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Abstract

Lattice studies of strongly coupled gauge theories started with the pi-

oneering work of Wilson. The success of lattice QCD since then has

improved our understanding of strong dynamics, crucial for proper un-

derstanding of many interesting phenomena in Physics. However, it is

now known that the Standard model is only an approximation to some

richer underlying theory. It is believed that supersymmetry has a special

role to play in the framework of that theory. Even if nature is non-

supersymmetric at all energy scales and we see no experimental evidence

for it in the coming decades, the beautiful structure of these theories

could still be very important in our quest to understand the universe. In

four dimensions, a special supersymmetric theory has drastically altered

our understanding of the holographic principle. In view of these observa-

tions, the study of supersymmetric gauge theories on the lattice at strong

couplings is crucial. Even though lattice supersymmetry has a long his-

tory going back four decades, it has been very difficult to simulate the

four-dimensional theory at strong couplings until now. This is because

supersymmetry on the lattice is far from trivial and is broken at the clas-

sical level because of the supersymmetric algebra. However, substantial

progress has been made in studying these theories on the lattice. Several

wonderful ideas like topological twisting, differential forms, point group

symmetries of the lattice, and integer form fermions all come together

and has enabled us to study these supersymmetric theories by preserv-

ing a subset of supersymmetries exactly on the lattice. This thesis deals

with the numerical studies of super Yang-Mills (SYM) theories in various



dimensions, their large N limit, and their role in a better understanding

of gauge/gravity duality.
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Chapter 1

Introduction

Simplex sigillum veri (The

simple is the seal of the true)

Pulchritudo splendor veritatis

(Beauty is the splendor of truth)

Latin phrase

The theory of the renormalization group (RG) flow has been one of the most

important ideas in Physics in the last century. The fixed points of the RG flow

constitute an important class of quantum field theories, known as conformal field

theories (CFT). A conformal field theory is a quantum field theory when the action

is invariant under conformal transformations. The conformal invariance highly con-

strains the field theory and has far-reaching implications such as vanishing of the

energy-momentum tensor. However, in some cases, a quantum process can break

this symmetry and give rise to trace anomaly and non-zero stress tensor. The CFT

can then be completely described by central charges of the energy-momentum ten-
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sor. These central charges determine the correlation functions of the theory and also

reorient the theory under renormalization group flow. It is known in two dimen-

sions from Zamolodchikov’s c-theorem [1] that the central charge c increases from

the infrared (IR) to the ultraviolet (UV). This theorem orders a CFT and provides

interpretation of the central charge as a measure of the field degrees of freedom in

the theory. These degrees of freedom decrease along the renormalization flow due to

the decoupling of massive modes. The study of CFTs has also become important in

recent years due to the holographic application via the AdS/CFT correspondence.

The results for the entanglement entropy obtained from CFT in lower dimensions

agree with the calculations using gravity.

However, it is highly unusual for any theory to have a line of fixed points all

along the RG flow and to be conformal under quantum interactions. One such

special theory is N = 4 super Yang-Mills (SYM) theory in four dimensions. This

theory is maximally supersymmetric and has sixteen supercharges. This feature is

because of supersymmetry⇤. Since this is such an interesting theory, one desires to

understand its properties non-perturbatively as well. This motivation has resulted

in several decades of work realizing supersymmetry on the lattice which furnishes a

gauge-invariant regularization to study the theory at strong couplings. N = 4 SYM is

also special because it takes part in the AdS/CFT correspondence, the first concrete

example of a holographic correspondence between supersymmetric gauge theory and

a gravity theory on anti-de Sitter (AdS) spacetime [2–4]. For a nice discussion on

the relation between lattice gauge theory and AdS/CFT correspondence, see [5].

The non-perturbative features of supersymmetric Yang-Mills (SYM) is also thought

to play a crucial role in beyond Standard model (BSM) Physics and in M/String the-
⇤A non-supersymmetric theory which shows this behavior of line of fixed points is XY model

in two dimensions for T  TKT
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ory. The non-perturbative study of string theory is based on various matrix models.

In general, two kinds of non-perturbative formulations of M/string theory exists.

The first is called the Matrix theory. Typical examples are BFSS Matrix model

and the plane-wave Matrix model (PWMM) which describes a sector of M theory

in the infinite momentum frame † on a flat background and a pp-wave background,

respectively. There is another 0+0-dimensional matrix model called IKKT model [6]

studied with motivations for applications to string theory. We will not say anything

about this model in this thesis. These matrix models are dual to classical supergrav-

ity only in the large N and strong coupling limit which is in general not analytically

solvable. In the last ten years, there have been several precision numerical calcu-

lations which have reproduced predictions from the dual gravity, hence providing

very strong evidence about the validity of the holographic conjecture, which we will

discuss in detail in Chapter 3. The BFSS matrix model (like many extended super-

symmetric models) has a moduli space. The moduli space in this theory is given by

the eigenvalues of nine commuting matrices i.e. [Xi, Xj] = 0 that transform under the

SO(9) R-symmetry. The existence of these flat directions means that, at finite tem-

perature, the partition function is formally divergent, and it was shown that when

Monte Carlo simulations of this theory are performed, this divergence eventually

causes the simulation to break down. However, at large N , we can still understand

the thermodynamics in a meta-stable vacuum state with sufficient precision.

The second non-perturbative approach to string theory/M-theory is through the

AdS/CFT correspondence. It was first studied by Maldacena for which the pair

system was Type IIB supergravity on AdS5⇥S5 and N = 4 SYM. Using this duality,

several results for the strongly coupled field theory have been reproduced by the

classical gravity in the bulk. However, the other direction, i.e. getting results for
†Note that this is also sometimes called light-cone gauge quantization
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Figure 1.1: Different regions of supersymmetric/non-supersymmetric gauge theories
in the N � � plane
.

gravity from field theory has been less explored because of lack of calculational tools

in the strongly coupled field theory. This thesis attempts to explore this side of

duality by using lattice as a tool for dealing with strongly coupled field theory. In

addition, lattice also provides a window into the finite-N and coupling corrections

to the leading holographic result only valid in N ! 1 and � � 1. This is shown in

more detail in Figure 1.1.

1.1 Supersymmetry (SUSY)

Supersymmetry is a theoretical idea which relates half-integer (fermions) and integer-

spin (bosons). For a nice review on supersymmetry and its lattice constructions, see

[7–9]. The roots of supersymmetry were laid down when Coleman and Mandula (CM)

proved a theorem [10] which was then supposed to be the final nail in the discussion
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of how the Poincare group and internal symmetries can be mixed together. They

showed that under some assumptions, there was no non-trivial way of combining the

two. In a way, it meant that there cannot be any manner in which the fermions

can be brought on the same footing as bosons. But, then, physics thrives on crisis

and exceptions. A few years later, Haag, Lopuszanski and Sohnius [11] showed that

if some of the assumptions in the Coleman-Mandula theorem are relaxed then it is

possible to mix these symmetries. This implied the use of graded Lie algebra instead

of the normal Lie algebra which was used in the argument by CM.

1.1.1 Extension of the space-time symmetry group

The Poincare group is composed of transformations of the form,

xµ
! x0µ = ⇤µ

⌫
x⌫ + aµ (1.1)

We talk about Lorentz transformations if in the above transformation we do not

have the aµ part. Hence, it is pretty obvious to imagine Poincare transformations

as a direct product between Lorentz transformations and group of 4-translations. In

fact, it is not a direct but semi-direct product of two. The Poincare algebra is given

by,

[Mµ⌫ ,M⇢�] = i (Mµ�⌘⌫⇢ +M ⌫⇢⌘µ� � Mµ⇢⌘⌫� � M ⌫�⌘µ⇢) (1.2)

[P µ, P ⌫ ] = 0 (1.3)

[Mµ⌫ , P �] = i (P µ⌘⌫� � P ⌫⌘µ�) (1.4)
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here M is the anti-symmetric generators of the Lorentz group and P are the trans-

lation generators.

The CM theorem clearly meant that there was no non-trivial way of mixing par-

ticles with integer and half-integer spin. Wess and Zumino discovered field theoretic

models with this extended symmetry (called ’supersymmetry’) which connects Bose

and Fermi fields and are generated by charge transforming like spinors under the

Lorentz group (supercharges). These supercharge give rise to a new system of com-

mutation and anti-commutation relations, which is not precisely a Lie algebra but a

graded algebra. This has a Z2 grading. The Poincaré generators P µ and Mµ⌫ are

bosonic generators. In supersymmetry, we add fermionic generators QL

↵
, QM

�
, where

L,M = 1, 2, · · · N . The N = 1 case is simple supersymmetry and N > 1 is extended

supersymmetry. The complex spinorial generators follow the following algebra,

{QL

↵
, QM

�
} = ✏↵�Z

LM (1.5)

[P,Q] = 0 (1.6)

[QL

↵
,Mµ⌫ ] =

1

2
(�µ⌫)↵

�QL

�
(1.7)

{QL

↵
, QM

�
} = �LM�µ

↵�
Pµ (1.8)

The last one is the most interesting of these four. It roughly means that the super-

symmetric generators are the square root of the four-momentum. It also means that

combining two supersymmetric transformations (one of each helicity) corresponds to

space-time translation. This commutation relation should be enough to dissuade one
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from attempting to put supersymmetry on the lattice since infinitesimal translations

don’t exist on the lattice and supersymmetry is broken at the classical level. If su-

persymmetry is not consistent with lattice discretization, then one immediately asks

- why do we really want to study lattice supersymmetry?

Supersymmetry is interesting because it is a mathematically consistent and ele-

gant theory. It is worth investigating because of the relation between SYM theories

and string theory and quantum gravity. Most of the features of SYM theories are

at strong coupling, where we have only a handful of methods in general. In order to

have a valid non-perturbative definition from first principles, it would be desirable

to go back to the highly successful tool of lattice gauge theory which has produced

amazing results in QCD. However, supersymmetry is very different from QCD and

has a much richer structure and field content. One can immediately see this from su-

persymmetric algebra, which is very constrained. Once we fix the maximum helicity

(which for theories without gravity is one, and with gravity is two), there are only a

few possibilities for the number of supercharges (or supersymmetries) that can exist.

In case of no gravity, the maximal number of supercharges is 16 and for supergravity

theories, it is 32. If the SYM theory possesses sixteen supercharges, we often refer to

it as ‘maximally supersymmetric’. The restriction on the maximal spin comes from

the idea that the theory should be renormalizable. A supersymmetric theory is often

labeled with N , Q, d which stands for the number of copies of supercharges, number

of supercharges, and space-time dimension. For ex: N = 4 SYM theory in d = 4 has

Q = 16 (sixteen supercharges, maximal). This theory is obtained by dimensional

reduction of the ten-dimensional N = 1 SYM theory.

A nice way of deciding which higher-dimensional theory to start from is to count

the number of spinor components. In ten dimensions, a spinor has 2[d/2] = 32 complex

components which are reduced to 16 real components after imposing the Majorana-
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Weyl condition consecutively in that order (which can only be done where d mod

8 = 2). Therefore, N = 1 SYM in ten dimensions has 16 real components. A

Majorana spinor in four dimensions has 4 components. To obtain N = 4 SYM in

four dimensions (which has 16 real components) one starts with N = 1 SYM in ten

dimensions just like we mentioned before. N = 1 SYM in four dimensions similarly

has Q = 4 components. So, in order to construct a supersymmetric theory in two

dimensions with four supercharges i.e. N = (2,2) SYM, one needs to start from

N = 1 SYM in four dimensions.

1.1.2 R-symmetry

Supersymmetric theories are endowed with a special symmetry, known as R-symmetry.

R-symmetry is the symmetry transforming different supercharges in a theory into

each other. For extended supersymmetry (i.e. N > 1), the R-symmetry group

becomes a global non-abelian group. The bosonic, fermionic fields and the super-

charges form a representation of the R-symmetry, as well as Euclidean rotation group

SO(d)E. N = 1 SYM in four dimensions has a U(1) R -symmetry while the N = 1

SYM in ten dimensions has no R-symmetry. When this N = 1 SYM in ten dimen-

sions is dimensionally reduced to d space-time dimensions, the R-symmetry group is

enlarged to SO(10 � d) R-symmetry. Hence, we can immediately see that N = 4

SYM in four dimensions has SO(6) R-symmetry. Note that this SO(6) R-symmetry

is exactly the same as isometries of S5 (five-sphere) which takes part in the AdS/CFT

correspondence. In our quest to understand supersymmetry on the lattice, we will

now briefly review the ideas that will be important in constructing the lattice formula-

tion of supersymmetric theories which preserves some subset of the supersymmetries.
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1.1.3 Topological Field Theories (TFT)

Before discussing the lattice formulation of the supersymmetric gauge theories, we

will review the idea of topological field theory which plays an important role in

lattice theory. One of the easiest ways to construct a topological field theory is to

take an extended space-time supersymmetric theory and twist it. A common feature

of both supersymmetric lattice theories and topological field theories is the presence

of nilpotent scalar supercharge Q. They have actions which are Q-exact. All the

supersymmetric lattice theories are associated with topological field theories but the

opposite is not always true. A topological field theory (TFT) is characterized by the

following:

• Collection of fields defined on a Riemannian manifold(M,g)

• A nilpotent operator which is Grassmann odd

• Physical states are in Q-cohomology class ‡

• Energy-momentum tensor is Q-exact i.e.

Tµ⌫ = QGµ⌫

Q is referred to as ‘BRST charge’ (also BRST operator) and the Grassmann

grading corresponds to the ghost number. In general, Q is metric independent and

is the simplest situation. However, there are far more interesting cases where T↵� is

a BRST commutator even when Q fails to be metric independent. There also exist
‡Given the second condition above that the operator should be nilpotent means that it is

satisfied when a particular state is annihilated by that operator (let’s call it Q). Such states are
said to be in the kernel of Q. Alternatively, a state which is annihilated by Q can take a form of Q
acting on something, such states are said to be in the image of Q. But, there may be some states
which are in the kernel of Q, but not in the image; such states are said to be in the cohomology of
Q.
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cases where T↵� is not even a BRST commutator, though, it is possible even then,

sometimes, to establish the topological nature. Consider the change in the partition

function,

Z =

Z
D�e�Sq (1.9)

under an infinitesimal change in the metric, we get :

�gZ =

Z
D�e�Sq

✓
�
1

2

Z

M

dnx
p
g�g↵�T↵�

◆
(1.10)

=

Z
D�e�Sq

✓
�
1

2

Z

M

dnx
p
g�g↵�QG↵�

◆
(1.11)

=

Z
D�e�SqQ�↵� = hQ�↵�i = 0 (1.12)

where, � = �
1
2

R
M
dnx

p
g�g↵�G↵�. We have used the fact that vacuum is BRST

invariant. This means that the partition function does not depend on the local

structure of the manifold: Z is a topological invariant. Now consider the following

action,

S(�) =

Z
ddx

p
g [gµ⌫rµ�r⌫�] (1.13)

where gµ⌫ is the Riemannian metric and r is the covariant derivative. We can define

the energy-momentum tensor as :

Tµ⌫ =
�S

�gµ⌫
(1.14)

and rewriting it gives, §,

hTµ⌫i =
1

Z

Z
D�

✓
�S

�gµ⌫

◆
exp


�S(�)

~

�
(1.15)

§Using the fact that Z is already independent of metric
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hTµ⌫i = 0 (1.16)

We have established that the metric variation of the partition function vanishes,

and in turn that the energy-momentum tensor is zero. We need to examine the

presence of other metric independent correlation functions in the theory. Let’s start

by considering the vacuum expectation value of an observable,

hOi =

Z
D�e�S

O(�) (1.17)

We have to derive the conditions for this change in expectation value to be zero,

�hOi =

Z
D�e�S(�gO � �gSq · O) (1.18)

Assume that O satisfies the following properties :

�gO = {Q, T} , {Q,O} = 0 (1.19)

for some T, we then have :

�ghOi = h{Q, T + �O}i = 0 (1.20)

It is interesting to note that even though � depends on V↵� which contains metric

dependence, we have wrapped it up in form of BRST commutator and still have

metric independence. TFT can be classified into two types: 1. Schwarz type 2.

Cohomological type (Witten-type).

• Schwarz Type: The classical action is explicitly independent of the metric.

Chern-Simons theory is a prototype of this class of topological field theories

introduced by Witten in 1980s. The metric independence implies that the
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classical stress-energy tensor of TFT vanishes. In addition, even the quantum

stress-energy tensor vanishes because of the fact that the remaining part of

quantum action has been recast as a BRST commutator. �S

�gµ⌫ = Tµ⌫ = 0. The

alternate cases where the classical action depends explicitly on metric is not

dealt here. It is also clear from the equation below that the quantum action

for Schwarz type theories do not enjoy the property that the quantum action

is Q-exact.

Sq(�, g) = Sc(�) +QV (�, g) (1.21)

• Witten Type: In Witten-type topological field theories, the topological invari-

ance is more subtle. The lagrangian generally depends on the metric explicitly,

but one shows that the expectation value of the partition function and special

classes of correlation functions are diffeomorphism k invariant. The important

characteristic of Witten-type theory is that the quantum action Sq, which com-

prised the classical action plus all necessary gauge fixing and ghost terms, can

be written as BRST commutator i.e.,

Sq = h{Q, V }i (1.22)

for some functional V (�, g) of the fields and Q is nilpotent. In BRST quantiza-

tion of gauge theories, one constructs a BRST operator Q which is nilpotent.

The variation of any functional O is denoted by �O = {Q,O}, where the

bracket is used to represent the graded commutator with the fermionic charge

Q. A state which is annihilated by Q is called Q-closed, while a state of the

form Q|�i is called Q-exact. From the BRST invariance of the vacuum, we can
kRoughly speaking, this means that they are metric independent
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conclude that the vacuum expectation value of {Q,O} for any functional O is

zero i.e.

h0|{Q,O}|0i = 0 (1.23)

An operator of the form {Q,O} is called BRST commutator. The energy-

momentum tensor T↵� is defined as the change in the action under smooth

deformations of the metric.

�gS =
1

2

Z

M

dnx
p
g�g↵�T↵� (1.24)

We assume throughout that the functional measure in the path integral is both

Q-invariant and metric independent. If it is not the case, we have to check for

metric anomalies which are outside the scope of this thesis.

1.1.4 Twisting of the supersymmetric theory

In the 1980s, Witten noticed that supersymmetry has a deep relation to topology.

The simplest example of such a relation is supersymmetric quantum mechanics, which

provides a physical reformulation of Morse theory. Their relation is not obvious be-

cause of the degrees of freedom in a topological field theory of Witten-type and

supersymmetric theory is very different. Witten-type theories have no physical de-

grees of freedom, unlike the supersymmetric theories. Their relationship becomes

more apparent when we follow a procedure known as ‘twisting’. The twisting pro-

cedure can be viewed as a modification of Lorentz transformation properties. This

process leads to at least one scalar supercharge, unlike the half-integer supercharges

we have before the twisting. Twisting can be done through in several different ways

based on how we embed the spin connection in the R-symmetry group of the ex-
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tended supersymmetric theory. In the twisting procedure, one first selects one of

the two components of the rotation group and then replaces it by the diagonal sum

of that component with a SU(2) subgroup of the internal group ¶. For the N = 2

SUSY in four dimensions, this can be done in only one way. There might be several

ways of doing this twisting depending on how large the R-symmetry group is for that

theory.

The new choice of rotation group involved in the twist implies that the isospin

index i becomes a spinorial index ↵ : Q
i

↵
7! Q

�

↵
and Q̄i� 7! G

↵�̇
. The trace of Q

�

↵

is chosen as the generator of scalar symmetry which we desired since it has many

advantages. This scalar generator is the relation between supersymmetric theories

and TFT’s. There are three inequivalent twists of the N = 4 SYM theory in four

dimensions partly due to Yamron, Vafa & Witten & Marcus. Only the last one of

these correspond to the orbifold and twisted constructions and will be useful for this

thesis. The N = 4 SYM theory in d = 4 dimensions possesses a global Euclidean

Lorentz symmetry SO(4)E ⇠ SU(2)⇥SU(2) on R4 and a global R-symmetry group

SO(6). The R-symmetry contains a subgroup SO(4)R ⇥ U(1). To construct the

twisted theory, we take the diagonal sum of SO(4)E ⇥SO(4)R and declare it the new

rotation group. The U(1) part of the symmetry group is undisturbed and continues

to be a global R-symmetry of the twisted theory. Both bosons and fermions are in

the integer spin representations after twisting. They are p-form tensors of the new

rotation group i.e. SO(d)0.
¶So now, for every rotation in Euclidean space, we do a similar rotation in isospin space. This

is similar to identify the different indices as mentioned in the text
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1.1.5 Kähler-Dirac fermions and A⇤
4
lattice - steps to Q-exact

SUSY

In a remarkable paper, Kähler provided a geometric interpretation to fermions in

term of inhomogeneous differential forms. It meant that Dirac equation for spin-

1/2 particles can be written in terms of differential forms. Such fields are called

Kähler-Dirac (KD) or Dirac-Kähler fields. The KD equation in four dimensions is,

(@ � � +m)� = 0 (1.25)

where @ is the boundary and � is the co-boundary operator and they satisfy, @2 =

�2 = 0. The Laplacian is then written as,

2 = (@ � �)2 = �(@� + �@) (1.26)

The KD equation is actually equivalent to four copies of the Dirac equation. This

mapping makes it possible to represent spin-1/2 fermions in terms of bosonic fields.

This is to some extent perfectly compatible with the idea of supersymmetry. The

extra fermion species are a problem in QCD but they are very natural in supersym-

metric theories. To fill the entire KD multiplet in d dimensions, we need at least

2d fermions. KD fermions can also be thought of as staggered fermions familiar

from lattice QCD (also known as Kogut-Susskind fermions) with one half the lattice

spacing obtained by combining the lattice and its dual lattice. In the construction

of Q-exact lattice supersymmetry, these KD fermions play a very important role.

The fermions of the twisted theory are no longer spinors but anti-symmetric tensor

fields which are consistent with their interpretation as KD fermions. However, it is

required that this mapping fills the entire KD multiplet and that highly restricts the
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class of theories for which one can do this. In addition to the topological twisting and

the idea of Kähler-Dirac fermions described above, the requirement of exact lattice

supersymmetry also needs highly symmetric lattices to target the correct continuum

theory. With a greater symmetry of the spacetime lattice, we expect fewer relevant

or marginal operators.

One such highly symmetric lattice in four dimensions is already known as A⇤
4. It

is also sometimes called the dual of the 4-simplex lattice. This lattice has five links

which are associated with five complex valued fields which include the six scalars

and four gauge fields of the N = 4 SYM theory. This lattice treats all the five gauge

links (bosonic variables) equally and preserves S5 permutation symmetry. This S5

symmetry 7 provides a set of irreducible representations that match exactly those

of the continuum twisted SO(4) symmetry (discussed in the previous section). Note

that the lattice point group in supersymmetric lattices cannot be considered to be a

subgroup of just the Lorentz group, but rather it is a subgroup of the product of the

Lorentz group and the R-symmetry group, which in the same as the twisted SO(4)

group. There might be some implications of the fact that what is preserved on the

lattice is not the entire SO(6) R-symmetry group but only some subgroup of it. This

is not clear to the author at the moment and will not be addressed any further in

this thesis.

1.2 N = 4 SYM in d = 4

The most extensively studied of all SYM theories is N = 4 SYM in d = 4. The theory

has a coupling constant which does not run and is conformal. It can be thought of as
7In this thesis, S5 is also used to refer to five-sphere, the difference should be clear from the

context.
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the most symmetric theory in four dimensions without gravity. This theory can be

obtained by dimensionally reduce the d=10 N = 1 SYM down to four dimensions.

This theory possesses SO(6) R-symmetry inherited from the reduced directions of

the Lorentz symmetry of the d = 10 dimensional theory before reduction. The field

content of the theory is six scalars, and sixteen fermionic matrices in the adjoint

representation of the gauge group SU(N). Supersymmetry and conformal symmetry

in N = 4 SYM leads to even bigger symmetry group, due to the fact that supersym-

metry and special conformal transformations do not commute. The entire group is

known as the superconformal (SC) group and is given by the supergroup SU(2, 2|4).

1.2.1 Dimensional reduction from ten dimensions

We start with a super-Yang-Mills theory in ten dimensions, where the action is,

SN=1 =
1

g2

Z
d10x Tr

 
�

1

4
FMNF

MN +
i

2
 /D 

!
(1.27)

where FMN is the ordinary field strength constructed out of the vector in the mul-

tiplet and  a is the Majorana-Weyl spinor with a taking values from 1 to 16. Both

are in the adjoint representation of the gauge group. We define /D = �D, where

(Dµ )a = @µ a + gfa

bc
Ab

µ
 c. The supersymmetric transformations (�✏) which leave

1.27 invariant are given by,

�✏A
a

µ
=

i

2
✏̄�µ 

a (1.28)

�✏ 
a = �

1

4
F a

µ⌫
�µ⌫✏ (1.29)

�✏ 
a

=
1

4
✏F a

µ⌫
�µ⌫ (1.30)
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where ✏ with index suppressed denotes infinitesimal SUSY parameter (multiplying

some SUSY generator). One important point to note is that the Dirac spinor has

2D/2 i.e. 32 complex components. In space-time dimensions, d where d mod 8 = 2,

we can have Majorana-Weyl representation (see appendix for the table). Majorana

(or reality) condition reduces the 32 complex components to 32 real components,

and the Weyl condition reduces this further to 16 real components. Hence, in this

case, we have sixteen real components of Majorana-Weyl spinor components or eight

complex components which equals the bosonic degrees of freedom. Thus, it is evident

that supersymmetry of 1.27 also rests on the fact that D � 2 has to equal some

power of 2, which picks out D = 3, 4, 6 and 10 as possible options. For most of

our purposes, we will only consider reductions from D = 10. We can dimensionally

reducing the theory from ten dimensions down to four dimensions using the idea of

compactification assuming no motion along the reduced six directions. The reduced

gauge degrees of freedom the ten-dimensional theory behaves as scalars Xi, where

i = 1 · · · 6. The field tensor FMN breaks as,

FAB = �i[XA, XB] (1.31)

FµA = @µXA � i[Aµ, XA] = DµXA (1.32)

and,

Fµ⌫ = @µA⌫ � @⌫Aµ � i[Aµ, A⌫ ] (1.33)

The kinetic term of 1.27 splits as,

�
1

4
FMNF

MN = �
1

4
Fµ⌫F

µ⌫ +
1

2

X

I

(DµXI)
2
�

1

4

X

A,B

[XA, XB]
2 (1.34)
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The fermions are split according to,

i

2
 n /D n =

i

2
 µ /D µ +

1

2
 �A[XA, ] (1.35)

where the second term is the Yukawa term in the four-dimensional theory.

For a non-Abelian SU(N) gauge theory, the one-loop � function for the gauge

coupling gYM is given by [12, 13]

�(gYM) = µ
@gYM

@µ
=

�g3
YM

16⇡2

 
11

6
Tadj �

1

12

X

s

T (rs) �
1

3

X

f

T (rf )

!
(1.36)

where the sum over s is over real scalars (six of these) and f is over real fermions

and T (r) is the index of representation r. Since everything here is in adjoint repre-

sentation, we can simplify it as,

�(gYM) = �
g3
YM

16⇡2

Tadj

6

✓
11 �

Ns

2
� 2Nf

◆
(1.37)

hence, this is zero for N = 4 SYM since Ns = 6 and Nf = 4.

1.2.2 Some properties of N = 4 SYM.

N = 4 SYM possesses flat directions corresponding to [Xi, Xj] = 0, when the scalars

X belong to the Cartan sub-algebra of the gauge group SU(N). This leads to a

moduli space of vacuum solutions. The section of moduli space where only the

adjoint scalars of N = 4 SYM get a vacuum expectation value (VEV) is referred

to as the Coulomb branch. The VEV can at most Higgs the gauge group down to

U(1) (where the U(1) is intact) and this implies that the branch can still support

long-distance EM forces (a bunch of copies of electromagnetism) and free photons
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since the U(1) gauge fields are still massless. The VEV of the scalars give a mass

scale to the otherwise conformal N = 4 SYM at the superconformal fixed point and

this symmetry is broken and so is the gauge symmetry. The process of Higgsing from

U(N) to U(1)N gives W-bosons a mass which just depends on mab

W
= |xa�xb| = Zab,

where Zab is the central charge of the BPS objects. Note that W-bosons are 1/2-BPS

objects with respect to the some still-unbroken N = 4 SYM. This also has a nice

interpretation in terms of D-branes via the AdS/CFT duality which can be found in

the standard gauge/gravity review [4]. This theory also has S-duality under which:

⌧YM =
✓

2⇡
+ i

2⇡

g2
YM

goes to �1/⌧ , where we have defined the ’t Hooft coupling � = g2
YM

N .

1.2.3 Lattice N = 4 SYM

The continuum N = 4 SYM theory can be twisted in three different ways to construct

topological field theories. For our purposes, the maximal twisting [14] would be

required to have maximum overlap with the original R-symmetry group. This twist

is sometimes also called the GL-twist (role in Geometric Langlands program). In

this subsection we briefly mention this twisted theory and its implementation on the

A⇤
4 lattice, this will be further discussed with numerical results in Chapter 5. We

review this construction here, details can be found in [9, 15] The main idea of the

maximal twist is to form the complex combination

Aµ ⌘ Aµ + iBµ, (1.38)
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where Aµ are the usual four-dimensional gauge fields and Bµ is a vector formed out

of four of the six adjoint scalars �IJ of the N = 4 theory. The two remaining scalars

remain singlets after twisting process. The four Majorana fermions ( I and their

partners  c

I
) are regrouped into an anti-symmetric tensor �µ⌫ , two vectors  µ and  ̄µ

and two scalar components ⌘ and ⌘̄, altogether 16 single components. We combine

the four gauge fields and six scalars in five links spanning directions in the A⇤
4 lattice.

Aa ⌘ Aa + iBa, (1.39)

where the index ‘a’ runs from 1, · · · , 5. We assign the two singlet scalars to the

new fifth component A5. Similarly, the 16 fermion fields can be regrouped into the

multiplet �ab, a, ⌘, with �ab anti-symmetric. We can then introduce complexified

field strengths,

Fab ⌘ [Da,Db] Fab ⌘ [Da,Db], (1.40)

where the corresponding complexified covariant derivatives read

Da = @a + Aa Da = @a + Aa. (1.41)

One scalar supersymmetry charge Q becomes nilpotent after the twisting. These act

as follows:

Q Aa =  a Q  a = 0

Q �ab = �Fab Q Aa = 0 (1.42)

Q ⌘ = d Q d = 0,
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where d is an auxiliary field with equation of motion d =
⇥
Da,Da

⇤
(repeated indices

summed). The other fifteen supersymmetry charges are twisted into a vector Qa and

anti-symmetric tensor Qab. Except for a topological Q-closed term,

Scl = �
1

16g2

Z
Tr✏mnpqr�qrDp�mn, (1.43)

the full N = 4 action can be written in Q-exact form,

S =
1

4g2
Q

Z
Tr


�abFab + ⌘[Da,Da] �

1

2
⌘d

�
+ Scl (1.44)

where QScl = 0 is ensured by the Bianchi identity.

As explained in detail in Ref. [16], this twisted formulation leads naturally to

a lattice construction of the theory. In fact, there is a very direct and geometric

prescription for how to map continuum variables (covariant derivatives and tensor

fields of arbitrary rank) to those of the lattice [16, 17]. In this particular case, the

lattice inherits the five-component language, and is most naturally represented as the

A⇤
4 lattice with manifest S5 point group symmetry in four space-time dimensions. The

basis vectors of the A⇤
4 lattice link the center of an equilateral 4-simplex to each of

its five vertices. This is the analog of the triangular lattice in two dimensions.

In terms of the complex link variables Ua(n), and the finite difference operators

D
(+)
a

fb(n) = Ua(n)fb(n+ bµ
a
) � fb(n)Ua(n+ bµ

b
)

D
(�)
a

fa(n) = fa(n)Ua(n) � Ua(n � bµ
a
)fa(n � bµ

a
) (1.45)

D
(�)
c

fab(n+ bµ
c
) = fab(n+ bµ

c
)U c(n+ bµ

a
+ bµ

b
) � U c(n)fab(n)

from Refs. [16, 17], the lattice action can be written down by transcribing the con-
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tinuum action:

S0 =
N

4�lat

X

n

TrQ

✓
�ab(n)D

(+)
a

Ub(n) + ⌘(n)D
(�)
a

Ua(n) �
1

2
⌘(n)d(n)

◆
+ Scl

(1.46)

Scl = �
N

16�lat

X

n

Tr✏abcde�de(n+ bµ
a
+ bµ

b
+ bµ

c
)D

(�)
c
�ab(n+ bµ

c
). (1.47)

Here �lat = g2latN differs from the continuum ’t Hooft coupling by a normalization

factor of 1/
p
5. On the lattice Scl is Q-closed on account of a lattice analog of the

continuum Bianchi identity [16],

✏abcdeD
(�)
c

Fab(n+ bµ
c
) = 0. (1.48)

The physical observables are those of the untwisted theory to which we can always

map back. It is expected that in flat space-time this twisting retains the important

features of the theory (at least vacuum states), while for general curved background,

it is a different theory. Expanding the action (1.46), ,

Q Ua =  a Q  a = 0

Q �ab = �Fab Q Ua = 0 (1.49)

Q ⌘ = d Q d = 0,
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and integrating out the auxiliary field d one obtains

S0 =
N

4�lat

X

n

Tr

�Fab(n)Fab(n) +

1

2

⇣
D

(�)
a

Ua(n)
⌘2

��ab(n)D
(+)
[a  b](n) � ⌘(n)D

(�)
a
 a(n)

i
+ Scl.

(1.50)

In order to stabilize numerical computations we regulate the flat directions by in-

cluding in the lattice action a potential,

S = S0 +
N

4�lat
µ2
X

n, a

✓
1

N
Tr

⇥
Ua(n)Ua(n)

⇤
� 1

◆2

, (1.51)

with µ a ‘bosonic mass’ parameter to lift the flat directions. This non-zero µ softly

breaks supersymmetry, which we extrapolate to zero most of the time. The full

lattice action is invariant under lattice gauge transformations,

Ua(n) ! G(n)Ua(n)G
†(n+ bµ

a
)  a(n) ! G(n) a(n)G

†(n+ bµ
a
) (1.52)

�ab(n) ! G(n+ bµ
a
+ bµ

b
)�ab(n)G

†(n) ⌘(n) ! G(n)⌘(n)G†(n),

where G 2 U(N). These transformation rules are as expected for lattice variables

in the adjoint representation. The gauge links are expanded in generators of the

u(N) algebra with complex coefficients therefore becoming elements of the algebra

gl(N,C).

Ua(n) =
N

2X

C=1

TC
U

C

a
(n) (1.53)

To obtain the correct naive continuum limit, the complexified gauge links must

24



have the expansion Ua(x) = I+ Aa(x) + . . . in some appropriate gauge. In Chapter

5, we discuss how to deal with the U(1) trace mode in the lattice construction to

target the correct continuum limit.
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Chapter 2

Large N limit and holographic

dualities

To them, I said, the truth would

be literally nothing but the

shadows of the images....

Plato, The Republic (Book VII)

2.1 Large N limit of gauge theories

The theory of strong interactions, QCD, has a gauge group SU(3). In order to

understand QCD ’t Hooft introduced [18, 19] the idea of the large N limit of gauge

theories by considering a SU(N) gauge group. We often associate more variables with

greater complexity. But this is not always true. There are many classes of theories

which simplify in the large N limit. This occurs because the fields are related by

a certain symmetry which ensures that the collective behavior of the fields becomes
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more constraining as their number increases. This is in some sense similar to the

classical limit. The resulting coupled degrees of freedom typically look different from

the Lagrangian of the initial theory. It was realized early on that the large N limit of

gauge theories is also related to string theory because roughly speaking in the large

N limit one sums over surfaces of different genus and in string theory one sums over

different world-sheet topologies. The idea of large N has been a very fruitful area

of research for decades now. Some developments include factorization equations,

large N phase transitions, Eguchi-Kawai (EK) volume reductions, holography, and

AdS/CFT correspondence. The EK model [20] was proposed on the basis of large N

factorization of Wilson loops based on the analysis of Migdal-Makeenko [21] [22] loop

equations (the Schwinger-Dyson equations for Wilson loop correlation functions) and

assuming that the center symmetry (ZN) was unbroken.

In QCD, one might think that the expansion parameter is gYM , but this is not

true in the light of the renormalization group equations. QCD has no obvious free

parameter and this makes things very difficult to calculate in perturbation theory.

’t Hooft suggested taking N , the number of colors as a parameter. The large N

limit exists for vector as well as matrix models. Pure QCD (without fermions) is an

example of a matrix model because the gauge fields are N ⇥ N matrices with N2

components. Since the matrix must be traceless, it should have one less component,

but the difference is not important in the large N limit. The vector models, on the

other hand, only have N components. We will not discuss the large N limit of vector

models in this chapter. They are different from matrix models in the following ways:

• They are sometimes soluble in large N limit.

• Their free energy F ⇠ N rather than ⇠ N2 as for matrix gauge theories (It is

useful to note this counting fails when the theory is in a confining phase. We

assume the theory is not in a confining phase for now.)
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• Their gauge coupling g ⇠ 1/N rather than g ⇠ 1/
p
N

• They don’t have any relation to strings.

• Because of their different scaling, the only interactions in the standard large N

vector model are ‘cactus’ diagrams. This means that except some self-energy

corrections, the theory is essentially free.

In order to understand how we can think of the large N limit of QCD, it is useful

to look at the QCD �-function. One can then check whether this limit captures

the defining property of QCD - a negative � function. The perturbative two-loop

�-function given by,

µ
dg

dµ
= �

1

4⇡2

✓
11N � 2nf

3

◆
g3 �

1

4⇡4

✓
34N3

� 13N2nf + 3nf

3N

◆
g5 + O(g7) (2.1)

This has clearly no sensible large N limit. But we can make an interesting observa-

tion. The LHS of (2.1) goes as ⇠ g, whereas RHS ⇠ g3N . ’t Hooft considered the

limit where N ! 1 and g2 ! 0 while � = g2N remains fixed. � is the ’t Hooft

coupling. In this limit, we get,

µ
d�

dµ
= �

11

24⇡2
�2 �

17

192⇡4
�3 + O(�4) (2.2)

As can be readily seen, perturbation theory predicts that the ’t Hooft limit of QCD is

an asymptotically free theory which is a good first step. It is also natural to assume

that ⇤QCD, the scale parameter of strong interactions is held fixed as N ! 1. One

important feature of 2.2 is that it is independent of number of flavors, nf . The

number of quark degrees of freedom is O(N) in the ’t Hooft limit, and hence sub-

leading with respect to the number of gluon degrees of freedom, which is O (N2).
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To get an idea of large N limit, consider the following Lagrangian,

L =
1

g
Tr

 
(@�)2 + �2 + �3 + �4

!
(2.3)

We can rescale � = ge� to get,

L = Tr

 
(@e�)2 + �2 + ge�3 + ge�4

!
(2.4)

The big field � which we think of as potentially including scalars �, gauge fields Aµ,

and fermions  a all of which are N ⇥ N matrices. So, the propagator h��i goes as g2

i.e �/N . In a generic matrix theory there will be three point and four-point Fig.(2.1)

interaction vertices. Both types of vertices come with the same factor of N/�. Let’s

consider the Lagrangian (actually, a modified version of Yang-Mills Lagrangian, and

also incomplete)

L ⇠
1

g2


�
1

4
F a

µ⌫b
F µ⌫b

a
+ fermions

�
, (2.5)

with F a

µ⌫b
= @µAa

⌫b
�@⌫Aa

µb
+ i[Aµ, A⌫ ]ab . The ’t Hooft limit is the limit where N ! 1

and gYM ! 0 while � = g2YMN remains fixed. � is the ’t Hooft coupling. Also, the

advantage of using this particular form of the Lagrangian is that any vertex has

the same factor gYM. We need not worry about the difference between three-gluon,

four-gluon vertex contributing to different factors. So, both diagrams in Fig.(2.1)

contribute the same N/�.

With our current normalization ⇤ the propagator h��i goes like �/N . The prop-

agator in the double line notation appears in Fig.(2.1). We can naively see that

the gluon propagator and quark propagator ⇠ 1/N whereas, the vertex ⇠ N in the
⇤We should be careful about field normalizations when doing large N counting for correlation

functions.
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Figure 2.1: All the diagrams above contribute ⇠ N/�.

’t Hooft limit. We can write the gluon propagator as (shown in Fig.(2.1)),

Aa

µb
(x)Ac

⌫d
(y) =

✓
�a
d
�c
b
�

1

N
�a
b
�c
d

◆
Dµ⌫(x � y), (2.6)

In some sense, the gauge field is represented by a ‘quark’ with index i, and an

‘antiquark’ with index j. The second term in the parentheses is because we need

to make the gluon field traceless for the SU(N) group we are considering. It would

not be present if we were working with U(N). In any case, in the large N , the

distinction is unimportant. Following the gluon line indices we see, the index pair at

the beginning is the same as that at the end. In some sense, a gluon propagates like

quark–anti-quark pair. This observation was made by ’t Hooft when he devised the

double-line notation. Loosely speaking, we will draw as many lines in a propagator

as the indices it carries. Therefore, quark propagator is denoted by a single line

since it carries one index, whereas a gluon propagator is drawn using double lines,

see Fig.(2.1) For SO(N) or USp(N) theories, the adjoint representation may be
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written as a product of two fundamental representations rather than a product of

a fundamental and an anti-fundamental representation (like done for SU(N) and

U(N)). Since the fundamental representation is real, there are no arrows on the

propagators †. Generally, a vacuum diagram has the following dependence on gYM

and N ,

Amplitude ⇠ diagram ⇠ (gYM)E(gYM)�VNF

where E is the number of propagators, V is the number of vertices, F is the number

of faces. This has no sensible N ! 1 limit, since there is no upper limit on F.

However, ’t Hooft suggested that we can take the limit N ! 1 and gYM ! 0 but

keep � = g2YMN remains fixed.

diagram(V,E, F ) ⇠ NV�E+F�E�V
⇠ N��E�V

where � = F + V � E is assured by a theorem due to Euler which we note below.

Theorem: Given a surface composed of polygons with F faces, E edges and V

vertices, the Euler character satisfy � = F + V �E = 2� 2h. Here, h is the number

of handles (also known as ‘genus’ ) of the surface. Since, in the large N limit, the

diagrams with h = 0 contribute most the large N limit is also known as the planar

limit (because h = 0 means no handles like spheres). Since each Feynman diagram

can be considered as a partition of the surface separating it into polygons, then the

above theorem also works for our counting in N . Only planar diagrams survive in

the large N limit. As an example, let’s consider the diagram shown in Fig (2.2),

which has four 3-point vertices, six propagators, and four index (color) loops. At
†Recall that arrows fix the orientation of complex fields
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Figure 2.2: This diagram contributes ⇠ N2�2.

Figure 2.3: The diagram has E = 3, V = 2 and F = 3 and contributes ⇠ N2�.

this point, we can make some remarks. 1) The sphere (or the plane) has the largest

Euler characteristic, � = 2. 2) In QED, the expansion parameter is e2/4⇡ = 1/137

which implies that e = 0.3. But in fact, the true expansion parameter in QED is

actually e2/4⇡2. It is a little gloomy for Yang-Mills since there is no extra 1/4⇡ and

the expansion parameter is 1/N or 1/N2. This argument is initially due to Witten

and can be found in [19].

The free energy can be expressed as,

logZ =
1X

h=0

N2�2hfh(�) (2.7)

=N2f0(�) + f1(�) +
1

N2
f2(�) + · · · (2.8)
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The first term comes from the planar diagrams, the second term from the genus-1

diagrams, and so on. Hence, in the large N limit, the free energy goes as O(N2).

One might think that the free energy diverges in the large N limit, but we actually

calculate,

lim
N!1

F

N2
= · · ·

which has a sensible large N limit.

2.1.1 Factorization and master field in the planar limit

General observables we consider are correlation functions of gauge invariant opera-

tors,

hO1(x1)O2(x2) · · · On(xn)icon (2.9)

we will assume that O is a single trace operator. It is enough to just consider them

since the multiple trace operator are just products of them.

• Single-trace operators : Tr(Fµ⌫F µ⌫),Tr(�n)

• Double-trace operators : Tr(Fµ⌫F µ⌫)Tr(�2)

Generally, single trace operators take the form,

O(x) = Tr(�1(x) · · ·�k(x)) (2.10)

An important thing is to understand how does (2.9) behaves in the large N limit.

Consider the following,

Z [J1, · · · Jn] =

Z
DAD� · · · exp

"
S0 +N

X

j

Z
Ji(x)Oi(x)

#
(2.11)
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Then, (2.9) can be written as,

hO1(x1)O2(x2) · · · On(xn)icon = lim
all J!0

�nlogZ
�J1(x1) · · · �Jn(xn)

1

Nn
(2.12)

But, we know that

logZ [J1 · · · Jn] =
1X

h=0

N2�2hfh(�, · · · ) (2.13)

So, we get,

hO1(x1)O2(x2) · · · On(xn)icon ⇠ N2�n


1 + O(

1

N2
)

�
(2.14)

and it is equivalent to,

hIi ⇠ O(N2) + O(N0)

hOi ⇠ O(N) + O(N�1)

hO1O2icon ⇠ O(N0) + O(N�2)

hO1O2O3icon ⇠ O(N�1) + O(N�3)

This implies that for two gauge-invariant operators, A and B (in the large N

limit)

hABi ⇠ hAihBi + O(
1

N2
)

The variance of operators vanish in this limit and there are no fluctuations. All

this has been done for the case of pure gauge theory but this can be extended to

fermions as well. To summarize, - the average value is the only calculated value via

the master field, which we will now discuss. Another immediate consequence of this

can be applied to the Wilson loop as done by Migdal and Makeenko [21]. We can

show that the following has, a decoupling property in the large N limit,
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h�(C1) �(C2)i ! h�(C1)ih�(C2)i (2.15)

The above equation 2.15 implies that �(C) can be considered as a classical field

in loop space, but it does not imply that the gauge field, Aµ become classical in

this limit. As it has been discussed above, in the large N limit the path-integral

is peaked around a particular configuration. This is tied to the idea of a master

field (coined by Coleman) initially due to Witten. In this limit, the probability of

finding any gauge-invariant quantity away from its expectation value goes to zero as

N ! 1 [23]. The best way to think of the master field is to draw an analogy with

the path-integral approach. It tells us that Green’s functions for a quantum theory

are obtained by summing over all possible classical motions. In the limit that ~ ! 0,

the measure in the functional space becomes sharply concentrated about the solution

to the classical equations of motion, in the limit of vanishing ~, all quantities are

given by their value evaluated at the classical solution. In the case of the large N

limit of a gauge theory, there exists a master field configuration. All gauge-invariant

operators expectation value can be evaluated using this master field. In case of large

N QCD, the master field(s) are four N ⇥ N,Mi matrices, where N ! 1. Some

observations are in order now,

• We can calculate all the correlation functions of the invariant observables sim-

ply by taking the trace of the product of master fields and not doing any

integrals.

• The master field is not unique since we are interested only in gauge-invariant

quantities, any gauge transform of a master field is also a master field. So more

precisely, one should talk about ‘master orbit of the gauge group’.

• For the classical analogy, we have a well-defined method of finding the single
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field configuration, i.e by solving classical equations of motion. But finding the

master field is not a panacea, since one does not have a well-defined prescription

yet.

2.2 Toward the AdS/CFT correspondence

The study of non-perturbative formulations of superstring theories is greatly facil-

itated by the idea of the AdS/CFT correspondence. AdS/CFT is a strong/weak

duality between two theories (one with gravity and the other without) first proposed

by Maldacena in 1997. It is inspired by the structure and symmetries of the space-

time and the conformal field theory (CFT). This conjecture is again an example of

how interesting the large N limit of gauge theories can be and since we have al-

ready discussed that in the previous section, we can start to formally discuss the

holographic conjecture (or AdS/CFT correspondence). We will first review some

concepts required from String theory for stating this conjecture and then discuss the

decoupling limit which is central to the idea of this correspondence. We will then

formally define this conjecture in 2.3.

2.2.1 Dp-branes, and black p-branes

The low-energy limit (ls ! 0) of string theory describes classical gravity (called

‘supergravity’). The black p-branes are solutions of supergravity. at non-zero tem-

perature. They can also be thought of as black holes that extend in p spatial di-

mensions. Dp-branes are extended objected in (p+1) dimensions. They have their

own identity in string theory and are the central motivation for AdS/CFT corre-

spondence. A Dp-brane is defined as a hypersurface where open strings can end with
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Dirichlet boundary conditions (endpoints fixed). The open-string picture of D-brane

describes a p+1 dimensional SYM. D3-brane is special because the world volume is

four-dimensional and that is where the SYM gauge theory lives. The closed-string

picture of D-branes relies on the fact that the closed strings do not have to be at-

tached to the D-branes. They can propagate freely in directions orthogonal to the

brane and live in extra dimensions. It is also important to note here that D-branes

break half of the supersymmetry and are BPS states. The same use of p for both

black p-branes and Dp-branes is confusing. However, Polchinski [24] realized that

stack of Dp-branes and extremal black p-branes are the same objects. As mentioned

before, D-branes give rise to gauge theories. The open string states are described

with a N ⇥N matrix. In the low energy approximation, this gives rise to supersym-

metric Yang-Mills theory. The gauge theory is controlled by two parameters, �, N ,

whereas, in the supergravity, we have the string length, ls and the string coupling,

gs.

In general, the superstring theory contains both closed and open strings. The

former mediates the gravitational force, and the latter mediates the gauge interac-

tions. Open strings can end in objects which are called D-branes. While the closed

string can propagate anywhere in the bulk (1+9)-dimensional spacetime, the end-

points of an open string must be attached to the D-branes. As a particular case

of these D-branes , we have D-particles, which look like pointlike objects. In the

low-energy limit, the strings can be viewed as particles. We can express the black

hole as a combination of N D-particles, where N , the number of D-particles is large

and it implies that the geometry is weakly curved and the size of the black hole is

large. Quantum gravity effects become large when N is small.
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2.2.2 The decoupling limit

The limit in which the conjecture holds can be argued as follows. Consider the gauge

theory in four dimensions which are associated with the world-volume of D3 branes.

The action for string theory with D3-branes can be written as,

S = Sbulk + Sbrane + Sinteraction (2.16)

where Sbulk is the action of closed strings in the bulk (some six-dimensional space),

Sbrane is the action due to open strings attached to D3-branes. The third term is just

the interaction term between the open and closed string pieces. It is worthwhile to

note that Sinteraction ⇡ gsl4s , and vanishes in the low-energy approximation. In such

a situation, the entire action is factored into bulk and brane parts. The bulk parts

represent the SUGRA and the brane then represents N = 4 SYM. This is only one

half of the story. Another half can be seen by looking at the extremal p-brane and

noting that the low-energy limit is similar to taking the near-horizon limit and in

that case the factorization gives us like before SUGRA in the bulk but the other part

gives the AdS5 ⇥ S5. Therefore, in the large N limit, N = 4 SYM on R3,1 is dual

to Type IIB SUGRA on AdS5 ⇥ S5. The decoupling limit and the complete steps

leading to the correspondence are shown in Fig.(2.4).

2.2.3 Symmetries, degrees of freedom, and holographic dic-

tionary

AdS/CFT correspondence can also be loosely suggested based on the following ob-

servation. First note that the line element of the AdS space in (d+ 1)-dimensions is
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Figure 2.4: Diagrammatic representation of the AdS/CFT duality. Picture from [25].

given by,

ds2 =
L2

z2
(�dt2 + d~x2 + dz2) , (2.17)

The constant L is a global factor in (2.17), which we will refer to as the anti-de Sitter

radius. The (conformal) boundary of the AdS space is located at z = 0. Notice that

the metric (2.17) is singular at z = 0. This means that we will have to introduce

a regularization procedure in order to define quantities in the AdS boundary. The

isometries of (d+1)-dimensional anti-de Sitter space is SO(d, 2) symmetry which is

the same as the conformal symmetry of d-dimensional space-time. In addition, we

have the isometries of S5 which form SU(4), which is ⇡ SO(6). This group is the same

as the R-symmetry of the N = 4 SYM theory. The full isometry supergroup of the

AdS5
⇥ S5 background is SU(2, 2|4), which is identical to the N = 4 superconformal
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symmetry.

Firstly, we will discuss the QFT side. To regulate the theory we put both a UV

and IR regulator. We place the system in a spatial box of size R (which serves as

an IR cutoff) and we introduce a lattice spacing ✏ that acts as a UV regulator. In

d spacetime dimensions the system has Rd�1/✏d�1 cells. Let cQFT be the number of

degrees of freedom per lattice site, which we will refer to as the central charge. Then,

the total number of degrees of freedom of the QFT is:

NQFT

dof
=
⇣R
✏

⌘d�1

cQFT . (2.18)

The central charge is one of the main quantities that characterize a CFT. If the CFT

is a SU(N) gauge field theory, such as the theory with four supersymmetries which

will be described below, the fields are N ⇥ N matrices in the adjoint representation

which, for large N , contain N2 independent components. Thus, in these SU(N)

CFT’s the central charge scales as cSU(N) ⇠ N2. Central charges scale as the number

of generators of a group when N is large. We can then compute the number of degrees

of freedom of the AdSd+1 solution. According to the holographic principle and to

the Bekenstein-Hawking formula, the number of degrees of freedom contained in a

certain region is equal to the maximum entropy and is given by

NAdS

dof
=

A@

4GN

, (2.19)

with A@ being the area of the region at boundary z ! 0 of AdSd+1. Let us evaluate

A@ by integrating the volume element corresponding to the metric (2.17) at a slice

z = ✏ ! 0:

A@ =

Z

Rd�1, z=✏

dd�1 x
p
g =

⇣L
✏

⌘d�1
Z

Rd�1

dd�1 x . (2.20)
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The integral on the right-hand-side of (2.20) is the the volume of Rd�1, which is

infinite. As we did on the QFT side, we regulate it by putting the system in a box

of size R: Z

Rd�1

dd�1 x = Rd�1 . (2.21)

Thus, the area of the A@ is given by:

A@ =
⇣RL

✏

⌘d�1

. (2.22)

Let us next introduce the Planck length lP and the Planck mass MP for a gravity

theory in d+ 1 dimensions as:

GN = (lP )
d�1 =

1

(MP )d�1
. (2.23)

Then, the number of degrees of freedom of the AdSd+1 space is:

NAdS

dof
=

1

4

⇣R
✏

⌘d�1 ⇣ L

lP

⌘d�1

. (2.24)

By comparing NQFT

dof
and NAdS

dof
we conclude that they scale in the same way with

the IR and UV cutoffs R and ✏ and we can identify:

1

4

⇣ L

lP

⌘d�1

= cQFT . (2.25)

The action of our gravity theory in the AdSd+1 space of radius L contains a factor

Ld�1/GN . Thus, taking into account the definition of the Planck length in (2.23),
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we conclude that the classical gravity theory is reliable if:

classical gravity in AdS !

⇣ L

lP

⌘d�1

� 1 , (2.26)

which happens when the AdS radius is large in Planck units. Since the scalar cur-

vature goes like 1/L2, the curvature is small in Planck units. Thus, a QFT has a

‘classical gravity’ dual when cQFT is large, or equivalently if there is a large number of

degrees of freedom per unit volume or a large number of species (which corresponds

to large N limit for SU(N) gauge theories).

2.3 AdS/CFT and holographic dualities for lower di-

mensional SYM theories

The AdS/CFT correspondence (also gauge/gravity duality) is a conjecture which

relates the string theory or M-theory on a background of the form AdS5 ⇥S5, where

S5 is a compactified manifold (called five-sphere), to a conformally invariant super-

symmetric quantum field theory in four space-time dimensions, which is, in fact, the

boundary of the AdS5. Soon after this conjecture, the authors of [26, 27] proposed

concrete relations between the gauge and gravity theories which are now known as

GKPW or GKP-W relations. A concrete possibility of holography in quantum grav-

ity was in fact proposed several years before the AdS/CFT conjecture by ’t Hooft in

[28] and then subsequently by Susskind in [29]. In Table (2.1), we present a mapping

between the bulk and boundary theories.

We now move to general dualities relating p+ 1-dimensional SYM theory to the

world volume of Dp-branes (in some limit). Let us consider N -parallel Dp-branes
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Boundary: Gauge theory Bulk: Gravity
Partition function Partition function (ZCFT = Zgravity)
Wilson loop along C String worldsheet with end points on C

Deconfinement transition Transition between black hole solutions
based on entropy competition

Number of degrees of free-
dom

Radius of AdS space

Free energy On-shell value of the action

Table 2.1: The basic mapping in AdS/CFT correspondence.

separated by some distances which we refer by r. At low energies, the theory on the

Dp brane decouples from the bulk. It is more convenient to take the energies fixed

and take,

↵0
! 0 ; U ⌘

r

↵0 = fixed ; g2YM =
1

2⇡

gs
↵0 = fixed

here, ↵0 is the string tension and gs is the string coupling. The second condition

ensures that the mass of the stretched strings is fixed. This limit is known as ‘de-

coupling limit’. At a given energy scale, U, the effective dimensionless coupling con-

stant in the corresponding super Yang-Mills theory is g2eff. ⇡ g2YMNUp�3. Therefore,

perturbative calculations in super Yang-Mills can be trusted in the region

g2eff. ⌧ 1

8
><

>:

U � (g2N)1/(3�p); p < 3

U ⌧ 1/(g2N)1/(p�3); p > 3
(2.27)

In the large N ’t Hooft limit, the natural coupling becomes � = Ng2
YM

. The bosonic
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part of the action is given as,

SB =
N

�

Z
dt dxpTr


�
1

4
F 2
µ⌫

�
1

2
Dµ�IDµ�

I +
1

4

⇥
�I ,�J

⇤2
�

(2.28)

and the fermionic action is,

SF = �
1

2

N

�

Z
dt dxpTr 

�
�µDµ � i

⇥
�I�I , ·

⇤�
 (2.29)

where xµ with µ = 0, . . . , p are the world volume coordinates with time x0 = t

and spatial coordinates xi with i = 1, . . . , p. Then �I with I = 1 + p, . . . , 9 are

the spacetime scalars representing the transverse degrees of freedom of the branes.

They are N ⇥ N Hermitian matrices transforming in the adjoint representation of

the gauge group. The fermion  is a (1 + 9)-dimensional Majorana-Weyl spinor

and also transforms in the adjoint. The field strength is defined as usual, Fµ⌫ =

@µA⌫ � @⌫Aµ + i[Aµ, A⌫ ], and Dµ = @µ � i[Aµ, ·], with Aµ the gauge field potential

transforming in the adjoint.

The general gauge/gravity duality [3] states that at finite temperatures there is

a dual closed IIA (p even) or IIB (p odd) string theory description of this gauge the-

ory in terms of the decoupling limit of thermal Dp-branes. In the large N ’t Hooft

limit this string theory description may reduce to one in IIA or IIB supergravity. In

addition, the (p + 1)-form potential carries the charge of the N Dp-branes. Here t

and xi are the Dp-brane (p + 1)-dimensional world volume coordinates. The radial

coordinate of the metric is identified with an energy scale associated with the expec-

tation value of the scalars in the MSYM. It is important to note that, this metric

is defined in 9+1 dimensions, as required by superstring theory and for p = 3, the

dilaton, or equivalently the string coupling is constant and independent of U. This is
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the p = 3 superconformal case and corresponds to the original conjecture proposed

by Maldacena. If we impose the decoupling limit to the supergravity metric, we will

get the metric of the black p-brane. The black brane is a classical solution to the

supergravity (low energy supersymmetric effective description of superstring theory).

Additionally, in order to trust the supergravity solution, we need the curvature and

dilaton to be very small, which results in the following inequality,

1 ⌧ g2eff. ⌧ N4/(7�p) (2.30)

We directly see that perturbative super-Yang-Mills and supergravity descriptions do

not overlap. The radius of curvature R goes as, ↵0/R2
⇠
�
U/�1/(3�p)

� 3�p
2 . We will

consider the large N ’t Hooft limit, where it is natural to take,

N ! 1 ,
U

�1/(3�p)
,

U0

�1/(3�p)
⇠ finite (2.31)

and we find that in this large N limit the solution is well described by semiclassical

string theory since the dilaton will everywhere be small. In order to ensure that

supergravity gives a good description we shall in addition require that the curvature

↵0 corrections are small, and so we must take,

U , U0 ⌧ �1/(3�p) . (2.32)

We emphasise that we require these quantities to be small, but finite, in the large

N ! 1 limit.

In Chapter 3, we will discuss the large N limit of two-dimensional SYM theory

with sixteen supercharges and show some qualitative agreement with holography.

The phase diagram of thisYang-Mills theory which is compactified on a torus is
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labeled by two parameters; the extent of the lattice in the Euclidean time direction

& the extent of spatial direction. These two directions are distinguished by the

boundary conditions on the fermions, which is anti-periodic in the temporal direction

and periodic in the spatial direction. N = (8,8) SYM Euclidean action in two

dimensions is given by,

S =
N

�

Z
d2x tr

⇢
1

4
F 2
µ⌫

+
1

2
(DµXi)

2
�

1

4
[Xi, Xj]

2

+
1

2
 ↵D0 ↵ �

i

2
 ↵(�1)↵�D1 � +

1

2
 ↵(�i)↵�[Xi, �]

�
,(2.33)

where, the Roman indices i, j run from 2 to 9, the Greek indices associated with the

space-time directions µ, ⌫ take the value 0 or 1, while the Greek indices associated

with spinors ↵, � run from 1 to 16. The field strength is F01 = @0A1�@1A0+i[A0, A1]

and the covariant derivatives are defined by Dµ' = @µ' + i[Aµ,']. In addition,

�a(a = 1, · · · , 9) are real symmetric matrices that satisfy the 9-dimensional Euclidean

Clifford algebra, {�a, �b} ⇠ �ab. We leave the details for Chapter 3.

2.4 Holographic matrix models in (0+1)-dimensions

2.4.1 BFSS Model

This matrix model was proposed by Banks, Fischler, Shenker, and Susskind. They

conjectured that the large N limit of their supersymmetric matrix model describes

the strong coupling limit of M theory in the infinite momentum frame. This model

has been well-studied by several groups on the lattice and the references can be found

in Chapter 3. They obtained intermediate and low-temperature results focusing on

the calculation of average energy and the absolute value of the trace of Polyakov loop
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(Wilson loop winded on the thermal circle). The low-temperature regime behavior

was consistent with the predictions from supergravity. The action for BFSS model

is given by,

SBFSS =
N

4�

Z
dtTr

"
(DtX

i)2 +
1

2

⇥
XI , XJ

⇤2

+ ↵Dt 
↵ + i ↵�j

↵�
[ �, Xj]

#
, (2.34)

here Dt is the covariant derivative and summation over spatial indices I, J = 1, · · · , 9

and spinor indices ↵, � = 1, · · · , 16 is implicit. The ’t Hooft coupling � has dimension

[E]3. This model has a single deconfined phase corresponding to the dual black hole

solution with S8 topology.

2.4.2 PWMM/BMN Model

A massive deformation of BFSS model known as PWMM (Plane wave matrix model)

was proposed by the authors of [30]. Unlike BFSS, this model describes the strong

coupling limit of M-theory on a pp-wave background. The action is given by

S = SBFSS �
N

4�

Z
dtTr

"
µ2

32
(X i)2 +

µ2

62
(Xa)2

+
µ

4
 ↵

�
�123

�
↵�
 � +

2µ

3
✏ijkX

iXjXk

#
, (2.35)

where the indices i, j, k run over 1, 2, 3 and the index a runs over 4, · · · , 9. This

system is controlled by dimensionless parameters: T/µ, N and g = �/µ3, where T is

the temperature. The introduction of the mass parameter µ breaks the SO(9) global

symmetry of (2.34) down to SO(6)⇥SO(3). This also lifts the moduli space consist-
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ing of commuting matrices and makes the Euclidean thermal ensemble well-defined.

This deformation retains maximal supersymmetry. For a dual gravity description,

the mass term which depends on µ should be small and the coupling should be strong.

We are currently carrying out numerical simulations of this model and will report on

the results in the future.
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Chapter 3

Testing holography using the lattice

super-Yang-Mills theory on a 2-torus

3.1 Introduction

Maximally supersymmetric Yang-Mills (SYM) theory in p + 1 dimensions has been

conjectured to provide a holographic description of string theories containing Dp-

branes. Specifically, this gauge-gravity duality states that (p+ 1)-dimensional SYM

with gauge group SU(N) is dual to a Type IIA (even p) or Type IIB (odd p) super-

string containing N coincident Dp-branes in the ‘decoupling’ limit [3, 4]. The p = 3

case corresponds to superconformal N = 4 SYM in four dimensions and yields the

original AdS/CFT correspondence [2]. In this chapter we focus on the maximally

supersymmetric SYM in two dimensions at finite temperature, with the spatial circle

direction compactified with periodic fermion boundary conditions (BCs) about it.

In this context, at large N and low temperatures, the dual string theory is well

described by supergravities whose dynamics are given by certain charged black holes.
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Two classes of black hole are required to describe these dynamics—those that wrap

the spatial circle (so-called ‘homogeneous black strings’) and those that are localized

on it (‘localized black holes’) [31–36]. Indeed this system of black hole solutions is

related by a simple transform to the static uncharged black holes arising in pure

gravity in ten dimensions with one spatial dimension wrapped into a circle, i.e.,

ten-dimensional Kaluza–Klein theory [35, 37] (for a review of black holes in Kaluza–

Klein theory see [38]). The two classes have different thermodynamic behaviors, and

there is a first-order Gregory–Laflamme [39] phase transition between them in the

gravity dual. According to holography, all this should be reproduced by the thermal

physics of the SYM. In particular, the phase transition is a deconfinement transition

associated with the spatial circle, the magnitude of the spatial Wilson line giving

an order parameter. It is thought that this transition extends to high temperatures

where an intricate phase structure has been revealed from numerical and analytic

treatments [35, 40, 41].

The remarkably subtle nature of gauge/gravity duality has meant that whilst

SYM thus provides a fundamental and microscopic quantum description of certain

gravity systems, there still is no ‘proof’ or derivation of this black hole thermody-

namics from (p+1)-dimensional SYM directly. Indeed even understanding the local

structure of the dual ten-dimensional spacetime which emerges from the strongly cou-

pled SYM theory remains a mystery. While there has been some heuristic analytic

treatment for general p that hints how certain aspects of black hole thermodynamics

can be seen within the SYM theory [42–44], and an approximation scheme devel-

oped for p = 0 [45–48], a full derivation showing the SYM reproduces dual black hole

behavior remains an important challenge in quantum gravity.

With only limited success from analytic treatment, it is natural to apply lattice

field theory, which is well suited to study the thermodynamics of strongly coupled
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systems (see for example the recent review [49]). Starting with [50, 51], several works

over the past decade have studied the thermal behavior of the p = 0 SYM quantum

mechanics, where again gravity provides a black hole prediction to be tested, and

striking agreement has been seen [52–57]. However the dual gravity in that setting is

simpler than in the p = 1 case we focus on here, where there are different black holes

to probe, and a gravity phase transition to observe. Less effort has been directed

at this two-dimensional case, where the state of the art until recently was simply to

provide evidence for the transition at small N  4 [58]. One of the main goals of this

work is to improve the lattice study of this phase transition, working at larger N and

smaller lattice spacings. We will also provide large-N tests of the detailed thermal

behavior of the two different classes of black holes (see also the recent conference

proceedings [59, 60] for other lattice work in this direction).

Conventionally one studies thermal physics in the canonical ensemble by consid-

ering the Euclidean theory. This lives on a flat rectangular 2-torus, with the spatial

cycle being the circle of the original theory, and the Euclidean time cycle having anti-

periodic BCs for fermions and period equal to the inverse temperature. The path

integral then plays the role of a thermal partition function. An important point we

emphasize in this work is that one may also consider the Euclidean theory on a flat

but skewed torus as discussed in [36]. This no longer corresponds to the Lorentzian

theory at finite temperature, but taking anti-periodic fermion BCs about Euclidean

time, it may be regarded as a generalized thermal ensemble. The key point is that

this skewing is easily accommodated in the dual gravity theory, which can be treated

in the Euclidean signature, and its behavior is again given in terms of solutions that

may be interpreted as generalized black holes.

Studying such skewed flat tori is natural due to the lattice SYM formulation

that we employ. Recently, much progress has been made in lattice studies of the
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p = 3 theory, N = 4 SYM, using a novel construction based on a discretization of a

topologically twisted form of the continuum N = 4 action. See ref. [9] for a review

of this approach. The chief merit of this new lattice construction is that it preserves

a closed subalgebra of the supersymmetries at non-zero lattice spacing. Numerical

studies of the four-dimensional theory are in progress [61–63], but are quite expensive

because of the large number of degrees of freedom. In this regard, lower-dimensional

theories are more tractable and can be studied extensively at large N with better

control over continuum extrapolations. These lattice constructions are based on non-

hypercubic Euclidean lattices, which when made periodic are naturally adapted to

skewed tori. We dimensionally reduce a N = 4 lattice system to give a discretization

of two-dimensional SU(N) SYM on a A⇤
2 lattice, preserving four exact supercharges

at non-zero lattice spacing. Applying appropriate BCs we then carry out calculations

for N  16, large enough to see dual gravity behavior. Varying the temporal and

spatial lattice extent gives the continuum SYM on tori that may be both skewed

and rectangular. We confirm that both phases of dual black hole behavior are seen

in the appropriate low-temperature regime, and we see nice agreement between the

generalized SYM thermodynamics and that predicted by gravity. We also see a

transition between these phases, again compatible with the expectation from gravity,

which extends to high temperature as expected.

The plan of the chapter is as follows. In section 3.2 we review the known predic-

tions for large-N thermal two-dimensional SYM on a spatial circle—i.e., SYM on a

flat rectangular Euclidean 2-torus. Then in section 3.3 we discuss how this picture

generalizes for a flat skewed Euclidean 2-torus. In section 3.4 we present our lattice

construction for this skewed continuum theory. Then in section 3.5 we discuss our

results, focusing on how the various gravity predictions are confirmed. We end the

chapter with a brief discussion.
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3.2 Review of thermal large-N (1 + 1)-dimensional

SYM on a circle

We now review the predictions for large-N p = 1 SYM, compactified on a circle of size

L at temperature T = 1/�, derived in various limits and using input from the dual

gravity theory [3, 33–36, 64]. We treat the thermal theory in Euclidean signature,

with Euclidean time ⌧ ⇠ ⌧ + �, so that it lives on a flat rectangular 2-torus, with

side lengths � and L. Fermions have thermal (anti-periodic) BCs on the Euclidean

time circle, and are taken periodic on the spatial circle. Starting in section 3.3 we

will consider the theory on a skewed torus. However, it will be useful to review the

rectangular torus case first, as the skewed case will be similar.

The Euclidean action of the theory is

S = SBos + SFerm

SBos =
N

�

Z
d⌧ dx Tr

1

4
Fµ⌫F

µ⌫ +
1

2

�
DµX

I
�2

�
1

4

⇥
XI , XJ

⇤2

SFerm =
N

4�

Z
d⌧ dx Tr


 
�
/D �

⇥
�IXI , ·

⇤�
 

�
. (3.1)

Here XI with I = 2, . . . , 9 are the eight spacetime scalars representing the transverse

degrees of freedom of the branes. They are N ⇥N hermitian matrices in the adjoint

representation of the gauge group. The fermion  and matrices �I descend from a

dimensional reduction of a ten-dimensional Euclidean Majorana–Weyl spinor, with

 also transforming in the adjoint. The dimensionful ’t Hooft coupling � = Ng2
YM

may be used to construct two dimensionless quantities that control the dynamics:

r� = �
p
� and rL = L

p
�. We define the dimensionless temperature t = 1/r�. Since

we are interested in the large-N ’t Hooft limit we wish to consider N ! 1 with
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r� and rL fixed. The main observables we consider are thermodynamic quantities

related to the expectation value of the bosonic action, and also the Wilson loop

magnitudes P� and PL (normalized to 1),⇤ where

P�,L =
1

N

D���TrPei
H
�,L A

���
E
, (3.2)

which wrap about the Euclidean thermal circle and spatial circle of the two-dimensional

Euclidean torus, respectively. For the large-N theory these act as order parameters

for phase transitions associated with breaking of the ZN center symmetry of the

gauge group.† For the thermal circle this is the usual thermal deconfinement tran-

sition, with vanishing Polyakov loop P� = 0 at large N indicating the (unbroken)

confined phase, and P� 6= 0 being the (broken) deconfined phase. We will use similar

terminology for PL, namely that PL 6= 0 indicates ‘deconfined’ spatial behavior while

PL = 0 corresponds to ‘confined’ spatial behavior.

3.2.1 High-temperature limit

Consider the high-temperature limit of the SYM [35, 36]. Then when r3
�

⌧ rL we

may integrate out Kaluza–Klein modes on the thermal circle and reduce to a bosonic

quantum mechanics (BQM) consisting of the zero modes on the thermal circle. Due

to the thermal fermion BCs, this is now the bosonic truncation of the p = 0 SYM,

as the fermions are projected out in the reduction. Now the ’t Hooft coupling �BQM

is related to the original two-dimensional coupling as �BQM = �

�
and the dynamics

implies
H
�
A ⇠ 0 so that P� 6= 0 indicating thermal deconfinement.

Taking the small-volume limit, L3�BQM ⌧ 1, the dynamics of this BQM (and

⇤We define the Wilson loop to be the trace of the Wilson line Pei
R

�,L A around a closed path.
†Since we are at finite volume we can only have a phase transition at large N .
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hence the full SYM) is governed by a bosonic matrix integral of scalar and gauge

field zero modes. These dynamics imply that
H
L
A ⇠ 0, so that the SYM theory in

this regime is spatially deconfined with PL 6= 0. Following refs. [65, 66] the leading

behavior of the BQM energy in this regime goes as EBQM ' 6N2/L. The action

behaves as hSBQMi = �EBQML/3 (see, e.g., [51]). We expect the BQM action to

give the SYM bosonic action, Sbos, when the BQM describes it, since the fermions

are decoupled in this limit. Hence we expect the SYM bosonic action to go as

hSbosi ' �2N2. Since this limit applies when we have integrated out both the

temporal and spatial Kaluza–Klein modes, reducing to only a bosonic matrix integral,

its behavior is common to any high-temperature, small-volume limit, rL, r� ⌧ 1.

For finite volume, L3�BQM ⇠ 1, this BQM has an interesting dynamics at large

N . This has been studied numerically and analytically in [35, 40, 41, 67] with the

conclusion that there is a deconfinement transition around L3�BQM ' 1.4. However,

the order of the transition is difficult to determine [35]. Either it is a first-order

transition (as most recently found in [67]) or it is a strong second-order transition

(as discussed in the earlier [40, 41]), in which case there is another very close-by

third-order Gross–Witten–Wadia (GWW) [68, 69] transition as well.

3.2.2 Dual gravity for low temperatures

At large N and low temperatures r� � 1, holography predicts a gravity dual given

by D1-charged black holes in IIB supergravity [3]. These have a simple solution,
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with Euclidean string frame metric and dilaton given as

ds2IIB, string = ↵0

 
U3

p
d�

✓
1 �

U6
0

U6

◆
d⌧ 2 + dx2

�
+

p
d�

U3

"
dU2

1 �
U

6
0

U6

+ U2d⌦2
(7)

#!

e� = 2⇡
�

N

p
d�

U3
, (3.3)

where d = 26⇡3 and U2
0 = 2⇡

p
d�

3� . There is a 2-form potential yielding N units of

D1 charge, and the spatial circle x corresponds to that in the SYM, with x ⇠ x+L.

Large N is required to suppress string quantum corrections to the supergravity. In

order to suppress ↵0 corrections we require 1 ⌧ r�, and to avoid winding mode

corrections about the circle we need r� ⌧ r2
L
.

When r� ⇠ r2
L

one indeed finds that this solution is unstable to stringy winding

modes on the spatial circle x [31–36]. This is seen by passing to a second gravity

dual by T-dualizing on this circle direction to obtain a solution in IIA supergravity,

which in string frame is

ds2IIA, string = ↵0

 
U3

p
d�

✓
1 �

U6
0

U6

◆
d⌧ 2

�
+

p
d�

U3

"
dU2

1 �
U

6
0

U6

+ U2d⌦2
(7) + dx̄2

#!

e� = (2⇡)2
�

N

 p
d�

U3

! 3
2

. (3.4)

Now the spatial coordinate x̄ ⇠ x̄ + LIIA is compact, but due to the T-duality, has

period LIIA = (2⇡)2↵0/L, and there is a 1-form potential supporting D0 charge. The

D1 charge of eq. (3.3) is given as a distribution of D0 charge smeared homogeneously

over the circle. This gravity solution is a good dual for the SYM at large N and

1 ⌧ r� (to suppress string quantum and ↵0 corrections, respectively). To avoid

winding mode corrections about the circle we also require rL ⌧ r�. In particular,
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for 1 ⌧ r� this T-dual frame overlaps the regime rL ⌧ r� ⌧ r2
L

where the IIB dual

exists and describes the physics. It describes the regime where the IIB solution fails

and becomes unstable to winding modes, r� ⇠ r2
L
, and also covers smaller circle sizes

all the way down to the limit rL ! 0 where the physics is that of the dimensionally

reduced SQM.

The above solution is homogeneous on the circle—a ‘homogeneous black string’.

The black hole horizon wraps over the circle direction and has a cylindrical topology

R⇥S7. Being related by T-duality it has precisely the same thermodynamics as the

IIB solution above. Namely, it predicts the thermodynamic behavior

fhomog

N2�
= �

24⇡
5
2

34
t3 ' �3.455t3 (3.5)

for the SYM free energy density f , with t = 1/r� the dimensionless temperature.

However, what was a winding mode in the original frame is now a classical Gregory–

Laflamme (GL) instability in this IIA frame. One finds the above solution is dynam-

ically unstable when

r2
L

 cGLr� cGL ' 2.24, (3.6)

where the constant is determined by numerically solving the differential equation

that governs the marginal instability mode [35, 37].

Thus at smaller circle sizes, the above solution remains, but it is not the relevant

one for the dynamics, which instead is given in terms of a ‘localized black hole’

solution. This is inhomogeneous over the circle direction, with the black hole horizon

being localized on the circle and having a spherical topology S8. From a gravitational

perspective, the parameter that is varied to move between different solutions is the
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dimensionless ratio of the size of the horizon as compared to the size of the spatial

IIA circle, LIIA. Translating to our SYM variables, this is proportional to r2
L
/r�.

These localized black hole solutions are not known analytically.‡ However, re-

cently the challenging numerical construction of these solutions has been performed [70].

Following expectations, ref. [70] found that for large r2
L
/r� the thermodynamic be-

havior is dominated by the homogeneous phase. At

r2
L
= cgravr� cgrav ' 2.45 (3.7)

there is a first-order phase transition to the localized phase, which then dominates

the homogeneous one for smaller r2
L
/r�, having lower free energy density. The value

of cgrav is determined numerically, and we see it is rather close to cGL.

While the analytic form of these localized solutions is not known generally, they

do simplify in the limit that the horizon is small compared to the circle size. In SYM

variables this is the case for y = r2
L
/r� ⌧ 1, where the solutions have an approximate

behavior [37]

1

N2�
f loc = �

✓
221 · 32 · 57⇡14

719

◆ 1
5 t

14
5

r
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1 +

✓
2 · 37 · 52

714⇡21

◆ 1
5

⇣(7)y
14
5 + O

⇣
y

28
5

⌘!
.

(3.8)

Of relevance for us is that the position of the phase transition found in ref. [70] is

such that the leading term in the above approximation (3.8) agrees very well (to

the percent level) with the full numerical solutions over the full range where this

phase dominates the thermodynamics. This means that while one generally requires
‡These localized solutions are considerably more complicated than the homogeneous ones as

the metric and matter fields have explicit dependence on the circle direction x as well as on the
radial direction U . Hence to find the solutions one must solve partial differential equations rather
than the ordinary differential equations of the homogeneous case that depends only on U .
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the numerical solutions of [70] to deduce the thermodynamics of a given localized

solution, since we are only concerned with this localized branch for r2
L
/r� where it

dominates the thermodynamics we may very accurately approximate the thermal

behavior for such solutions using (3.8).§ In previous lattice investigations [58] this

transition was probed using small N = 3 and 4, finding evidence for consistency with

the value for cgrav in (3.7). In this work we will improve the lattice study of the phase

diagram, employing larger N and smaller lattice spacings.

We will refer to the homogeneous phase as the D1 phase, since in the IIB duality

frame it is the D1-brane solution, although we note that it may also be seen as a

homogeneous D0-brane solution in the IIA frame. We will refer to the localized phase

as the D0 phase, since it may only be seen in gravity in the IIA frame where it is a

localized D0-brane black hole.

Since all these gravity solutions are static black holes, their Euclidean time circle

is contractible so we expect a deconfined Polyakov loop, P� 6= 0.k In the IIB frame,

as the horizon wraps over the spatial circle for the homogeneous black string, this

spatial cycle is not contractible in the bulk solution. Hence at large N we expect

spatial confinement, PL = 0, when this homogeneous phase describes the thermody-

namics (for 1 ⌧ cgravr� < r2
L
), with the thermal behavior given by eq. (3.5). The

homogeneity of the horizon is taken to indicate that the eigenvalues of Pei
H
L A are

§Using only the leading term in (3.8) and comparing with (3.5) gives an approximation for
the phase transition with cgrav within 2% of the numerically computed value in (3.7). Including
the subleading term improves this to be consistent with the value in (3.7) within its numerical
uncertainty.

kRecall that when IIB gravity provides a good dual description of the SYM we expect the
Wilson loop (normalized as in (3.2)) about a cycle in this boundary theory to be non-vanishing if
that cycle is contractible when extended into the dual bulk (such as for a cycle about Euclidean
time when a horizon exists in the bulk) [71–73]. Conversely, if a cycle is non-contractible in the
bulk, we expect the corresponding Wilson loop to vanish. Note this picture does not hold for the
spatial cycle after T-dualizing to the IIA frame. Then, instead, the distribution of D0 charge on
the spatial circle is thought to determine the eigenvalue distribution of Pei

H
L A.
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uniformly distributed at large N . On the other hand, upon decreasing the circle size

rL at fixed r� we have a first-order transition to the localized phase with thermo-

dynamics given by eq. (3.8). Due to the localized horizon, the D0-brane charge is

compactly supported on the spatial circle, so we expect the eigenvalue distribution

for Pei
H
L A is likewise compactly supported [35, 74]. This implies spatial deconfine-

ment, PL 6= 0. The phase transition curve r2
L
= cgravr� in the gravity regime, r� � 1,

therefore corresponds to a first-order spatial deconfinement transition associated to

PL.

We emphasize that we are interested in temperatures and circle sizes where r� and

rL ⇠ O(1) in the large-N limit. If we were to take ultralow temperatures r� ! 1 as

some sufficiently large positive power of N , then the gravity predictions above would

cease to be valid because the gravity would become strongly coupled near the black

hole horizons. In particular, for r� ⇠ N the theory is thought to enter a conformal

phase described by a free orbifold CFT [3, 4], which we will not explore in this work.

3.2.3 Summary for SYM on a rectangular torus

For large-N two-dimensional SYM on a rectangular Euclidean 2-torus we have two

dimensionless parameters r� and rL. Assuming that r�, rL ⇠ O(1) in the large-N

limit we have the following expectations:

• The high-temperature, small-volume limit r�, rL ⌧ 1 is described by the dy-

namics of scalar and gauge zero modes. We expect P�, PL 6= 0 and hSbosi '

�2N2.

• The high-temperature limit r3
�

⌧ rL reduces to BQM. Here we expect P� 6= 0.

For r3
L
< cBQMr� with cBQM ' 1.4 we expect PL 6= 0, with a deconfinement

transition to PL = 0 for r3
L
> cBQMr�.
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• The low-temperature limit, r� � 1, admits a gravity-dual black hole descrip-

tion, so P� 6= 0, with the free energy density depending on the ratio r2
L
/r�.

For r2
L
= cgravr�, with cgrav = 2.45 there is a first-order deconfinement phase

transition with respect to PL. The D1 phase, for r2
L
> cgravr�, has free energy

density given by eq. (3.5) and PL = 0. The D0 phase, for r2
L
< cgravr�, has

PL 6= 0 with the free energy density well approximated by eq. (3.8).

This is illustrated in figure 3.1.

3.3 Behaviour on a skewed torus

We now discuss what happens to the Euclidean theory when it is placed on a skewed

torus. The motivation is twofold. First, we emphasize that skewing the torus provides

a new direction to deform the theory and hence a new independent test of holography,

given again that gravity dual predictions exist. Second, modern supersymmetric

lattice constructions often naturally live on non-hypercubic lattices, which in turn

are naturally adapted to giving a continuum Euclidean theory on a skewed torus.

We take the SYM to live on the flat 2-torus generated as a quotient of the two-

dimensional plane. Writing the metric as

ds2
T 2 = d⌧ 2 + dx2, (3.9)

this is generated by the identifications

(⌧, x) ⇠ (⌧, x) + ~� fermions anti-periodic (3.10)

(⌧, x) ⇠ (⌧, x) + ~L fermions periodic (3.11)
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for vectors ~� (~L) about the thermal (spatial) circles with anti-periodic (periodic)

fermion BCs. These vectors defining the cycles have lengths and dot product

� = |~�| L = |~L| � =
~� · ~L

�L
(3.12)

with |�| < 1 to ensure a non-degenerate torus. Thus the geometry is determined by

three parameters—in addition to the � and L of the rectangular case there is the

dimensionless skewing parameter �. For any value of � (not just the rectangular case

� = 0) we will be able to compare our numerical SYM results to gravity predictions,

and hence test holography.

We have constructed the torus by a quotient of the plane by the vectors ~L and
~�. However, any SL(2,Z) transformation of these vectors will define the same ge-

ometric torus. The anti-periodic BCs about the � circle, and periodic ones about

L, complicate this slightly. Consider the transformation generated by the following

subgroup of SL(2,Z):

0

@
~L0

~�0

1

A = M ·

0

@
~L

~�

1

A M =

0

@ a 2n

c 2m � 1

1

A 2 SL(2,Z), n,m, c 2 Z, (3.13)

where we note that then a 2 2Z � 1. Then the 2-torus defined by ~�0 (anti-periodic

fermions) and ~L0 (periodic fermions) is the same as that defined by ~� and ~L. The

fermion BCs restrict us to a subgroup of the full SL action, so that the new ~�0 has

an odd coefficient multiplying ~� to maintain anti-periodicity, and likewise ~L0 has an

even coefficient multiplying ~�.

In the rectangular case, we have a Lorentzian thermal interpretation of the

physics, where we identify � as inverse temperature in a canonical ensemble. In

63



the skewed case, this is no longer true. Nonetheless, we may regard this case as a

generalized thermal ensemble, with 1/� playing the role of generalized temperature.

As for a rectangular torus, we again work with dimensionless

r� = �
p

� rL = L
p

�, (3.14)

now supplemented by the dimensionless parameter �. We denote t = 1/r� the

generalized dimensionless temperature, and also define the aspect ratio

↵ =
L

�
=

rL
r�

. (3.15)

The 2-volume is then given as VolT 2 = �2↵
p

1 � �2. In practice on the lattice, it

will be convenient to scan the parameter space by fixing the ‘shape’ of the torus set

by (↵, �) and varying the dimensionless temperature t that controls the size of the

torus in units of the SYM coupling �.

The redundancy in our description of the torus using ~� and ~L given in (3.13)

translates into an invariance in this parameterization: a set ↵, �, t defined from ~�

and ~L is equivalent to other parameters ↵0, �0, t0 similarly defined from ~�0 and ~L0. In

the usual manner we may describe this using the complex ‘modular parameter’ ⌧,

given by¶

⌧ =
L⌧ + iLx

�⌧ + i�x
= ↵

⇣
� + i

p
1 � �2

⌘
, (3.16)

which encodes the (dimensionless) shape parameters ↵, �, and is independent of the
¶Since ‘tau’ is conventionally used for both the torus modular parameter and Euclidean time,

we attempt to avoid potential confusion by using the symbols ⌧ for the modular parameter and ⌧
for Euclidean time.
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torus scale. The parameter transforms under the action (3.13) as

⌧0 =
a⌧+ 2n

c⌧+ 2m � 1
, (3.17)

so that m,n, c 2 Z and a(2m � 1) � 2nc = 1. We term this a restricted modular

transformation—it is a usual modular transformation, but restricted to preserve our

fermion BCs (anti-periodic on the ~� cycle and periodic on the ~L cycle). As for the

usual modular invariance of the torus, we may define a fundamental domain for this

⌧ parameter under the action of this restricted transform (3.13), which gives the set

of inequivalent tori (taking into account fermion BCs). A modular parameter outside

this domain can then be mapped back into it using the appropriate (3.13). The usual

modular transformations are generated by ⌧ ! ⌧+1 and ⌧ ! �1/⌧, or equivalently

⌧ ! ⌧+1 and ⌧ !
⌧

⌧+1 . We provide some review of this in appendix 3.7. However for

our restricted transform instead we may use the generators ⌧ ! ⌧+ 2 and ⌧ !
⌧

⌧+1 .

The fundamental domain D may then be taken to be

D =
�
⌧
��1  |⌧ ± 1|, |Re(⌧)|  1

 
. (3.18)

These assertions are proved in appendix 3.7. The lattice construction we use later

will give torus geometries with a particular � (which we will see is � = �1/2), and

we will vary the shape parameter ↵ of the torus and its size t. Some of the torus

shapes we study will correspond to ⌧ within the fundamental domain, and others

will not. We will generally present results in terms of ↵ and t for this common value

of �, but as we discuss later, for the shapes that fall outside the fundamental domain

there is an alternate description with new ↵0, �0, t0.7

7It is worth emphasizing that the way the modular parameter ⌧ arises is a little different to that
in the familiar two-dimensional CFT setting. In the context of Euclidean two-dimensional CFT
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An important aim of our lattice calculations is to see the detailed generalized

thermodynamic behavior predicted by the dual black holes. However, in a skewed

setting we are no longer in a strict thermal context and so potentials such as free

energy are not strictly meaningful. Instead, the relevant quantity is the (logarithm

of the) partition function

Z[t,↵, �] =

Z
D(fields) e�S (3.19)

for the Euclidean action given by eq. (3.1), but now on the skewed 2-torus. In a lattice

calculation it is hard to determine the value of this integral directly, so instead, we

focus on expectation values, which are much more convenient to compute. A natural

observable is the expectation value of the Euclidean action S. Since the fermionic

part of the action is Gaussian, its value is simply a constant. Therefore we will focus

on measuring the expectation value of the bosonic part of the action, SBos, given in

eq. (3.1). We will find it convenient to work with the average bosonic action density,

defined from the (renormalized) vev of SBos in an obvious way,

hsBosi =
1

VolT 2
hSBosi . (3.20)

We now show that sBos is related to a derivative of the partition function lnZ. After

any 2-torus is Weyl equivalent to a flat torus with modular parameter ⌧ (i.e., one constructed as a
quotient of the two-dimensional plane) and unit volume. Hence for any 2-torus the CFT partition
function only depends on the geometry through ⌧. However in our case, the SYM is not a CFT—in
particular, our theory explicitly depends on the size of the torus, and will also depend on the details
of its real geometry. We restrict ourselves to only consider 2-tori constructed as quotients of the
plane, which are flat but with a skewing parameterized by ⌧. Hence our SYM depends on ⌧ and
the scale (through, say, �) because we have restricted to flat tori. If we also added scalar curvature
the situation would be more complicated (unlike for a CFT). However in either case (CFT or our
SYM), the dependence is on ⌧ up to modular invariance, so we may always choose ⌧ to be in the
fundamental domain. This is simply because the description of the torus has this invariance, and
it is not due to any symmetry properties of the field theory.
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scaling the bosonic fields and coordinates as

⌧ 0 =
1

�
⌧ x0 =

1

�
x A0

µ
= �Aµ X 0

i
= �Xi, (3.21)

the Euclidean action becomes

SBos =
N

�2�
I[↵, �]

I[↵, �] =

Z

T 02
d⌧ 0 dx0 Tr

1

4
F 0
µ⌫
F 0µ⌫ +

1

2
(D0

µ
X 0

i
)2 �

1

4
[X 0

i
, X 0

j
]2. (3.22)

The 2-torus T 02 is generated by the identifications

(⌧ 0, x) ⇠ (⌧ 0 + 1, x) (⌧ 0, x) ⇠ (⌧ 0 + �↵, x+ ↵
p

1 � �2), (3.23)

the former anti-periodic and the latter periodic for the fermions. Thus we have scaled

out �. The only explicit � dependence is in the overall coupling, and the integral

I[↵, �] depends only on the dimensionless shape parameters ↵ and � (through the

identifications above). By suitably scaling the fermion fields the fermionic action can

be chosen to have no � dependence. Then differentiating the partition function with

respect to �, keeping ↵ and � fixed, we obtain

�
@

@�
lnZ

����
↵,�

=
1

Z

Z
D(fields)

 
�
@

@�

✓
�

N

�2�
I[↵, �]

◆����
↵,�

!
e�S = 2 hSBosi (3.24)

hsBosi =
1

2VolT 2
�
@

@�
lnZ

����
↵,�

. (3.25)

Thus computing sBos as a function of t, ↵ and �, which may be conveniently done on

the lattice, gives the same information as that contained in the partition function.

As in the rectangular case, we will be interested in the Wilson loops about the

67



torus temporal and spatial cycles and their magnitudes P� and PL, respectively.

Since there are equivalent presentations of the same torus, one can equally consider

the loops P 0
�

and P 0
L
, which correspond to cycles in the original representation that

wrap multiples of the cycles generated by ~� and ~L.

We now proceed to discuss the same limits as in the rectangular case in this

skewed geometry. We will find that analogous small circle reductions occur, and that

generalized black holes still give gravity predictions for small generalized temperature

1 ⌧ r�. We first discuss the dimensional reduction of the theory on a skewed torus,

and then turn to a discussion of the gravity dual, giving predictions for the observable

sBos.

3.3.1 High-temperature limit

We now take the skewing parameter � to be fixed and consider the high-temperature

limit, finding qualitatively similar behavior to the rectangular torus case we previ-

ously discussed. In the small-volume, high-temperature limit r�, rL ⌧ 1 precisely the

same reduction to the matrix integral occurs. Thus we again expect P� ' PL 6= 0,

with the bosonic action behaving as hSBosi /N2
' �2 at large N . Translating to the

bosonic action density we then obtain

hsBosi

N2�
= �

2

↵
p

1 � �2
t2. (3.26)

At finite volume, we may again reduce to an effective one-dimensional theory at

high temperature. The easiest way to understand this dimensional reduction is to

note that skewed tori in the fixed-�, high-temperature limit become equivalent to

nearly rectangular tori (again with small thermal circles) under a suitable transfor-

mation (3.13). Then we may simply dimensionally reduce this equivalent rectangular
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torus, and pull the result back to the original skewed torus parameterization given

by �.

Thus we consider the high-temperature limit where we fix � and rL, taking r� ! 0

so that ↵ ! 1. We use the transform (3.13) with c = 0, m = 0 and a = 1, leaving

n 2 Z, to find an equivalent torus that will be approximately rectangular. This maps
~�, ~L to

~�0 = ~� ~L0 = ~L+ 2n~�. (3.27)

This leaves the temperature unchanged, t0 = t, and relates the shape parameters as

↵0�0 = ↵� + 2n ↵0
p

1 � �02 = ↵
p

1 � �2. (3.28)

In the ↵ ! 1 limit we may choose n appropriately (i.e., taking �↵�/2 ' n 2 Z) to

obtain an equivalent torus with �0 ' 0 and ↵0
' ↵

p
1 � �2 ! 1. This equivalent

torus is approximately rectangular and in the high-temperature limit, so from our

previous discussion in section 3.2.1 we may reduce the thermal circle when

�
r0
�

�3
⌧ r0

L
=) r3

�
⌧ rL

p
1 � �2. (3.29)

We obtain a bosonic quantum mechanics (BQM) on a circle size LBQM = L0 with

coupling �BQM = �/�0, so that

�BQM =
�

�
LBQM = L

p
1 � �2. (3.30)

Thus we have the same relation of the lower- and higher-dimensional coupling as in

the rectangular case, but the circle size is related via a skewing-dependent factor.
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Reducing on the thermal cycle ~�0 implies that the Polyakov loop is P 0
�

⇠ 1. Given

that P 0
�
= P�, and this Polyakov loop is trivial, we expect thermal deconfinement,

P� 6= 0. Then PL ' P 0
L
= PBQM, so our previous discussion of BQM implies the

deconfinement transition in the limit of eq. (3.29) is located at

r3
L

'
1.4

(1 � �2)
3
2

r�. (3.31)

This is associated with a transition from a spatially confined phase with PL = 0 to

a deconfined one with PL 6= 0 as r3
L
/r� is reduced.

3.3.2 The low-temperature dual gravity limit - D1 phase

Considering the dual IIB gravity we find the same homogeneous D1-charged black

hole solution as in eq. (3.3), but now we take the two-dimensional torus in the field

theory directions to be generated by the identifications

(⌧, x) ⇠ (⌧ + �, x) anti-periodic fermions

(⌧, x) ⇠ (⌧ + �L, x+ L
p
1 � �2) periodic fermions. (3.32)

Then asymptotically, when U0 � U , the torus spanned by ⌧ and x has our required

skewed geometry. We also see that the relation between U0 and � is exactly the same

as for eq. (3.3), since the metric is locally the same as in the rectangular case, and

the ⌧ circle has the same period �.

We will regard this as a ‘generalized black hole’ in the sense that for real � and

� 6= 0 its properties are not related directly to a physical Lorentzian black hole.

Nonetheless, the Euclidean IIB solution exists. The geometry of this solution differs

only globally in the x direction from the rectangular case and is homogeneous in x.
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The solution should be a good description of the IIB string theory again for large

N and 1 ⌧ r�. We expect it to become unstable to a winding mode instability for

r2
L

⇠ r�.

Consider the expectation value of the SYM Euclidean Lagrangian density hLEi

predicted by this solution, which will be homogeneous in both ⌧ and x. Then � lnZ =

hSi = VolT 2 hLEi when this black hole is the dominant saddle point of the path

integral. Due to the homogeneity in x this Lagrangian density is only a function of

�, and has no dependence on the other parameters ↵ and � determining the shape

of the torus. In the rectangular case it simply equals the free energy density of the

solution, and thus generally is given by eq. (3.5), so hLEi = �N2� · 24⇡
5
2 t3/34. As

before we refer to this homogeneous black string phase as the D1 phase. Hence if this

gravitational solution dominates the partition function the theory is in the D1 phase

and the bosonic action density is

D1 phase:
sBos, D1

N2�
= �

1

2VolT 2
�
@

@�
(VolT 2 hLEi)

����
↵,�

= �
23⇡

5
2

34
t3 ' �1.728t3.

(3.33)

We see explicitly that our observable doesn’t depend on the skewing of the torus.

As in the rectangular case, @/@⌧ generates a contractible cycle due to the horizon.

Now the Euclidean time cycle of the torus is simply generated by @/@⌧ . The spatial

cycle of the torus is now generated by
p

1 � �2@/@x+ �@/@⌧ , and since @/@x is not

contractible, neither is this spatial torus cycle. Thus when eq. (3.3) is the dominant

bulk solution, this implies that the Polyakov loop P� 6= 0, whereas PL = 0. Hence

the dual SYM is thermally deconfined but in a spatially confined phase.

There is an important subtlety in the above discussion: one must be careful

whether the solution above (3.3) does dominate, due to there being other related

gravitational dual black holes [36]. In eq. (3.32) we have identified with ~� and ~L
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to generate the 2-torus, but as discussed in ref. [36] we may equally well use any

equivalent pair under the transformation (3.13), since they will give the same flat 2-

torus asymptotically. This will yield another inequivalent gravitational dual solution.

However, it is the pair of vectors whose corresponding modular parameter ⌧ lies in

the fundamental domain that gives the dominant gravitational dual solution. This is

understood as follows. Take a ⌧ in the fundamental domain, D, and a temperature

t. Then the Euclidean action density is as in eq. (3.33). Now transforming this

to an equivalent ⌧0 outside the fundamental domain results in a new dimensionless

temperature t0 given in terms of t, ⌧ and the transformation. This t0 is lower than

the fundamental-domain temperature t since8

✓
t0

t

◆2

=
Im(⌧0)

Im(⌧)
, (3.34)

and from the corollary in appendix 3.7 we have Im(⌧0)/Im(⌧)  1 for ⌧ 2 D. Thus

we see t0  t. Hence the action density of these other gravitational saddle points,

which is given by (3.33) with t ! t0, is more positive. Since the volume of the torus

is preserved under the modular transformation (3.13), then the Euclidean action is

also more positive. Thus these other dual solutions outside the fundamental domain

are not the relevant saddle points to determine the partition function behavior.

Hence the subtlety is that the D1-phase prediction is given by eq. (3.33) for

↵, �, t corresponding to a ⌧ in the fundamental domain. If one has a set of parameters

outside the fundamental domain, one must first map them to new parameters ↵0, �0, t0

in the fundamental domain, and then apply the formula (3.33) with t ! t0.9 In this
8Eq. (3.34) may be derived neatly by noting the 2-torus volume �2

Im(⌧) is invariant under
modular transformations.

9The expression (3.33) could not hold for general ↵, �, t as it would not respect the modular
invariance that the SYM on this flat torus must enjoy. It is also worth emphasizing that one cannot
naively compare eqs. (3.33) and (3.38) to deduce a critical temperature, since ⌧ 62 D when the latter
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canonical representation (i.e., ⌧0 2 D) we will have the prediction P 0
�

6= 0 and P 0
L
= 0

for the Wilson loops. A spatial cycle of the torus is always non-contractible, so we

should have PL = 0 in any equivalent representation. However, while P 0
�

6= 0 for

the thermal cycle in the fundamental domain representation, if in the equivalent

representation ~� is a linear combination of both ~�0 and ~L0 it may correspond to

a non-contractible cycle in the gravity dual, so that also P� = 0. We emphasize

that this does not imply temporal confinement, since there is some temporal loop

(associated to the cycle ~�0) where P 0
�

6= 0.

3.3.3 The low-temperature dual gravity limit - D0 phase

Considering the D1 phase with r� � 1 where the gravity is a valid description,

fixing � and reducing the circle size to r2
L

⇠ r� we again expect winding modes on

the spatial circle to become important near the horizon, as in section 3.2.2. This

limit, however, is straightforward to understand, as it implies rL ⌧ r� and thus

we may play a similar trick as for the small-thermal-circle dimensional reduction in

section 3.3.1, again mapping to an equivalent almost-rectangular representation. We

set a = 1, n = 0 and m = 0 in the transform (3.13), leaving c 2 Z. Then

~�0 = ~� + c~L ~L0 = ~L, (3.35)

so L0 = L and the equivalence relates the shape parameters as

1

↵0�
0 =

1

↵
� + c

1

↵0

p
1 � �02 =

1

↵

p
1 � �2. (3.36)

is valid.
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Then by choosing c appropriately (i.e., taking ��/↵ ' c 2 Z) in the ↵ ! 0 limit we

obtain an equivalent torus with �0 ' 0 and ↵0 = ↵/
p
1 � �2 ! 0.

Thus for fixed non-zero � and rL ⌧ r�, so that the modular parameter ⌧ is far

outside the fundamental domain, the above transform maps to an approximately

rectangular torus with r0
L
= rL and r0

�
= r�

p
1 � �2. For the rectangular torus we

know that the phase transition from the D0 phase to the D1 phase occurs for r02
L
=

cgravr0� with cgrav = 2.45. Mapping this back to our non-rectangular parameterization,

we expect a transition at

r2
L
= cgrav

p
1 � �2r�. (3.37)

Then for this rectangular torus we may use the approximation (3.8) for the thermal

behavior, replacing t ! t0. From this we may compute lnZ. Translating back to our

original temperature t we may compute the bosonic action density using eq. (3.25)

to obtain, in our original non-rectangular parameterization,

sBos

N2�
= �

✓
221 · 37 · 52⇡14

719

◆ 1
5 t

16
5

↵
2
5 (1 � �2)

7
5

"
1�

✓
211 · 32 · 52

714⇡21 (1 � �2)7

◆ 1
5

⇣(7)

✓
↵2

t

◆ 14
5

+O

 ✓
↵2

t

◆ 28
5

!#
.

(3.38)

In the rectangular representation when this D0 phase dominates we expect to have

P 0
�
, P 0

L
6= 0, so this phase is both spatially and thermally deconfined. Furthermore,

since ~L0 = ~L we also have PL 6= 0. Thus PL remains an order parameter for the

transition between the gravity D1 and D0 phases.
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3.3.4 Summary for SYM on a skewed torus

For large-N SYM on a skewed torus with fixed �, upon varying rL and r� our

expectation is a phase diagram similar to figure 3.1 for the rectangular case. We

expect a spatial deconfinement transition line with order parameter PL.

• In the high-temperature, small-volume limit r�, rL ⌧ 1 we expect PL 6= 0 and

thermal behavior as in eq. (3.26).

• For high temperatures r3
�

⌧ rL the SYM may be dimensionally reduced to the

BQM theory, leading us to expect the phase transitions described in eq. (3.31).

We will have PL 6= 0 for r3
L
. 1.4r�/(1 � �2)3/2, and PL = 0 otherwise.

• For low temperatures t ⌧ 1 we expect a IIA or IIB gravity black hole descrip-

tion. The D0 phase, with approximate behavior (3.38) and PL 6= 0, dominates

for r2
L
< cgrav

p
1 � �2r�. For r2

L
> cgrav

p
1 � �2r� we expect the D1 phase

with PL = 0 to dominate with behavior (3.33), where this formula assumes rL,

r� and � are in the fundamental domain.

We expect all these phases to be thermally deconfined, so we may find a temporal

cycle ~�0 for which P 0
�

6= 0. For most phases this will be simply the ~� cycle, so P� 6= 0.

However, as discussed above, for the D1 phase it is possible in the skewed case that

P� may vanish.

In our numerical analyses of the skewed SYM theory it will be convenient to

fix ↵ = rL/r� and vary t = 1/r� to scan a ‘slice’ of the r� ⇥ rL plane. For any

finite ↵, at sufficiently high temperature t � 1 we will also be in the small-volume

regime with PL 6= 0. As we decrease t, for any finite ↵ we expect to go through a

confinement phase transition associated to PL, and for t ⌧ 1 eventually enter the

gravity D1 phase with PL = 0. For large ↵ � 1 this will be the confinement transition

described by BQM. For small ↵ ⌧ 1 we expect to enter the gravity regime in the
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Figure 3.2: Summary of the expected behavior of SYM on a skewed torus varying
t with fixed shape parameters ↵, �. As t varies from high to low we pass from the
small-volume PL 6= 0 deconfined phase into the PL = 0 confined gravity D1 phase.
For small ↵ (top-left plot) the low-t behavior, including the phase transition, falls
in the gravity regime. Hence we see not only the D1 phase, but also the D0 phase
and the first-order transition between them. For large ↵ (top-right plot) the high-t
behavior including the phase transition to the PL = 0 confined phase is described by
the BQM reduction.
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spatially deconfined D0 phase, and encounter the first-order dual Gregory–Laflamme

transition to the D1 phase at the lower temperature t = ↵2/(cgrav
p
1 � �2). These

expectations for large, small and intermediate ↵ are illustrated in figure 3.2.

3.4 Lattice formulation

Using ideas borrowed from topological field theory and orbifold constructions it has

recently become possible to construct a four-dimensional lattice theory which retains

exact supersymmetry at non-zero lattice spacing and produces N = 4 SYM in the

continuum limit. Noting that maximal SYM in any dimension can be thought of

as a classical dimensional reduction of the N = 1 SYM in 10 dimensions, it follows

that our theory of interest, maximal SYM in two dimensions, can be derived from

a dimensional reduction of the four-dimensional N = 4 SYM theory. Thus the

approach we take here is to use the existing four-dimensional lattice construction of

N = 4 SYM, and reduce this in two directions to obtain a two-dimensional lattice

action for our desired two-dimensional SYM.

An interesting subtlety arises, namely that the four-dimensional lattice most nat-

urally has a A⇤
4 geometry rather than a hypercubic one. When we reduce this lattice

action, we obtain a discretization of two-dimensional SYM on a two-dimensional A⇤
2

(triangular) lattice. Taking the lattice to be periodic, with one direction having

thermal (anti-periodic) fermion BCs and the other periodic BCs, we generate two-

dimensional SYM on a 2-torus which is skewed, as the A⇤
2 lattice basis vectors are not

orthogonal. However, as emphasized, this should be viewed as a virtue rather than a

problem. While there is no direct Lorentzian interpretation of this finite-volume ‘gen-

eralized’ thermal ensemble, as discussed above there are holographic string theory

predictions that can be tested, and that is the aim of this chapter.
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We begin by considering the four-dimensional lattice discretization of topologi-

cally twisted N = 4 SYM. We then outline how this is reduced to a two-dimensional

system whose continuum limit will be the reduction of N = 4 SYM, giving maximal

SYM in two dimensions. Since the reduced lattice has a A⇤
2 geometry, where we

make one lattice direction into the thermal circle of length � and the other into the

spatial circle of length L, the continuum limit will be two-dimensional SYM living

on a skewed torus. The skewing parameter is then determined from the A⇤
2 lattice

geometry to be � = �1/2. In appendix 3.8 we provide a detailed discussion of the

reduction of a four-dimensional A⇤
4 lattice theory to the two-dimensional A⇤

2 lattice

for a simpler scalar field theory.

3.4.1 Four-dimensional twisted lattice N = 4 SYM

In this section, we summarize the important features of this four-dimensional lattice

theory before proceeding to its dimensional reduction. The trick to preserving super-

charges in a lattice theory is to discretize a topologically twisted formulation of the

underlying supersymmetric theory.10 In the case of N = 4 SYM, the twisted con-

struction treats the four-component gauge field and the six massless adjoint scalars

of the theory as a five-component complexified gauge field

Aa ⌘ Aa + iBa, (3.39)

where the roman index ‘a’ runs from 1 to 5. The four Majorana fermions of the

theory are decomposed into �ab = ��ba,  a and ⌘. The analogous decomposition

of the sixteen supercharges provides a twisted-scalar Q corresponding to ⌘, which is
10In the case of gauge theories these lattice formulations were first derived using ideas from

orbifolding and deconstruction [15, 75, 76].
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nilpotent, Q
2 = 0. The complexified gauge field leads to complexified field strengths

Fab ⌘ [Da,Db] Fab ⌘ [Da,Db], (3.40)

where the corresponding complexified covariant derivatives are

Da = @a + Aa Da = @a + Aa. (3.41)

Using these ingredients we can express the usual N = 4 action as a sum of Q-exact

and Q-closed terms,

S =
N

4�4
Q

Z
d4x Tr�abFab + ⌘[Da,Da] �

1

2
⌘d+ Scl

Scl = �
N

16�4

Z
d4x Tr✏mnpqr�qrDp�mn,

(3.42)

where �4 = g2N is the usual ’t Hooft coupling and we implicitly sum over repeated

indices. Here x↵ are the usual canonical flat-space coordinates with ↵ running from

1 to 4. The action of the scalar supersymmetry charge Q is

Q Aa =  a Q  a = 0

Q �ab = �Fab Q Aa = 0 (3.43)

Q ⌘ = d Q d = 0,

where d is a bosonic auxiliary field with equation of motion d =
⇥
Da,Da

⇤
. Since

Q
2 = 0 the Q-exact part of the action is clearly supersymmetric, while Q acting on

the Q-closed term vanishes due to a Bianchi identity. The other fifteen supercharges

are twisted into a 1-form Qa and antisymmetric 2-form Qab.
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This continuum action can be discretized while preserving the single Q supersym-

metry as described in refs. [15–17, 61]. This discretization procedure dictates how the

continuum fields are placed on the lattice, how derivatives are replaced by lattice dif-

ference operators and even the structure of the underlying lattice itself. Specifically,

we must employ the A⇤
4 lattice whose five basis vectors symmetrically span the four

spacetime dimensions. This lattice is a natural generalization of the two-dimensional

triangular (A⇤
2) lattice to four dimensions. It possesses five equivalent basis vectors

corresponding to the vectors from the center of an equilateral four-simplex out to

its five vertices. It has a high S5 point group symmetry with the dimensions of its

low lying irreducible representations matching those of the continuum twisted SO(4)

rotation group. Ref. [77] shows that the combination of the Q supersymmetry, lattice

gauge invariance and the S5 global symmetry suffices to ensure that no new relevant

operators are generated by quantum corrections. Assuming non-perturbative effects

such as instantons preserve the lattice moduli space, only a single marginal coupling

may need to be tuned to obtain N = 4 SYM in the continuum limit.

The resultant lattice action takes the form

S0 =
N

4�lat

X

n

TrQ

✓
�ab(n)D

(+)
a

Ub(n) + ⌘(n)D
(�)
a

Ua(n) �
1

2
⌘(n)d(n)

◆
+ Scl

(3.44)

Scl = �
N

16�lat

X

n

Tr✏abcde�de(n+ bµ
a
+ bµ

b
+ bµ

c
)D

(�)
c
�ab(n+ bµ

c
), (3.45)

where the lattice difference operators appearing in the above expression are given in

refs. [16, 17] and generically take the form of shifted commutators. For example,

D
(+)
a

Ub(n) = Ua(n)Ub(n+ a) � Ub(n)Ua(n+ b). (3.46)
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Remarkably the Q-closed term is still lattice supersymmetric due to the existence of

an exact lattice Bianchi identity,

✏abcdeD
(�)
c

Fab(n+ µ̂c) = 0. (3.47)

Integrating out the auxiliary field d yields

S0 =
N

4�lat

X

n

Tr

�Fab(n)Fab(n) +

1

2

⇣
D

(�)
a

Ua(n)
⌘2

��ab(n)D
(+)
[a  b](n) � ⌘(n)D

(�)
a
 a(n)

i
+ Scl.

(3.48)

The lattice sites in the canonical flat-space coordinates x↵ of eq. (3.42) are arranged

as the A⇤
4 lattice with positions x↵ = �n⌫e↵(⌫) for n 2 Z4. This discretization is

analogous to that discussed explicitly for the scalar theory example in appendix 3.8.

As discussed following eq. (3.64), the resulting continuum action (3.42) has a coupling

related to the lattice coupling as �4 = �lat/
p
5 [15, 61].

The presence of exact lattice supersymmetry allows us to derive an exact expres-

sion for the renormalized bosonic action density, which gives the derivative of the

partition function with respect to the coupling as in eq. (3.25). We find

hsBosi =

 ⌦
Slat
B

↵

V
�

9N2

2

!
(3.49)

where V denotes the number of lattice sites and Slat
B

corresponds to the bosonic

terms in the lattice action. This definition of the continuum renormalized hsBosi has

the property that it vanishes as a consequence of the exact lattice supersymmetry if

periodic (non-thermal) BCs are used.

In practice, to stabilize the SU(N) flat directions of the theory we add to S0 a
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soft-supersymmetry-breaking scalar potential

Ssoft =
N

4�lat
µ2
X

n, a

Tr

✓
Ua(n)Ua(n) � IN

◆2

(3.50)

with tunable parameter µ. In the dimensionally reduced system, this term is par-

ticularly important at low temperatures where the flat directions lead to thermal

instabilities [78]. This single-trace scalar potential differs from the double-trace op-

erator used in previous investigations [61–63] and constrains each eigenvalue of UaUa

individually, rather than only the trace as a whole. Exact supersymmetry at µ = 0

ensures that all Q-breaking counterterms vanish as some power of µ.

The complexification of the gauge field in eq. (3.39) leads to an enlarged U(N)

= SU(N) ⌦ U(1) gauge invariance. In the continuum, the U(1) sector decouples

from observables in the SU(N) sector, but this is not automatic at non-zero lattice

spacing [61–63]. To regulate additional flat directions in the U(1) sector, we trun-

cate the theory to remove the U(1) modes from Ua, making them elements of the

group SL(N,C) rather than the algebra gl(N,C). In order to maintain SU(N) gauge

invariance, it is necessary to keep the fermions in gl(N,C), explicitly breaking the

lattice supersymmetry that would have related Ua to  a. However, by representing

the truncated gauge links as Ub = eigaAb , we can argue that the continuum super-

symmetry relating Aa and  a is approximately realized in the large-N limit even at

non-zero lattice spacing. This follows from fixing the ’t Hooft coupling �lat = g2N

as N ! 1, implying g2 ! 0. Then expanding the exponential produces the de-

sired Ub = IN + igaAb up to O(ga) corrections that vanish as N ! 1 even at

non-zero lattice spacing a. Empirically, when we measure would-be supersymmetric

Ward identities we find that they are satisfied up to small (at most percent-level)

deviations, and those deviations decrease / 1/N2 as N increases. (Figure 3.15 in
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the appendix shows some representative results.) Although the constant term in

eq. (3.49) is no longer exactly 9/2, we expect only comparably small corrections to it

and therefore continue to use eq. (3.49) to define sBos. Since our lower-dimensional

studies all focus on holographic dualities in the large-N limit, this truncated approach

appears viable at least in fewer than four dimensions.

3.4.2 Two-dimensional twisted lattice N = (8, 8) SYM

Our interest is in two-dimensional maximal SYM on a 2-torus with thermal (anti-

periodic) fermion BCs on one cycle and periodic BCs on the other. This two-

dimensional maximal SYM is given by the dimensional reduction of the four-dimensional

N = 4 theory. Hence to obtain this two-dimensional theory on a 2-torus we simply

consider the above four-dimensional lattice discretization of the N = 4 theory, taken

on Nx⇥1⇥1⇥Nt lattices with periodic BCs in the reduced directions, corresponding

to naive dimensional reduction. The gauge fields associated with the reduced direc-

tions now transform as site fields 'i(n) and are naturally interpreted as the scalar

fields arising from dimensional reduction. Their fermionic superpartners, now also

site fields, correspond to additional exact lattice supersymmetries [17].

Exactly as for the scalar example discussed in appendix 3.8, such a reduction re-

sults in a continuum theory in two-dimensional flat space where the lattice geometry

is that of A⇤
2. We take appropriate periodicity conditions on the extended lattice

directions, n ⇠ n+ (0, 0, 0, Nt) with anti-periodic fermions and n ⇠ n+ (Nx, 0, 0, 0)

with periodic fermions, thus generating the 2-torus. Since the two-dimensional lat-

tice has A⇤
2 geometry the 2-torus we generate is not rectangular but skewed, with
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� = ee1·ee2
|ee1||ee2| = �1/2. The lengths of the two cycles are then

� = a2 Nt L = a2 Nx, (3.51)

where we see from appendix 3.8 that the two-dimensional lattice spacing is a2 =

�
p
2/3. Similarly, the two-dimensional continuum gauge coupling is

� =
�lat

�2
p
3
=
�4
�2

r
5

3
, (3.52)

where the second equality from eq. (3.73) considers the coupling as arising from

an appropriate Kaluza–Klein reduction of the continuum four-dimensional N = 4

theory. Thus in terms of our dimensionless couplings our lattice action corresponds

to two-dimensional N = (8, 8) SYM on a skewed torus with � = �1/2 and

r� = �
p

� = Nt

s
2�lat

3
p
3

rL = L
p

� = Nx

s
2�lat

3
p
3
, (3.53)

which, being dimensionless, are independent of the scale � as they should be. Noting

that in two dimensions the continuum SYM is super-renormalizable, we do not expect

any renormalization of the classical geometry of this 2-torus.

Finally, for the dimensionally reduced lattice theory to correctly reproduce the

physics of the continuum theory requires Tr'i ⇡ N in the reduced directions i = y

and z. This corresponds to broken center symmetries in those two directions. We

ensure this by adding another soft-Q-breaking term to the lattice action,

Scenter = �
N

4�lat
c2
W

X

n, i=y,z

2ReTr

'i(n) + '�1

i
(n)

�
. (3.54)
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This is gauge invariant since 'i(n) transform as site fields. In this work we use either

c2
W

= µ2 or c2
W

= 0, again extrapolating µ2
! 0 in the former case.

3.4.3 Torus geometries

The geometry of our tori is determined by the skewing parameter � = �1/2 set

by our lattice discretization, and by the aspect ratio ↵ = rL/r� = Nx/Nt, where

Nx and Nt are respectively the numbers of lattice points generating the spatial and

temporal cycles. As mentioned earlier, we will typically discuss results specifying

the torus with the skewing � = �1/2, but this parameterization may represent a

modular parameter outside the fundamental domain. Here we review the geometries

we will consider and their fundamental parameterization. In particular, while we use

a skewed lattice, some of our geometries, in fact, are those of rectangular tori when

mapped to the fundamental domain.

In table 3.1 we list the lattice sizes Nx⇥Nt we numerically analyze, together with

their shape parameter ↵ for skewing � = �1/2. When the corresponding modular

parameter ⌧ doesn’t fall in the fundamental domain we give a modular transformation

to an equivalent representation with shape parameters ↵0, �0, and note whether the

fundamental representation is rectangular or skewed. We also give t0/t, the ratio

between the dimensionless temperature in the new representation to that of the

original. In the corresponding figure 3.3 we plot the complex ⌧ parameters for the

various tori in the natural representation where � = �1/2, and in the cases where

these lie outside the fundamental domain we draw an equivalent ⌧0 contained in it.
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↵ Nx ⇥ Nt Modular Transformation (↵0, �0) t0/t

1/2 6 ⇥ 12, 8 ⇥ 16 ~�0 = ~� + ~L, ~L0 = ~L
⇣

1p
3
, 0
⌘

2p
3

Rectangular

1 16 ⇥ 16, 8 ⇥ 8 — — — Skewed
3/2 12 ⇥ 8, 18 ⇥ 12 — — — Skewed
2 16 ⇥ 8, 24 ⇥ 12 — — — Skewed
8/3 16 ⇥ 6, 24 ⇥ 9 ~L0 = ~L+ 2~�, ~�0 = ~�

⇣
2
p
13
3 , 1p

13

⌘
1 Skewed

4 16 ⇥ 4, 24 ⇥ 6 as above
�
2
p
3, 0

�
1 Rectangular

6 24 ⇥ 4 as above
⇣
2
p
7,� 1

2
p
7

⌘
1 Skewed

8 32 ⇥ 4 ~L0 = ~L+ 4~�, ~�0 = ~�
�
4
p
3, 0

�
1 Rectangular

Table 3.1: The lattice geometries we numerically analyze. Our lattice discretization
naturally picks � = �1/2, and by varying the spatial and temporal lattice extents
Nx and Nt we generate tori with different aspect ratios ↵. When these (↵, �) denote
a torus with modular parameter ⌧ outside the fundamental domain, we give an
appropriate modular transformation (as in eq. (3.13)) so that the equivalent (↵0, �0)
lie within it. We also give the relation between the temperatures t0/t. The last
column states whether the torus, viewed from the fundamental domain, is skewed or
rectangular.
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Figure 3.3: Plot of the torus modular parameters ⌧ in the complex plane for the
aspect ratios ↵ we numerically analyze. The red points are for the � = �1/2 of our
lattice discretization, with the corresponding ↵ written next to them. The funda-
mental domain is shaded, and when a point lies outside it the equivalent ⌧0 lying
within it is shown as a blue point.
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3.5 Numerical results

We now discuss our numerical results obtained using the lattice formulation described

above. Before studying the low-temperature regime relevant for supergravity, we first

consider the high-temperature, small-volume limit and then the phase structure of

the theory.

3.5.1 High-temperature limit

Fixing the shape of the torus, with constant ↵ for � = �1/2, we vary t ! 1.

Following our earlier discussion in section 3.3.4, this is the high-temperature, small-

volume limit where we expect the theory to be spatially deconfined with P�, PL 6= 0,

and to have bosonic action density (3.26).

We investigate three different aspect ratios (↵ = 1, 4 and 6) in the high-temperature

regime and plot the bosonic action density in figure 3.4. Qualitative agreement is

seen both in the power of t and the ↵-dependent coefficient, providing a test of

the dimensional reduction that relates the lattice coupling �lat to the dimensionless

continuum parameters rL and r�.

It is important to note that the Wilson loop we study has scalar contributions as

well and it is no longer unitary and hence we cannot talk of an eigenvalue distribution

on a circle. However, we do a polar decomposition and consider only gauge fields

and hence the unitarized Wilson loop.

In figure 3.5 we show distributions of the phases of the N eigenvalues of spatial

Wilson lines Pei
H
L A on 24 ⇥ 4 lattices (↵ = 6) at a high temperature t ⇡ 11.4, for

SU(N) gauge groups with N = 6, 9 and 12. The phases are measured relative to

the average phase of each Wilson line. In order to compute the usual Wilson lines

from the complexified gauge links Ua of the lattice formulation, we use a polar de-
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Figure 3.4: Bosonic action density versus dimensionless temperature t for three as-
pect ratios ↵ = 1, 4 and 6 (from top to bottom), considering gauge groups SU(9) and
SU(12). The temperature range probed here corresponds to the high-temperature,
small-volume limit, and the prediction (3.26) for the behavior is given by the dashed
curves marked HT.
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Figure 3.5: Distributions of the phases of the N eigenvalues of spatial Wilson line on
24⇥ 4 lattices at a high temperature t ⇡ 11.4, for SU(N) gauge groups with N = 6,
9 and 12. The phases are measured relative to the average phase of each Wilson
line. The compact distributions correspond to broken ZN center symmetry in the
spatially deconfined high-temperature phase.
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composition Ua = Ha ·Ua to separate each link into a positive-semidefinite hermitian

matrix Ha (containing the scalar fields) and a unitary matrix Ua corresponding to

the gauge field. To compute the Wilson lines we simply multiply the unitary matri-

ces,
Q

Nx

i=1 Ux(xi, ⌧) and
Q

Nt

i=1 Ut(x, ⌧i). We construct PL and P� by taking the trace

(normalized to 1), averaging over lattice sites in the temporal and spatial direction

(respectively), and then computing the ensemble average of the magnitude. The

expectation that PL ⇠ 1 implies we should expect a localized distribution of the

phases of the spatial Wilson line eigenvalues, which is consistent with the results in

figure 3.5. The distributions show little dependence on N , though the N = 6 case

has a few outliers with large fluctuations from the average phase. As t decreases

we expect a transition with PL ! 0, with the eigenvalue distribution spreading over

the angular circle and becoming uniform on it. For t . 9 we do indeed see the

distributions spread out over the full angular period, as we discuss in more detail

below.

3.5.2 Phase structure of the SYM theory

We have explored the phase structure of the SYM theory by scanning in t = 1/r� for

fixed aspect ratio ↵ = rL/r�. From our previous discussion, we expect the theory to

be thermally deconfined, but to have an interesting phase structure associated with

spatial confinement. Our numerical results for the temporal Wilson loop magnitude

P� appear consistent with the theory being thermally deconfined. We now focus on

the spatial Wilson line and order parameter PL.

In figure 3.6 we show the jackknife average magnitude of the Wilson line PL vs. r�
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Figure 3.6: Spatial Wilson loop magnitude vs. inverse dimensionless temperature
r� = 1/t for SU(N) gauge groups with N = 6, 9 and 12 on 16⇥ 4 and 24⇥ 6 lattices
(aspect ratio ↵ = 4).
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Figure 3.7: The corresponding peak of the susceptibility of the transition strengthens
as N increases, without showing visible sensitivity to the lattice size for this ↵.
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for ↵ = 4, along with the corresponding susceptibility in figure 3.7.

� =

⌧���TrPei
H
L A

���
2
�

�

D���TrPei
H
L A

���
E2

. (3.55)

The results indicate a large-N transition at tc = 4.6(2) separating a spatially decon-

fined phase with PL 6= 0 at small r� (high temperatures) from a spatially confined

phase at large r� (low temperatures) where PL ! 0 as N ! 1. This transition

strengthens with larger N , as can be seen, most clearly from the N dependence of

the points at large r�. The consistent results for 16 ⇥ 4 and 24 ⇥ 6 lattices indicate

that discretization effects are small. As discussed in section 3.4.3 (table 3.1), the

geometry ↵ = 4 for � = �1/2 is equivalent to a rectangular (�0 = 0) torus with

↵0 = 2
p
3 and r0

�
= r�.

In figure 3.8 we plot distributions of the spatial Wilson line eigenvalue phases,

following the same procedure as described for figure 3.5 while considering a lower

temperature t ⇡ 3.8 on 24 ⇥ 6 lattices (↵ = 4). Since t < tc we expect to be in

a spatially confined phase, with PL ! 0 and correspondingly a uniform density of

eigenvalue phases on the angular circle. As expected, we do observe these phases

spreading out around the angular period in figure 3.8, and the distribution becomes

more uniform as N increases. This contrasts with the localized distributions in

figure 3.5 for the high-temperature spatially deconfined phase.

Using the Wilson line susceptibility (cf. figure 3.6) we have mapped the position

of the spatial deconfinement phase transition as a function of ↵ for our � = �1/2.

In figure 3.9 we plot our results on the rL–r� plane and compare them with the

expected transitions sketched in figure 3.1. For ↵ & 4 we find the transition occurs

at high temperatures r� ⌧ 1, and nicely agrees with the deconfinement transition

behavior predicted by the high-temperature BQM limit we discussed in section 3.3.1.
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Figure 3.8: Distributions of Wilson line eigenvalue phases, as in figure 3.5, for 24⇥ 6
lattices at a lower temperature t ⇡ 3.8. The distributions are no longer compact,
and instead spread throughout the angular period, as expected from the black-string
phase of the gravity dual.
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Figure 3.9: The points show the (rL, r�) positions of the spatial deconfinement tran-
sitions for six aspect ratios 8 � ↵ � 3/2 (from left to right), determined from our
lattice calculations of the Wilson line susceptibility (cf. figure 3.7). The three

N

symbols mark the ensembles whose Wilson line eigenvalue phase distributions we
show in figures 3.5, 3.8 and 3.14 (from bottom to top; the point for figure 3.11
lies outside the range of the plot). The solid lines show the expected transitions
sketched in figure 3.1: the BQM deconfinement transition at high temperature and
the low-temperature Gregory–Laflamme transition. The dashed lines indicate con-
stant aspect ratios 1/2  ↵  4 from top to bottom.
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Unfortunately, our uncertainties increase significantly as we approach transitions oc-

curring at lower temperatures (and smaller ↵) where we expect the dual gravitational

prediction (3.37) to apply. Given their large uncertainties, our results are certainly

consistent with the low-temperature behavior predicted by holography, though we

are not yet able to test this prediction with great accuracy. As figure ?? shows,

the Wilson line susceptibility � is a noisy observable, which forces us to ignore the

statistical uncertainties in our results and simply identify the transition as the r�

corresponding to the largest central value of �. The uncertainties shown in figure 3.9

then indicate the neighboring r� with smaller �. Even this simplified procedure

breaks down for ↵  1. We have checked that alternate determinations of the tran-

sition produce consistent results. These include identifying the transition as the r�

for which PL = 0.5, motivated by ref. [35], and using a large-N generalization of the

separatrix introduced for SU(3) by ref. [79]. The large uncertainties in these analyses

prevent us from conclusively determining the order of the transition.

To summarize, our numerical results for the phase diagram of the two-dimensional

SYM system are consistent with the expectations from holography. We see a phase

where the eigenvalues of the spatial Wilson line are uniformly distributed around

the unit circle, as expected for a spatially confined phase. This is separated by a

transition from a spatially deconfined phase with localized eigenvalue distribution.

We now study the thermodynamics of the system at low temperatures in both of

these phases, comparing to the predictions from the dual gravity theory.

3.5.3 D1-phase thermodynamics

In figure 3.10 we show the bosonic action density versus t for ↵ = 2 lattice sizes 16⇥8

and 24 ⇥ 12 with gauge groups SU(12) and SU(16). From the discussion above, the
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Figure 3.10: Bosonic action density versus dimensionless temperature t for 16 ⇥ 8
and 24⇥ 12 lattices (aspect ratio ↵ = 2) with gauge groups SU(12) and SU(16). All
points are results of µ2

! 0 extrapolations. For sufficiently small t our results are in
good agreement with the D1-phase gravity prediction, without significant sensitivity
to N or the lattice size.
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Figure 3.11: Distributions of Wilson line eigenvalue phases, as in figure 3.5, for 24⇥12
lattices at t ⇡ 0.33 with µ2

⇡ 0.007. The extended distributions, which become more
uniform as N increases, correspond to the D1 phase of the gravity dual.
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temperature range shown in the figure lies below the spatial deconfinement transition

temperature tc ' 1.2. Hence we expect the system should be spatially confined. In

the low-temperature limit t ! 0, we expect it to be described by the gravity D1 phase

given in eq. (3.33).11 This is corroborated by our lattice results, which lie close to

the D1-gravity prediction at low temperatures, t . 0.4. In a manner similar to

the well-studied case of supersymmetric quantum mechanics, this system becomes

unstable for very low temperatures, and hence our calculations do not extend all

the way down to t . 1/N . The origin of this instability is well understood and is

discussed in ref. [78]. The scalar potential terms (5.14) and (3.89) help stabilize our

numerical calculations, but still do not allow access to arbitrarily low temperatures.

We then need to extrapolate µ2
! 0 to remove the soft-Q-breaking effects of these

terms (with c2
W

= µ2), which produces the results shown in figure 3.10. Simple linear

µ2
! 0 extrapolations generally have good quality with small �2/d.o.f.; we include

a representative example in the appendix (figure 3.16). Figure 3.11 shows extended

distributions for the Wilson line eigenvalue phases on 24⇥12 lattices at t ⇡ 0.33 (with

µ2
⇡ 0.007), which become more uniform as N increases. This behavior supports our

conclusion that the system is spatially confined in this region of the phase diagram,

corresponding to the gravity D1 phase.

Next, in figure 3.12 we show our corresponding bosonic action density results for

↵ = 1 lattice sizes 8 ⇥ 8 and 16 ⇥ 16. Although several of the 16 ⇥ 16 points lie

significantly lower than the 8 ⇥ 8 points, we suspect that this is not a true finite-

size effect but rather an artifact of problematic µ2
! 0 extrapolations for the low

points. This suggests that some uncertainties on the extrapolated results may be

underestimated. Figure 3.9 suggests that for ↵ = 1 the deconfinement transition

occurs around tc ' 0.47. Thus for t . 0.5 we compare our results to the D1-phase
11Eq. (3.33) applies directly since ↵, � lie in the fundamental domain.

100



0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

- sBos
N2�

t

SU(12), 8nt8

SU(16), 8nt8

SU(9), 16nt16

SU(12), 16nt16

D1 gravity prediction

Figure 3.12: Bosonic action density versus dimensionless temperature t for 8⇥8 and
16 ⇥ 16 lattices (aspect ratio ↵ = 1) with gauge groups SU(9), SU(12) and SU(16).
All points are results of µ2

! 0 extrapolations. Figure 3.9 suggests a transition
to the confined phase around tc ' 0.5. For low temperatures t < 0.4 our results
are in reasonable agreement with the D1-phase gravity prediction (solid curve). We
suspect that the low results for some 16⇥16 points are artifacts of problematic µ2

! 0
extrapolations, suggesting that the uncertainties on these extrapolated results may
be underestimated.

101



0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

- sBos
N2�

t

SU(9) , 6nt12

SU(12) , 6nt12

SU(12) , 8nt16

SU(16) , 8nt16

D0 gravity prediction

Figure 3.13: Bosonic action density versus dimensionless temperature t for 6 ⇥ 12
and 8 ⇥ 16 lattices (aspect ratio ↵ = 1/2) with gauge groups SU(9), SU(12) and
SU(16). All points are results of µ2

! 0 extrapolations. For sufficiently small t our
results are in good agreement with the D0-phase gravity prediction.

gravity prediction and see a reasonable agreement as t ! 0. Since the deconfinement

transition occurs at quite large t, we do not expect our results for t > tc to be well

described by the gravity D0-phase behavior, and indeed they are not. In order to

see the gravity D0-phase behavior emerge at low temperature, we need to consider

smaller ↵ < 1 so that the transition to confinement occurs at tc ⌧ 1.

3.5.4 D0-phase thermodynamics

The final numerical results we present consider our smallest aspect ratio ↵ = 1/2.

Recall from table 3.1 that this lattice geometry is actually equivalent to a rectangu-
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Figure 3.14: Distributions of Wilson line eigenvalue phases, as in figure 3.5, for 8⇥16
lattices at t ⇡ 0.46 with µ2

⇡ 0.004. The intermediate distributions, which become
more compact as N increases, are consistent with expectations from the D0 phase of
the gravity dual.
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lar (�0 = 0) torus with ↵0 = 1/
p
3, so that r0

�
=

p
3r�/2. In figure 3.13 we plot the

bosonic action density for N = 9, 12 and 16 from 6 ⇥ 12 and 8 ⇥ 16 lattices. Again

the points shown are results of µ2
! 0 extrapolations. From figure 3.9 we expect

the system to be spatially deconfined for the low-temperature range 0.25 . t . 0.5

shown here. Eventually at very low temperatures, presumably around t ' 0.12, it

should confine, but we are not yet able to probe such a low-temperature regime. The

dashed curve is the low-temperature gravity prediction from the (spatially decon-

fined) D0 phase, eq. (3.38), which is indeed consistent with the data for t . 0.35.

Figure 3.14 shows intermediate distributions for the Wilson line eigenvalue phases

on 8 ⇥ 16 lattices at t ⇡ 0.46 (with µ2
⇡ 0.004), which become more compact as

N increases. This behavior supports our conclusion that the system is spatially

deconfined in this region of the phase diagram, consistent with the dual gravity

approaching the D0 phase in the large-N limit over this temperature range.

3.6 Conclusions

We have studied two-dimensional SYM with maximal supersymmetry compactified

on a flat but skewed torus in which an anti-periodic boundary condition is imposed

on the fermion fields wrapping one of the cycles. The theory contains three di-

mensionless parameters: rL, r� = 1/t and the skewing angle cos ✓ = �. From the

holographic conjecture, at low ‘generalized temperature,’ t ⌧ 1 this theory should

give a description of a dual gravitational system containing various types of black

holes arising in Type IIA and IIB supergravity. The phase diagram of the gravita-

tional system is expected to contain a region where homogeneous D1 (black-string)

solutions dominate and another in which localized D0 (black-hole) solutions domi-

nate. The critical line separating these two regions in the dual gravitational system
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is conjectured to be dual to a first-order deconfinement transition with the spatial

Wilson loop magnitude PL serving as an order parameter.

We use lattice gauge theory to explore and test this holographic conjecture using

a recently constructed lattice action based on a formalism that maintains exact

supersymmetry at non-zero lattice spacing. The construction singles out a particular

skewing angle � = �1/2, which allows us to test holography both for the usual

rectangular tori and also—for the first time—for skewed tori as well.

We have mapped out the phase diagram of the SYM system and indeed find a

line of transitions separating a spatially confined phase from a deconfined one. The

parametric form of this phase boundary agrees with the results from the gravity

dual. Furthermore, the action density computed in either phase is consistent at low

temperatures with the corresponding black hole thermodynamics. Thus these results

can be taken as a new direction to check the predictions of gauge/gravity duality

orthogonal to those originating in supersymmetric quantum mechanics. It will be

a considerable numerical challenge to overcome this. This would certainly need a

parallelization over both lattice volume and number of colors.

3.7 Modular group and fundamental domain

Let us recall some facts about the usual modular group Gstd and its action on the

complex torus parameter ⌧ 2 H, with H the upper half complex plane excluding the

real line (so that Im(⌧) > 0). The action is given by

⌧0 =
a⌧+ b

c⌧+ d
(3.56)
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where a, b, c, d 2 Z and ad � bc = 1, which corresponds to an element

0

@ a b

c d

1

A 2

SL(2,Z). This group is generated by S, T where S(z) = �1/z and T (z) = z + 1.

The fundamental domain for this action on ⌧ is

Dstd =

⇢
⌧
��1  |⌧|, �

1

2
 Re(⌧) 

1

2

�
. (3.57)

In fact we may also take the generators of the group to be R and T , where R(z) =

z/(z+1), since S = T�1RT�1. These generators R, T are associated to the SL(2,Z)

matrices

0

@ 1 0

1 1

1

A and

0

@ 1 1

0 1

1

A, respectively.

In this work we are interested in the subset G of the modular group Gstd that

leaves our fermion boundary conditions invariant, namely the above with a 2 2Z,

b 2 2Z�1 and c 2 Z. It is easy to see that G is a subgroup of Gstd. The fundamental

domain for the action of this new group, G, on H is

D =
�
⌧
��1  |⌧ ± 1|, �1  Re(⌧)  1

 
. (3.58)

It is generated by the transformations R(z) and U(z) = T 2(z) = z + 2, with R as

above and U corresponding to the SL(2,Z) matrices

0

@ 1 2

0 1

1

A. We now prove these

statements using a simple adaptation of Serre’s arguments concerning the domain

and generators of the usual modular group [80].

Following Serre, we firstly consider the subgroup G0 of G generated by R and U ,

and later show this is, in fact, the group G.

Proposition: For any z 2 H there exists some g 2 G0 such that gz 2 D.
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Proof. Let z 2 H and g be an element of the group G0 (which is a subgroup of G).

We note that

Im(gz) =
Im(z)

|cz + d|2
(3.59)

and for integers c, d this implies that there exists a g which maximizes Im(gz). Taking

such a g, then we may choose an integer n so that z0 = Ungz has real part between

±1. In fact z0 2 D as we may see by considering Rz0 and R�1z0. For any w 2 H we

have

Im(Rw) =
Im(w)

|w + 1|2
Im(R�1w) =

Im(w)

|w � 1|2
. (3.60)

Thus if z0 62 D, so that either |z0 + 1| < 1 or |z0 � 1| < 1, then g0 = RUng and g00 =

R�1Ung are also elements of G0, but either Im(g0z) > Im(gz) or Im(g00z) > Im(gz).

However Im(gz) was assumed to be maximal, hence we conclude that z0 2 D.

Proposition: Given two distinct points z, z0 2 D, then there exists g 2 G so that

z0 = gz only for z, z0 2 @D (i.e., in the boundary of the fundamental domain).

Proof. From the usual arguments about the modular group, we know that for z 2

Dstd and distinct z0 2 D so that z0 = gz for g 2 Gstd, then g = S, T or T�1. Hence for

distinct z, z0 2 D such that z0 = gz for g 2 G then g is one of {S, S�1, T, T�1, T 2, T�2, ST, ST�1, TS, T�1S}

(noting that S2 = 1). Considering the corresponding SL(2,Z) matrices, we see only

the elements T 2 and T�2 from this list can be elements of G, being U and U�1,

respectively. However the only distinct points z, z0 2 D related by g = U or U�1 are

those on the boundaries Re(z) = ±1, Re(z0) = ⌥1.

Proposition: The subgroup G0 is in fact the full group, so G0 = G.

Proof. Consider z0 = 2i so that z0 is in the interior of D. Then choose any g 2 G
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and construct z = gz0. However, from the first proposition above there exists some

g0 2 G0 such that z0 = g0gz0 2 D. Thus we have z0, z0 2 D, with z0 62 @D and

z0 = hz0 for h = g0g 2 G. However from the above proposition that can only be true

for h = 1, and hence g = g0�1. Hence g 2 G0, and thus G0 = G.

A useful corollary of the above construction simply follows that will have physical

importance for us in the main text.

Corollary: Given ⌧ 2 D, then for any g 2 G we have Im(g⌧)  Im(⌧).

3.8 Scalar example: an A⇤
4 lattice and its dimen-

sional reduction

Here we consider a scalar field theory in four dimensions discretized on an A⇤
4 lattice.

We use this to illustrate explicitly the reduction of such a lattice theory to a two-

dimensional theory on a A⇤
2 lattice. We take a discretization analogous to that we

use for N = 4 SYM, having the lattice action

Slat =
1

�lat

X

n2Z4

"
5X

a=1

[Da�(n)]
2 + �(n)4

#
, (3.61)

with the lattice derivative taken as

Da�(n) = �
�
n+ bµ(a)

�
� �(n). (3.62)

The lattice variable � lives at lattice sites n 2 Z4 and we have included an interaction

term and coupling, normalized in analogy with a gauge coupling. Here the vectors
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bµ(a) have components µ̂↵

(⌫) = �↵
⌫

for ↵, ⌫ = 1, . . . , 4 and µ̂↵

(5) = (�1,�1,�1,�1). The

kinetic term is differenced symmetrically in these five directions.

Consider continuum coordinates yµ = �nµ with � the scale setting the lattice

size (proportional to the lattice spacing). Taking the continuum limit � ! 0 and

assuming a suitably smooth scalar field � we may expand

�
�
n+ bµ(a)

�
� �(n) = � µ̂⌫

(a)

@�

@y⌫

����
y=�n

. (3.63)

Then, using
P

n2Z4 f(n) '
1
�4

R
d4y f(y) for a (suitably smooth) function f in the

� ! 0 limit, and defining a continuum field � = 1
��, the lattice action has the

continuum limit Slat ! S4-cont, where

S4-cont =
1

�lat

Z
d4y

2

4
4X

µ=1

✓
@�

@yµ

◆2

+

 
4X

µ=1

@�

@yµ

!2

+ �4

3

5

=
1

�4

Z
d4y

p
|g|
h
gµ⌫@µ�@⌫�+ �4

i
. (3.64)

Here the components of the metric are gµ⌫ = �µ⌫ �
1
5 , and |g| = det gµ⌫ = 1

5 . The

continuum coupling �4 is related to the lattice coupling by �4 = �lat/
p
5. We may

change to canonical flat-space coordinates x↵ = yµe↵(µ), where

e↵(µ) =

0

BBBBBB@

1p
2

1p
6

1p
12

1p
20

�
1p
2

1p
6

1p
12

1p
20

0 �
2p
6

1p
12

1p
20

0 0 �
3p
12

1p
20

1

CCCCCCA
. (3.65)
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Then

S4-cont =
1

�4

Z
d4x

⇥
(@↵�)

2 + �4
⇤
, (3.66)

and the lattice sites are located at x↵ = �nµe↵(µ) for n 2 Z4. Recognizing these e(µ)

as basis vectors for the A⇤
4 lattice, and noting that eq. (3.61) includes a difference

also in the direction e(5) = �
P4

µ=1 e(µ), we see our original lattice theory is indeed

defined on an A⇤
4 lattice. While from the explicit coordinate presentation above it

isn’t obvious, this lattice is maximally symmetric as we should expect from eq. (3.61),

e(a) · e(b) = �ab �
1

5
a, b 2 1, . . . , 5, (3.67)

and the lattice spacing a4 along all five directions e(a) is a4 = �
p

4/5.

Now suppose we are interested in reducing this four-dimensional lattice theory to

two dimensions. We take the lattice variables to be independent of the e(3,4) lattice

directions, and restrict the lattice sum
P

n2Z4 only to a two-dimensional slice of the

original four-dimensional lattice, n = (n1, n2, 0, 0) with (n1, n2) 2 Z2. The lattice

action becomes

S(red)
lat =

1

�lat

X

(n1,n2)2Z2

"
2X

a=1

�
�
�
n+ bµ(a)

�
� �(n)

�2

+
�
�
�
n � bµ(1) � bµ(2)

�
� �(n)

�2
+ �(n)4

# (3.68)

As above, taking continuum coordinates yi = �ni with i = 1, 2, and the contin-

uum limit � ! 0, for a suitably smooth function f we have
P

(n1,n2)2Z2 f(n) '
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1
�2

R
d2y f(y). The lattice action has a continuum limit

S2-cont =
�2

�lat

Z
d2y

2

4
2X

i=1

✓
@�

@yi

◆2

+

 
2X

i=1

@�

@yi

!2

+ �4

3

5

=
1

�2

Z
d2y

p
|h|

⇥
hij@i�@j�+ �4

⇤
, (3.69)

with the metric components hij = �ij �
1
3 so that |h| = 1

3 and the two-dimensional

continuum coupling �2 = �lat/(�2
p
3). We may again move to canonical flat-space

coordinates exm = yieem(i) with m = 1, 2, where

eem(i) =

0

@
1p
2

1p
6

�
1p
2

1p
6

1

A . (3.70)

Then

S2-cont =
1

�2

Z
d2ex

⇥
(@m�)

2 + �4
⇤
, (3.71)

and the two-dimensional lattice sites are now located at exm = �nieem(i) for n 2 Z2.12

Now defining ee(3) = �ee(1) � ee(2), we see the reduced lattice action, eq. (3.69), is

defined using differences generated by
�
ee(1),ee(2),ee(3)

 
. We recognize this as a A⇤

2

lattice action, noting that

ee(a) · ee(b) = �ab �
1

3
a, b 2 1, . . . , 3, (3.72)

and the lattice spacing a2 along these three directions ee(a) is a2 = �
p
2/3.

Finally we note that the two-dimensional continuum action (3.71) is simply the

dimensional reduction of the four-dimensional action (3.66). More precisely, if we
12These coordinate positions are those of the original A⇤

4 lattice restricted to the 1 and 2 direc-
tions, so exm

= xm
= � (n1, n2, 0, 0)

µem
(µ) for (n1, n2) 2 Z2.
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consider the four-dimensional continuum action (3.64) and take the y3 and y4 coor-

dinates to be periodic with period �, so that y3,4 ⇠ y3,4+�, then for � ! 0 we may

Kaluza–Klein reduce on these directions. The zero modes determine the reduced two-

dimensional action, which after integrating over the y3,4 directions gives precisely the

two-dimensional action (3.69), with the two- and four-dimensional couplings related

by

�2 =
�4
�2

r
5

3
. (3.73)

The factor
p
5/3 arises as the Kaluza–Klein reduction is over small periodic direc-

tions that are not orthogonal to each other or to the extended yi directions.

3.9 Numerical details

We use the standard rational hybrid Monte Carlo (RHMC) algorithm [81] imple-

mented in the publicly available parallel software described by ref. [62].13 In the

course of this work we have improved this software to enable the SU(N) truncation

of the gauge links discussed near the end of section 3.4.1, as well as to add the scalar

potential terms in eqs. (5.14) and (3.89). These additions, along with related im-

provements to the large-N performance of the code and other advances, will soon be

presented in another publication [82].

The results presented in the body of this chapter involve eight aspect ratios

↵ = rL/r� = 1/2, 1, 3/2, 2, 8/3, 4, 6 and 8, investigated for up to five SU(N) gauge

groups with N = 3, 6, 9, 12 and 16. In order to ensure that the soft-Q-breaking

scalar potential terms (5.14) and (3.89) introduce only small effects, we require that

µ2, c2
W

⌧ �lat. Specifically, as �lat varies we fix the ratio µ2/�lat = 0.01, 0.02 or 0.04,
13github.com/daschaich/susy
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Figure 3.15: Violations of a Q Ward identity vs. 1/N2 for 16 ⇥ 8 and 24 ⇥ 12
lattices (aspect ratio ↵ = 2) with fixed µ2/�lat = c2

W
/�lat = 0.01. The violations are

suppressed ⇠ 1/N2 and show little dependence on the lattice size or the temperature
in the range 0.38  t  0.57.

113



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.01 0.02 0.03 0.04 0.05

- sBos
N2�

⇣2
= µ2/�lat

t = 0.69

t = 0.64

t = 0.57

t = 0.52

t = 0.46

t = 0.38

t = 0.33

t = 0.28
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action data for SU(16) 8⇥ 8 lattices (aspect ratio ↵ = 1). The intercepts correspond
to the red points in figure 3.12.
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with either c2
W

= 0 or c2
W

= µ2. In figure 3.15 we show violations of a Q Ward

identity (discussed in detail by refs. [61]), which are small (percent-level at most)

and decrease roughly / 1/N2 with fixed µ2/�lat = c2
W
/�lat = 0.01. This establishes

that both the scalar potential and the SU(N) truncation of the gauge links have

insignificant numerical effects for sufficiently large N . Finally, in figure 3.16 we show

a representative sample of the linear µ2
! 0 extrapolations that produce the results

for the bosonic action plotted in figures 3.10, 3.12 and 3.13. The extrapolations

shown here, for SU(16) 8 ⇥ 8 lattices, have acceptable 0.01  �2/d.o.f.  1.95 and

confidence levels 0.94 � CL � 0.16. Their intercepts correspond to the red points in

figure 3.12.

The RHMC algorithm treats the factor of e�S in the partition function (3.19) as

a Boltzmann weight, requiring that the Euclidean action S be real and non-negative.

However, Gaussian integration over the fermion fields of N = (8, 8) SYM produces

a pfaffian that is potentially complex,

Z
[d ] e� 

TD 
/ pf D = |pf D|ei�, (3.74)

where D is the fermion operator. Therefore all our numerical calculations ‘quench’

the phase ei� ! 1 [62]. In principle, the true expectation values hOi can be recovered

from phase-quenched (‘pq’) calculations via reweighting,

hOi =

⌦
Oei�

↵
pq

hei�i
pq

(3.75)

hOi
pq

=

R
[dU ] Oe�SB |pfD|R
[dU ] e�SB |pfD|

hOi =

R
[dU ] Oe�SB pfDR
[dU ] e�SB pfD

. (3.76)
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Reweighting requires measuring the pfaffian phase
⌦
ei�
↵
pq

, and fails if this expectation

value is consistent with zero.

↵ = Nx/Nt Nx ⇥ Nt t 1 � hcos�i

4 16 ⇥ 4 4.56 37(17) ⇥ 10�12

3/2 12 ⇥ 8 0.76 55(18) ⇥ 10�7

1 8 ⇥ 8 0.38 49(17) ⇥ 10�7

0.76 2.93(77) ⇥ 10�8

Table 3.2: Tests of pfaffian phase fluctuations for SU(3) ensembles, considering three
aspect ratios ↵ and a range of temperatures 0.38  t  4.56. In all cases 1�hcos�i ⌧

1 corresponds to very small fluctuations in the phase itself,
⌦
ei�
↵
pq

⇡ 1 so that phase
reweighting has no practical effect.

Previous lattice studies of N = (2, 2) and N = (8, 8) SYM theories in two

dimensions found
⌦
ei�
↵
pq

⇡ 1 even at non-zero lattice spacing, with deviations from

unity vanishing rapidly upon approach to the continuum limit [83–86]. Since we use a

different lattice action than those considered previously, for a few SU(3) ensembles we

have checked that this remains true in our current work. Table 3.2 collects the results

of these tests, considering 1�hcos�i to ensure that positive and negative fluctuations

in � cannot cancel out. In all cases we find 1� hcos�i ⌧ 1, corresponding to
⌦
ei�
↵
pq

close enough to unity that reweighting has no practical effect.

3.10 Comments on the hydrodynamics of D1-branes

In the past couple of years, the program to access and understand the supergrav-

ity predictions using numerical simulations of supersymmetric gauge theories have

evolved from its nascent stage and good agreement has been observed. Several works

[54, 57, 87] spread over the past decade have checked the thermodynamics predicted
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from the supergravity side with the dual gauge theory observables with remarkable

success in (0+1)-dimensions. The general form of the gauge/gravity duality is valid

in lower dimensions as well, however, the four-dimensional case is special because

N = 4 SYM theory is conformal. Lower dimensions are equally interesting because

they can have a rich phase structure and are computationally cheaper to simulate

using Monte Carlo methods. Unlike SYM, the theory of strong interactions (QCD)

has no known gravity dual, but QCD at high temperatures (about T � 2.0� 3.0 Tc)

is nearly a conformal field theory and is thought to be in the same universality class

as N = 4 SYM. The thermodynamic potentials and transport coefficients have been

calculated in QCD [88–90] and relations to gravity dual via AdS/CFT have been

explored. Several important results in strongly coupled QCD have already been ob-

tained using AdS/CFT conjecture, most famously the ratio of shear viscosity (⌘) to

entropic density, ⌘/s up to leading order in �. In four dimensions, the only non-

trivial viscosity coefficient is ⌘ since the bulk viscosity (⇣) vanishes in N = 4 SYM.

Recently, we explored the two-dimensional supersymmetric gauge theory on a skewed

torus and confirmed the phase transition between two different black hole solutions

and computed the dual free energy in both phases [91, 92]. In this proceedings,

we propose to study the thermodynamics of the gauge theory in more detail by not

only calculating the internal/free energy but rather the equation of state (EoS) on a

square torus (hypercubic trajectories in the moduli space), which in turn will enable

us to calculate the speed of the sound, i.e cs, the simplest transport coefficient.
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3.11 Theoretical background

3.11.1 Supergravity predictions

The IIB supergravity is dual to the ‘decoupling’ limit of N coincident D1-branes

[3]. In this limit, finite-energy excitations are considered simultaneously with the

limits, g2YM = 1
2⇡

gs

↵0 = fixed and ↵0
! 0, where gs is the string coupling and ↵0 is the

‘Regge slope’. In the case of D1 branes, one starts out at weak coupling in the UV

with a perturbative description. In the intermediate regime, there is supergravity

(SUGRA) description in terms of D0/D1 brane solutions and at sufficiently low

temperatures, one flows to a free orbifold CFT description. See Figure (3.17) for

a schematic representation of different regimes. The region in which the strongly

coupled Yang Mills theory (denoting p to be number of spatial dimensions) is dual

to the Type IIA/IIB supergravity is given by,

1 ⌧ �e↵ ⌧ N
10�2p
7�p (3.77)

where, �e↵ = �p+1�3�p = t�(3�p), where �p+1 is the coupling in (p + 1)-dimensions

and t is the dimensionless temperature. This condition reduces to the familiar 1 ⌧

�4 ⌧ N in four dimensions. We will refer to �2 and � interchangeably.

Free orbifold CFT SUGRA (D1/D0)

Perturbative SYM

Free orbifold CFT SUGRA (D1/D0)

Perturbative SYM

Free orbifold CFT SUGRA (D1/D0)

Perturbative SYM

Free orbifold CFT SUGRA (D1/D0)

Perturbative SYM

t ⇠
1
N t ⇠

1
N2/3

t ⇠ 1
t = T/

p
�

1

Figure 3.17: The different limits of the N = (8, 8) SYM theory. We will focus on the
region 1/N2/3 < t ⌧ 1.

Assuming the event horizon of the black hole geometry is at U = U0 (see [3, 43]
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for details). Then, we can calculate the temperature associated with the supergravity

metric T as,

T =
(7 � p)U

5�p
2

0

4⇡
p
dp�p+1

(3.78)

The corresponding energy can be easily calculated and gives,

E

N2

���
Dp�brane

=
(9 � p)U7�p

0 Lp

211�2p⇡
13�3p

2 �
�
9�p

2

�
�2
p+1

(3.79)

It can be further shown that,

E

S
=

✓
9 � p

14 � 2p

◆
T (3.80)

and the speed of sound cs is,

cs =

r
@P

@E
=

r
5 � p

9 � p
(3.81)

The hydrodynamical coefficients for general Dp-branes, with p � 2 was calculated

in [93]. However, the case p = 1 is special. It is the only odd p, with p < 5 which is

not conformal. Also, there is no shear viscosity in two dimensions. For D1-branes,

it was found in [94] that the speed of sound is cs =
q

1
2 . The entropy density and

bulk viscosity are given by 14,

s =
24⇡5/2N2T 2

33
p
�

⇣ =
22⇡3/2N2T 2

33
p
�

(3.82)

and hence, the ratio ⇣/s = 1/4⇡ similar to four dimensions but with ⌘ replaced
14Note that there is a typo in Equation (5.7) of [94]
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by ⇣. One would ideally expect that cs =
q

1
2 will be obtained for a conformal

fluid in (2+1)-dimensions, so it is interesting that this result was obtained in a

two-dimensional SYM theory in a regime where it is not conformal. This has been

discussed in [95] where it was argued that the hydrodynamical properties of non-

conformal branes are fully determined in terms of conformal hydrodynamics. The

focus of the lattice calculations will be to calculate, cs, over the entire region, where

the D1-description is valid and provide a numerical outlook on this issue.

In the well-studied p = 0 case, there is a single phase since the temporal direction

corresponding to the black hole horizon is always deconfined. For p = 1, there is

an intricate phase structure corresponding to topology changing transitions [39] also

known as the black hole/black string transition. Using holography, this is conjectured

to be dual to the deconfinement transition in the gauge theory which for the two-

dimensional SYM theory is expected to occur around r2
x
= cgravityr⌧ (rx =

p
�L,

r⌧ =
p
��), and cgravity ⇡ 2.45 for the square torus [58, 70].

Apart from the free/internal energy, EoS and cs, there are other interesting ob-

servables to measure using lattice calculations to compare to their corresponding

gravity predictions. One of these include the Wilson loops proposed in [71, 96] for

supersymmetric gauge theories which also include the contribution from the (9 � p)

adjoint scalars (�). It is defined as follows,

W =
1

N
Tr P̂ exp

"I

C

d⌧
⇣
Aµ(x)ẋ

µ + ✓̂i|ẋ|�i(x)
⌘#

, (3.83)

where ✓̂ is the unit vector and C is the contour which is parametrized by xµ(⌧). It

is normalized such that large N limit is well-defined. We mention the prediction for

this observable obtained using supergravity calculations for p < 3, where only the

p = 0 case has yet been discussed using numerical simulations [53]
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• p = 0 : log hW i = 1.89 t�3/5

• p = 1 : log hW i = 1.54 t�1/2

• p = 2 : log hW i = 1.15 t�1/3 15

Generally, log hW i ⇠ t�(3�p)/5�p
⇠ �1/(5�p)

e↵ . Note that for N = 4 SYM, this gives

the
p
� dependence.

3.11.2 Finite temperature supersymmetric gauge theory

We consider the maximally supersymmetric Yang–Mills theory on two-torus (S1
�
⇥S1

L
)

with anti-periodic boundary conditions for the fermions along the time cycle (� =

1/T ) and denote the trace of the energy-momentum tensor (also known as ‘trace

anomaly’ or ‘interaction measure’) by � = E � P , where E and P are defined as,

E = T 2 @ln Z

@T

����
V

P = T
@ln Z

@V

����
T

(3.84)

Using the approximation for Eq. (3.84) for homogeneous systems as,

P ⇡
T

V
ln Z, (3.85)

we can deduce an expression that relates the pressure to � given by,

�

T 2
=

E

T 2
�

P

T 2

= T
@

@T

⇣ P

T 2

⌘
(3.86)

15Note that this coefficient is little different from one given for potential in [71]. The reason is
not clear to the author.
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Integrating Eq.(3.86) gives,

P (T )

T 2
�

P (T0)

T 2
0

=

Z
T

T0

dT 0 1

T 0 3
�(T 0) (3.87)

In principle, this relation will help us determine the EoS and the speed of sound. The

range of temperatures (t = T/
p
� and we set � = 1) considered for the numerical

integration would have to satisfy, 1/N < t < ↵2/cgravity with t ⌧ 1.

3.12 Lattice action for the square lattice

Supersymmetric theories have flat directions which are a problem for numerical sim-

ulations and we control this by adding a Q breaking term to the lattice action (which

we extrapolate to zero) as,

Sflat =
N

4�e↵
µ2

X

n, a 6=3

Tr

✓
Ua(n)Ua(n) � IN

◆2

(3.88)

Since we are interested in the dimensionally reduced N = 4 SYM to two di-

mensions with the same number of supercharges (known as N = (8, 8) SYM), we

dimensionally reduce along the two spatial directions. To have a meaningful dimen-

sional reduction, we have observed that an extra term has to be added to the action

given by,

Scenter =
N

4�e↵
µ2

X

n, i=x,y

ReTr
✓
'i(n) � IN

◆†✓
'i(n) � IN

◆�
. (3.89)

The lattice supersymmetric theories based on Q-exact formulation are naturally

adapted to non-orthogonal lattices. For example, N = 4 in four dimensions is for-

mulated on A⇤
4 lattice which has a bigger point group symmetry than the hypercubic
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Figure 3.18: On the right we have a A⇤
2 lattice where the three links are treated

equally and expanded symmetrically to target the continuum theory. On the left,
by modifying the third link and requiring that it is expanded around zero, we get
square lattice.

lattice. However, we want to study the two-dimensional system on a square lattice.

In [97], it was argued that one can get different lattice geometries by the choice of

the expansion point for the fields in the moduli space (the trajectory one follows to

the infinity). We add an additional term, SA
⇤
2!hyp. given by,

SA
⇤
2!hyp. =

N

4�e↵
�2
X

n

Tr

✓
U3(n)U3(n)

◆2

(3.90)

to the action which consists of the gauge links in the extra direction of the skewed

geometry. The resulting lattice is square [see Figure (3.18)] when we take � = O(1)

fixed for all couplings/temperatures. The complete lattice action reads,

S = Sexact + Sclosed + Sflat + Scenter + SA
⇤
2!hyp. (3.91)

The numerical simulations should be done sometime in the future using 3.91 on

the parallel software SUSY LATTICE developed in [62].
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Chapter 4

Nonperturbative study of dynamical

SUSY breaking in N = (2, 2)

Yang-Mills theory

The investigations of supersymmetric gauge theories on a spacetime lattice are im-

portant for understanding the non-perturbative structure of such theories and in par-

ticular they can address the question of whether dynamical supersymmetry breaking

takes place in such theories. This is a crucial question for efforts to construct super-

symmetric theories which go beyond the Standard Model since the low energy world

is clearly not supersymmetric while non-renormalization theorems typically ensure

that supersymmetry cannot break in perturbation theory [98].

Unfortunately, there are a plethora of problems to overcome for lattice formula-

tions of supersymmetric theories. Supersymmetry is a spacetime symmetry, which is

generically broken by the lattice regularization procedure. Hence, the effective action

of the lattice theory typically contains relevant supersymmetry breaking interactions.
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To achieve a supersymmetric continuum limit it is necessary to fine tune the lattice

couplings to these terms as the lattice spacing is reduced. Since generically there

are very many such terms this is in practice impossible. Some exceptions to this

are - N = 1 super Yang-Mills where only a single coupling, the gluino mass, must

be tuned. In addition, it has also been shown that fine-tuning to a supersymmetric

continuum limit is also possible for N = (2, 2) in two dimensions. Using Wilson

fermions, the only relevant parameter that has to be fine-tuned is the scalar mass

since the bare gluino mass is an irrelevant parameter. The continuum value for the

critical scalar mass is known up to one-loop order in lattice perturbation theory and

that has already been employed in the numerical simulations. See Ref. [99–101] for

discussions and references therein.

The attempt to formulate supersymmetric theories on the lattice has a long his-

tory starting in Refs. [102–107]. Recent approaches to this problem have focused

on preserving a subalgebra of the full supersymmetry algebra which can protect the

theory from some of these dangerous supersymmetry violating terms - for a review,

see Ref. [9]. For supersymmetric theories with extended supersymmetry various

supersymmetric lattice formulations exist. One approach that was pioneered by

Cohen, Kaplan, Katz and Ünsal in Refs. [15, 75, 76] is based on orbifolding and

deconstruction of a supersymmetric matrix model. A second approach uses the idea

of topological twisting to isolate appropriate nilpotent scalar supersymmetries that

can be transferred to the lattice. Two independent discretization schemes have been

proposed in this approach - that proposed by Sugino in Refs. [108, 109] where the

fermions are associated with sites and a geometrical approach in which fermions are

generically associated with links [110]⇤. In four spacetime dimensions, the geometri-
⇤Yet another construction was formulated by D’Adda, Kanamori, Kawamoto and Nagata, [111]

but was later shown to be equivalent to the orbifolding constructions when restricted to a sector
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cal approach has been used to construct a supersymmetric lattice action for N = 4

SYM [61, 113] and has been shown to be identical to the orbifolding constructions

in Ref. [16, 114]. For an elaborate discussion on the relation between all these

constructions, see Ref. [115].

In this chapter, we will study N = (2, 2) super Yang-Mills (SYM) theory using the

geometrical discretization scheme. It is the simplest two-dimensional supersymmet-

ric theory that can be studied on the lattice. This theory is a particularly interesting

theory in the continuum because of its exotic phases as discussed by Witten in Ref.

[116]. This theory is conjectured to flow in the infrared (IR) to a conformal field the-

ory. For recent developments, see Ref. [117]. The goal of this chapter is to calculate

the vacuum energy density accurately for this theory and hence determine whether

supersymmetry breaking occurs. It is well known [118] that the vacuum energy can

be thought of as an order parameter for SUSY breaking. The spontaneous breaking

of supersymmetry in this two-dimensional theory has been considered theoretically

in Ref. [119] and numerically in Refs. [120, 121]. In [119] it was conjectured that

in fact supersymmetry may break in this theory. Related work for N = (2, 2) super

QCD on the lattice was described in [122]. In the context of orbifold lattice theories,

it was shown in Ref. [123] that the vacuum energy of these theories does not re-

ceive any quantum corrections in perturbation theory leaving only non-perturbative

mechanisms to drive supersymmetry breaking.

In this four supercharge theory, unlike the sixteen supercharge case in two di-

mensions, the thermal instabilities at low temperatures are less severe and we can

access relatively small temperatures without truncating the U(1) degree of freedom

as done in our recent work [91, 92]. However, we have to use a small mass term to

control the classical flat directions associated with the scalars. This small mass term
containing a scalar supercharge [112].
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was also implemented while exploring the phase structure at large N using Sugino’s

lattice construction in Ref. [124].

The plan of this chapter will be as follows. In Sec. 4.1 we review the lattice

construction for N = (2, 2) SYM on a two-dimensional square lattice. Then in

Sec. 4.2 we mention results on the phase of the pfaffian, discuss our procedure of

extracting the ground state energy and comment on the O(a) improved action we

use for the analysis. We end the chapter with conclusions and brief discussion in

Sec. 4.3.

4.1 Two-dimensional N = (2, 2) Lattice SYM

The two-dimensional N = (2, 2) SYM theory is the simplest supersymmetric gauge

theory which admits topological twisting [125] and thus satisfies the requirements

for a supersymmetric lattice construction following the prescription given in Refs.

[126, 127], where the first numerical simulations of this construction were performed.

The theory has global symmetry group G = SO(2)E ⇥ SO(2)R1 ⇥ U(1)R2 , where

SO(2)E is the two-dimensional Euclidean Lorentz rotation symmetry, SO(2)R1 is

the symmetry due to reduced directions and U(1)R2 is the R-symmetry of the parent

four-dimensional N = 1 SYM theory. This theory can be twisted in two inequivalent

ways (the A-model and B-model twists) depending on how we embed SO(2)E group

into SO(2)R1 ⇥ SO(2)R2 the internal symmetry group.

We are interested in the B-model twist, which gives rise to a strictly nilpotent

twisted supersymmetry charge. After twisting, the fields and supersymmetries are

expressed as representations of the twisted Euclidean Lorentz group

SO(2)0 = diag
⇣
SO(2)E ⇥ SO(2)R1

⌘
. (4.1)
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The action of continuum N = (2, 2) SYM takes the following Q-exact form after

twisting

S =
N

2�
Q

Z
d2x , (4.2)

where � = g2N is the ’t Hooft coupling. We use an anti-hermitian basis for the

generators of the gauge group with Tr(TaTb) = ��ab.

The four degrees of freedom appearing in the above action are just the twisted

fermions (⌘, a,�ab) and a complexified gauge field Aa. The complexified field is

constructed from the usual gauge field Aa and the two scalars Ba present in the

untwisted theory: Aa = Aa + iBa. The twisted theory is naturally written in terms

of the complexified covariant derivatives

Da = @a + Aa, Da = @a + Aa, (4.3)

and complexified field strengths

Fab = [Da,Db], Fab = [Da,Db]. (4.4)

The nilpotent supersymmetry transformations associated with the scalar supercharge
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Q are given by

Q Aa =  a,

Q  a = 0,

Q Aa = 0,

Q �ab = �Fab,

Q ⌘ = d,

Q d = 0. (4.5)

Performing the Q-variation on  and integrating out the auxiliary field d yields The

prescription for discretization is straightforward. The complexified gauge fields are

mapped to complexified Wilson links

Aa(x) ! Ua(n), (4.6)

living on the links of a square lattice with integer-valued basis vectors along two

directions,

bµ1 = (1, 0), bµ2 = (0, 1). (4.7)

They transform in the appropriate way under U(N) lattice gauge transformations

Ua(n) ! G(n)Ua(n)G
†(n+ bµ

a
). (4.8)

Supersymmetry invariance then implies that  a(n) live on the same links and trans-

form identically. The scalar fermion ⌘(n) is associated with a site and transforms
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the following way under gauge transformations

⌘(n) ! G(n)⌘(n)G†(n). (4.9)

The field �ab(n), as a 2-form, should be associated with a plaquette. In practice,

we introduce diagonal links running through the center of the plaquette and choose

�ab(n) to lie with opposite orientation along those diagonal links. This orientation

ensures gauge invariance. Fig. (4.1) shows the unit cell of the lattice theory with

field orientation assignments.

The continuum covariant derivatives are replaced by covariant difference opera-

tors and they act on the twisted fields the following way

D
(�)
a

fa(n) = fa(n)Ua(n) � Ua(n � bµ
a
)fa(n � bµ

a
),

D
(+)
a

fb(n) = Ua(n)fb(n+ bµ
a
) � fb(n)Ua(n+ bµ

b
).

The lattice field strength is given by Fab(n) = D
(+)
a Ub(n), and is anti-symmetric.

It transforms like a lattice 2-form and yields a gauge invariant loop on the lattice

when contracted with �ab(n). Similarly, the term involving the covariant backward

difference operator, D
(�)
a

Ua(n), transforms as a 0-form or site field and hence can be

contracted with the site field ⌘(n) to yield a gauge invariant expression.

The lattice action is Q-exact

S =
N

2�

X

n

TrQ
⇣
�ab(n)D

(+)
a

Ub(n)

+ ⌘(n)D
(�)
a

Ua(n) �
1

2
⌘(n)d(n)

⌘
. (4.10)

Applying the Q transformation on the lattice fields and integrating out the auxiliary
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Figure 4.1: The unit cell and field orientations of the two-dimensional N = (2, 2)
lattice SYM theory.

field d, we obtain the gauge invariant and Q supersymmetric lattice action

S = SB + SF , (4.11)

where the bosonic action is

SB =
N

2�

X

n

Tr
⇣
F

†
ab
(n)Fab(n) +

1

2

⇣
D

(�)
a

Ua(n)
⌘2⌘

,
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and the fermionic piece

SF =
N

2�

X

n

Tr
⇣

� �ab(n)D
(+)
[a  b](n) � ⌘(n)D

(�)
a
 a(n)

⌘
.

It was correctly noted in Ref. [128] that for simulation purposes, we need to add a

small supersymmetry breaking scalar potential to stabilize the SU(N) flat directions

of the theory. We add a single trace deformation term to the action in Eq. (4.11)

as, with a tunable parameter µ. Exact supersymmetry at µ = 0 ensures that all

Q-breaking terms vanish as some (positive) power of µ.

4.2 Lattice Simulations

We simulate the theory on a square lattice with anti-periodic boundary conditions

(aPBC) for fermions in the temporal direction. The physical size of the lattice is

� ⇥ L, where � is the dimensionful temporal extent and L the dimensionful spatial

extent. We denote the lattice spacing as a while Nt is the number of lattice sites

along the temporal direction and Nx the number of sites along the spatial direction.

Thus the dimensionful quantities are � = aNt and L = aNx. In our case the lattice

is symmetric: Nt = Nx.

In two dimensions, the ’t Hooft coupling � is dimensionful and we can construct

the dimensionless temporal circle size,

r⌧ =
p

��. (4.12)

The quantity r⌧ also serves as the effective coupling. Its inverse is the dimensionless

temperature t. Since we have only considered symmetric lattices, the spatial circle
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size is the same as the temporal circle size, rx = r⌧ . As discussed above we use a

small mass parameter µ = ⇣ r⌧
Nt

= ⇣
p
�a to regulate potential divergences associated

with the flat directions. As for case of sixteen supercharge theory in two dimensions

[91, 92], we extrapolate all our results to µ = 0.

To examine the question of supersymmetry breaking we consider the system at

non-zero temperature and subsequently take the temperature to zero after taking

the limits ⇣ ! 0 and a ! 0. A non-zero value of the vacuum energy would indicate

supersymmetry breaking. Notice that if supersymmetry is intact in a finite volume,

it is unbroken even in infinite volume [129].

We compute the ground state energy density in two-dimensional N = (2, 2) SYM

using the publicly available code presented in Ref. [62]. In the four-supercharge case,

the expression for the effective bosonic action, which is related to the dimensionless

energy density we measure, was first given in Ref. [130].

We can have two different definitions for the ground state energy based on whether

we take the massless (scalar mass) limit followed by the continuum limit or vice versa.

In both cases, the zero temperature limit is taken at the end. Thus, we have

E
0
VAC

N2�
= lim

�!1
lim
a!0

lim
µ!0

*
VAC

�����

✓
�2S̄

N2�

◆ �����VAC
+
, (4.13)

and
EVAC

N2�
= lim

�!1
lim
µ!0

lim
a!0

*
VAC

�����

✓
�2S̄

N2�

◆ �����VAC
+
, (4.14)

where,

S̄ =
1

L�

✓
SB �

3

2
N2NxNt

◆
. (4.15)

For tables containing the simulation data described in this chapter, please see
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Figure 4.2: The ⇣2 ! 0 extrapolation of the ground state energy density for U(3),
r⌧ = 9.

the appendix of [131]. It is clear from the tables that the order of taking these

different limits is consistent within errors and we will quote results only for EVAC
N2�

. We

integrate out the fermions to produce a Pfaffian, which in turn is represented by the

square root of a determinant. The fermion determinant with a fractional power can

be simulated using the Rational Hybrid Monte Carlo (RHMC) algorithm [132]. In

the simulations we used the absolute value of the Pfaffian. The phase of the Pfaffian

may be incorporated back in the expectation values of observables by re-weighting

although as will be seen in the next section the measured Pfaffian phase is always

small in our simulations.
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Figure 4.3: The (a/L)2 ! 0 extrapolation of the ground state energy density for
U(3), r⌧ = 9.

4.2.1 Phase of the Pfaffian

The phase of the Pfaffian was studied in Ref. [133] for two different lattice construc-

tions. Soon after, the phase of the Pfaffian for the construction we use here was

calculated in Ref. [84] and it was observed that it vanishes as one approaches the

continuum limit. It was correctly noted in Ref. [83] that the absence of the sign is

a property of the correct continuum limit. In this chapter, we will study the phase

of the Pfaffian at stronger couplings than have been explored before and on much

larger lattices using the parallel code developed in Ref. [62]. We show that the phase

fluctuations become small and vanish as we take the continuum limit. This is true

for all couplings we have considered. However, on a fixed lattice volume, the magni-
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Figure 4.4: Pfaffian phase fluctuations, 1� hcos�i, for some U(3) ensembles used in
this work. We have measured the phase for three couplings used in this work. We
keep the mass parameter, ⇣ = 0.50 for all couplings. Note that at sufficiently weak
couplings, large lattices are not needed to control sign problem.

tude of the phase fluctuations grows with the coupling. This implies that accessing

stronger couplings (t  1/9) requires the use of larger lattices if we are to avoid a

sign problem. We show these results in Fig. 4.4.

4.2.2 Ground State Energy

We now present our simulation results on the ground state energy of the theory. We

would like to extrapolate the lattice data for ground state energy density EVAC
N2�

to

zero temperature after taking the continuum (a ! 0) and massless (µ ! 0) limits.

A representative example of the mass extrapolations and continuum extrapolations
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are shown in Fig. 4.2 and Fig. 4.3, respectively. At the end, we perform three types

of extrapolations in temperature - using power law, exponential, and constant fits.

We show the vacuum energy density vs inverse temperature for U(2) in Fig. 4.5.

Extrapolating r⌧ ! 1 using the range r⌧ 2 [6, 9]

EVAC

N2�
=

8
>>><

>>>:

0.06(4), �2/d.o.f. = 0.40 : power law fit

0.06(2), �2/d.o.f. = 1.26 : exponential fit

0.08(2), �2/d.o.f. = 0.63 : constant fit

(4.16)

In Fig. 4.6 we show the vacuum energy density vs inverse temperature for gauge

group U(3). Extrapolating r⌧ ! 1 using the range r⌧ 2 [6, 9]

EVAC

N2�
=

8
>>><

>>>:

0.05(2), �2/d.o.f. = 0.11 : power law fit

0.04(4), �2/d.o.f. = 0.11 : exponential fit

0.05(2), �2/d.o.f. = 0.06 : constant fit

(4.17)

We note that the errors in our results do not allow us to make conclusive state-

ments about the exact form of the energy dependence on the temperature. Both

power, exponential and constant fitting functions yield comparable results consistent

with vanishing ground state energy. Our calculation puts an upper bound on the

dimensionless energy density using the constant fit at EVAC
N2�

= 0.08(2) for U(2) and
EVAC
N2�

= 0.05(2) for U(3).

While this work was in progress results were presented on the tree-level O(a)

improvement of the Sugino’s lattice action for two-dimensional N = (2, 2) SYM [134].

We note that our lattice formulation already possesses this improvement which we

see in Fig. 4.3 and in Table 4.1.
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Figure 4.5: The � ! 1 extrapolation of the ground state energy for U(2) gauge
group. The inset zooms in to show the low-temperature regime.

⇣ / (a/L)p / (a/L)p + c
0.40 1.86(9) 1.76(22)
0.50 1.76(6) 1.60(15)
0.55 1.79(5) 1.90(11)
0.60 1.74(4) 1.70(11)

⇣ / (a/L)p / (a/L)p + c
0.40 1.73(10) 1.58(24)
0.50 1.71(7) 1.74(17)
0.55 1.69(6) 1.57(14)
0.60 1.78(5) 1.98(12)

Table 4.1: Numerical results showing that our action is effectively O(a) improved.
We measure the deviation of the bosonic action/site from its supersymmetric value
of 3

2N
2 and fit it to a power law. The first column shows the soft-mass parameter,

⇣, we use to regulate the flat directions. The second column is the obtained value
of the power, p, constraining vanishing intercept, the third is the obtained value of
the power, p, without constraining the intercept. We quote results from one of the
couplings used in this work, r⌧ = 6. On the top, we show the results with U(3) and
with U(2) at the bottom. The fits are very good with maximum �2/d.o.f.= 2.80.
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Figure 4.6: The � ! 1 extrapolation of the ground state energy for U(3) gauge
group. The inset zooms in to show the low-temperature regime.
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4.3 Conclusions

In this chapter we have examined the possibility of dynamical supersymmetry break-

ing in two-dimensional N = (2, 2) SYM through lattice simulations. The lattice

theory is exact supersymmetric, gauge invariant, local, and doubler free. We find an

upper bound on the vacuum energy density of EVAC
N2�

= 0.08(2) and EVAC
N2�

= 0.05(2)

for U(2) and U(3) respectively. The energy density is statistically consistent with

zero and hence with the absence of dynamical supersymmetry breaking. It would be

interesting to examine the spectrum in future work to confirm the absence of spon-

taneous supersymmetry breaking perhaps by searching for signals of a Goldstino as

was done in [122]. We have also measured the phase of the Pfaffian on all our en-

sembles and find that while the average phase grows with coupling it decreases as we

take the continuum limit in agreement with theoretical expectations. In practice, it

is numerically small for all our ensembles. The question of supersymmetry breaking

in this model was addressed before in [120]. Our current work, in addition to using a

different lattice action, has employed stronger couplings (and hence lower tempera-

tures) and much smaller lattice spacings. For example, the lowest temperature used

in the earlier work was t = 1/6 as compared to t = 1/9 in this work while the largest

lattice used here is 96 ⇥ 96 as compared to 30 ⇥ 12 in the earlier study.
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Chapter 5

On the removal of the trace mode in

lattice N = 4 super Yang-Mills theory

In recent years a great deal of effort has been devoted to the construction and numer-

ical studies of lattice formulations of N = 4 super Yang-Mills theory which retain

one exact supersymmetry at non-zero lattice spacing—see the review [9] and ref-

erences therein. These lattice theories can be derived using either deconstruction

[15, 75, 76] or topological field theory methods [16, 110, 113, 114]. In this approach

the link fields appearing in the lattice theory take their values in the algebra of

the group, denoted by gl(N,C).⇤ This is readily apparent from the (twisted) scalar

supersymmetry (SUSY) transformation

QUm =  m (5.1)
⇤This restriction is not present for Sugino’s formulation—see [108]. Other approaches to study-

ing N = 4 super Yang-Mills and the AdS/CFT correspondence on a computer include [52, 54, 135–
140].
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where  m is a twist fermion that transforms as a link variable. Since it is a fermion,

it has an expansion in terms of generators,

 m =
N

2�1X

A=0

 A

m
tA (5.2)

Here, t0 is proportional to the unit matrix, and must be included if 5.1 is to hold,

because the link field Um on the left-hand side certainly has an expansion involving

the unit matrix, if it is to yield the usual a ! 0 continuum limit

Um(x) = 1 + aAm(x) + · · · (5.3)

(Here, Am(x) is a complexification that contains both the gauge fields and scalars.)

On the other hand, SUSY should not convert a group valued field into a Lie algebra

valued field, so in fact Um should also have the expansion

Um =
N

2�1X

A=0

U
A

m
tA (5.4)

with the U(1) mode U
0
m

fully dynamical. The conclusion of this argument is that

the scalar SUSY Q requires the gauge group to be U(N) and not SU(N), with the

bosonic link fields Lie algebra valued.

In the continuum limit the entire U(1) sector decouples, and becomes an unin-

teresting free theory—all fields are in the adjoint representation and hence neutral

for U(1). However on the lattice this sector is coupled to the SU(N) part through

irrelevant operators, so we cannot completely ignore it. In fact, it is these irrelevant

couplings that can cause various problems. The first of these was first identified

in [61] and is manifested in the appearance of a chirally broken phase for ’t Hooft
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couplings �lat > 1 (see eqn. 5.10 for the definition of the lattice coupling).

Another way to see that the U(1) mode drives instabilities is to examine the

behavior of the theory under the classical scaling transformation

Uµ ! cUµ (5.5)

Uµ ! cUµ

 µ ! c
3
2 µ

⌘ ! c
3
2⌘

�µ⌫ ! c
3
2�µ⌫

It is trivial to see that the supersymmetric action given in [61] (minus the soft Q-

breaking mass term) is invariant under this transformation if the Yang-Mills coupling

g2 ! c4g2. This allows us to write down relations between expectation values of

gauge invariant operators. For example,

hTr
PY

i=1

U
i
ig2 = cP hTr

PY

i=1

U
i
ic4g2 (5.6)

in which we have suppressed spacetime coordinates and indices and where U could

be replaced by any other appropriately chosen lattice field with a corresponding

change in the multiplicative factor on the RHS. Since the LHS is independent of c

this implies that the expectation value on the RHS must vary as c�P . Note that this

rescaling is not allowed if the link variables Uµ are SL(N,C)-valued, corresponding

to gauge group SU(N). Thus, it is the U(1) sector that creates this instability.

In [141] a new supersymmetric term was added to the lattice action to suppress

the U(1) mode fluctuations. This allows for simulations to be performed out to
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stronger coupling �lat  2. However, it does not appear sufficient to explore the

regime of extreme strong coupling needed for studies of S-duality [142]. The reason

for the ineffectiveness of this term at very strong coupling is that it constrains only

the real part of the determinant of the plaquette operator averaged over all plaquettes

associated with a given lattice site.

In this chapter, we have attempted to address this problem in a different way

by adding to the lattice action a term which explicitly suppresses the U(1) sector

for each link field (we call this the detlink term). We argue that this term is 1/N2

suppressed and hence the exact scalar SUSY Q should be recovered in the large N

limit. Furthermore, we show extensive numerical results that support this conclu-

sion. The existence of this supersymmetry at large N then guarantees that under

renormalization any Q-breaking operators that are generated are 1/N2 suppressed,

and the scalar SUSY is restored without fine tuning as N ! 1. In addition, we

show that even for modest values of N such as SU(5), Q invariance is a very good

approximation. Early results for this formulation have appeared in [143].

An alternate method to achieve the same result is by truncating the theory com-

pletely to gauge group SU(N) by having links valued in the group SL(N,C) rather

than algebra gl(N,C). However, the full truncation (bosonic & fermionic) of the

theory from U(N) to SU(N) does not work. A simple way to see this is as follows:

Assume a traceless fermion  a which lives on the link in the direction of ea. The

gauge invariance acts as

 a(x) ! G(x) a(x)G
†(x+ ea), (5.7)

which yields a  a which is not in general traceless. Thus we cannot eliminate the
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U(1) mode of the fermion, even under the restriction to SU(N) gauge group.† Note

that this is a lattice effect, since for a site fermion ⌘, we would have

TrG(x)⌘(x)G†(x) = ⌘A(x)trG(x)tAG†(x) = ⌘ATrtA = 0 (5.8)

assuming ⌘(x) only involved the generators tA of SU(N), which are traceless. The

distinction between link fermions and site fermions is only meaningful on the lattice.

This same argument does not apply to the link bosons, since they are valued in the

group and the gauge transformation preserves that feature.

In summary, to maintain lattice gauge invariance, for this hybrid action we only

truncate the bosonic sector down to SU(N). This construction also restores Q super-

symmetry in the limit N ! 1. In Table 5.1, we show the comparison between these

two approaches. This method of maintaining exact lattice supersymmetry by trun-

cating U(1) sector at large N was employed in [91, 92] to initiate non-perturbative

checks of gauge/gravity duality at large N in two dimensions. In this chapter, we

show detailed numerical results in four dimensions consistent with the claimed 1/N2

suppression.
†This is to be contrasted with [57, 144, 145] where it was possible to eliminate the U(1) fermion

mode. This has the benefit of improving the condition of the fermion matrix.
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5.1 Lattice action

The Q-exact lattice action takes the form

S =
N

4�lat

X

x

TrQ

✓
�abD

(+)
a

Ub + ⌘D
(�)
a

Ua �
1

2
⌘d

◆
+ Scl (5.9)

Scl = �
N

16�lat

X

x

Tr✏abcde�de(x+ ea + eb + ec)D
(�)
c
�ab(x+ ec), (5.10)

where the lattice difference operators take the form of shifted commutators. For

example,

D
(+)
a

Ub(x) = Ua(x)Ub(x+ ea) � Ub(x)Ua(x+ eb) ⌘ Fab(x) (5.11)

where ea are the principle lattice vectors of the A⇤
4 lattice. The Q-closed term is still

lattice supersymmetric due to the existence of an exact lattice Bianchi identity,

✏abcdeD
(�)
c

Fab(x+ ec) = 0. (5.12)

After we integrate out the auxiliary field d, we have

S =
N

4�lat

X

x

Tr

�FabFab +

1

2

⇣
D

(�)
a

Ua

⌘2

� �abD
(+)
[a  b] � ⌘D

(�)
a
 a

�
+ Scl. (5.13)

The action also contains a single trace mass term, which helps to lift the classical

flat directions by giving a small mass to the scalar fields:‡

Smass =
N

4�lat
µ2
X

x,a

Tr

✓
U

†
a
Ua � IN

◆2

. (5.14)

‡It also generates cubic and quartic terms that further stabilize the flat directions. This mass
term has been used for most of our earlier works, and also appears in [83].
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To control the local fluctuations of the U(1) sector we now add a new term to the

action:

�S =
N

4�lat
link

X

x,a

| detUa(x) � 1|2 (5.15)

In the limit link ! 1 we can completely remove the U(1) modes — both gauge and

scalar by restricting the links to SL(N,C). Notice that this term does not break the

SU(N) invariance of the action since detUa(x) is invariant under such transforma-

tions. Using a polar decomposition of the link field

Ua(x) = (I + ha)e
iBa (5.16)

the determinant can be written for small ha and Ba as

det (Ua) = (1 +
1

p
N
h0
a
)ei

1p
N
B

0
a (5.17)

where the 1p
N

factor arises from the generators which satisfy the normalization

Tr(T aT b) = ��ab and the superscript indicates that only the trace mode survives.

To quadratic order in the fluctuations the determinant term becomes

�S =
1

4�lat
link

X

x,a

⇣�
B0

a

�2
+
�
h0
a

�2⌘ (5.18)

The term thus serves to generate masses for the U(1) modes. Additionally, notice it

carries no prefactor of N which then guarantees that it will generate terms that are

O(1/N2) suppressed relative to the leading terms in a perturbative expansion.

This detlink term breaks both the Q-supersymmetry and the U(1) gauge sym-

metry. Breaking the U(1) symmetry is likely harmless since the U(1) sector plays

no role in the continuum limit. However breaking the exact supersymmetry is more
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problematic since it invalidates the arguments given in [77] devoted to the renormal-

izability of the lattice theory and specifically the number of counterterms needed to

tune to a supersymmetric continuum limit.

To address this issue, we examine the N -dependence of the various terms in the

action. It is clear that the new term being a function of the trace modes only is

suppressed by 1/N2 as compared to all other terms in the action which correspond

to a sum over all the generators of U(N). If we treat this term perturbatively, it will

yield a subleading contribution to any observable in the planar limit. Thus, we expect

that the exact supersymmetry will be restored in the large N limit. The presence of

an exact supersymmetry at N = 1 then ensures that any SUSY violating operators

appearing at finite N (and finite link) are only multiplicatively renormalized with

couplings proportional to positive powers of 1/N2. In the next section, we show that

these truncated approaches yield stable results for a range of values of the ’t Hooft

coupling �lat and measurements of appropriate Ward identities show the expected

1/N2 behavior.

We perform the numerical simulations with the parallel code presented in [62].

Since then, it has been extended to perform calculations for arbitrary gauge group to

access the large N limit and will be presented in a future publication [82]. We note

that there is an earlier work that develops a method to have SU(N) gauge group in

supersymmetric lattice gauge theory [146].
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5.2 Ward identities

We test the restoration of Q in the large N limit in two ways.§ One is via a mea-

surement of the expectation value of the bosonic action SB, which is related to an

exact lattice Ward identity associated with Q in the original, unmodified theory.

The results on 84 lattice with three different values of �lat = 2, 3, 4 are shown in

Fig. 5.1, with a normalization such that SB = 1 for exact Q. It can be seen that the

restoration is within 1% in the large N limit, where presumably the small deviation

from 1 is due to the mass term 5.14 (we take µ = 0.1 in our study) and thermal

boundary conditions for the fermions along the temporal direction.

Another check arises through the supersymmetric Ward identity corresponding

to
D
QTr

�
⌘UaUa

� E
= 0 (5.19)

This yields
D
Tr

�
dUaUa

� E
�

D
Tr ⌘ aUa

E
= 0 (5.20)

Using the equations of motion to eliminate d we find

W =
D
Tr

�
DaUaUbU b

� E
�

D
Tr ⌘ aUa

E
= 0 (5.21)

We further normalize W by the fermion bilinear term appearing on the right and

take the magnitude,

W =

�����

D
Tr

�
DaUaUbU b

� E
�

D
Tr ⌘ aUa

E

D
Tr ⌘ aUa

E
����� (5.22)

§We note that while N = 8 is sufficient for us to see the large N limit in our four-dimensional
lattices, much large N is both necessary and possible in the case of matrix quantum mechanics
[57, 144, 145].
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�lat. N �SB (detlink) W (detlink) �SB (hybrid) W (hybrid)
2.0 3 0.0606(1) 0.0373(8) 0.1238(4) 0.0684(1)

4 0.0426(2) 0.0273(7) 0.0753(2) 0.0491(0)
5 0.0311(1) 0.0204(4) 0.0505(1) 0.0328(0)
6 0.0239(1) 0.0159(4) 0.0362(1) 0.0233(0)
7 0.0192(1) 0.0131(4) 0.0276(1) 0.0184(0)
8 0.0159(1) 0.0110(3) 0.0218(1) 0.0141(0)

Table 5.1: The comparison between the supersymmetry breaking observables using
the detlink and the hybrid formulations on 84 lattice for �lat. = 2. �SB denotes the
deviation from the supersymmetric value. See Fig. 5.3 for details.

to obtain the quantity shown in Fig. 5.2. It can be seen that the Ward identity,

which is zero in the limit of exact Q, is approximately 0.6% in the large N limit.

Again, we attribute this to the mass term 5.14.

We have also compared these results to the hybrid formulation, where the U(1)

sector is eliminated from the link fields entirely. In Table 5.1 it can be seen that the

Q violation is more for the hybrid than in the detlink formulation, but with the same

1/N2 dependence. The results for the Ward identity are shown together in Fig. 5.3.

Thus we see that either approach will restore Q in the large N limit, up to the effects

of the regulating mass term.

A final question is the effect of finite volume, given that antiperiodic boundary

conditions are imposed on the fermions. This also violates the Q scalar supersym-

metry, so we expect such effects to fall off with the volume. It can be seen from

Table 5.2 that most of the volume effects are negligible. Indeed, only at the weakest

coupling for the smallest number of colors is the effect of any significance.
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Figure 5.1: The bosonic action, normalized such that it should be equal to 1 if the
Q symmetry is fully restored (exact). It can be seen that the N dependence falls off
as 1/N2, as expected. The difference from 1 in the large N limit is anticipated from
the presence of the small mass term 5.14 with µ = 0.1. Fits to A + B/N2 are also
shown in the plot. For these runs we take link = 5, 5, 10 for the three values of �lat
respectively.

�lat. N 84 164

�SB W �SB W
2.0 3 0.0606(1) 0.0373(8) 0.0407(18) 0.207(19)

4 0.0426(2) 0.0273(8) 0.0425(0) 0.0281(2)
5 0.0311(1) 0.0204(8) 0.0310(1) 0.0202(3)

3.0 4 0.0413(2) 0.0216(7) 0.0420(2) 0.0218(3)
5 0.0309(1) 0.0166(4) 0.0336(1) 0.0174(4)

4.0 3 0.0781(3) 0.0336(14) 0.0788(1) 0.0357(3)
4 0.0528(2) 0.0254(11) 0.0521(1) 0.0230(4)

Table 5.2: The comparison between supersymmetry breaking observables using the
detlink code on 84 and 164 lattices. The volume effects are small in comparison at
fixed N .
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Figure 5.2: The Ward identity 5.22 for the 84 lattice with detlink action, �lat = 2, 3, 4,
µ = 0.1 and link = 5, 5, 10 respectively. Fits to A+B/N2 are also shown.
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Figure 5.3: The comparison between the Ward identity results for the hybrid and
detlink cases on 84 lattice for �lat = 2. In the large N limit, the difference is negligible.
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5.3 Conclusions

We have shown that simulations of lattice N = 4 SYM targeting the SU(N) rather

than the U(N) theory are possible at moderately strong coupling �lat.  4. This is

a stronger coupling than has been achieved with the improved action described in

[141], where only �lat.  3 was possible. In the case of gauge group SU(2) simulations

have even been performed at �lat. = 6. However, unfortunately so far, we have not

been able to extend this to even stronger couplings. Instead we observe the system

appears to undergo a crossover or phase transition to a regime in which the fermion

operator develops very many small eigenvalues. We attribute this to the presence

of residual supersymmetry breaking associated with the determinant term. Work is

underway to develop a supersymmetric link based determinant term which may allow

us to bypass these problems and access yet stronger couplings. The improvement

that we do see is reflective of control over the instabilities associated with the flat

direction exhibited in the scaling 5.6. The corresponding U(1) fluctuations are much

more dangerous than the SU(N) related flat directions because they allow the theory

to wander into regimes associated with coarser lattice spacings, where confinement is

a generic feature. In the future, we will present results where further improvements

can be obtained by preserving Q exactly while still controlling this U(1) sector in a

rather aggressive way.
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Chapter 6

Conclusions

I think of my lifetime in Physics

as divided into three periods. In

the first period ...I was in the

grip of the idea that Everything

is Particles...I call my second

period Everything is

Fields...Now I am in the grip of

a new vision that...Everything is

Information

- John A. Wheeler

The main theme of the thesis was to explore super-Yang-Mills (SYM) theories

in various dimensions on the lattice while preserving a fraction of supersymmetry

at finite lattice spacing. The lattice simulations of maximally supersymmetric theo-

ries play an important role in understanding various aspects of holography in detail

by directly dealing with strongly coupled field theories. Though there have been
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numerous calculations on the gravity side predicting properties of strongly coupled

field theories, the other direction has been relatively unexplored. The real power and

understanding of the holographic principle is expected to come when we study field

theories at finite couplings to understand the nature of stringy corrections in the su-

pergravity side when it is no longer classical supergravity. To initiate such a program

in d > 1, we studied the phase diagram of the SYM theory in two dimensions and

located the deconfinement transition which is related to the transition between two

different black hole solutions. The horizon topology for four-dimensional black holes

is fixed, but when we consider black holes in higher dimensions (such as in Type II

supergravity theories), the horizon can have topology change which is holographically

dual to the deconfinement transition in the gauge theory at finite temperatures.

The primary goal is to study the four-dimensional conformal N = 4 SYM since

most of the holographic predictions are for that theory, but this has been a major

obstacle in the past few years even after a series of improvements in the lattice

formulation of N = 4 SYM. In addition, the numerical calculations of the four-

dimensional theory are very expensive in the large N limit even with a parallel code

over the lattice volume. It is conceivable that parallelizing over N will be possible

in the future and will considerably improve our access to supergravity limits using

lattice calculations. The lower-dimensional SYM theories (d < 4) which take part in

holography do not have the sign problem when fermions obey anti-periodic boundary

conditions around the thermal cycle. This is encouraging for Monte Carlo simulations

though it must also be mentioned that the sign problem becomes a major obstacle

in the � > 5 studies of SYM in four dimensions with large N . It seems that going

to strong couplings in four dimensions would require some new and path-breaking

ideas. However, it is certainly possible, as we have shown, to extract interesting

Physics from lower-dimensional SYM theories. The twisted lattice action for SYM
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theories in d < 4 can still be studied for interesting holographic applications and we

will continue working on it in coming years. Apart from the thermodynamics of the

dual D2-branes which is work in progress, we also hope to reproduce the prediction

for the static potential in this three dimensional maximally supersymmetric Yang-

Mills theory. In order to explore other numerical approaches to gauge theories (than

Monte Carlo), we have recently studied a two-dimensional non-Abelian gauge theory

[147] which is not part of the thesis.

On the other side, there has been a lot of progress in numerical studies of the

critical systems in d  2 and their holographic implications using the tensor network

constructions. The tensor networks, such as MERA [148] are conjectured to cap-

ture important aspects of holography and offers non-perturbative insights into the

geometry of the bulk through the entanglement of the quantum state [149–154].

One of the recent ideas in holography has been the proposal of holographic en-

tanglement entropy (HEE) by Ryu-Takayanagi (RT) in 2006 for time-independent

geometries. As an example, they considered a time-slice (constant time) of AdS3

and showed that the entropy matched the one calculated in two-dimensional CFT. It

was extended to time-dependent geometries by Hubeny, Rangamani, and Takayanagi

(HRT) [155]. The RT formula says that

SA =
min.(Area(�A))

4GN

�����
@�=@A

(6.1)

The equation tells us to consider only those minimal curves � which satisfies the

homology ⇤ condition (i.e. those which can be continuously deformed) such that
⇤One can think about this in terms of 2-sphere S2. Jordan curve theorem says that any cycle

on the sphere can be shrunk to a point. In this sense, all cycles/curves on this manifold satisfy
homology condition
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boundary of � is the same as that of A. And in case there is more than one such

minimal curve, we choose the one with the smallest area. For example, consider a

black hole (where regions are not simply connected). If we consider that A is the

entire-space time, then the boundary of that is an empty set. How does one choose a

minimal surface in this situation? �A cannot be the empty set since the space-time is

not connected. It turns out that the minimal surface is the event horizon. Note that

the minimal surface is just a curve for time-independent AdS3. So, for this case, the

HEE formula is just the familiar Bekenstein-Hawking entropy formula. If we consider

four-dimensional SYM theories on S3 at finite temperatures and large N , they are

expected to undergo Hawking-Page phase transition which is dual to deconfinement

transition as discussed above. When the field theory is at zero temperature, the

entanglement entropy of the subsystems A & B is the same. At finite temperatures,

the area of minimal curves change and we get a difference in entropy. It is also

expected that entanglement entropy can serve as an order parameter.

It will be very interesting to compute the EE on the lattice for supersymmetric

theories in lower dimensions in the future. This is a very exciting and interesting

time for different numerical approaches to holography and understanding the fea-

tures of quantum gravity working at the intersection of high energy theory, quantum

information theory, and condensed matter theory.
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Appendix A.1 Operators and their relevance

If an operator O behaves as E�i , then �i is its dimension and gi has units of ED��i ,

where D is the spacetime dimension. For ex :

1

2

Z
dDx@µ�@

µ� (2)

� has dimension ED/2�1. Hence an operator constructed out of A �’s and B deriva-

tives has

�i = A

 
D

2
� 1

!
+B (3)

We can define dimensionless couplings as :

�i = ⇤
��Dgi (4)

Note that when �i = D, then gi is dimensionless and we don’t need any contruction.

Z
dDxO ⇠ ED��i (5)

(6)

so that ith term is of order (in gi)

 
E

⇤

!�i�D

�i (7)

We see that if �i > D, then the term becomes less and less important at low energies.

If �i < D, it becomes more and more important at low energies like N = (8, 8) SYM

in two dimensions. The results are shown in Table (1).
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�i Size in IR Nature Property

< D Increases Relevant Super-renormalizable

> D Decreases Irrelevant Non-renormalizable

= D Constant Marginal Strictly renormalizable

Table 1: Dimension of operators, size in the IR, nature and property of the theory.

Appendix A.2 Spinors in various dimensions

We have often come across notations like N = (2, 2) and N = (8, 8) in the main text.

This is different from the notation we are used to in four dimensions. In 4d, the Weyl

representation is complex, so that the representation of Q is fixed to be the conjugate

of the Q representation. In 2d, the Weyl representation is real (Majorana-Weyl) and

the Q representation is independent of the Q representation. This can be seen for

various dimensions from Table (2).

Appendix A.3 Type II SUGRA details

When the consider the black hole solutions at finite temperature, the temperature,

TH is given by :

T /
(7 � p)U (5�p)/2

0

4⇡
p

dp�
(8)

for a uniform black p-brane solution. The ↵0 corrections can be written in terms of

U0 as,

↵0R /

s
U (3�p)
0

�
(9)
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Dimensions(d) Majorana Weyl Weyl-Majorana Min.Rep
2 Yes Self Yes 1
3 Yes - - 2
4 Yes Complex - 4
5 - - - 8
6 - Self - 8
7 - - - 16
8 Yes Complex - 16
9 Yes - - 16
10 (mod 8, 2) Yes Self Yes 16
11 (mod 8, 3) Yes - - 32
12 (mod 8, 4) Yes Complex - 64

Table 2: Dimensions in which various conditions are allowed for SO(d�1, 1) spinors

We see from 8 and 9 that ↵0R / t
3�p
5�p † and hence, (↵0)3 correction depends on t

9�3p
5�p .

This power counting has been discussed in [57].

Appendix A.4 Free energy results for SYM theories

Some useful integrals in the study of thermodynamics of weak coupling limit of SYM

theories are, Z 1

0

xd�1

ex � 1
dx = �(d)⇣(d) (10)

7

8

Z 1

0

x3

ex � 1
dx =

Z 1

0

x3

ex + 1
dx =

7⇡4

120
(11)

3

4

Z 1

0

x2

ex � 1
dx =

Z 1

0

x2

ex + 1
dx =

3⇣(3)

2
(12)

†The dimensionless temperature t, is constructed from T by combining with appropriate powers
of �
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1

2

Z 1

0

x

ex � 1
dx =

Z 1

0

x

ex + 1
dx =

⇡2

12
(13)

In (3+1)-dimensions, the fermionic degrees of freedom contribute 7/8 of bosonic ones.

In sixteen supercharge case, we get,

N2 [8 + (7/8)8] = 15N2 (14)

In general, total d.o.f in d dimensions will be,

8
⇣
2 �

1

2d�1

⌘
N2 (15)

Black body radiation gives

E =
V T 4⇡2

30
per d.o.f (16)

For N = 4 SYM in four dimensions, we have

E = 15N2V T 4⇡2

30
(17)

and the entropy is,

S =
2⇡2

3
V T 3N2 (18)

The free energy is given by,

F =
�⇡2

6
V T 4N2 (19)

A similar analysis in 3d gives,

E =
14⇣(3)

⇡
V N2T 3 (20)
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The entropy is given by,

S =
21⇣(3)

⇡
V N2T 2 (21)

and free energy F is (gYM ! 0)

F =
�7⇣(3)

⇡
V N2T 3 (22)

The free energy density for N = 4 SYM in the weak coupling regime is :

f =
F

V
= �

✓
4 + 2ns +

7

2
nf

◆
N2⇣(4)T 4 1

V
(23)

Here, V is the unit volume of three sphere S3 = 2⇡2. Two interesting limits to this

expression :

• Only gauge: ns = 0, nf = 0 gives f = �
⇡
2

45N
2T 4, which is the photon gas

result!

• Full theory: ns = 6, nf = 4 gives f = �
⇡
2

6 N
2T 4

Appendix A.5 Differential forms

The lattice construction of super Yang-Mills theories on the lattice makes use of

special kind of fermions which are integer forms rather than spinors. Here, we will

briefly review the important results of differential forms. See [156] [157] for further

details. A scalar function is called a 0-form and is defined as :

df ⌘
@f

@xµ
dxµ (24)
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Suppose we have a vector function �µ, we construct a 1-form � as � = �µdxµ. and

define,

d� ⌘
@�µ

@x⌫
dx⌫

^ dxµ (25)

The ^ denotes the wedge product defined as :

dx⌫
^ dxµ = �dxµ

^ dx⌫ (26)

We can interpret d� as curl of �. Generally, from an anti-symmetric tensor with

p-indices, we can construct a p-form as,

� = �µ1,µ2,···µp

 
1

p!
dxµ1 ^ dxµ2 ^ · · · dxµp

!
(27)

It is obvious that we cannot have p-forms with p > D, where D is the number of

dimensions.

d� = @⌫�µ1,µ2,···µp

 
1

p!
dx⌫

^ dxµ1 ^ dxµ2 ^ · · · dxµp

!
(28)

Let’s take a p-form ↵ and q-form �, then we have

↵� = (�1)pq�↵ (29)

Then,

d(↵�) = (d↵)� + (�1)p↵d(�) (30)

In YM theory, the gauge potential is 1-form

A = Aµdx
µ (31)
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and, field tensor F is defined schematically as ‡

F = dA+ A2 (32)

with,

dF = d(dA+ A2) (33)

= d(AA) (34)

= d(A)A � AdA (35)

(36)

Also,

[A,F ] = [A, dA] = AdA � dAA (37)

Adding above two, we get (Bianchi identity from forms)

DF ⌘ dF + [A,F ] = 0 (38)

where, D(·) = d(·) + [A, (·)].

Appendix A.6 Note on Pfaffian

Let M be a complex d ⇥ d matrix which is anti-symmetric (also known as skew-

symmetric, MT = �M), then we have detM = 0, if d = odd. Therefore, we will

assume that d = 2n. For an even-dimensional complex 2n ⇥ 2n matrix, pfaffian is
‡F =

1
2 (@µA⌫ � @⌫Aµ + [Aµ, A⌫ ])dxµdx⌫
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defined as,

pf(M) =
1

2nn!
✏i1✏j1 · · · ✏in✏jn , (39)

where, ✏ is the alternating tensor of rank 2n and sum over repeated indices is assumed.

There also exists alternative definition, without normalization factors written as,

pf(M) =
X

P

(�1)PMi1Mj1 · · ·MinMjn , (40)

Here, P is the set of permutations of {i1, i2, · · · i2n} with respect to {1, 2, · · · , 2n}

such that i1 < j1 · · · in < jn · · · i2n < j2n and i1 < i2 · · · i2n. P take values ±1 for even

and odd permutations. Note that if M is odd-dimensional matrix, pf(M) = 0. Some

corresponding theorems :

• For an arbitrary, 2n ⇥ 2n matrix, Q, and complex anti-symmetric 2n ⇥ 2n

matrix, P, we have : pf(QPQT ) = pf(P )det(Q).

• If M is a complex anti-symmetric matrix, then detM = [pf(M)]2.

The relation between pfaffian and determinant is : pf(M) = ±
p

detM . The sign is

of utmost importance for our purposes and is determined by the correct branch of

the square root. We can also define these in terms of path integral over Grassmann

variables. Given an antisymmetric 2n⇥2n matrix M and 2n real Grassmann variables

⌘i where i = {1, 2, · · · , 2n}, the pfaffian of M is given by :

pf(M) =

Z
d⌘1d⌘2 · · · d⌘2n exp

 
�1

2
⌘iMij⌘j

!
(41)
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Given an n ⇥ n complex matrix A and n pairs of complex Grassmann variables  i

and  i where i = {1, 2, · · · , n}

det(A) =
Z

d 1d 1 · · · d 
n
d nd n

exp
⇣
 

i
Aij j

⌘
(42)

From the definition of pfaffian, we have

[pf(M)]2 =

Z
d⌘1d⌘2 · · · d⌘2n exp

⇣
�1

2
⌘iMij⌘j

⌘Z
d�1d�2 · · · d�2n exp

⇣
�1

2
�iMij�j

⌘

(43)

=

Z
d⌘1d⌘2 · · · d⌘2n

Z
d�1d�2 · · · d�2n exp

⇣
�1

2
⌘iMij⌘j �

�1

2
�iMij�j

⌘

(44)

= (�1)n(2n+1)

Z
d�1d⌘1

Z
d�2d⌘2 · · ·

Z
d�2nd⌘2n exp

⇣
�1

2
⌘iMij⌘j �

�1

2
�iMij�j

⌘

(45)

(46)

We can now define,

 i ⌘
1

p
2
(�i + i⌘i) (47)

and  . We have

Z
d�1d⌘1

Z
d�2d⌘2 · · ·

Z
d�2nd⌘2n ! (�1)nd 1 1 · · · d 2n 2n

using (�i)2n = (�1)n, where -i is the Jacobian of the change of variables. Then we

get,

[pf(M)]2 =

Z
d 1d 1 · · · d 

n
d nd n

exp
⇣
 

i
Aij j

⌘
(48)

168



which is equal to 42.
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