that has a higher affinity to cellular targets, such as RNA 145.   

2.8 Limitation of conventional DC treatment  

An essential requirement for DC treatment with the conventional setup is that the treatment facility 

(electrodes) must be connected to a power source by wires. This limits the in vivo applications, 

especially for treatment in deeper tissues. To deliver electric current, the electric wires must be 

introduced into the body to reach the treatment site. There are two options to achieve this: 1) insert 

wires through natural pores (oral, nasal, ear canal, etc.) if the treatment site is in the mouth, nose 

or ear. 2) pierce skin directly to insert wire from outside to the treatment position. Both options 

would bring discomfort to the patient. Moreover, skin-piercing increases the risk of secondary 

infection 146, since the piercing breaks the skin barrier. The wiring requirement needs to be solved 

if we want to apply electric current for human therapy. This motivated us to develop a platform to 

deliver DC wirelessly for bacterial control.  

2.9 Wireless charging technologies 

Wireless charging (also known as inductive charging) is a technique that uses an electromagnetic 

field to transfer electric energy between two objects. The transfer medium is radio wave, and the 

phenomena are called resonant inductive coupling between two conducts. In 1894, Nikola Tesla 
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first used this principle to light up a phosphorescent and incandescent lamp without direct 

connection with a power cord 147. The early devices of wireless electric delivery needed a very 

high voltage at high frequency (~150 kHz) in the 19th century. In 1960s, the first wireless electric 

delivery system was developed for the pacemaker, and the distance of wireless delivering was less 

than 20 cm 148.  

Recent research on wireless electric delivery can be divided into three major fields. One focuses 

on improving charge efficiency (up to 75 – 80%) and the other on developing rapid charging at 

kilowatt power levels for those high-power electric consumers, such as road electrification devices. 

The third field is working on low milliwatt power levels that could provide stable and safe electric 

power to implantable and wearable devices 148.  

Today many types of medical devices carry a wireless electric delivery system, such as pacemaker, 

cochlear and gastric stimulation implants 149 150, 151. The major advantages of wireless charging for 

medical implants include low risk of infection and good reliability. Since the magnetic field could 

penetrate the skin tissue and pass the energy to the device in vivo, there is no requirement for skin 

piecing, which could reduce the risk of post-surgical infection. Wireless charging device also 

avoids the use of batteries, which need replacement, and are associated with the issues of corrosion.  

To achieve wireless electric delivery by resonant inductive coupling, it requires two basic sub-

systems are required: a transmitter unit and a receiver unit. The transmitter unit is composed with 

a transmitter coil (primary coil) and controller chips. The transmitter coil can transfer alternating 

current to a time-changing magnetic field because the conduct with electric current could generate 

a magnetic field on the surrounding. The controller chips are used for adjusting the frequency and 

current level of AC in the coil to obtain the desired strength and frequency of the magnetic field. 
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The magnetic field can use radio wave to transport and penetrate the barrier, so no wire or other 

physical medium is required. The receiver unit is composed of a magnetic coil and another 

controller chips. The magnetic coil works as an antenna to receive the magnetic field and then 

transfers back to altering current according to the Faraday's law of induction. The function of 

controller chips in receiver unit is to convert AC to a stable DC. This DC level can be adjusted 

from µA to mA level for effective control bacterial biofilms.  

2.10 Materials and methods used in research 

2.10.1 Strains 

Wild-type Staphylococcus aureus and Pseudomonas aeruginosa PAO1 strains were chosen as 

representative species in this study. S. aureus is a gram-positive strain and commonly found in the 

human bodies, such as nose, respiratory tract, and skin. It is also an important pathogen that causes 

community and hospital-acquired infections. There have been almost 500,000 cases of S. aureus 

infections reported in U.S. and 58% of these are related to Methicillin-resistant S. aureus (MRSA) 

strains 152. For implant-associated infections, the prevalence of S. aureus is 35.5% in orthopedic 

implant infection cases based on an epidemiology study 153. P. aeruginosa is a gram-negative strain 

and one of the most significant pathogens. Since P. aeruginosa can form robust biofilms on the 

surface of biomaterials, it is commonly linked to chronic infections after implant surgery 53. 

According to the CDC, there are about 51,000 healthcare-associated P. aeruginosa infections 

annually in the U.S., causing approximately 400 deaths. 

NCI-H1299 (ATCC® CRL-5803™) human epithelial cells and C3H/10T1/2, Clone 8 (ATCC® 

CCL-226™) mice fibroblast cells are chosen as mammalian cells to investigate the effect of 

wireless DC treatment on mammalian cell lines. We used these mammalian cells to mimic the host 
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tissue cells around implant sites to evaluate the cytotoxicity of wirelessly delivered DC. The cells 

are grown on the bottoms of mammalian culture petri dishes and treated under the same conditions 

as bacteria cells. 

2.10.2 Substrate material for biofilm formation 

Poly(dimethylsiloxane) (PDMS) is chosen as the substratum material for biofilm growth in this 

study. This material is broadly used in medical devices, especially as biocompatible case material 

for electronic implant devices (such as cochlear implants, pacemakers, GI track stimulators, et al.) 

154, 155. According to the previous researches, the silicone shells are the primary sites for biofilm 

formation since this material is susceptible to bacterial attachment 38. Hence, the biofilm formed 

on PDMS surface is a suitable infection model for our research. 

2.10.3 Wireless charging system  

The electromagnetic field used in this research is the extremely low field (ELF) with a frequency 

of 100,000 Hz. The in vitro system of wireless DC delivery was connected to a treatment facility 

(petri dish with two electrodes) in the series circuit. It contained an AC power source, transmitter 

coil & controller chip, receiver coil & controller chip, and an external resistor (Figure 1). The 

transmitter and receiver coils were used to achieve wireless electric delivery by coupling induction. 

The main functions of the controller chip are AC/DC conversion as well as controlling the 

frequency of the electromagnetic field. An external resistor was used to adjust DC level in the 

treatment circuit. A multimeter was included into the circuit during setup to monitor the voltage 

across the external resistor.  The current level was calculated based on below equation: 

𝐼𝑡𝑜𝑡𝑎𝑙 =
𝑈 𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟

𝑅𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟
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Figure 1. The actual circuit of wireless DC delivery system in our research (1: Treatment petri 

dish. 2: Adjustable resistor. 3: Fixed resistor. 4: transmitter and receiver coils. 5: Multimeter.) 

 

2.10.4 Cytotoxicity test 

To evaluate the safety of DC to human tissue, it is essential to test cytotoxicity to mammalian cell 

lines after the treatment with wirelessly delivered DC. In this study, we used Live/Dead staining 

to differentiate health cells and dead injured cells after treatment. This Live/Dead staining is based 

on the difference in membrane permeability between live and dead cells, and thus the labeling 

efficiency between green (live cells) or red (dead cells) fluorescence. The staining kit contains two 

different dyes: Calcein AM and Ethidium homodimer-1. Calcein AM has green fluorescence with 

ex/em wavelength of 494/517 nm, while Ethidium homodimer-1 has red fluorescence with ex/em 

wavelength of 528/617 nm. The Calcein AM is polyanionic and retains on live cells membrane. 

The Ethidium homodimer-1 can only penetrate the damaged membrane of dead or unhealthy cells 
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and bind to nucleic acid. Once binding to DNA, Ethidium homodimer-1 has 40-fold enhancement 

of fluorescence, so that the dead cells would have a bright red color under fluorescence microscopy. 

The membrane of intact cell blocks the penetration of Ethidium homodimer-1 so that they have a 

green color under fluorescence microscopy. 
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The proof-of-concept study of wirelessly delivered DC treatment on 

biofilm cells 

 

 

 

 

 

 

 

 

 

 

 



 
48 

 

3.1 Abstract  

Bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus can form biofilms on 

medical implants and cause serious infections that are incurable by conventional antibiotics due to 

high-level tolerance to antimicrobials. In this study, we developed a new method towards the non-

invasive treatment of biofilm infections. We demonstrate that antibiotic tolerant biofilm cells can 

be effectively eradicated by electromagnetically induced direct current (DC) from a remote power 

source. For example, after treatment with 60 µA/cm2 of wirelessly delivered DC using stainless 

steel electrodes for 6 hours, the viability of Pseudomonas aeruginosa and Staphylococcus aureus 

biofilm cells was reduced by approximately 3.4 and 2 logs, respectively. DC generated with 

graphite-based TGONTM electrodes was also effective especially against S. aureus. For example, 

the viability of P. aeruginosa and S. aureus biofilm was reduced by 1.4 and 2.5 logs, respectively, 

after treatment with the 30 µA/cm2 of wirelessly delivered DC for 3 hours. Synergy in biofilm 

killing was also observed between lower level DC and antibiotics. The viability of P. aeruginosa 

biofilm was reduced by 1.6 logs after concurrent treatment with 12 µA/cm2 wireless delivered DC 

and 4.5 µg/ml tobramycin. In comparison, treatment with the same level of DC or tobramycin 

alone only showed 0.8 and 0.5 log of killing, respectively. The viability of S. aureus biofilm was 

reduced by 2.2 logs after concurrent treatment with 6 µA/cm2 DC and 10 µg/mL chlorhexidine, 

while treatment with the same level of DC or chlorhexidine alone only showed 1.1 logs and 0.6 

logs of killing, respectively. These conditions were found safe to the human epithelial cell line 

CLR 5803 and mice fibroblast cell line C3H/10T1/2, Clone 8.  
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3.2 Introduction  

Application of surgically implanted medical devices is on the rise, thanks to the advances in device 

design and major benefits to patients’ life quality 1. However, device-associated infections remain 

challenging despite the improvement on sterilization techniques over the past decades 2. 

Approximately 4.3% of the total 2.6 million orthopedic devices implanted in the United States 

every year are infected 3. The risk of infections associated with hearing aid implants (e.g. cochlear 

and bone anchored implants) is also approximately 4 % but higher among younger patients 4, 5. 

Such infections lead to ulcer, swelling or inflammation of affected tissues  6, and in some cases, 

additional surgeries for implant relocation, fixation or even explanation 7. In severe cases, device-

associated infections can lead to life-threatening conditions such as meningitis 6, 8-10.  

It is well documented that bacterial biofilms play an important role in recalcitrant implant-

associated infections 7. The source of these bacteria is commonly linked to the ambient 

environment, surgical equipment, or the patient’s own skin 11. The concept of “race for the surface” 

well describes the nature of device-associated infections; e.g., if bacterial adhesion occurs on 

implanted biomaterial before tissue integration, it is difficult to prevent further biofilm formation 

by host defense 12. However, infections can also occur years after the operation 13, 14. The major 

causative agents of implant-associated infections include Staphylococcus aureus, Staphylococcus 

epidermidis, Pseudomonas aeruginosa and Streptococcus species 6, 14-18. Gram-positive S. aureus 

and Gram-negative P. aeruginosa are the most commonly isolated strains from infected implanted 

devices 6, 14, 17. 

A common strategy for controlling device-associated infection is coating with antimicrobials that 

are either released from the implant surface 19, 20 or immobilized on the surface 21. Besides, biofilm 
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formation can be reduced by chemical and physical modification of material properties, such as 

charges, hydrophobicity, topography and stiffness 22-24. Although these approaches can 

reduce/delay biofilm formation, many of these mechanisms can be overcome by bacteria over time, 

and eradicating mature biofilms remains challenges. Direct currents (DCs) have been shown to 

have bactericidal effects against established biofilm cells; and synergy between DC and antibiotics 

in bacterial killing has been observed in multiple systems including in vivo models 25-32. However, 

these systems require a direct connection between electrodes and a power source, which requires 

skin-piercing wiring for current transduction. This is an invasive process, which causes discomfort 

and can lead to secondary infections. These limiting its application in the treatment of device 

associated infections. 

To improve infection control by DC, we developed a method to induce DC wirelessly using a 

magnetic field. P. aeruginosa and S. aureus were used as model species in this study to test this 

new strategy. The results demonstrate that wirelessly delivered DC has strong effects in killing 

planktonic and biofilm cells of P. aeruginosa and S. aureus, and the treatment conditions are safe 

to human epithelial cells. 

 

3.3 Materials and methods 

3.3.1 Bacteria strains and growth media 

P. aeruginosa PAO1 and S. aureus ALC2085 (strain RN6390 containing pALC2084) were 

routinely cultured in Luria-Bertani (LB) medium 33 containing 10 g/L tryptone, 5 g/L Yeast extract 

and 10 g/L NaCl at 37 °C with shaking at 200 rpm. Chloramphenicol was supplied at 10 μg/mL 

for S. aureus cultures. 
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3.3.2 Biofilm formation  

Polydimethylsiloxane (PDMS) blocks (1 cm x 0.5 cm; 0.1 cm thick) were used to form biofilms 

because it is a commonly used biomaterial for medical devices, such as cochlear implants and 

pacemakers 34, 35. Briefly, 25 µL overnight culture of planktonic cells was used to inoculate a petri 

dish containing 25 mL of LB medium and PDMS blocks. The biofilm cultures were incubated at 

37°C for 24 h without shaking. After biofilm growth, the PDMS blocks with attached biofilms 

were removed from the petri dish and washed gently with 0.85% NaCl solution prior to DC 

treatment.  

3.3.3 Wirelessly delivered DC treatment  

The setup of the experimental system for wirelessly delivered DC generation is shown in Figure 

1. Briefly, the treatment circuit was constructed with two stainless steel (McMaster-Carr, Elmhurst, 

IL, U.S.) or TGON™ 805 (Laird Technologies, Schaumburg, IL, U.S.) electrodes positioned on 

the opposite sides of a 35 mm petri dish (Thermo Fisher Scientific, Pittsburg, PA, U.S.). To deliver 

DC wirelessly, the electrodes were connected to a rectifier (XKT-3168, Xinketai, China) and then 

to a copper receiver coil (10 turns, 5 cm diameter, 0.7 mm thickness) (McMaster-Carr, Elmhurst, 

IL, U.S.). The total current level of treatment circuit was controlled using adjustable resistors (10 

k – 10 M ohm). The receiver coil was placed on a phone wireless charging pad (Yootech, T100, 

JinJiang, China) or a wireless charging module (XKT-412, Xinketai, China) as a power source. 

Electric power was delivered wirelessly based on the principle of coupling induction between the 

transmitter coil and receiver coil. The electric power consumption of DC treatment can be 

calculated using the Equation 1 36: 

𝑃𝑜𝑤𝑒𝑟 =
(𝑈𝑡𝑜𝑡𝑎𝑙−𝑈𝑅)2

𝑅
           (1) 
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Where Utotal is the total potential output of rectifier chip (5V in our system), UR is the average 

potential applied on the adjustable resistors, and R is resistance value of resistors. All of them were 

monitored by using a multimeter (Metex, M4640A, Toronto, ON, Canada).  

To understand if the presence of skin tissue may affect wireless DC delivery, a porcine skin 

purchased from a local grocery store was inserted between transmitter and receiver coils, and the 

current density in the internal circuit was monitored in the same method.  

3.3.4 DC treatment of biofilms  

DC treatment of biofilms was carried out in 3 mL 0.85% NaCl solution. The PDMS blocks with 

attached P. aeruginosa PAO1 or S. aureus ALC2085 biofilm were placed in the middle of the 

electric field with approximately 2-3 mm from each electrode. The biofilm was treated with DC 

for 2-6 hours. The untreated samples were used as controls. After treatment, each PDMS block 

was transferred to a 10 mL tube containing 1 mL 0.85% NaCl solution. The biofilm cells were 

removed from the surface by gentle sonication (Model B200, Branson, Danbury, CT, USA) for 1 

min. The number of viable cells detached from PDMS blocks was quantified by counting CFU. 

Tobramycin (Tob) and chlorhexidine (CHX) were used to evaluate possible synergy with low-

level DC in bacterial killing. PDMS blocks with P. aeruginosa PAO1 biofilm were concurrently 

treated with 12 µA/cm2 DC and 4.5 µg/mL Tob for 6 h and compared with individual treatment. 

PDMS blocks with S. aureus biofilm were concurrently treated with 6 µA/cm2 DC and 10 µg/mL 

CHX for 6 h and compared with individual treatments. The number of viable biofilm cells was 

quantified by counting CFU.  
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3.3.5 Scanning Electron Microscopy (SEM) 

SEM was performed to evaluate the effects of the wireless electrochemical treatments on P. 

aeruginosa and S. aureus biofilm cells compared to the untreated control. The treated and control 

PDMS with biofilm samples were gently rinsed with PBS and fixed with 2.5% glutaraldehyde in 

1X PBS buffer (pH 7.4) for 3 days at 5 °C. Then the samples were fixed in 2.0% osmium tetroxide 

(MilliporeSigma, St. Louis, MO, US) for 1 h, and washed by DI water again followed by 

dehydration in a graded ethanol series (15%, 30%, 50%, 70%, 90%, and 100%). The final 

dehydration in 100% ethanol was repeated three times. After dehydration, the samples were critical 

point dried with 100% ethanol in a Tousimis samdri-810 (Tousimis, Rockville, MD). Finally, the 

samples were coated with approximately a 5 nm gold and imaged using a Scanning Electron 

Microscope (JEOL 5600, JEOL, Japan) at an accelerating voltage of 7 kV. 

3.3.6 Cytotoxicity to human cells 

Human epithelial lung cancer cell line (CLR-5803) was grown in 35 mm glass bottom petri dish 

(Thermo Fisher Scientific, Pittsburg, PA, U.S.), with RPMI 1640 medium supplemented with 10% 

Fetal Bovine Serum (FBS) (Thermo Fisher Scientific, Pittsburg, PA, U.S.) 37, 38 for 2 days. Mice 

fibroblast cell line (C3H/10T1/2) was grown in the same petri dish with Eagle's Basal 

medium supplemented with 10% Fetal Bovine Serum (FBS) and 2mM L-glutamine 39, 40 (Thermo 

Fisher Scientific, Pittsburg, PA, U.S.) for 2 days. Then two electrodes (stainless or TGON) were 

inserted into the petri dish to deliver 30 - 60 µA/cm2 wirelessly induced DC at 37 °C supplemented 

with 5% CO2. After DC treatment, the mammalian cells on the bottom of petri dish were stained 

using the Cell-Mediated Cytotoxicity Kit (Life Technologies, Grand Island, NY, USA) 30 min, 
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followed by observation with a fluorescence microscope (Axio Imager M1, Carl Zeiss Inc., Berlin, 

Germany) to evaluate viability.  

3.3.7 Statistical analysis 

All data are presented as a mean ± standard deviation. Statistical significance was assessed with 

one-way or two-way ANOVA followed by Tukey test. Results with p < 0.05 were considered 

statistically significant. All analyses were performed using SAS 9.4 software (SAS Institute, Cary, 

NC, USA). 

 

3.4 Results 

3.4.1 Engineering a new system for wireless delivery of DC at therapeutic levels  

Our design is based on the principle of induction coupling. The system we developed for wireless 

DC delivery included an AC power, a pair of transmitter and receiver coils, and a rectifier chip 

connected to the biofilm treatment unit. In the first test, the system was evaluated in a petri dish 

with two electrodes (Figure 1A&B). The AC power and transmitter coil composed the power 

transmitter unit; while the receiver coil, rectifier chip and an adjustable resistor composed DC 

generation unit. Using this setup, the electric power was transferred to a time-changing magnetic 

field by the transmitter unit first and then transferred back to electric current in the receiver unit 

by induction coupling. The AC current was transformed to stable DC by the rectifier and delivered 

to the treatment unit (Figure 1B). Although a larger receiver coil could provide higher efficiency 

of coupling induction, we chose the coil with 3 cm of diameter in this study (Figure S3), because 

it is close to the diameter of typical electric medical implants, such as pacemaker, cochlear implant, 

and GI tract stimulator 38, 41, 42.  
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The current densities of our wireless DC delivering system were tested from 6 to 120 µA/cm2, 

which was stable during 3 - 6 h treatment. We also measured the current density with varying 

distance between the charging pad and receiver coil. The current density remained at the stable 

and high level when the distance varied from 0 to 10 mm, beyond which the current density started 

to decrease (Figure 1C). When the distance increased to 15 mm, the current density decreased to 

approximately 2/3 of the maximum level. This result indicates that the wireless delivery of DC can 

penetrate skin and tissues without significant decay (Figure 1C). The maximum power required to 

obtain 60 µA/cm2 output current in our experimental system is approximately 0.1 mW based on 

the calculation using Equation 1 shown in the Methods section. By enhancing the power output, 

the distance for DC delay can be substantially increased if needed. 

3.4.2 Effects of DC on P. aeruginosa and S. aureus biofilms using stainless steel electrodes 

The maximum killing effect on P. aeruginosa biofilms among the tested conditions was observed 

when treated with 60 µA/cm2 DC for 6 h, which was 3.4 ± 0.03 logs (p = 0.03). This killing was 

reduced to 2.4 ± 0.17 logs when the DC treatment was shortened to 2 h (Figure 4). At lower current 

levels, the 6 h treatment with 6 or 30 µA/cm2 DC killed 0.4 ± 0.04 (p < 0.05) and 1.8 ± 0.001 logs 

(p = 0.04), respectively. Thus, biofilm cells are more tolerant to DC treatment as expected. No 

significant killing was observed at any of these current levels when the treatment time was 

shortened to 2 h (Figure 2A). These results demonstrated the dosage-dependent killing of P. 

aeruginosa by wirelessly delivered DC. 

Wirelessly delivered DC was also found effective against S. aureus biofilms under the same 

treatment conditions. Specifically, the number of viable S. aureus biofilm cells was reduced by 1.6 

± 0.02 and 2.2 ± 0.2 logs after treatment with 60 µA/cm2 DC for 2 and 6 h (p < 0.01), respectively. 
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DC at 30 µA/cm2 showed similar killing activities against S. aureus biofilms (1.2 ± 0.01 and 1.9 

± 0.02 log for 2 and 6 h treatment, respectively; p < 0.01); while 6 µA/cm2 DC only exhibited 

significant killing effect (1.1 ± 0.05 log) with 6 h treatment (p < 0.01) (Figure 2B). When current 

density increased up to 120 µA/cm2, the number of viable S. aureus cells was reduced by 2.4 ± 

0.01 logs for 6 h treatment (p < 0.01).   

To better understand the killing effects of wireless electrochemical treatment on biofilm cells, 

SEM analysis was performed to examine the morphology of P. aeruginosa and S. aureus biofilm 

cells with and without treatment by wirelessly delivered DC. The SEM results revealed major 

damage to the treated cells, consistent with the potent killing effects of DC observed. For example, 

after treatment with 60 μA/cm2 DC for 6 h, The majority P. aeruginosa and S. aureus cells were 

disrupted, and cell debris was seen for treated samples (Figure 3), which is consistent with CFU 

results described above. 

3.4.3 Synergy between DC and antimicrobials in killing P. aeruginosa and S. aureus biofilms 

using stainless steel electrodes 

Low-level electric currents are known to have synergy with antibiotics in killing bacterial biofilm 

cells 43, 44. To understand if wirelessly induced DC also has such effects, tobramycin (Tob) was 

tested on P. aeruginosa PAO1 biofilms. When P. aeruginosa biofilms were treated with 12 

µA/cm2 DC and 4.5 µg/mL tobramycin (Tob) for 6 h, the maximum killing effect (1.6 ± 0.1 logs, 

p = 0.003) was observed under the condition of concurrent treatment with both DC and Tob present. 

In comparison, treatment with 12 µA/cm2 DC or 4.5 µg/mL Tob alone only showed 0.8 ± 0.3 logs 

and 0.5 ± 0.3 log of killing, respectively (Figure 2C). Thus, synergy was observed between 

wirelessly delivered DC and Tob.  
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Similar to the results of P. aeruginosa, concurrent treatment with wirelessly delivered DC and 

chlorhexidine (CHX) was found to have synergetic effects in killing S. aureus biofilms. For 

example, the number of viable S. aureus biofilm cells was reduced by 2.2 ± 0.05 logs (p < 0.01) 

after concurrent treatment with 6 µA/cm2 DC and 10 µg/mL CHX for 6 h. In comparison, treatment 

with 6 µA/cm2 DC or 10 µg/mL CHX alone only showed 1.1 ± 0.05 log and 0.6 ± 0.03 log of 

killing, respectively (Figure 2D). 

3.4.4 Effects of DC on P. aeruginosa and S. aureus biofilms using TGONTM 805 electrodes 

Carbon is a good nonmetal material for medical implants because of its corrosion resistance and 

good biocompatibility 2, 45. Unlike stainless steel, carbon-based electrodes don’t produce salt 

precipitation, which helps keep the biomaterial clean after DC treatment 46. To understand if it is 

also effective for bacterial killing by wirelessly delivered DC using carbon-based electrodes, we 

treated P. aeruginosa and S. aureus biofilms using the same test system but replaced by replacing 

stainless steel electrodes with the TGONTM 805. TGON is a graphite-based material that has higher 

flexibility and conductivity than normal carbon electrodes 46. The results showed that treatment 

with 30 µA/cm2 DC for 3 h led to the killing of P. aeruginosa and S. aureus biofilm cells by 1.8 ± 

0.08 (p < 0.01) and 2.9 ± 0.5 logs (p = 0.01) (Figure 2 E&F), respectively. These effects are 

compatible to those by stainless electrodes and more potent in killing S. aureus. 

3.4.5 The effective DC levels for bacterial killing are safe to human cells  

To understand if the conditions effective in bacterial killing are safe to human cells, human lung 

epithelial cell line (CLR-5803) was used to evaluate the effects of DC. The microscopic images of 

epithelial cells stained with Cell-Mediated Cytotoxicity kit showed no notable difference between 

DC treated epithelial cells and untreated control. As shown in Figure 4, nearly all mammalian cells 
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remain viable (stained green) after treatment with 60 µA/cm2 DC using stainless steel electrodes 

for 6 h or 30 µA/cm2 DC using TGON electrodes for 3 h, which were potent in killing P. 

aeruginosa and S. aureus. 

 

3.5 Discussion 

Different levels of direct currents (DC) and alternative currents (AC) have been demonstrated to 

kill biofilm cells in the presence or absence of antibiotics 28, 31, 32, 43. Our group recently reported 

synergetic effects between low-level DC and the antibiotic tobramycin in killing P. aeruginosa 

biofilm and dormant persister cells 29, 30. These data suggest that new treatment may be possible to 

better combat antibiotic-resistant infections. However, all those systems require a physical 

connection between the electrodes and a power source. Such setup needs skin piecing or battery if 

applied to implanted medical devices, which presents challenges such as limited device lifetime, 

pain, discomfort associated with the treatment, and risk of secondary infections. To address this 

challenge, we generated electric currents wirelessly by induction coupling and achieved effective 

killing of bacteria (both planktonic and biofilm cells); and synergy with antibiotics was also 

observed. Our results showed that the viability of P. aeruginosa and S. aureus biofilm cells could 

be reduced by 3.4 and 2.2 logs, respectively, with 6 h treatment of 60 or 120 µA/cm2 DC conducted 

with stainless steel electrodes in saline solution compared to the untreated controls. Extremely low 

levels of DC (0.06 – 0.6 µA/cm2) also exhibited a significant killing effect on planktonic cells, 

although not biofilms (Supplementary data, Figure S1). Synergetic effect was observed for 

concurrent treatment of P. aeruginosa biofilm with 12 µA/cm2 DC and 4.5 µg/mL Tob for 6 h, 

which led to 1.8 logs of killing, and the viability of S. aureus biofilm was reduced by 2.2 logs by 
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concurrent treatment with 6 µA/cm2 DC and 10 µg/mL CHX for 6 h. Similar killing effect to 

biofilm cells was also observed by the treatment with 30 µA/cm2 DC using graphite electrodes 

(TGON) for 3 h. Furthermore, the same treatment conditions were found safe to human epithelial 

cells.  

To our best knowledge, this is the first application of wirelessly induced current for bacterial 

control. We believe it has promising in vivo applications because wireless power technology has 

been successfully for charging implanted devices in human 47, such as pacemakers, deep brain 

stimulators, and cochlear implants. These systems have two coils located inside and outside of the 

human body respectively 48-50. The electric power is delivered by inductive coupling between the 

two coils. Electromagnetic inductive coupling could power the implanted devices wirelessly 

through the skin and tissues without any skin piercing, indicating the safety of such delivery 

methods. Typical power supply for wireless electronic implants is approximately 40 - 80mW 51, 

which is much higher than the power requirement for DC treatment under our experimental setup. 

Since our effective current level (30 - 120 µA/cm2) is lower than those of wired systems 

demonstrated to be safe in vivo 52, 53, we expect that it is practical to integrate DC treatment unit 

for treating biofilm infections associated implanted devices. In this study, we demonstrated that 

DC can be delivered through a distance of 10 mm, which exceeds the maximum thickness of skin 

54. This indicates the feasibility as some other wireless electronic implants (e.g. pacemaker and 

hearing aids) that are usually placed under the dermis tissue 3, 41, 55, 56. For some devices such as 

cochlear implants and pacemakers, it is possible to keep the original wireless charging module and 

rewire the system to provide both original charging function and added infection control. It is also 

possible to monitor biofilm formation by measuring impedance changes of the implanted device 

and apply therapeutic DC on demand. The maximum current density of DC that can be safely 
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applied in the human brain is 2 mA/cm2 57-59. The DC density used in this study is much lower 

than that (<120 µA/cm2) and thus is expected to be safe with room to achieve even higher 

efficiency in biofilm control. In our study, we reduced the viability of P. aeruginosa planktonic 

cells by 2 logs with only 0.06 µA/cm2 DC in 6 h, although the biofilm cells required longer 

treatment time or higher DC level (still less than the mA/cm2 level of safe limit 60).  

The working distance between the transmitter coil and receiver coil is approximately 10 mm that 

is enough for several types of implants, such as implanted hearing aids devices and pacemaker, 

which are typically implanted under the skin 3, 38, 41, 55, 56. If a device is implanted at a deeper 

position, e.g. gastrointestinal stimulator, the size of charging coil can be enlarged or amended by 

adding a resonant coil to achieve deeper penetration for DC delivery, e.g. 5-15 cm 38, 61.  

The coupling induction technology that utilizes a time-varying magnetic field as the carrier is 

applicable to implanted medical devices since it can deliver electric power and signals wirelessly 

without skin piecing wires 47. The safety limitation for the time-varying magnetic field contains 

two parameters: magnetic field strength (Tesla) and frequency (Hz). The magnetic field’s strength 

in our experiment is less than 0.02 mT with the frequency of 100-200 kHz, which is much lower 

than the magnetic field (0.1 – 2 mT, 200 kHz) applied for healing bone fractures and this expected 

to be safe 62. The application in bone nails and other orthopedic devices are more complex but can 

be archived by adding a receiver coil and electronic rectifier prior to implantation to generate 

desired DC on demand. Many orthopedic devices are implanted in the arms and legs that are far 

from the critical nervous system; thus, the applied DC level can be even higher to better 

antibacterial effects including that on antibiotic-resistant strains. The DC generation unit can also 

be implanted away from the device to minimize the change to devise design. Further in vivo studies 

are needed to identify the best treatment condition, e.g., relatively high current and short time or 
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low current but long treatment time given enough room of safe DC level that can be adjusted. This 

is part of our ongoing effort.  

 

3.6 Conclusion 

In summary, we demonstrated the feasibility to integrate the wireless delivery of DC and 

electrochemical control of biofilm cells. DC generated using wireless coupling induction was 

found effective in killing the model organisms P. aeruginosa and S. aureus biofilms, and synergy 

in bacterial killing was observed between DC and antimicrobials (tobramycin and chlorhexidine). 

The killing effect of low-level current was time- and current level-dependent. Wireless delivery of 

DC can avoid skin piercing, which eases its future application in non-invasive control of biofilm 

infections. The prototype device with the function of wirelessly delivered DC treatment showed 

the potent killing of biofilm cells in both in vitro and ex vivo models, which provide a new platform 

technology for future device engineering. 
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3.9 Figures 

 

Figure 1. Engineered system for wireless delivery of DC. (A) Block diagram of wireless DC 

delivery system. Alternating current (AC) is generated by an AC power source, which is 

transferred to a changing magnetic field by coil 1. Next, coil 2 receives the magnetic field and 

transfers back to AC by induction coupling. The AC is converted to DC by a rectifier, followed by 

delivery of DC to the treatment petri dish with electrodes and attached biofilm samples. (B) 

Schematic of the DC delivery system including the power transmitter unit, receiver unit, and 

treatment unit. (C) The current density of the wireless DC delivery system with varying distance 

between the transmitter and receiver coil. The system was able to deliver DC over 10 mm under 

our experimental condition, which can be increased by using larger transmitter coil and higher 

frequency.   
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Figure 2. Viability of bacterial cells after treatment with wirelessly delivered DC in the absence or 

presence of antimicrobials. (A)&(B): Viability of P. aeruginosa (A) and S. aureus (B) biofilm 

cells after treatment with 6, 30, 60 or 120 µA/cm2 DC in 0.85 % NaCl for 2 or 6 h. (C)&(D): 

Viability of P. aeruginosa (C) and S. aureus (D) biofilm cells after treatment with antimicrobials 
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alone (4.5 µg/mL Tob or 10 µg/mL CHX), DC (6 or 12 µA/cm2) alone or concurrent treatment for 

6 h in 0.85 % NaCl solution. (E)&(F): Viability of P. aeruginosa (E) and S. aureus (F) biofilm 

cells after treatment with 12 or 30 µA/cm2 DC conducted by TGONTM 805 electrodes in 0.85% 

NaCl for 3 h.  

 

 

Figure 3. Representative SEM images of untreated (A) and DC treated (B) P. aeruginosa and S. 

aureus biofilms. Wirelessly delivered DC at 60 μA/cm2 was used to treat biofilm cells using 

stainless steel electrodes. Bars = 1 μm. 

 



 
72 

 

 

Figure 4. DC treatment of CLR-5803 epithelial cells and C3H/10T1/2 mice fibroblast cells 

attached on the glass bottom petri dishes in RPMI medium supplemented with 10% FBS. (A)&(B): 

The epithelial cells were treated without (A) or with (B) 60 µA/cm2 DC conducted by stainless 

steel electrodes for 6 h. (E)&(F): The samples were treated without (E) or with 30 µA/cm2 DC (F) 

using TGONTM 805 electrodes for 3 h. (C)&(D): The fibroblast cells were treated without (C) or 

with (D) 60 µA/cm2 DC conducted by stainless steel electrodes for 6 h. (G)&(H): The samples 

were treated without (G) or with 30 µA/cm2 DC (H) using TGONTM 805 electrodes for 3 h. Bar = 

50 µm. 
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Chapter 4 

Designing and engineering a prototype device of wirelessly delivered 

DC treatment 
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4.1 Abstract 

In Chapter 3, we have demonstrated that the wirelessly delivered direct electric current (DC) could 

achieve a good killing effect on both P. aeruginosa and S. aureus biofilms. In this Chapter, we 

engineered a prototype device to evaluate the feasibility of integrating the system of wirelessly 

delivered DC treatment into the implant device. The different device designs with varying shapes, 

electrode layouts, and electrode materials were compared based on the results of COMSOL 

simulation, and the selected design contained a circular cathode on the vertical side around the 

round-shaped device and a small square anode in the center of the device surface. The prototype 

device shows the 1.0 log and 2.6 logs killing of P. aeruginosa and S. aureus biofilms, respectively, 

with 6 µA/cm2 of wirelessly delivered DC using an ex vivo model with the porcine skin for 6 h 

treatment. 
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4.2 Introduction 

Surgically implanted medical device are widely used due to their benefits in both diagnostic and 

therapeutic processes as well as the improvement of patient’s life quality 1. However, the events 

of infection associated with implants remain concerning despite the improvement in sterilization 

techniques during the last decades 2. For example, approximately 4.3% of the total 2.6 million 

implanted orthopedic devices got infection in the United States every year 3. The risk of cochlear 

implant (CI)-associated infection is also approximately 4% but higher in younger patients 4. CI is 

an electronic device that provides hearing aids to patients with deafness 5. The main components 

of CI are housed in a polysilicon case containing antenna coils, receiver/stimulator modulus, 

magnet and electrode arrays which connect to the vestibulocochlear nerve system 6 7. The implant 

infection can lead to not only ulcer, swelling or inflammation of affected tissue 8, but also further 

surgeries for implant relocation, fixation and even explanation 9. In some severe cases, the CI-

associated infection can lead to meningitis, a life-threatening condition 8, 10. 

Previous studies have shown that bacterial biofilms play an important role in medical implant-

associated infections 9, 11, 12. The major causative agents of these infections include Staphylococcus 

aureus, Pseudomonas aeruginosa and Streptococcus species 8, 13-15. S. aureus is a common strain 

isolated from contaminated devices 8, 14 and commonly cause ulcer and swelling, while P. 

aeruginosa can form the robust biofilm on the devices’ surfaces and lead to the chronic and 

secondary infections 4. Recently, the Streptococcus species, especially S. pneumonia attract more 

attention due to the associated high risk of meningitis among children with CI implants.  

Direct currents (DCs) have been shown to have bactericidal effects after either by itself or through 

synergy with antibiotics 16-26. However, these systems all require a direct connection between 
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electrodes and power sources, which requires skin-piercing wiring for current transduction if the 

treatment site is inside the body 27-29.   

In Chapter 3, we developed a system to deliver DC wirelessly using a magnetic field based on 

inductive coupling. Several implantable biomedical devices are currently in use with inductive 

coupling to achieve wireless communication 30, such as pacemakers, deep brain stimulators, and 

cochlear implants, indicating the feasibility of this approach in infection control. Our system 

includes two magnetic coils that are similar to the devices mentioned above. The electrical power 

is delivered through electromagnetic induction between the two coils, which can power the implant 

devices wirelessly through the skin and tissues without any skin-piercing. The DC could perform 

electrochemical treatment (with an additional control to obtain the appropriate current level) of 

biofilm infections in vivo. However, there are a series of issues that need to be addressed before 

integrating this wirelessly delivered DC system into a real medical implant for the clinical 

application, which includes size, current level, electrodes’ layout, and sealing. The size is the 

primary concern since most commercial electronic implants are quite small. For example, the 

typical diameter of a cochlear implant is approximately 2 cm, and the volume of pacemaker ranged 

from 6 cm3 to 35cm3. Our in vitro wirelessly delivered DC treatment system includes a rigid 

receiver coil of 5 cm diameter, an adjustable rotary resistor (1 cm diameter x 3 cm height) and 

several wires as an internal circuit, which is very difficult to reduce the size directly. Hence, we 

need to re-design the new internal circuit with a simplified and smaller structure.  The layout of 

electrodes is another important factor for designing a device since this could directly affect the 

treatment efficiency of the device. In our in vitro system, the PDMS blocks with biofilm were 

placed between two electrodes in a petri dish (we called “sandwich” electrode), and the biofilm 

was fully covered by an electric field between two electrodes (Figure 13).  However, the actual 
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location of biofilm in vivo is usually on the outside shell of the implanted device, and it is 

impossible to install extra electrodes to cover the entire surface area of the device with the electric 

field in vivo. Therefore, we need to find new layouts of electrodes to establish a stable electrical 

field on the outside shell of the device. The chosen layout of the electrode is expected to not only 

obtain the best treatment effect to eradicate biofilms but also fit the structures of implant devices. 

The reliability of the system (sealing, strength, et. al) should also be considered to make the system 

has no leak.  

To satisfy all the requirements mentioned above, we engineered a prototype device by referring to 

the structure of the cochlear implant and pacemaker. The device could receive the surrounding 

magnetic field wirelessly and then convert back to DC on its surface. This DC was expected to 

have a similar killing effect on the biofilms formed on the device as demonstrated in vitro 

experiments in Chapter 3. To examine the killing effects of the prototype device with different 

designs, we tested the function of these devices in killing P. aeruginosa and S. aureus biofilm cells 

both in in vitro and ex vivo model with porcine skin. 

 

4.3 Method and materials 

4.3.1 Simulation of the electric field with COMSOL 

To obtain the best design of the prototype device, the distribution of electric fields in different 

layouts and shapes of the devices was analyzed using COMSOL Multiphysics (COMSOL Inc., 

Stockholm, Sweden) (Table 1). The simulations were done in the AC/DC model. Based on the 

results of our previous research, the potential of the electrode in the simulation was set as 1.0 and 

-0.9 V for anode and cathode, respectively 24. The distribution of electric potential and current 
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density between electrodes are plotted as colored surface and arrows map, respectively. The 

boundaries of simulation were set as electrical insulation. 

Table 1. The list of different shapes and layouts were simulated by COMSOL. 

The shape  The layout of electrodes The dimension 

Oval One electrode on each side  7 x 5 x 1 cm (L x W x H) 

Oval  Circular electrode on side, square 

electrode on center 

7 x 5 x 1 cm 

Square One electrode on each side 5 x 5 x 1 cm 

Square Circular electrode on side, square 

electrode on center 

5 x 5 x 1 cm 

Round  One small electrode on each side Diameter: 4.5 cm, Height: 1 cm 

Round One large electrode on each side Diameter: 4.5 cm, Height: 1 cm 

Round Circular electrode on side, square 

electrode on center 

Diameter: 4.5 cm, Height: 1 cm 

In vitro setup One electrode on each side of the petri 

dish 

Diameter of petri dish: 3.5 cm 

 

4.3.2 Fabrication of the prototype device 

The case of the prototype device was created by 3D printing. The material and working 

parameters of 3D printing are listed below: 
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Table 2. The working parameters in the 3D printing of the case. 

Infilled ratio 100% 

Layer thickness 0.09 mm 

Resolution Maximum ratio 

Material Polylactic acid (PLA) 

 

The printed case contained two components: the chamber and the cover lid. The receiver module 

of the wirelessly delivered DC (coil and rectifier chip) was fixed in the chamber by adhesive tapes, 

and then covered by a lid and sealed with food-grade silicone sealant (ASI 502, American Sealants 

Inc, Fort Wayne, IN, USA). The electrodes were fixed on the outside of the case with the same 

silicone sealant. Several small holes (< 1mm of diameter) on the case were punched by a heated 

needle (21 gauge) to introduce copper wire to connect the inside module and outside electrodes, 

which were also sealed by silicone sealant. 

4.3.3 Treatment of biofilms with the prototype device in vitro 

For the in vitro tests, the PDMS blocks with P. aeruginosa or S. aureus biofilm were placed on 

top of the device case as shown in Figure 11. Then the whole device with attached biofilms was 

immersed in 0.85 % NaCl solution in a petri dish. The coil of the power transmitter unit was placed 

under the bottom of the petri dish to deliver DC wirelessly. The current density was set to be 6 

µA/cm2 (based on cathode area). The biofilm samples were treated for 6 h, and the viability of 

biofilm cells was determined by counting CFU. 
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4.3.4 Treatment of biofilms with the prototype device in an ex vivo model with porcine skin 

The ex vivo model was adapted from a previous study designed for a study of the surgery site of 

the cochlear implant 31, 32. It was composed of a 3D-printed PLA housing (50 mm diameter, 14 

mm depth) to mimic the bone tissue that holds the cochlear implant. The prototype device was 

fixed into the housing by silicone sealant and immersed into a 0.85% NaCl solution (Figure 12). 

Before treatment, the PDMS blocks with P. aeruginosa or S. aureus biofilms were placed on top 

of the device as done in the in vitro test. Then the device was covered with a piece of porcine skin 

(1.0 – 1.2 mm thickness) purchased from a local grocery store and approved by Syracuse 

University (IACUC#: P4-18) and sterilized by UV for 2 hours on each side. The porcine skin was 

used to mimic the human skin that covered the cochlear device after surgery. The fat tissue of 

porcine skin had been prepared as described by Ackermann et al. 33 to UV sterilization. The coil 

of the power transmitter unit was put on the top of the porcine skin and aligned to the receiver coil 

in the prototype device to delivery DC wirelessly. The biofilm samples were treated for 6 h with a 

current level of 6 µA/cm2, and the viability of biofilm cells was determined by counting CFU. 

4.3.5 Statistical analysis 

All data are presented as a mean ± standard deviation. Statistical significance was assessed with 

one-way or two-way ANOVA followed by Tukey test. Results with p < 0.05 were considered 

statistically significant. All analyses were performed using SAS 9.4 software (SAS Institute, Cary, 

NC, USA). 
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4.4 Results 

4.4.1 Distribution of the electric field with different layouts and the shapes of the prototype 

device  

According to the results of COMSOL simulation, the electric field distribution on the oval-shaped 

device was fairly uneven among the different locations with varying distances from the electrodes. 

For the layout of the sandwich electrodes, the higher electric potential difference located on the 

center of the device surface, and the little current was observed on the regions far away from the 

electrodes (Figure 1). When replacing the flat cathode with a circular design that can fully cover 

the vertical side around the device and using a small (2 x 1 cm) anode in the center of the device’s 

surface (“circular/center” layout), the electric field on the device’s surface was still uneven. For 

example, the region of minor ax had higher potential difference compared to the region of the 

major ax that was farther from the anode (Figure 2).  

The case of square shape had more uniform electric field distribution on the device surface for 

both layouts (sandwich and circular/center). Although there was minor electric current outside the 

device surface within the flat side of the electrodes (Figure 3), the circular/center layout keep the 

entire electric current on the device surface (Figure 4). The square shape device had a challenge in 

sealing, especially in the corner regions, which could lead to leaking. This can cause possible 

issues in real manufacturing. Additionally, the square-shaped design was abnormal because the 

rather sharp edge may cause tissue damage or discomfort.   

The round-shaped device had the most uniform distribution of electric field on the entire device 

surface among the three shapes simulated, especially for the round-shaped case with the 

circular/center layout (Figure 7).  The sandwich layout had electric current going outside of the 
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device parameter (Figure 5&6), while the circular/center layout concentrated the electric current 

within radius of the device. No sealing problem was encountered. 

Test of the prototype devices also showed that the circular/center layout had a more uniform killing 

effect on biofilm cells than the sandwich layout. For example, when treating P. aeruginosa PAO1 

biofilm cells on the oval-shaped device with the sandwich layout, the viability of biofilm cells that 

were close to the anode side was reduced by approximately 3 ± 0.5 logs (p = 0.006) ; but only 

weaker killing was observed for two biofilm cells closed to the cathode (1.8 ± 0.4 logs, p = 0.006), 

while the viability of another two biofilm cells closed to the cathode had no significant change (p > 

0.05) (Figure 8). The round-shaped device with sandwich layout also had varying killing effects 

on biofilm samples at different locations (3 – 4.3 logs, p <0.001) (Figure 9). When replacing the 

sandwich design with the circular/center layout, the viability of biofilm cells was reduced more 

evenly (Figure 11). This is consistent with the simulation results that demonstrate even distribution 

of the electric field across the device surface.  

4.4.2 Evaluating the prototype device in vitro and ex vivo for biofilm control  

Based on the results of COMSOL simulation and preliminary DC treatment, the final version of 

the device was selected to have contained a round-shaped case (45 mm of diameter) with a square 

TGON anode (1 x 1 cm) in the center and a stainless steel cathode (approximately 1 x 14 cm) 

around the vertical side. This layout generated a well-defined electric field and high current density 

on the surface of the device (Figure 10). The total volume of the device was 25 cm3, close to that 

of the commercial pacemaker devices. A customized copper receiver coil with a diameter of 30 

mm and thickness of 2 mm was installed in the device’s chamber. The coil was connected to a 



 
83 

 

rectifier chip (3 x 1 x 0.5 cm) by soldering. Both TGON and stainless steel electrodes on the outside 

of the device were also connected to the chip by copper wires (26 gauge). 

The prototype device was evaluated by treating P. aeruginosa and S. aureus biofilms on PDMS 

blocks placed on top of the device. By supplying power wirelessly to the device, we generated DC 

at 6 µA/cm2. With a 6 h treatment in vitro, there were 1.5 ± 0.2 (p < 0.001) and 3.0 ± 0.1 logs (p = 

0.003) of the reduction of the viability of P. aeruginosa and S. aureus biofilm cells, respectively 

(Figure 11). When the whole system was tested in the ex vivo model, the viability of P. aeruginosa 

and S. aureus biofilm cells were reduced to 1.0 ± 0.14 (p = 0.03) and 2.6 ± 0.8 logs (p <0.001), 

respectively (Figure 12). 

 

4.5 Discussion 

In the proof-of-concept test, a strong and uniform electric field was established between the anode 

and cathode, covering the entire PDMS blocks with biofilm samples (Figure 13). The viability of 

biofilm cells on each PDMS was reduced equally after treatment. Because the implanted devices 

have critical functions, the design of the prototype must promise its reliability and reusability for 

repeated use and consistent performance. Hence, the prototype device should not have any 

corrosion-sensitive material as the anode because it could decrease the lifetime of the device and 

release substrates that have potential impact on to surrounding tissues. Additionally, the device 

should be easy to seal to prevent the leakage of body fluid, which would cause short circuit and 

failure of the device. 

The circular/central layout of the electrodes was chosen based on the results of the COMSOL 

simulation. Although the sandwich layout with flat electrodes is easier for fabrication, the electric 
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field is more dispersed which can lead to lower current density on the device surface, and 

consequently reduce the killing efficacy of DC treatment. The circular/central layout had a more 

concentrated electric field on the device surface; therefore, it could generate higher current density 

on the device. This should improve the efficiency of treatment and safety to the host tissues.  

For the shape of the device, the square device was excluded because of poor sealing on the corners 

and uneven electric potential difference on the device’s surface. The oval device was also 

abandoned from further study because of the uneven distribution of the electric field, which led to 

the uneven killing effects on biofilm cells. In comparison, the round-shaped device was easy to 

construct, and the distribution of the electric field on the round surface was more uniform than the 

other two designs based on the simulation result of COMSOL. The round-shaped device had equal 

killing effects on the biofilm cells presumably because of its uniform electric field.  

The electrode’s materials should also be well considered in prototype design. According to the 

results of the previous proof-of-concept experiments in Chapter 3, the stainless steel electrodes 

had stronger killing activities against P. aeruginosa than S. aureus planktonic cells, while the 

graphite-based TGON electrodes were more efficient in killing S. aureus biofilm cells. There was 

a large number of metal precipitates using stainless steel electrodes when the current level was 

more than 60 µA/cm2. The steel anode is oxidized and produces metal ions (Fe, Cr, et al.) during 

DC treatment 22, 23, 34 (called Galvanic corrosion) 35. These ions precipitated as solid particles if the 

solution is basic or contains certain cations. As a result, the device surface and treatment solution 

were both stained yellow or brown after treatment. To prevent this and keep the device and tissue 

clean in real applications, the TGON electrodes were chosen to replace steel as the anode because 

of its high resistance to electrochemical corrosion. TGON is graphite materials and thus there were 

no metal particles produced. The device surface was still clean after treatment 24. In our study, we 
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used small TGON square as the anode and stainless steel as the cathode to ease the manufacturing 

and avoid corrosion of either electrode during treatment.  

The final version of the prototype device had a round case that had approximately 25 mL of volume 

and 12 cm2 of surface area. This size was close to commercial pacemaker implants (20-25 mL). 

The layout of electrodes included a circular steel electrode on the side of the device and a square 

TGON electrode on the center of the top surface. The wirelessly delivered DC showed 1.5 and 3 

logs killing at 6 µA/cm2 for P. aeruginosa and S. aureus biofilm, respectively, which demonstrated 

the potential of this platform technology for controlling infections associated with implanted 

medical devices. The treatment result of using the ex vivo model also had 2.6 logs killing effect on 

S. aureus biofilm cells on the surface of the device. This suggests that the skin tissue would not 

reduce the efficiency of wireless delivery of DC significantly, which is consistent with the result 

of the proof-of-concept experiments in vitro.  

 

4.6 Conclusion 

In summary, we have designed and engineered a prototype device with the function of wireless 

delivery of DC based on the comparison of different device designs with varying shapes, electrode 

layouts and electrode materials. The selected design of the device demonstrated good efficacy in 

killing both P. aeruginosa and S. aureus cells in in vitro and ex vivo model. The results demonstrate 

that this is an effective platform for investigating the in vivo treatment using wirelessly delivered 

DC in the future. 
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4.8 Figures 

 

Figure 1. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the oval-shaped device with the sandwich layout of electrodes. 
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Figure 2. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the oval-shaped device with the circular/center layout of electrodes. 
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Figure 3. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the square-shaped device with the sandwich layout of electrodes. 
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Figure 4. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the square-shaped device with the circular/center layout of 

electrodes. 
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Figure 5. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the circular/center layout of 

electrodes. 
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Figure 6. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the small sandwich layout of 

electrodes. 
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Figure 7. Overhead view of distribution of electric potential (color surface) and current density 

(arrows map) on the surface of the round-shaped device with the large sandwich layout of 

electrodes. 
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(A) 

 

(B) 

Figure 8. Experimental setup and killing effects of S. aureus biofilms at different locations of the 

oval-shaped device with the sandwich layout of electrodes. (A): The experimental setup of S. 

aureus biofilm samples on the surface of a prototype device. (B): Viability of S. aureus biofilm 

cells on the surface of the prototype device after treatment with wirelessly delivered DC (12 

µA/cm2) for 6 h. 
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(A) 

 

(B) 

Figure 9. Experimental setup and killing effects of S. aureus biofilm on different locations of the 

round-shaped device with flat-side electrodes. (A): The experimental setup of prototype device. 

(B): The viability of S. aureus biofilm on the surface of the prototype device after treatment with 

wirelessly delivered DC (170 µA/cm2) for 6 h.  
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Figure 10. The final design of the round-shaped prototype device with a circular cathode and center 

anode. (A): The internal circuit including receiver coil, rectifier chip, and internal resistor. (B) The 

layout of electrodes on the surface of the prototype device.  
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(A) 

 

(B) 

Figure 11. In vitro test of the selected prototype device. (A): Schematic of the experimental setup. 

The PDMS blocks with biofilm were placed on the top of the device and around the central 

electrode for DC treatment. (B): Viability of P. aeruginosa and S. aureus biofilm cells after 

treatment with 6 µA/cm2 for 6 h in vitro. (***, p < 0.001; **, p = 0.01) 
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(A) 

 

(B) 

Figure 12. Ex vivo test of the selected prototype device. (A): Schematic of the experimental setup 

in model. The device was fixed into the 3D-printed cavity and covered with porcine skin. The 

wireless power transmitter was placed on the top of the skin. (B): Viability of P. aeruginosa and S. 

aureus biofilm cells after treatment with 6 µA/cm2 for 6 h in ex vivo model. (***, p < 0.001; *, p 

< 0.05) 
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Figure 13. COMSOL simulation of electric potential (color surface) and current density (arrows 

map) distribution in a petri dish with the flat stainless steel electrode (0.5 cm width, 0.01 cm 

thickness) positioned on opposite side. Three PDMS coupons with biofilm were placed in the 

electric field between two electrodes. The total DC level was approximately 100 µA. 
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Chapter 5 

Killing mechanism of DC treatment  

 

 

 

 

 

 

 

 

 

 

 



 
105 

 

5.1 Abstract 

Direct electric current (DC) has been reported in many studies for its biocidal effects on pathogenic 

microorganisms in the presence or absence of antimicrobials. The reactive oxygen species (ROS) 

and metal ions produced by the electrochemical reaction during DC treatment are believed to 

contribute the killing effects, although only the bactericidal effect of hydrogen peroxide has been 

reported in the previous studies. In this Chapter, the killing mechanism of DC treatment was 

investigated by comparing the killing effects of different electrochemical products, such as 

hypochlorite, hydrogen peroxide, iron, and chromium ions. According to the results, we find that 

the DC treatment using TGON electrodes killed biofilm cells by generating hypochlorite from the 

anode, which depended on the concentration of sodium chloride in the solution. The DC treatment 

using stainless steel electrodes could induce Fenton reaction by the metal ions from anode and 

hydrogen peroxide from the cathode to produce free radicals that have the potent bactericidal effect. 

By understanding the killing mechanism of DC treatment, it will be helpful for improving the 

device design and assessment of cytotoxicity to host tissues.  
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5.2 Introduction 

The first study of bacterial control by electric current was reported in 1915 by Beattie 1, who 

applied alternating current (AC) at 3000 – 4000 V to eradicate microorganisms from milk. Later,  

Rosenberg 2 found that E. coli could be killed with 2 A of AC using platinum electrodes. The 

biocidal effects of low-level AC to bacteria were also reported by Pareilleux et al. 3 that the 

viability of E. coli was reduced after treatment from 10 to 200 mA of AC using stainless-steel 

electrodes.  

Compared to AC, direct current (DC) received more attention as an alternative antimicrobial 

method. Rowley 4 first showed the biocidal effects on E. coil using 1- 140 mA DC conducted with 

platinum electrodes in the 1970s. Then Baranco 5 reported the reduction of the viability of S. aureus 

cells after treatment with 400 µA DC using silver, platinum, gold or stainless steel electrodes. In 

general, DC requires lower levels than AC to achieve significant biocidal effects, and this is more 

suitable for application in vivo, although in vivo treatment may require higher current levels. For 

example, Ehrensberger et al. 6, 7 reported that the number of viable S. aureus cells were reduced 

by 90% after treatment with 1 mA DC in the rabbit model although they obtained more than 2 logs 

of killing effect on S. aureus cells with lower DC level in vitro. In addition to the effects of DC 

alone, the synergy between DC and antibiotics has also been reported. For example, more than 2 

additional logs of killing effects were observed in the concurrent treatment of E. coli cells with 6 

mA/cm2 of DC and gentamicin and oxytetracycline compared to DC treatment alone 8. Costerton 

9 et al. also reported that 100 µA/cm2 DC could promote killing efficiency of tobramycin to P. 

aeruginosa biofilm.  
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The killing mechanism of electric current treatment is still not well understood although several 

theories have been proposed. In 1962, Brandt et al. 3, 10 first speculated that the free radicals 

generated by electric treatment have a bactericidal effect. For the treatment with high-level electric 

currents, cell membranes are believed to be permanently damaged by current-associated high 

energy, leading to cells’ death 11. Lower level DC may cause bacterial killing with electrochemical 

products 12, 13. A number of possible redox reactions could occur at the interface between electrode 

and electrolyte solution during electrolysis: 

Oxidation reactions on anode: 14 

2𝐻2𝑂 → 4𝐻+ + 𝑂2 + 2𝑒− 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

𝐹𝑒2+  → 𝐹𝑒3+ + 𝑒− 

𝐶𝑟 → 𝐶𝑟3+ + 3𝑒− (Trace in steel anode) 

2𝐶𝑙 − → 𝐶𝑙2 + 2𝑒−  

𝐶𝑙− + 𝐻2𝑂 → 𝐻𝐶𝑙𝑂 + 2𝑒− + 𝐻+ 

   𝐶𝑙2 + 2𝐻2𝑂 → 2𝐻𝐶𝑙𝑂 + 2𝑒− + 2𝐻+  

Reduction reactions on cathode: 

𝐻2𝑂 +  2𝑒− → 𝐻2 + 2𝑂𝐻− 

𝑂2 + 2𝐻+ +  2𝑒− → 𝐻2𝑂2 

𝑂2 + 𝐻2𝑂 +  𝑒− → 𝐻𝑂2 ∙ +𝑂𝐻− 



 
108 

 

𝑂2 + 2𝐻2𝑂 +  2𝑒− → 𝐻2𝑂2 + 2𝑂𝐻− 

Redox reactions in electrolyte solution: 15 

𝐹𝑒2+ + 𝐻2𝑂2  → 𝐹𝑒3+ + 𝑂𝐻 ∙ +𝑂𝐻− 

𝐹𝑒3+ + 𝐻2𝑂2  → 𝐹𝑒2+ + 𝑂𝑂𝐻 ∙ +𝐻+ 

2𝐹𝑒3+ + 2𝐻2𝑂 → 2𝐹𝑒2+ + 𝐻2𝑂2 + 2𝐻+ 

The metal anode, especially silver, copper, and steel, are oxidized to release metal ions (Ag+, 

Cu2+/Cu+, Cr3+, Fe2+/Fe3+, et al.) during DC treatment 13. These ions could accumulate and interrupt 

cell metabolism. Moreover, the metal ions could move ion flow in an electric field, which was 

found disrupt the integrity of the cell membrane 12, 13. Based on electrochemistry, radical oxygen 

species and free radicals could be generated from the redox reactions at the electrodes. However, 

it is difficult to directly prove since many of those species have a short life and can react with cells 

immediately. Hydrogen peroxide (H2O2) is one of the few radical oxygen species that have been 

verified as generated during electric treatment. H2O2 could disrupt the structure and permeability 

of the cell wall and membrane 16. The concentration of H2O2 close to the electrode surface range 

from 0.2 µM to more than 20 µM when the current density increases from 5 to 40 µA/cm2 17; 

however, this concentration decreases quickly towards zero over the distance from the electrode 

18. Another reported radical oxygen species generated in DC treatment is hypochlorite when the 

electrolyte solution contains chloride ions. The chloride ions are oxidized on the anode to produce 

chlorine and hypochlorite 19. Hypochlorite could disrupt many activities of bacteria, such as 

oxidative phosphorylation and sulfhydration, as well as DNA synthesis 20. To evaluate how those 

electrochemical products could affect the killing results of wireless DC treatment of biofilm cells, 

we conducted a series of experiments using DC and different electrochemical products in this study 
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to mimic the actual electrochemical reactions during DC treatment and evaluate the killing effects 

of these reactions. 

We reported that the activities of some antibiotics (e.g. tobramycin) could be enhanced in the 

presence of an electric field conducted by stainless steel electrodes, but not graphite electrodes 12. 

We speculated that this may result from synergistic interactions between metal ions from stainless 

steel and antibiotic molecules. For example, tobramycin could bind to ribosome RNA and interrupt 

protein synthesis in P. aeruginosa 21. We suspected the metal ions may form a complex with 

tobramycin molecules to increase its affinity to RNA, leading to the enhanced killing effect on P. 

aeruginosa cells. The hammerhead ribozyme cleavage reaction is an ideal model to study the 

interactions between RNA molecules and antimicrobial agents since the hammerhead ribozyme 

has a small, well-defined structure 22 23. In this study, we utilize the hammerhead ribozyme system 

to investigate the interaction between Cr (III) (Tobramycin) complex and RNA in vitro.  

 

5.3 Methods and materials 

5.3.1 Killing assay of P. aeruginosa biofilm with metal ions, sodium hypochlorite and 

hydrogen peroxide 

The P. aeruginosa biofilm samples on PDMS were cultured in LB medium for 24 hours followed 

by washing with 0.85% NaCl solution twice. Then, the biofilm samples were placed in a petri dish 

and soaked in 3 mL of 0.85% NaCl solution mixed with different chemicals including sodium 

hypochlorite (5%, Fisher Scientific, Hampton, NH, U.S.), hydrogen peroxide (30%, Fisher 

Scientific, Hampton, NH, U.S.) and ferric chloride (1%, Fisher Scientific, Hampton, NH, U.S.). 

The concentration of chemicals is listed in Table 1. The biofilms were treated with these chemicals 



 
110 

 

at room temperature for 3h. After treatment, the biofilm cells were harvested by following the 

same methods described in Chapter 3 and the viability was determined by counting CFU.  

5.3.2 DC treatment of P. aeruginosa biofilms in different concentrations of NaCl solution  

P. aeruginosa biofilm samples on PDMS were prepared and washed as described previously. Then 

they were placed between two TGON or stainless-steel electrodes in a petri dish. The electrodes 

were connected to a potentiostat (Potentiostat WaveNow, Pine Research Instrumentation, Raleigh, 

NC, U.S.) that applied 30 µA/cm2 DC to a treatment facility for 3 h. During DC treatment, the 

biofilm samples were soaked in the electrolysis solutions with different concentrations of sodium 

chloride (Table 1). Fe (III) ions were also added into electrolysis to explore the possible synergistic 

effect. After treatment, the biofilm cells were harvested following the same methods and cell 

viability was determined by counting CFU. The control was biofilm cells without DC treatment. 

Table 1. Conditions tested for treatment of P. aeruginosa biofilms in single chamber system 

Condition No. NaCl % Electrodes DC level µA/cm2 Other chemicals in solution 

1 0.85 TGON 30 - 

2 0.01 TGON 30 - 

3 0.001 TGON 30 - 

4 0.001 Stainless steel 30 - 

5 0.85 Stainless steel 30  

6 0.85 - - 0.1% NaOCl 

7 0.85 - - 0.01% NaOCl 

8 0.85 - - 0.001% NaOCl 

9 0.85 - - 2 mg/L H2O2 

10 0.85 - - 20 mg/L H2O2 

11 0.85 - - 200 mg/L H2O2 
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5.3.3 DC treatment of P. aeruginosa biofilms in the dual chamber system 

To prevent the interference between anode and cathode during DC treatment, a similar test of P. 

aeruginosa biofilms was also conducted in a dual chamber system that was used in previous 

research 13, 24. This system contained two chambers with the only one single electrode in each 

chamber filled with 0.85% NaCl solution. A capillary tubing containing 0.85% NaCl solution was 

used as a salt bridge between the two chambers and complete the electric circuit. The P. aeruginosa 

biofilm samples were placed both in anode and cathode chambers. Then 30 µA/cm2 of DC was 

applied to the system using a potentiostat in 3 h. After treatment, the viability of biofilm cells was 

determined by counting CFU. 

5.3.4 DC treatment of P. aeruginosa planktonic cells in the presence of chromium (III)  

To investigate if chromium ions have bactericidal effects in the electric field, P. aeruginosa PAO1 

planktonic cells were treated with chromium (III) ions in the presence and absence of DC. The 

overnight planktonic cells culture was washed with DI water twice to remove chloride and 

dissolved organic components. Then the cells were resuspended in 3 mL 0.001% NaCl solution to 

a final cell density of 108 per mL in the petri dish. Two TGON electrodes were inserted into the 

petri dish and connected with a potentiostat to apply 60 µA/cm2 DC to the treatment chamber for 

1 hour. After treatment, the viability of planktonic cells was determined by counting CFU. 

The similar test was also conducted in the dual chamber system mentioned above. The washed P. 

aeruginosa cells were resuspended in two chambers followed by adding 10 µM CrCl3 (Acros 

Organics, NJ, USA). Then 20 µA/cm2 of DC was applied to the system using a potentiostat in 1 h. 

After treatment, the viability of planktonic cells was determined by counting CFU. 
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5.3.5 DC treatment of S. aureus planktonic cells in agarose gel 

The agar matrix could limit the motility of bacterial cells allowing one to observe which area 

between anode and cathode has strong killing effects on the cells. In this study, the overnight 

planktonic cells culture was washed with 0.85% sodium chloride solution twice followed by 

mixing with sterilized 1.0% agarose solution containing 0.85% sodium chloride (Fisher Scientific, 

Hampton, NH, U.S.) at approximately 40 °C. Then the mixture was added into a 3 mL cuvette 

with a stainless steel electrode placed on each side. After the gel was set, the electrodes were 

connected to a potentiostat to apply 60 µA/cm2 DC for 1 hour. After treatment, the agarose gel 

with cells was stained by the Live/Dead staining kit (Thermofisher, Waltham, MA, USA) for 15 

min. The cell viability was determined using fluorescence microscopy. 

5.3.6 Hammerhead ribozyme-catalyzed cleavage reaction 

To investigate the mechanism of synergy between chromium ions and antibiotics in bacterial 

killing, we conducted a hammerhead ribozyme-catalyzed cleavage test using Cr (III) ion and 

tobramycin. The experiment materials and procedure are similar to that described in C. S. Chow’s 

report 23. Briefly, the hammerhead ribozyme and fluorescein-labeled RNA substrate, which shared 

the same sequence as Chow’s experiment, were obtained from Integrated DNA Technologies 

(Coralville, IA, USA). Other reagents involved included 0.4 M MgCl2 (Amresco, Solon, OH, 

USA), 6.4 mM tobramycin (Tokyo Chemical Industry, Japan), 6.4 mM CrCl3 (Acros Organics, NJ, 

USA), and 1 M Tris-HCl buffer (pH 7.5). The gel was made with 20% 37.5:1 acrylamide–

bisacrylamide solution, 10% (w/v) ammonium persulfate in H2O, and TEMED (N, N, N’, N’-

tetramethyl ethylenediamine). The gel running buffer was 10X TBE (900 mM Tris base, 90 mM 
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boric acid, 25 mM EDTA, pH 8.3). The loading buffer consisted of 16 M urea, 30% glycerol and 

1X TBE. 

First, the hammerhead ribozyme (30 pmol) was mixed with RNase free water and 1 µl Tris-HCl 

buffer in 1.5 mL centrifuge tubes, followed by boiling for 90 seconds. After the mixture cooled 

down to room temperature (in 10 minutes), a mixture of 1 µL tobramycin (final concentration 320 

µM) and 1 µL CrCl3 (final concentration ranged from 320 µM to 32 µM) were added into each 

tube. Next, the fluorescein-labeled RNA substrates (100 pmol) were added into mixture solution 

followed by 1 µL 0.4 M MgCl2. There were one negative control without hammerhead ribozyme 

and one positive control with neither tobramycin nor CrCl3. Besides, to compare with inhibitory 

effects of tobramycin or Cr3+
 alone, another four control samples with the same concentration of 

tobramycin or CrCl3 alone were set up. The final volume of the mixture in each tube was 20 µL. 

The mixtures were incubated at 37°C for 1 h. The loading buffer was added to mixtures after 

reaction completion, and then they were stored at -80°C immediately after boiling for 90 seconds. 

The 20% polyacrylamide (37.5:1 acrylamide–bisacrylamide) gel was prepared following Chow’s 

protocol 23. The gel was run at 100 V in 1X TBE buffer for approximately 2 h (Mini-PROTEAN® 

Tetra Cell system, Bio-Rad Laboratories, Hercules, CA, USA). Then the gel was imaged using a 

Bio-Rad Gel Doc XR+ system with Image-lab software (Bio-Rad Laboratories, Hercules, CA, 

USA).  

The relative quantity of RNA in each band was calculated based on the strength of fluorescence 

using the negative control as a reference. The ratio of cleavage was calculated by the equation 

below: 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑙𝑒𝑎𝑣𝑎𝑔𝑒 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝑙𝑜𝑤𝑒𝑟 𝑏𝑎𝑛𝑑𝑠)

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 (𝑢𝑝𝑝𝑒𝑟 𝑏𝑎𝑛𝑑𝑠)
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The ratio is inversely correlated with the inhibitory.  

5.3.7 Statistical analysis 

All data are presented as a mean ± standard deviation. Statistical significance was assessed with 

one-way or two-way ANOVA followed by Tukey test. Results with p < 0.05 were considered 

statistically significant. All analyses were performed using SAS 9.4 software (SAS Institute, Cary, 

NC, USA). 

 

5.4 Results 

5.4.1 Killing effect of DC in solutions with different concentrations of sodium chloride  

According to the results of killing assay under different conditions, TGON electrodes showed 

dosage-dependent killing effects based on the concentration of sodium chloride in the solution. 

For example, the viability of P. aeruginosa biofilm was reduced by 1.8 ± 0.1, 1.4 ± 0.07 and 0.8 

± 0.09 logs (p = 0.01) with 0.85%, 0.1%, 0.01% and 0.001% NaCl, respectively. However, the 

treatments using a stainless steel electrode did not show a significant difference (1.1 ± 0.04 and 

1.3 ± 0.3 logs, p > 0.05) between 0.85% and 0.001% NaCl solution (Figure 1&2). 

5.4.2 Killing effect of chlorite and hydron peroxide on P. aeruginosa biofilm  

The killing effect of sodium hypochlorite on P. aeruginosa biofilm cells was dosage-dependent, 

which was 6.0 ± 0.2, 1.4 ± 0.8 and 0.6 ± 0.2 logs (p < 0.001) in 0.01%, 0.001% and 0.0001% 

NaOCl for 6 h treatment (Figure 1). In comparison, H2O2 at 100 mg/L showed only 0.9 ± 0.05 logs 

(p < 0.001) killing of P. aeruginosa biofilm cells, while the H2O2 solution of lower concentrations 

didn’t show the significant killing effect (Figure 2). 
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5.4.3 Killing effect of DC treatment on P. aeruginosa biofilm in dual chamber system 

In the dual chamber system, the DC treatment using TGON electrodes showed 2.6 ± 0.2 logs (p = 

0.002) killing effect on biofilm cells in anode chamber, while there was no significant killing in 

cathode chamber (0.4 log, p >0.05) (Figure 3). The DC treatment using stainless steel electrodes 

demonstrated 0.6 ± 0.3 (p = 0.03) and 0.7 ± 0.01 (p = 0.004) logs killing effect on biofilm cells in 

anode and cathode chamber, respectively (Figure 4). 

5.4.4 The role of chromium ions in the killing mechanism of DC 

In previous research, we reported that the stainless-steel electrode could release metal ions during 

DC treatment. These ions were found to have bactericidal effects on the cells under an electric 

field. To understand if wirelessly induced DC also show similar effects, chromium (III) and Ferric 

(III) were tested on P. aeruginosa PAO1 planktonic cells. When P. aeruginosa planktonic cells 

were treated with wirelessly induced DC and chromium (III) ions for 1 h, 2.4 ± 0.3 logs of killing 

was observed under the condition of concurrent treatment with 60 µA DC/cm2 and 10 µM 

chromium (III) ions. In comparison, treatment with 60 µA/cm2 DC or 10 µM chromium (III) ions 

alone only showed 0.4 ± 0.2 logs and 0.9 ± 0.2 logs of killing (p = 0.005), respectively (Figure 5). 

When the concentration of chromium (III) ions increased to 100 µM, the viability of planktonic 

cells was reduced by 6.1 ± 0.2 logs (p = 0.014) with concurrent treatment with 60 µA DC/cm2. But 

the chromium (III) ions only exhibited 0.9 ± 0.3 logs of killing (Figure 6). 

Similar results of synergetic effects between DC and chromium (III) ions were observed in 

concurrent treatment in the dual chamber system. For example, the number of viable P. aeruginosa 

planktonic cells was reduced by 2.8 ± 0.05 logs after concurrent treatment with 20 µA/cm2 DC 

and 10 µM chromium (III) ions in the cathode chamber (p = 0.002). In comparison, concurrent 
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treatment with DC and chromium (III) in anode only showed a 1.0 ± 0.01 log of killing (Figure 7). 

Meanwhile, the planktonic cells in anode and cathode chamber were reduced by less than 0.1 logs, 

respectively.  

5.4.5 The killing effects of DC on S. aureus planktonic cells in agarose gel 

Multiple brown bands of precipitate were observed in the middle region of agarose gel between 

anode and cathode after DC treatment (Figure 8). The color and density of bands were found 

dependent on the duration of treatment. The precipitates could dissolve in the diluted hydrogen 

chloride solution. According to the Live/Dead staining images in Figure 9A&B, there were also 

several dark bands in S. aureus planktonic cells culture in the agarose gel. In these bands, the 

number of live (green) cells dramatically decreased to almost nothing while the dead (red) cells 

were more compared to surrounding areas (Figure 9C&D). Furthermore, the locations of dark 

bands and precipitate bands overlapped in the agarose gel. These precipitates didn’t show the 

bactericidal effect on S. aureus cells in the absence of the electric field when mixed with planktonic 

cells and precipitates from the electrolysis solution after DC treatment (Figure 9E). 

5.4.6 The enhanced affinity between RNA and tobramycin-chromium (III) complex 

The samples with the mixture of 320 µM tobramycin and 320 µM Cr (III) had the lowest ratio of 

cleavage (4.2 ± 2.1, p = 0.002), and it raised to 9.3 ± 1.3 and 11.8 ± 3.7 when the concentrations 

of Cr (III) reduced to 160 µM and 32 µM, respectively. The sample with tobramycin alone had the 

ratio of 14.1 ± 1.7, and the three samples with Cr (III) alone (without tobramycin, concentration 

ranged from 320 µM to 32 µM) had a nearly constant ratio of cleavage (15.0 ± 3.2, 15.1 ± 1.0 and 

15.2 ± 2.4). Apart from this, the cleavage ratio of the positive control was the highest (21 ± 3.3) 

and the negative control was zero (Figure 10&11). 
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5.5 Discussion 

Hydrogen peroxide generation from both metal and nonmetal electrodes has been well studied. 

The killing effect of other electrolysis products from the electrode is still unknown. Compared to 

the results of stainless steel electrodes, our study shows that the graphite-based TGON electrodes 

may have a different killing mechanism against biofilm cells. We found the killing effect of TGON 

electrodes reduced dramatically when replacing 0.85% sodium chloride solution with 0.01% or 

0.001% solution during treatment, which was consistent to the killing results of different 

concentrations of sodium hypochlorite in the absence of DC. This finding suggests that the 

hypochlorite may play an important role in killing bacterial cells with TGON conducted DC 

because electrolysis of saline solution can produce chlorine and hypochlorite by anode oxidation 

reaction in the presence of chloride ions. The killing effect of stainless steel electrodes wasn’t 

affected by the concentration of chloride ions, which may result from different electrochemical 

products of metal electrodes during DC treatment. The stainless steel anode could release metal 

ions (Fe, Cr, Ni et al.) during the DC treatment due to the oxidation of anode metal, while the 

stainless steel cathode could reduce dissolved oxygen to produce hydrogen peroxide. When treated 

bacteria cells with stainless steel electrodes in a two-chamber system that could separate the anodic 

and cathodic electrolytic products 24, no significant killing effect was observed. This supports our 

hypothesis that the killing effect of DC conducted by steel electrodes results from the secondary 

products of reactions between electrochemical products of anode and cathode. Interestingly, 

hydrogen peroxide also did not show the significant killing effect on biofilm cells in our research 

even with a high concentration of 200 mg/L. The measurable level of hydrogen peroxide ranged 

from 5 to 40 µM near the electrode surface during DC treatment. However, the concentration in 
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bulk solution decreased towards zero over distance 17. This helps explain our finding because the 

biofilm samples were approximate 2-3 mm away from both anode and cathode in the treatment 

facility. 

Chloride is the most abundant anion in humans and an essential element for maintaining cell 

homeostasis and transmitting action potentials 25. It is also required for the immune response 

mediated by phagocytes and neutrophils 26. In the 1960s, the antivirus activity of 150 mmol sodium 

chloride against mengovirus was reported based on treatment at 37 °C for 2 hours 27. Similar killing 

effects were also seen with other chloride compounds, such as potassium chloride, magnesium 

chloride. This suggests that the biocidal effects to the microorganism of chloride compounds came 

from chlorite anion, not cations. Recently Ramalingam et al. 27 reported that the viral inhibition 

was not from sodium chloride directly when treated virus with epithelial, fibroblast and hepatic 

cells although the increasing concentration of sodium chloride promoted the effects. Adding 

myeloperoxidase inhibitor could reverse the inhibition, which showed that chloride anions could 

be converted to other forms of molecules during inhibition procedure. Wang 26 found that chloride 

anions could be converted to hypochlorous acid by myeloperoxidase (MPO) in phagosomes. This 

reaction needs hydrogen peroxide as the reactant. Both hydrogen peroxide and hypochlorite have 

antimicrobial activities as oxidants that target electron transport chain, DNA replication, adenine 

nucleotides, metabolic enzymes and unsaturated fatty acids in cells’ membranes 28. Hypochlorous 

acid has even more potent effects. Chensey et al. 28 showed that hypochlorous acid had 500 to 

1,000 folds higher toxicity to E. coli cells than hydrogen peroxide. In our study, the treatment of 

P. aeruginosa biofilms with hydrogen peroxide and hypochlorite showed dosage-dependent 

killing effects, although the minimal biofilm killing concentration of hypochlorite was much lower 

than hydrogen peroxide. As mentioned in Chapter 2, the major electrochemical products with 
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possible biocidal effect during DC treatment using TGON electrodes were hypochlorous acid and 

hydrogen peroxide. Reducing the concentration of sodium chloride in the electrolyte solution can 

reduce the generation of hypochlorous acid. According to the result, we found decreasing killing 

effect in DC treatment with the same current level conducted by TGON electrodes. All of these 

findings suggest that the hypochlorous acid generated by TGON anode is the primary bactericidal 

agent during DC treatment using TGON electrodes.  

The bactericidal mechanism of DC treatment using stainless steel electrodes is more complex than 

TGON since there are more electrochemical reactions involved. Because steel is not a corrosion 

resistant material, the anode itself is easily oxidized and metal ions are released when applied with 

positive potential. Appropriate metal ions are essential elements required for cell metabolism; 

however, an excess amount of metal ions could also be toxic to bacterial cells, since they could 

interfere with normal metabolic process by improper metalation of metalloproteins with the 

unwanted metal 29. Besides, the negative-charged bacterial membrane has high affinity to those 

metal cations. Although binding to metal cations on the membrane may not directly kill cells, these 

ions alter the normal net charge across the cell membrane and interfere the membrane functions 30.  

Based on our test, treating biofilm cells with metal ions (such as chromium (III)) alone only 

showed a slight reduction in cell viability. This suggests that other more potent biocidal agents 

may exist during DC treatment, or the movement of ions may be essential for DC-mediated killing. 

Hydrogen peroxide is produced during DC treatment despite stainless steel or TGON electrodes, 

but it couldn’t eradicate biofilm effectively if the concentration was lower than 100 mg/L, which 

is much higher than the concentration (5 – 40 µM) measured in hydrolysis process with 40 µA/cm2 

DC 17. However, if metal ions and hydrogen peroxide are mixed, they could induce the Fenton 

reaction that could produce free radicals, such as hydroxyl and carboxylic radicals. These free 
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radicals are powerful oxidant with the ability to mineralize most organics, which could kill 

bacterial cells quickly by disrupting cell membrane and causing cell lysis 13. Anfruns-Estrada et al. 

15 had reported that by treating with 20 mA/cm2 in a cylindrical tank reactor in presence of 0.25 

mM FeSO4, the viability of E. coli cells in wastewater could be reduced by 5 logs. They contributed 

the killing effect to the electro-Fenton reaction that occurred between added ferric ions and 

hydrogen peroxide produced by the electrodes. In our study, DC treatment can also generate metal 

ions and hydrogen peroxide from anode and cathode, respectively. When contacting with each 

other in the solution, the Fenton’s reaction could occur. Although it’s difficult to detect Fenton 

reaction products directly due to a short life and rapid reactions of these species, we obtained 

indirect evidence supporting the presence of Fenton reaction. For example, DC treatment with the 

dual chamber system using stainless steel electrodes didn’t show the significant killing effect on 

bacterial cells. The products of anode and cathode in the dual chamber system are still the same as 

the single chamber, but they are isolated in different chambers and can’t contact each other to 

initiate Fenton reaction. And neither metal ions nor hydrogen peroxide is a potent biocidal agent 

alone against biofilms. As a result, the killing effect decreased in the dual chamber system. 

Moreover, when we replaced 0.85% sodium chloride electrolyte solution with 0.85% sodium 

chloride agar, we observed be a precipitate band in the middle region of agar between anode and 

cathode after DC treatment. We speculated this resulted from the diffusion of anode and cathode 

products. Once they meet each other in the middle region of agarose, the Fenton reaction occurred 

and left precipitate products trapped in the agarose. Interestingly, if the planktonic cells were added 

into ager and carried on the same treatment, a dark zone without any live cells was seen at the 

same location with the precipitate band in the agar. This region may have Fenton reaction during 
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DC treatment so that the bacterial cells in the same location were effectively killed by free radicals 

immediately after being produced. 

Another interesting finding was the killing effects of chromium (III) ions in the presence of DC. 

The stainless steel contains approximately 16-18 % of chromium. The chromium is the essential 

element to protect steel from corrosion since it could be oxidized earlier than ferric ions and form 

a protective coating on the steel surface. Hence, chromium ions should be produced earlier than 

ferric during DC treatment. Chromium (III) is also a well-known nutrient element for human, 

which is essential for insulin synthesis. However, chromium (III) is toxic to bacteria cells. Fathima 

et al. 31 reported chromium (III) could damage cell membrane and DNA by generating ROS, 

although we didn’t find the significant biocidal effect when mixed chromium (III) with planktonic 

cells. Chromium could induce a Fenton-like reaction in presence of hydrogen peroxide 32 and 

produce hydroxyl radicals. Our study shows the evidence that Fenton-like reaction may happen 

during DC treatment. If we added chromium into the electrolyte solution, the significant increase 

in the killing effect was observed, which suggests that there should be a large number of 

bactericidal agents produced in the solution. Besides, when the anode and cathode chamber were 

separated, adding chromium only increased the killing effects in the cathode chamber. All of these 

findings support the existence of the Fenton-like reaction induced by chromium (III) during DC 

treatment, and it may have a significant role in the bactericidal effect of DC treatment using 

stainless steel electrodes. 

Like hydrogen peroxide, hypochlorite can react with ferric ions to produce hydroxyl and chlorine 

radicals 33. These products from Fenton-like reaction may also contribute to the killing effect of 

hypochlorite from the DC treatment. Furthermore, the concentration of intercellular labile iron in 
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mammalian cells (1µM) 34 are 10 – 100 times lower than bacterial cells (10 - 100 µM) 35, 36, which 

could promote the selectivity of the DC treatment to biofilm cell over host mammalian cells. 

Our results showed that Chromium not only kills bacterial cells by itself in presence of DC but 

also form the complex with antibiotic and increase the affinity to target molecules. Compared to 

tobramycin alone, a lower cleavage ratio of the reaction was observed when combining chromium 

(III) with tobramycin. This effect was also related to the molar ratio of tobramycin to chromium 

(III). The samples with the mixtures of tobramycin and chromium (III) at 1:1 ratio had the lowest 

cleavage ratio, which increased to 2:1 and 10:1. This is consistent with our previous finding that 

the chromium (III) (tobramycin) complex was more stable when tobramycin and chromium (III) 

were mixed at 1:1 ratio. The cleavage ratios of chromium (III) alone were slightly higher than 

tobramycin alone and did not show any obvious changes despite the concentration of chromium 

(III). This suggested that chromium (III) had a potential inhibitory effect since it can also bind to 

RNA molecules by Coulomb force, and then interfere with the interaction between ribozymes and 

substrate RNAs. Generally, chromium (III) had an enchanting effect for tobramycin at 1:1 mole 

ratio in hammerhead ribozyme cleavage reaction, which could reduce the ratio of cleavage to 25% 

of the positive control. Chromium (III) alone also showed the inhibitory effect in the reaction, 

which was slightly weaker than tobramycin alone. The concentration of tobramycin and chromium 

(III) were 10 to 100 folds higher than the amount used in our previous studies 12, 13. These 

concentrations were also used in other research with hammerhead ribozyme-catalyzed cleavage 

systems, which suggests that higher concentration of antimicrobial agents is necessary to obtain 

“observable” results. 
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5.6 Conclusion 

In summary, we tested the killing effect of different treatment conditions to P. aeruginosa cells 

and explored the affinity of tobramycin-chromium (III) complex to RNA molecules in this study. 

According to the results, we found that the bactericidal effect came from the hypochlorous acid 

generated when using TGON electrodes during DC treatment, while stainless steel electrodes 

generate the free radicals as Fenton reaction products between metal ions and hydrogen peroxide 

to eradicate biofilm cells. Moreover, chromium ions may play the more important role than ferric 

ions during DC treatment since it only initiates Fenton reaction with hydrogen peroxide but also 

forms a complex with some antibiotic molecules and enhance its affinity to the target, e.g. RNA. 

These findings provide more information for designing better devices in the future. 
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5.8 Figures 

 

Figure 1. Viability of P. aeruginosa biofilm cells after treatment in saline solutions with different 

concentrations of NaCl (with 30 µA/cm2 DC, TGON electrodes) and NaOCl solution (without 

DC).  
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Figure 2. Viability of P. aeruginosa biofilm cells after treatment in saline solutions with different 

concentrations of NaCl (with 30 µA/cm2 DC, TGON electrodes) and H2O2 solution (without 

DC). 
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Figure 3. Viability of P. aeruginosa biofilm cells after treatment with 30 µA/cm2 DC in 0.85 % 

NaCl solution in dual chamber system with TGON electrodes. 
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Figure 4. Viability of P. aeruginosa biofilm cells after treatment with 30 µA/cm2 DC in 0.85 % 

NaCl solution in dual chamber system with stainless steel electrodes. 
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Figure 5. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (10 µM), 

DC (60 µA/cm2) alone or concurrent treatment for 1 h in 0.001% NaCl solution 
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Figure 6. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (100 

µM), DC (60 µA/cm2) alone or concurrent treatment for 1 h in 0.001% NaCl solution. 
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Figure 7. Viability of P. aeruginosa planktonic cells after treatment with Cr (III) alone (10 µM), 

DC (20 µA/cm2) alone or concurrent treatment for 1 h in 0.1 % NaCl solution in dual chamber 

system. 
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Figure 8. Representative images of agarose gel with embedded S. aureus planktonic cells after 

being treated with 60 µA/cm2 DC for varying duration of time. 
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Figure 9. Living/Dead images of S. aureus planktonic cells in the agarose after DC treatment. 

(A)&(B): The cells in the precipitation band region. (C)&(D): The cells outside of the precipitation 

band region. (E): The untreated planktonic cells mixed with the precipitates produced by DC 

treatment. (F): The untreated planktonic cells. 

 



 
138 

 

 

Figure 10. Cleavage of substrate RNA by the hammerhead ribozyme. Only the fluorescently 

labeled RNA was visible. The upper bands were un-cleavage substrates and lower bands were 

cleavage products. From left: 1) Negative control (reference band); 2) Positive control; 3-5) Cr3+ 

alone (320 µM, 160 µM, 32 µM); 6-8) Mixture of Cr3+ and tobramycin (Cr3+: 320 µM, 160 µM, 

32 µM, Tobramycin: 320 µM); 9) Tobramycin alone (320 µM). 
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Figure 11. The ratio of cleavage in samples of negative control, positive control, Cr3+ alone (320 

μM, 160 μM and 32 μM), a mixture of Cr3+ (320 μM, 160 μM and 32 μM) & tobramycin (320 

μM) and tobramycin alone (320 μM). 

 

 

 

 

 

 

 

 

 

This figure has been published in Acta Biomaterialia. Volume 36, May 2016, Pages 286-295. 
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Chapter 6 

Controlling dental plaque with direct current and chlorhexidine 
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6.1 Abstract 

Microbial biofilms formed on biomaterials are major causes of chronic infections. Among them, 

Gram-positive bacteria Streptococcus mutans and Staphylococcus aureus are important pathogens 

causing infections associated with dental caries (tooth decay) and other medical implants. 

Unfortunately, current antimicrobial approaches are ineffective in disrupting established biofilms 

and new methods are needed to improve the efficacy. In this study, we report that the biofilm cells 

of S. mutans and S. aureus can be effectively killed by low-level direct current (DC) and through 

synergy in concurrent treatment with DC and chlorhexidine (CHX) at low concentrations. For 

example, after treatment with 28 µA/cm2 DC and 50 µg/mL CHX for 1 h, the viability of biofilm 

cells was reduced by approximately 4 and 5 logs for S. mutans and S. aureus, respectively. These 

results are useful for developing more effective approaches to control pathogenic biofilms. 
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6.2 Introduction 

Biofilms are characterized by microbial cells embedded in a matrix comprised of extracellular 

polymeric substance (EPS) containing polysaccharide, proteins, and DNA. The presence of this 

extracellular matrix provides protection to microbial pathogens from certain antimicrobials and 

host immune cells/factors 1, 2. Biofilms can form on both biotic and abiotic surfaces and are 

common causes of chronic infections on implant devices. The protection of EPS plus the dormancy 

of biofilm cells render these multicellular structures extremely difficult to eradicate 3-5.  

In the previous chapters, we have demonstrated the wireless delivered electric current (DC) could 

eradicate pathogen biofilm on polysiloxane surface in vitro and ex vivo, which provides a new 

approach to control biofilm-associated infection for electronic medical implants, such as cochlear 

device, pacemaker, brain stimulator, et al. As mentioned in Chapter 2, the dental biofilm or dental 

plaque) is another serious and common biofilm-associated infections that has bothered people for 

thousand years. In this chapter, we investigated if we could also reduce the viability of oral 

pathogenic biofilm cells on denture materials with a similar level of DC. The substrate for biofilm 

growth in this study was acrylate that is very common denture materials and suitable adhesive 

surface for dental pathogens.  

Streptococcus mutans is a Gram-positive bacterium commonly found in human dental biofilms. It 

is a dominant species with higher biomass in dental biofilms than other Streptococcus species, 

including S. sanguinis, S. mitis, and S. salivarius, due to its acid tolerance and thus the capability 

to live in low pH environment of oral cavities 6-9. S. mutans expresses multiple exoenzymes 

(glucosyltransferases) that make it the primary EPS producer in oral cavity 9, while it is also highly 

acidogenic and aciduric. S. mutans can rapidly colonize tooth surface and establish cariogenic 
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biofilms with EPS. This acidifies the local microenvironment and promotes the growth of an 

acidogenic microbiota, facilitating the development of dental caries 9, 10.  

Staphylococcus aureus is also an abundant Gram-positive bacterium, which usually harbors in the 

nasal passages and ears of patients 4. Previous studies have shown that S. aureus is not only the 

significant cause of many localized and systemic infections such as osteomyelitis 11, chronic 

wound infection 12, and chronic rhinosinusitis 13 but also has a strong connection to dental implant 

infections 14, 15. The established biofilms of S. aureus, especially the methicillin-resistant S. aureus 

(MRSA), are highly tolerant to common antimicrobial treatments 16-18. 

Few approaches are currently available for controlling cariogenic biofilms 1. Chlorhexidine (CHX) 

is considered the “gold standard” for oral antimicrobial therapy 19. However, use of high dose CHX 

has adverse side effects such as tooth staining and calculus formation. Also, CHX is not 

recommended for long-term daily therapeutic use 20. In 1994, Costerton et al. (1994) reported 

bacterial killing by synergistic effects between low-level electric currents and antibiotics, a 

phenomenon named “bioelectric effects”. Since 1990s, direct currents (DCs) ranging from μA to 

mA were reported for their bactericidal effects after a relatively long period (from several hours to 

days) of treatment 21-24 either by DC alone or with antibiotics together 25-28. Recent studies reported 

the mA level DC could enhance the killing effect of 0.2% (200 µg/mL) chlorhexidine on biofilms 

of Gram-negative Porphyromonas gingivalis 29 though there was no bactericidal effect by DC 

alone. To explore the potential of lower levels of DC and CHX in killing dental biofilms of Gram-

positive bacteria, we conducted this study with using S. mutans and S. aureus as model species. 

We demonstrate that stainless steel electrode derived DC and CHX have strong synergy in killing 

S. mutans and S. aureus biofilms, and the levels of DC and CHX are lower than other reported 

systems. 
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6.3 Materials and methods 

6.3.1 Bacteria strains and growth media 

S. mutans Clarke strain (ATCC 25175) was cultured in brain heart infusion (BHI) broth (ATCC 

medium 44). The S. aureus ALC2085 (strain RN6390 containing pALC2084) was obtained from 

the Sauer lab at Binghamton University and cultured in Luria-Bertani (LB) medium 26 containing 

10 g/L tryptone, 5 g/L Yeast extract and 10 g/L NaCl, supplemented with 10 µg/mL 

chloramphenicol (Sigma-Aldrich, St. Louis, MO, U.S.) 30. Both strains were routinely cultured 

overnight at 37 °C with shaking at 200 rpm. 

6.3.2 Biofilm formation  

Biofilms were formed on acrylic coupons (3.5 cm x 0.5 cm x 0.1 cm; McMaster-Carr, Aurora, OH, 

U.S.). Briefly, 25 µL of an overnight culture of S. mutans was used to inoculate a petri dish 

containing 25 mL of BHI medium and acrylic coupons. The culture was incubated at 37°C for 48 

h without shaking. Then the coupons with biofilms were removed from petri dish and washed 

gently with 0.85% NaCl solution for treatment. The S. aureus biofilm samples were prepared in 

the same way except that the medium was LB plus 10 µg/mL chloramphenicol and the incubation 

time was reduced to 24 h due to a higher growth rate of S. aureus. 

6.3.3 Electrochemical treatment  

The experimental system for DC treatment was the same as we described previously (Niepa, et al. 

2012; Niepa, et al. 2016). Briefly, an electrochemical cell was constructed with two electrodes on 

the opposite sides of a plastic cuvette (Thermo Fisher Scientific, Pittsburg, PA, U.S.). DC was 

generated using a potentiostat (Potentiostat WaveNow, Pine Research Instrumentation, Raleigh, 

NC, U.S.) in the three electrodes’ configuration system with a silver wire (0.015” diameter, A-M 
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Systems, Sequim, WA, U.S.) placed in bleach for 30 min to create Ag/AgCl reference electrode. 

The DC level and voltage across the electric field were monitored and recorded using the 

AfterMath software (Potentiostat WaveNow, Pine Research Instrumentation, Raleigh, NC, U.S.) 

in the galvanostatic mode during the treatment. 

6.3.4 DC treatment of biofilms  

Each DC treatment was carried out in 3 mL 0.85% NaCl solution. First, one sterile SS304 electrode 

(3.5 cm x 0.95 cm x 0.05 cm) was inserted into a cuvette, followed by an acrylic coupon with S. 

mutans or S. aureus biofilm attached. Another sterile SS304 electrode was then inserted on the 

opposite side. The biofilm was treated galvanostatically with direct current (DC) for 1 h in the 

absence or presence of CHX (MP Biomedicals, Solon, OH, U.S.). Samples treated with DC or 

CHX alone and untreated samples were used as controls. After treatment, each acrylic coupon was 

transferred to a 10 mL tube containing 5 mL 0.85% NaCl solution. The biofilm cells were removed 

from the surface by sonication for 1 min. The number of viable cells detached from acrylic coupons 

was quantified by counting colony forming units (CFUs) in the solution.  

To evaluate the effects in an environment similar to that of oral cavity, the test medium was 

replaced with artificial saliva medium or a mixture of 0.85% NaCl and artificial saliva medium 

(2:1). The recipe for artificial saliva from Pratten et al. (1998) was followed. It contains 2 g/L yeast 

extract, 5 g/L peptone, 2.5g/L type III hog gastric mucin, 0.2g/L NaCl, 0.2 g/L KCl and 0.3 g/L 

CaCl2, supplemental with 1.25 mL of sterile 40% urea. The CHX was tested at 50 µg/mL to 500 

µg/mL. The treatment process was the same as described above for NaCl solution. 
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6.3.5 Live/Dead staining 

To corroborate the CFU results, another set of acrylic coupons with biofilms treated with DC and 

CHX in the same way were stained with Live/Dead staining kit (Life Technologies Inc., Carlsbad, 

CA, U.S.) for 10 min. Then the biofilm samples were imaged using a fluorescence microscope 

(Axio Imager M1, Carl Zeiss Inc., Berlin, Germany). 

6.3.6 Statistical analysis 

Statistical significance was assessed with two-way ANOVA followed by Tukey test. Statistical 

significance was set as p < 0.05. All the analyses were performed using SAS 9.4 software (SAS 

Institute, Cary, NC, USA). 

  

6.4 Results 

6.4.1 Effects of DC and CHX on S. mutans and S. aureus biofilms in 0.85% NaCl solution 

As shown in Figure 1, treatment with either CHX (at 5, 10, 20 and 50 µg/mL, Figure 1 A) or DC 

(at 7, 14 and 28 µA/cm2, Figure 1 B) showed moderate but significant killing. For example, up to 

1.2 logs and 0.7 logs of killing was obtained with 28 µA/cm2 DC and 50 µg/mL CHX, respectively. 

In comparison, synergy was observed between DC and CHX in killing S. mutans biofilms dose-

dependently. Among the tested conditions, the maximum killing effect (4 logs) was observed under 

the condition of 28 µA/cm2 DC and 50 µg/mL CHX (Figure 1 C & 2 A, p = 0.02, two-way ANOVA 

with Tukey test).  

Similar synergistic effects were also observed for S. aureus biofilms under the same treatment 

conditions. The number of viable S. aureus biofilm cells was reduced by more than 5 logs (Figure 
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3 A, p<0.0001, two-way ANOVA with Tukey test) after treatment with 28 µA/cm2 DC and 50 

µg/mL CHX for 1 h in 0.85% NaCl solution. In comparison, treatment with the same level of DC 

or CHX alone only reduced the number of viable biofilm cells by 60.0 ± 7.9% and 74.3 ± 2.5% 

(less than 1 log for both conditions), respectively.  

The CFU results were corroborated with fluorescence microscopy. According to the images from 

Live/Dead staining of S. mutans and S. aureus biofilms, the number of live cells (green) decreased 

when treated with DC and CHX even at low doses (7 µA/cm2 DC and 5 µg/mL CHX for S. mutans, 

28 µA/cm2 DC and 20 µg/mL CHX for S. aureus); and almost no live cells (only dead cells show) 

were found on the surface of acrylic coupons after concurrent treatment with DC and CHX together 

(Figure 4 & 5). Compared with sample treated with DC alone, samples treated with both CHX and 

DC concurrently only have patches of cell debris in red, suggesting that substantial cell lysis might 

have occurred.  

6.4.2 Effects in the presence of artificial saliva 

Since the dental surfaces are commonly covered with saliva, we also tested the effects of DC and 

CHX in the presence of artificial saliva. When artificial saliva was added to 0.85% NaCl solution 

as treatment medium, the killing effects were reduced but still significant. For example, the 

reduction of biofilm cell viability was 98.0 ± 0.4% (~1.7 log) when S. aureus biofilm was treated 

with 50 µg/ml CHX and 28 µA/cm2 DC in a mixture of artificial saliva and 0.85 % NaCl solution 

(1:2 v/v) (Figure S2). No significant killing effect was observed when biofilms were treated in 

pure artificial saliva medium under the same dosage of CHX or DC level (data not shown). 

However, when the concentration of CHX increased to 500 µg/mL (0.05 w/v %, the dosage used 

in commercial oral rising products is 0.12 w/v %) while keeping the DC level at 28 µA/cm2, the 
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number of viable S. aureus cells in biofilm was reduced by 2.5 logs compared to untreated control 

(Figure 3 B, p = 0.005, two-way ANOVA with Tukey test). The viability of biofilm cells treated 

with CHX alone was reduced by approximately 1 log and no significant killing effect was observed 

for 28 µA/cm2 DC treatment alone (Figure 3 B). Similar results were observed for S. mutans 

biofilms (Figure 2 B and S1), although the killing of S. mutans biofilm cells in artificial saliva 

medium was lower than S. aureus. The number of viable cells was reduced by 0.54 log, 0.17 log, 

and 1.63 logs when treated with CHX alone, DC alone and concurrent treatment with CHX and 

DC, receptively (Figure 2 B, p = 0.02, two-way ANOVA with Tukey test). 

 

6.5 Discussion 

Direct currents (DC) and alternative currents (AC) are known to kill biofilm cells in the presence 

or absence of antibiotics, and treatment time-tested to date varies from hours to days 22-24. Our 

group recently found synergetic effect between low-level DC and the antibiotic tobramycin in 

killing Pseudomonas aeruginosa biofilm and persister cells 26, 27. However, most of the previous 

studies focus on biofilms formed on the surface of electrodes.  

To mimic real application, it is important to test biofilms that are not in direct contact with 

electrodes. In this study, we set a sandwich structure with biofilms formed on acrylic coupons in 

the middle of the electric field and about 1.5 mm from each electrode. Our results show that the 

viability of S. mutans and S. aureus biofilm cells (placed in between two electrodes) on the surface 

of denture material can be reduced by low-level DC and CHX through concurrent treatment in 1 

h; and the effect was approximately 1-3 logs stronger than that obtained with the same level of DC 

or CHX alone indicating synergistic effects between DC and CHX in killing biofilm cells of these 
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two dental bacteria. The effect was more profound in 0.85% NaCl solution than in the artificial 

saliva medium. The images of Live/Dead staining also confirmed that there was profound killing 

by concurrent treatment.  

We speculated that this synergy primarily resulted from the interaction between the products of 

DC treatment and CHX. In a recent study, we showed that a large amount of hydrogen peroxide 

was generated from electrode surface during DC treatment 26, which had been reported for its 

synergetic antibacterial effect with CHX against Streptococcus and Staphylococcus species 31. 

Furthermore, some metal ions (Zn2+, Cu2+) were shown for their capabilities to enhance the effect 

of CHX on different oral pathogens 31, 32. The stainless-steel electrodes used in this study have a 

larger surface area and can release multiple types of metal ions including Fe2+, Fe3+, Cr2+, Cr3+ and 

Cr6+ during DC treatment 26. Fe2+ and Fe3+ ions were found to kill P. aeruginosa persister cells in 

the presence of antibiotics in an electric field 28. We also found that Cr3+ and Cr6+ can form ion 

complex with antibiotic compounds, and thus increase the affinity between antibiotics and 

intracellular targets 28. It is possible that some released ions interact with CHX molecules and 

result in the observed synergy in killing S. mutans and S. aureus. This is also part of our ongoing 

study. 

Recently, Lasserre et al. 29 reported that the viability of P. gingivalis biofilm could be reduced by 

81.1% and 98.9% in 10 min when treated with 2000 µg/mL (0.2 w/v %) CHX alone and concurrent 

treatment with same dosage of CHX and 5882 µA/cm2 DC, receptively; while the treatment with 

DC itself did not kill P. gingivalis cells. The biofilms were cultured on the discs of a Modified 

Robbins Device (MRD), which were placed between two electrodes of platinum wires in the 

MRD’s chamber. This is an exciting discovery, but the DC level appears high and may not be 

suitable for in vivo therapy, especially for the implants closed to nervous systems that do not 
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tolerate more than a maximum current density of 30 µA/cm2 33-35. Hence, it is necessary to reduce 

DC to µA level for future in vivo application. In this study, we treated S. aureus and S. mutans 

biofilm without direct contact to electrodes by placing the acrylic coupon in the middle of the low-

level electric field and parallel to the electrode surfaces. By using stainless steel as electrode 

material, the level of DC and CHX in our study are much lower (28 µA/cm2 DC and 50 µg/mL 

CHX), and strong killing effects (3-4 logs) were obtained.  

Compared to the 6-7 log killing of P. aeruginosa after 1 h of treatment with DC alone as we 

reported previously 26, both S. mutans and S. aureus showed stronger tolerance to a similar level 

of DC. Although better killing effect may be archived with longer treatment and higher current 

levels, we believe it is better to keep DC treatment duration as 1 h and current level lower than 30 

μA/cm2 to minimize the generation of ferric oxide and to avoid the formation of mass hydrogen or 

oxygen bubbles.  

CHX is bacteriostatic at low concentrations by affecting the integrity of bacterial cell wall and 

bactericidal at high concentrations by disrupting the cell 36. S. mutans and S. aureus appear to be 

quite susceptible to CHX according to MIC data (< 8 μg/mL) 37. We found that 50 μg/mL CHX 

was enough to inhibit planktonic growth completely (data not shown); however, the maximum 

killing of preformed biofilms by CHX alone in our experimental system was only less than 1.5 

logs even with a dosage up to 500 μg/mL.  

Through synergy with DC, CHX was found to be more effective in killing biofilm cells. The doses 

of CHX we used were only 50 μg/mL (0.005 w/v %) in 0.85% NaCl solution and 500 μg/mL (0.05 

w/v %) in artificial saliva medium, which are much lower than that of commercial products but 

still exhibited killing effects with DC. This CHX level is expected to be safe because the 
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commercial products for oral wash have approximately 1200 µg/mL (0.12 w/v %) – 2000 µg/mL 

(0.2 w/v %) of CHX. The exact mechanism for such synergistic killing is unknown and is part of 

our ongoing research.  

This study demonstrated that the DC delivered by wire to treatment facility could eradicate the 

dental plaque on the surface of denture material in presence of CHX. This system could also be 

modified to satisfy the requirements of wireless DC delivering without any reduction to power 

output. The size of receiver coil and controller chip need to be redesigned to fit the narrow space 

of oral cavity; however, people have invented the new generation of pacemaker device with a tiny 

antenna and an electronic controller for wireless communication. We can utilize a similar design 

to integrate the wireless DC treatment facility into the single denture. After being implanted into 

the oral cavity, the denture could become a mini DC treatment facility once it receives suitable 

magnetic fields.  

 

6.6 Conclusion 

In this study, we demonstrated that the biofilm cells of two Gram-positive pathogenic bacteria, 

S. mutans, and S. aureus, could be efficiently killed by concurrent treatment with low-level DC 

and CHX in 1 h. This electrochemical control is effective against the biofilms formed on the acrylic 

materials. The synergistic effect between DC and CHX can help design new devices and strategies 

for controlling pathogenic biofilm. The interaction between electrochemical products and CHX 

may play a significant role in the observed synergy in biofilm killing, which deserves further study.  
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6.9 Figures  

 

Figure 1. Viability of S. mutans biofilm cells after 1 h treatment with CHX alone (A), DC alone 

(B) or concurrent treatment with CHX and DC (C). All treatments were tested in 0.85 % NaCl 

solution. 
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Figure 2. Viability of S. mutans biofilm cells after treatment with CHX alone, DC alone or 

concurrent treatment with CHX and DC. A: treatment medium: 0.85 % NaCl, DC level: 28 µA/cm2, 

CHX dosage: 50 µg/mL. B: treatment medium: artificial saliva, DC level: 28 µA/cm2, CHX dosage: 

500 µg/mL. 
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Figure 3. Viability of S. aureus biofilm cells after treatment with CHX alone, DC alone or 

concurrent treatment with CHX and DC. A: treatment medium: 0.85 % NaCl, DC level: 28 

µA/cm2, CHX dosage: 50 µg/mL. B: treatment medium: artificial saliva, DC level: 28 µA/cm2, 

CHX dosage: 500 µg/mL. 
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Figure 4. Living/dead staining of S. mutans biofilms treated with 5 μg/mL CHX (B), 7 μA/cm2 DC 

(C), 5 μg/mL CHX plus 7 μA/cm2 DC (D) and no treatment (A). Bar = 20 μm. 
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Figure 5. Living/dead staining of S. aureus biofilms treated with 20 μg/mL CHX (B), 28 μA/cm2 

DC (C), 20 μg/mL CHX plus 28 μA/cm2 DC (D) and no treatment (A). Bar = 20 μm. 
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Chapter 7 

 Wirelessly delivered DC treatment of S. aureus biofilms in a rabbit 

model 
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7.1 Abstract  

Device-associated infection is a serious risk for patients with implant devices, and this risk 

becomes more and more significant because of the increasing application of medical devices. The 

biofilm on the contaminated device after surgery is reported as a leading cause of infection. The 

potent bactericidal activities of direct current (DC) have attracted increasing interest recently. In 

Chapter 3, we have demonstrated that the wirelessly delivered direct electric current (DC) could 

achieve a good killing effect on Staphylococcus aureus biofilms on the PDMS surface. In this 

Chapter, the bactericidal effects of wirelessly delivered DC were further tested on an in vivo model. 

The contaminated prototype devices with S. aureus biofilms under the dermis tissue of rabbits and 

the biofilms were treated for 6 h with 12 µA/cm2 wirelessly delivered DC. Compared to untreated 

controls, treatment with DC reduced the total number of S. aureus within the rabbit by 65 %. In 

addition, histological analysis of the dermis and muscle tissues confirmed the safety of wirelessly 

delivered DC treatments in the rabbit model. 
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7.2 Introduction 

From the 1990s, many studies have shown that the potent killing effects of DC on biofilms 1-9. 

These studies demonstrated that the number of viable biofilm cells on the surface of the electrode 

or other biomaterials could be reduced by several logs with DC treatment at 10 µA to 100 mA 

levels for 1 – 24 h. Furthermore, there have been several successful in vivo anti-biofilm studies 

carried in the mice, rodent, rabbit and goat models; however, all of them used wires to deliver 

electric current, which had to pierce animals’ skins (Table 1). 

Table 1. Bactericidal effects of electric current in vivo 

Current/potential 

level 

Strain Bactericidal 

effect 

Animal 

model 

Antibiotics Duration Ref. 

-1.8 V vs AgCl S. aureus 87% reduction 

(Tissue) 

98% Reduction 

(Implant) 

Rodent Vancomycin 1 h 10 

-1.8 V vs AgCl S. aureus 2 log reduction 

(Implant) 

Rodent Vancomycin 1 h twice 12 

1 mA P. aeruginosa 58% reduction Rabbit Tobramycin 1 h 13 

100 µA Staphylococcus 

epidermidis 

80% reduction Goat - 21 days 14 

10 MHz low 

level AC 

P. aeruginosa 1.5 log reduction Mice - 48 h 15 

 

As mentioned in Chapters 3 and 4, we have demonstrated that wirelessly delivered DC can 

effectively kill S. aureus biofilm cells on PDMS surfaces For example, the viability of S. aureus 

biofilm cells was reduced by 3.0 and 2.6 logs using a prototype device to wirelessly delivered DC 



 
165 

 

treatment of 6 µA/cm2 in vitro and ex vivo, respectively. These findings motivated us to further 

apply this technique in vivo. 

To evaluate the safety and efficacy of wirelessly delivered DC in vivo, we conducted an animal 

test using a rabbit model. The design was adapted from a previous study of pacemaker material in 

a rabbit model, which compared the efficiency of different anti-biofilm coatings pacemaker models 

16.  

 

7.3 Materials and methods 

7.3.1 Experimental setup of wirelessly delivered DC treatment in a rabbit model 

A total of 8 rabbits were used to compared DC treatment and DC-free control. The control devices 

also carried all components in the case, but the electrodes and control modules were discontinued. 

Four 1 cm by 0.5 cm S. aureus biofilm samples on PDMS cultured for 24 h in LB medium were 

positioned on each device. Each rabbit was implanted with one control and one treatment sample. 

Another rabbit was included as biofilm free control, which was also inserted with a DC-free control 

and DC-delivering device. This rabbit provided a baseline for histology. 

7.3.2 Rabbit model 

A total of 9 female adult rabbits (New Zealand, >2 kg each) were involved to investigate the 

antibiofilm efficiency of wirelessly delivered DC on S. aureus biofilms formed on implant devices 

as well as safety to host tissues. To form the biofilm on the surface of a device, S. aureus cells 

were grown overnight in LB medium at 37 °C with shaking at 200 rpm. On the following day, the 

overnight culture was used to inoculate 25 ml fresh LB medium with a 1,000 times dilution. Then 
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sterilized PDMS coupons (1 x 0.5 cm each) were immersed in the medium and incubated at 37 °C 

without shaking for 24 hours. On the following day, PDMS coupons with biofilms were washed 

with 0.9% sodium chloride solution twice and then attached on the top the prototype device surface 

(around the center anode) in the same way as in vitro setup. The devices with biofilm samples 

were kept in petri dishes to ensure moisture. 

Before surgery, each rabbit underwent general anesthesia using inhaled 3-5% isoflurane for 

induction and 2-4% isoflurane for maintenance. Isoflurane anesthesia was maintained for the 

duration of the entire experiment including the implantation of the prototype, wirelessly delivered 

DC treatment, and implant removal. A warm blanket was used to help maintain body temperature. 

The surgical sites (just a few centimeters lateral to the spine on each side) were identified and 

shaved to remove hair. The shaved areas were scrubbed with betadine followed by 75% alcohol 

three times. Sterile drapes were placed over the surgical sites. One lidocaine (1%) and 1:100,000 

epinephrine was injected to rabbits. An incision on the subcutaneous layer of the skin was made 

using a #15 blade, and then the adjacent skin was undermined by scissors to make a pocket cavity. 

The prototype device was placed into the pocket and the skin was closed with sutures. The process 

was repeated on the contralateral side. Then 30 mL saline solution was injected into each packet 

cavity (Figure 1A). 

7.3.3 Treatment with wirelessly delivered DC  

An electromagnetic transmitter coil connected to the controller chips and USB power cable was 

placed over the implant site of prototypes for 6 h of treatment (Figure 1B&C). The DC level was 

approximately 200 µA. To minimize the variation among different rabbits, each rabbit was inserted 

with two devices including one control (without DC) and one for DC treatment corresponding to 
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a current density of 12 µA/cm2 (total 200 µA). During treatment, 30 mL saline solution was 

injected into each pocket every 2 hours to keep cavity wet.  

7.3.4 Sample collection 

After treatment, the incision was opened, and the prototype devices were harvested. Tissue that 

had directly contacted with the prototype device was harvested and placed in 10% buffered 

formalin, saline solution or frozen directly for future evaluation (Figure 2). After completion of 

tissue harvest, the animals were euthanized by an intraperitoneal injection of pentobarbital 150 

mg/kg. The PDMS coupons with biofilm were placed in the 0.9% saline solution to determine the 

viability of S. aureus. 

7.3.5 Histological analysis 

To evaluate the cytotoxicity of the wirelessly delivered DC treatment on the dermis layer and 

muscle tissue in contact with the device, approximately 20% of the collected skin and muscle 

specimens were frozen immediately by ice bath upon harvesting. The specimens underwent 

cryosection to obtain the thin film (5 -15 µm of thickness). Then the samples were mounted on 

glass slides and Hematoxylin and Eosin staining were performed. Finally, the stained samples were 

observed under microscopy to determine if there was any histological change. Another 20% of 

collected specimens were kept in 10% buffer formalin solution and sent to IDEXX company to 

perform a thorough pathology analysis. 

7.3.6 Viability of biofilm cells  

About half of the skin tissue that had directly contacted the device and PDMS coupons were 

collected after treatment and kept in 0.9% saline solution. Then they were subjected to sonication 
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for 1 minute followed by 30s of vortexing. The viability of S. aureus biofilm cells on PDMS 

coupons and skin tissue was determined by counting CFU and by Live/Dead staining. 

7.3.7 Statistical analysis 

Statistical significance was assessed with Wilcoxon Signed Rank Sum Test.  Results with p < 0.05 

were considered statistically significant.  

 

7.4 Results 

7.4.1 Experimental design of the treatment by wirelessly delivered DC in vivo 

Previous electrochemical studies using animal models aimed to eradicate the biofilm on the surface 

of an electrode10, 11. During those experiments, the electrodes were implanted into deep tissue that 

contained abundant body fluid (e.g. blood, serum, et al.). The body fluid offers good conductivity 

between the anode and cathode, and thus effective killing of bacterial cells. However, our devices 

were implanted between the dermis layer and surficial muscle tissue of the rabbit. In this location, 

lower amounts of bodily fluids are present compared to the fluid surrounding deeper tissues, which 

lower the conductivity for killing biofilm cells on the device surface. The only conductive media 

is dermis tissue that has a conductivity of 0.2 S/m 17. To select an appropriate internal resistor and 

obtain the current level at the expected range of 200 ± 30 µA, the total current levels and total 

impedances between the TGON anode and steel cathode were measured using the same method as 

described in Chapter 3. The distance between two electrodes was the same design of the prototype 

device, and the electrodes were submerged into 0.1 % saline solution that also has a conductivity 

of 0.2 S/m. It found a 10K ohm resistor could maintain the actual total current level at 195 - 210 

µA and the working impedance between anode and cathode in 0.2 S/m media was approximately 
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15000 Ω (Figure 4). Based on this result, a 10 kΩ internal resistor was included in all prototype 

devices. The devices for control samples had the same structure as the devices for DC treatment 

although their internal circuits were cut. During the animal test, both control devices and treatment 

devices received the same external magnetic field while there weren’t DC output from the control 

devices. 

7.4.2 Efficacy of wirelessly delivered DC treatment in vivo 

To evaluate the efficacy of wirelessly delivered DC treatment in vivo, the prototype devices that 

contained four PDMS coupons covered with S. aureus biofilm were inserted under the dermis 

layer. Then the biofilm samples were treated with approximately 200 µA DC corresponding to a 

current density of 12 µA/cm2 generated by the prototype device wirelessly for 6 hours.   

After treatment, the number of viable S. aureus biofilm cells on device surface was reduced by 65% 

(p = 0.03), and the number of viable S. aureus cells attached on the skin tissue was reduced to 80% 

(p < 0.01) compared to the DC-free control. This suggests that wirelessly delivered DC could 

effectively kill the biofilm cells both on the device surface and the surrounding tissue in vivo; 

however, the results were not as potent as demonstrated in in vitro tests. There was also some cells 

found in the residual liquid (from injected saline) (Figure 3). By adding all three populations 

together, it was found that DC treatment killed S. aureus biofilm cells by 66% in vivo (p < 0.008, 

Wilcox Signed Ranked Sum Test) (Figure 5).  

7.4.3 Safety of the treatment by wirelessly delivered DC 

To evaluate the safety of the wirelessly delivered DC treatment, the specimens were collected from 

both the skin and muscle tissues surrounding the device for the histological analysis. The result of 

this analysis would reveal if DC and its products during treatment could cause acute damage to the 
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host tissue. According to the report of histological analysis from IDEXX Bioresearch, there was 

no damage specific to treated samples, except for mild infiltration due to surgery that was seen on 

both control and treated samples. None of the muscle samples show notable changes.  

The skin and muscle samples treated with wirelessly delivered DC underwent cryosection and 

Hematoxylin and eosin staining. According to the microscopy images of samples after staining, 

there was no significant change between control and treated samples (Figure 6&7).    

 

7.5 Discussion 

Electrochemical treatment has been used for orthopedic applications to stimulate the growth of 

osteogenic cells on the fracture site 18, 19. Such processes are invasive and require the insertion of 

the electrodes to reach into the fracture site.  However, electric currents have not been utilized in 

clinical for controlling device-associated infections. There were several animal tests on using 

electric current to control biofilm formation on the metallic implants, but all of them required 

piercing of skin to introduce the wires and deliver electric current from a potentiostat outside the 

body to metallic implants. 

The animal study in this chapter utilized the wireless delivery technique to replace skin-piercing. 

The process of wireless delivering of DC depended on the inductive coupling between two 

electromagnetic coils. The alternating magnetic field under our setup could penetrate skin tissue 

up to 10 mm, which was sufficient for the in vivo test described here. Further development based 

on approach may have promising applications in treating device-associated infections. 

During the animal test, it was determined that the under-dermis cavity for the device had to keep 

moisture by injecting extra saline solution periodically. Previous animal studies for DC treatment 
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were carried in the deeper tissue that had more body fluid (such as blood) that ensures good 

conductivity between electrodes. However, we found the cavity under the dermis layer of the rabbit 

was very dry. Consequently, the connection between anode and cathode was poor and the actual 

current level was much lower than expected. Adding the saline solution could improve the 

electrical connection temporarily but it was absorbed by surrounding tissue soon after injection. 

Hence, more the saline solution was added every 2 hours in treatment. By testing devices at deep 

tissue, we expect stronger antibiofilm activities. 

Overall, our results showed that there were three major populations of S. aureus cells in the rabbit 

during treatment: the biofilm cells on the PDMS surface, the cells on the skin tissue that attached 

to the device and the cells in the residue saline solution in the cavity. For control samples, the total 

number of viable cells on skins tissue was almost 10 times higher than cells on PDMS surface. 

The number of viable biofilm cells on PDMS were reduced by 75%, and the viability of cells on 

the dermis tissue was also reduced by 80% after wirelessly delivered DC treatment. However, the 

number of S. aureus cells in saline solution in the cavity varied substantially between tested rabbits. 

The average number of these cells showed no significant killing by DC. This is not unexpected 

since the volume of residue saline solution was only 100 – 150 µL and stayed in the bottom of the 

cavity, which was away from both electrodes. The cells in this region couldn’t be treated by electric 

current or electrochemical products. Nevertheless, by counting the total number of cells including 

this subpopulation, S. aureus biofilm cells in the rabbit was killed by 65% after wirelessly 

delivered DC treatment for 6 hours. 

The migration of biofilm cells from PDMS surface to surrounding tissue and liquid in our study 

should be due to both animal model itself and the experimental design. The female rabbit skin is 

soft but elastic that could attach tightly on the surface of the device after implantation. Meanwhile, 
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breathing of the rabbit during the treatment caused “stretch-release” motion, which may generate 

shear force and make the skin in close contact with the biofilms. This shear force may peer the 

biofilm cells from the device. Another driving force is from the saline solution that was injected 

into the implant site. As mentioned above, to keep the cavity and device moisture, we had injected 

30 mL saline solution every 2 hours to ensure a good electrical connection. The saline solution 

was injected directly onto the surface of the device. This may also cause shear force and wash cells 

off from the device’s surface. These would not be of concern if the device were implanted in deep 

tissues.   

To overcome the barrier of conductivity and improve biofilm killing, it would be helpful to design 

implants with conductive material for the case/housing. This can be achieved by infiltrating 

conductive materials into the polymer material or coat the device surface with conductive materials. 

 

7.6 Conclusions 

In this study, a prototype device with a function of wirelessly delivered DC treatment was tested 

in the rabbit model. The S. aureus biofilm cells were treated by the device in the presence and 

absence of 12 µA/cm2 wirelessly delivered DC. The most significant killing effect was found on 

the cells attached to the dermis tissue, which has high conductivity. The viability of biofilm cells 

on devices’ surface was also reduced. For our best knowledge, this is the first study to investigate 

the bactericidal activity of the wirelessly delivered DC treatment in vivo although the whole system 

still needs optimizing. The results show that wirelessly delivered DC has promising applications 

for non-invasive control of device-associated infections.  
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7.9 Figures 

 

Figure 1. The setup of the wirelessly delivered DC treatment in the rabbit model. (A): The 

prototype device was placed in the pocket under the dermis layer of the rabbit. (B): A transmitter 

coils were put on the skin to deliver DC wirelessly. (C): Two rabbits were tested in parallel. 

 

 

 

 

 



 
178 

 

 

 

 

Figure 2. Representative pictures of the rabbits that were in direct contact with the prototype device. 

(A): The skin tissue without DC treatment. (B): A dermis tissue treated with wirelessly delivered 

DC for 6 h. (C): The surficial muscle tissue without DC treatment. (D): The surficial muscle tissue 

treated with 12 µA/cm2 of wirelessly delivered DC for 6 h. 

 

 

 

 

 



 
179 

 

 

 

Figure 3. Representative picture showing the residue saline solution.  
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Figure 4. The total impedances and total current level between anode and cathode in 0.1% saline 

solution with different internal resistors. 
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Figure 5. Viability of total S. aureus cells in the rabbits after 12 µA/cm2 wireless delivered DC 

treatment for 6 h. 
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(A) 

 

(B) 

Figure 6. HE staining of the dermis tissues in direct contact with the devices. The specimen was 

collected, and undergone cryosection. H &E staining was performed to evaluate the histology of 

the untreated (A) and treated (B) specimen with 12 µA/cm2 DC wirelessly delivered for 6 h.  
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(A) 

 

(B) 

Figure 7. HE staining of the surficial muscle tissues in direct contact with the devices. The 

specimen was collected, and undergone cryosection. H &E staining was performed to evaluate the 

histology of the untreated (A) and treated (B) specimen with 12 µA/cm2 DC wirelessly delivered 

for 6 h. 

 

 

 

 

 

 

 

 

 



 
184 

 

 

 

 

 

 

Chapter 8 

Conclusions and Future work 
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8.1 Conclusions 

Device-associated infections are not only a serious challenge to affected patients but also a heavy 

burden for the healthcare system and risk for the development of antibiotic bacteria. Previous 

studies discovered the promising killing effects of µA level DC on bacterial biofilms. However, 

the approach of DC delivery by wires requires skin piercing and thus limits the application of DC 

treatment in vivo. Motivated by this, we conducted this study to investigate the possibility of 

applying wirelessly delivered DC treatment to control pathogenic biofilms on the surface of 

implanted biomaterial devices. P. aeruginosa and S. aureus were chosen as model pathogens, and 

the PDMS was chosen as the substrate for biofilm growth to mimic the contaminated surfaces of 

implanted devices. Our results demonstrated for the first time that both P. aeruginosa and S. aureus 

biofilm could be effectively eradicated by wirelessly delivered DC. For example, 60 µA/cm2 of 

wirelessly delivered DC-mediated with 316L stainless steel electrodes reduced the viability of P. 

aeruginosa and S. aureus biofilm cells by 3.6 logs and 2.5 logs, respectively. When using graphite-

based electrodes (TGON), similar levels killing effects were obtained with the 30 µA/cm2 of 

wirelessly delivered DC. The treatment condition was found safe to lung epithelial cells and 

fibroblast cells in vitro.  

The killing results based on CFU were corroborated by SEM analysis, which showed that P. 

aeruginosa and S. aureus biofilm cells were deformed/lysed after wirelessly delivered DC 

treatment. This is consistent with the results of previous researches using wired delivery of DC. 

Synergies between wirelessly delivered DC and antibiotics (tobramycin and chlorhexidine) in 

killing biofilm cells were also observed.  
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To evaluate the potential of wirelessly delivered DC in biofilm control related to commercial 

medical implants, we engineered a prototype device with the wireless delivery and treatment 

system integrated into prototype device. Different shapes and electrodes layouts of the prototype 

device were compared using COMSOL simulation to obtain the best killing effects. In vitro and 

ex vivo tests demonstrated good killing effects of the prototype device on both P. aeruginosa and 

S. aureus biofilms on the surface of the prototype device. For example, the number of viable S. 

aureus biofilm was reduced by 2.3 and 2.1 logs after treatment in vitro and ex vivo for 6 h. These 

results demonstrated showed the feasibility of applying the same wirelessly delivered DC 

treatment in commercial implant devices (such as cochlear implant, pacemaker, GI tract stimulator, 

deep brain stimulator, et al.), which have similar dimension as our prototype device (4.5 cm 

diameter, 1 cm thickness).  

Although the animal tests showed less killing (65%) effect on S. aureus biofilm cells on the surface 

of the device than in vitro and ex vivo tests, because of the low conductivity under the dermis layer, 

the wirelessly delivered DC was effective in eradicating S. aureus cells especially those attached 

on the dermis tissue without noticeable cytotoxicity.  Many researchers reported that the biofilm 

on the contaminated implant device could release free cells to the surrounding environment by 

shear force and caused secondary infections 1-3. Our results showed that the device of wirelessly 

delivered DC treatment could protect both devices and surrounding host tissues from biofilm-

associated infections.  

Through mechanism study, we found that the products of electrochemical reactions have stronger 

effects in biofilm killing than the flow of ions during DC treatment. The killing mechanisms 

between the stainless steel electrode and graphite-based electrode appeared to be different. For 

example, bacterial killing by DC using graphite electrodes depends on the concentration of sodium 
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chloride in the solution. This concentration-dependent killing effect was also observed when 

treating biofilms with different concentrations of the sodium hypochlorite solution. Because the 

graphite anode could oxidize the chloride ions to chlorine and hypochlorous acid, the killing effect 

of graphite electrodes may be due to its oxidation products during DC treatment. In contrast, steel 

electrodes didn’t show any concentration-dependent killing effect, and the hydrogen peroxide 

produced by steel electrodes wasn’t enough to cause the killing effects to biofilm. Interestingly, 

the killing effect of stainless steel electrode was only observed in the single chamber system. This 

indicates that stainless steel electrode has bactericidal agents from the secondary electrochemical 

reaction between the products from the anode and cathode, which is completely different from 

graphite electrode. 

In summary, this study demonstrated that wirelessly delivered DC treatment is a promising 

approach for controlling device-associated infections caused by pathogenic biofilms. More 

research is needed to further develop this technology for clinical applications.  

 

8.2 Future work 

8.2.1 Optimizing the prototype device 

The prototype device used in this study has a volume of 25 cm3 that shares a similar size as Oreo 

cookie. However, it still seems oversize compared to the latest generation of electronic pacemaker 

that is only 1 cm3 4. The smaller size of the device could be more feasible for in vivo applications. 

The bottleneck to minify our devices is the rectifier chips and the internal resistor that reduces the 

total current to micro-amp levels. The rectifier chip we used is derived from the commercial 

wireless electric receiver with several large circuit components and fixed power output (5 V). It is 
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necessary to design a new rectifier chip with minimized components to reduce the size and power 

output to so that the internal resistor will be unnecessary.  

Additionally, the surface conductivity of the device is a critical issue that needs to be considered. 

In in vitro and ex vivo tests, the device was perfectly surrounded with a saline solution that 

promised good conductivity between the anode and cathode. However, when the device was 

implanted in the pocket cavity under the epidermis of the rabbit, it had a drier environment with 

only little body fluid. This lead to a poor connection between electrodes, and relating less killing 

in the in vivo tests. To address this challenge, the conductive particles (such as carbon black 

nanotube and nanoparticle 5, 6 ) could be mixed with PDMS monomer to increase the electric 

conductivity, and thus the capability of biofilm control by the engineered device.  

8.2.2 Roles of the electrochemical products in bacterial killing by DC  

Our data indicated that different electrochemical reactions played a significant role in low-level 

DC treatment, and the movement of ions does not appear to be important. For example, DC 

treatment using graphite electrodes could generate chlorine and hypochlorite, while the steel 

electrodes may have secondary electrochemical reactions between anode and cathode products 

(Fenton reaction) and produce free radicals. The next step should be using specific assays to 

measure the actual concentration of these products in the electrolysis solution. This will provide 

deeper insight into the killing mechanism of electric current as well as the information about long-

term cytotoxicity.  

8.2.3 Wireless electric impendency scanning  

The electric impendency scanning (EIS) technique can detect tiny changes in redox property of 

the electrode. Thus, it is a perfect approach to monitoring biofilm formation on the surface of an 
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implant device. However, conventional EIS also needs wires to connect the potentiostat with 

electrodes. If we can modify our system of wirelessly delivered DC treatment to achieve wireless 

communication between potentiostat and in vivo electrodes, the device will be able to both detect 

the biofilm formation and conduct DC treatment on demand. This would be a new generation of 

implanted devices with both self-diagnosing and self-cleaning functions. 
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Appendix A. Growing S. aureus biofilm on the PDMS surface of different stiffness 

In all the study of this dissertation, we grew the S. aureus biofilm on the stiff PDMS with Young's 

modulus of 2 MPa. The actual stiffness of PDMS used in implant device the could be varied. We 

reported that the stiffness of PDMS could affect the formation of P. aeruginosa biofilm on early 

stage although there was no obvious difference for mature biofilm. To investigate if there was also 

such phenomena for S. aureus biofilm, we compared the attachment and growth of S. aureus 

biofilm on both stiff and soft PDMS surfaces.  

Method:  

1.  The S. aureus overnight culture was made in the LB medium and then washed by 1X PBS 

solution as the same procedure mentioned in Chapter 3. The PDMS surfaces were also prepared 

as the same procedure, the ratio of between monomer and crosslinker were 40:1, 20:1 and 5:1 for 

soft, medium and stiff PDMS, respectively.  

2. The cells’ solution was diluted by 500 times with PBS and then added into petri dish contained 

soft, medium and stiff PDMS.  

3. The PDMS surfaces were kept in the cells’ solution at 37°C for 2 h. 

4. The PDMS surfaces were gently washed with PBS solution and then transported to LB medium 

at 37°C. 

5. After 2, 5 and 24 hours, the PDMS surfaces were taken out from LB followed by CFU counting 

and Living/Dead staining to evaluate the number of viable S. aureus cells. 
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Result: 

The growth curve of the S. aureus biofilm on PDMS demonstrated that the biofilm on stiff surface 

grew obviously slower (Figure 1) in the first 5 hours compared to soft and medium surfaces, 

although the numbers of the initially attached cells were same (Figure 2). After 6 hours, the total 

cells’ numbers of biofilms on three surfaces were closed, and there was no significant difference 

among mature (24 h) biofilms on soft, medium and stiff PDMS surfaces. 

 

Figure 1. The growth curve of S. aureus biofilm on stiff, medium and soft PDMS substrates. 

The images of Living/Dead staining were in consistent with the CFU results. For example, there 

were noticeably more cells on the soft and medium PDMS surfaces than the stiff one after 2 

hours incubation in LB medium although the initially attached cells were almost equal (Figure 

3). After 5 hours’ incubation, the soft and medium surfaces had multiple layers of biofilm cells 

while the cells’ number of the stiff surface was still closed to initial attachment (Figure 3). After 

24 hours’ growth, all three kinds of PDMS surface had similar coverage of biofilm cells. 
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Figure 2. The SYTO9 stained S. aureus cells attached on stiff (5:1), medium (20:1) and soft (40:1) 

PDMS substrates after inoculation in PBS solution for 2 hours. Scale bars = 20 µm. 

In all the studies of this dissertation, the S. aureus biofilms were grown in 22 – 24 hours in LB 

medium for 24 hours. At this stage, we didn’t find the significant difference S. aureus biofilm on 

soft and stiff PDMS surfaces, which was in consistent with the P. aeruginosa biofilm reported 

before. Therefore, the interfere of the substrate’s stiffness could be excluded.  
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Figure 3. The SYTO9 stained S. aureus biofilm cells on stiff (5:1), medium (20:1) and soft (40:1) 

PDMS substrates during biofilm growth in LB medium. Scale bars = 20 µm. 
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Appendix B. Supplementary data Chapter 3: The proof-of-concept study of wirelessly 

delivered DC treatment on biofilm cells  

 

 

Figure S1. The viability of P. aeruginosa (left) and S. aureus (right) planktonic cells after 

treatment with 0.06, 0.6 or 6µA/cm2 DC in 0.85 % NaCl for 2, 4 or 6 h. 
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