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ABSTRACT 
Sustainable construction and in particular the sustainability of materials is a global issue with 
legislation on material properties and product performance at the forefront. In traditional 
constructed buildings however, it can be extremely challenging to get accurate data on 
performance. The variability of building materials design, manufacture and construction from 
different eras is substantial, even within local areas due to the vernacular nature of  construction 
from these periods. Material properties testing can be expensive and is not  always readily 
available when required and is therefore often ignored, particularly in the retrofitting of historic 
buildings. This can have major adverse effects on the building fabric and for its inhabitant’s 
health if the appropriate material interventions are not chosen. An inexpensive environmental 
chamber for testing such materials has been designed and built at the Dublin Institute of 
Technology, (DIT) Ireland, adopting comparable standards from EN ISO 8990 and ASTM 
C1363. This paper describes the design requirements for the construction of an affordable and 
mobile calibrated hot box (CHB) for the testing of historic materials. A characterisation panel 
has been used to carry out early calibration testing and the results of this are discussed. 
Improvements and tweaking of the first test are also discussed. 
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INTRODUCTION 
Buildings’ energy consumption accounts for approximately 40% of total energy use in 
developed countries. The legislation on energy efficiency in buildings, such as the EU Directive 
2010/31 has tried to raise minimum energy efficiency standards, for both the single components 
and the entire building. The building fabric plays a fundamental role in its energy balance, 
particularly the thermal properties when exposed to moisture and often generic  values are used 
in ideal situations when modelling. In solid walled structures these values are, expensive and 
difficult to accurately ascertain due to the inconsistency of materials. 
To establish accurate and reliable data on structures with different materials used in the one 
homogenous unit requires different approaches such as numerical simulation, but this is only as 
accurate as the accuracy of the inputs which often tend not to be validated. Hot boxes have been 
used to establish accurate properties with guarded hot boxes used mainly for commercial use 
and calibrated hot boxes used in laboratory work, where often it is necessary for greater levels of 
refinement and accuracy be achieved. The design of the hot box produced at the DIT was 
motivated by the need for such testing of small building elements from historic buildings 
primarily. These material dimensions influenced the design and construction of the whole 
apparatus and in particular the dimensions of the panel which hosts the sample. 
Hot boxes require two closed rooms kept at constant, individual temperatures: a metering 
chamber, which is warm and the environmental chamber that is cold. A test wall typically 
containing the specimen under test, divides the two chambers. The overall thermal resistance 
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is evaluated from the heat flux between the two chambers including that of the internal and 
external air resistances. This research paper looks at the design, build and calibration of a 
calibrated hot box (CHB) constructed in the Dublin Institute of Technology, incorporating 
guidelines from EN ISO 8990 and ASTM C1363-05 with the primary aim of designing and 
constructing an affordable dynamic environmental test chamber. The construction of the 
facility was carried out in the Dublin Institute of Technology (DIT) workshops and Labs. 

Objectives 
a) Design and construct a dynamic environmental hot box to meet the input requirements for a 
later hygrothermal simulation, establishing thermodynamic properties b) Calibrate a small-
scale, affordable apparatus for thermal testing  of non-conventional materials using a 
characterisation panel of known thermal conductivity and c) Analyse and compare measured 
versus theoretical data to establish % error.

Literature review 
Typical thermal testing of multilayer wall systems is conducted using a hot box apparatus 
according to standards comparable to ASTM C1363 [2] and EN ISO 8990 [4]. The properties 
of non- conventional materials can create challenges when conducting thermal tests using 
apparatus designed for conventional materials. For example, past tests conducted on  historic 
brick varied in reliability due to poor fit inside conventional testing frames (Baker, 2011). EN 
ISO 6990 & ASTM Standard C1363-11 details the requirements for design and operation of a 
test apparatus for evaluating thermal performance of building materials and envelope 
assemblies by means of a hot box apparatus. The sensors measure the surface-to-surface heat 
transfer rather than the overall thermal resistance, and the initial performance is evaluated 
using heat transfer calculations. 
Ulgen (2002) measured the time lag and decrement factor using wall compositions of opaque 
materials in a hot box simulation. Sala et al., (2008) conducted dynamic testing of insulated 
brick walls using a calibrated guarded hot box. The two types commonly used are the: 
Guarded hot box : In the guarded hot box, the metering box is surrounded by a guard box in 
which the environment is controlled to minimize lateral heat flow in the specimen. The total 
heat flow through the specimen will then be equal to the heat input to the metering box. In 
practice, there will be a limit in detecting imbalance in each test. (EN ISO 8990) [4] 
Calibrated hot box : The calibrated hot box is surrounded by a temperature-controlled space 
not necessarily at the same air temperature as inside the metering box. The heat losses through 
the box walls are kept low by using a construction of high thermal resistance. The power input 
shall be corrected for the wall and flanking losses. The correction for chamber and flanking 
losses are determined by tests on specimens of known thermal resistance. For flanking loss 
calibration, the calibration specimens should cover the same thickness and conductivity range 
as the specimens to be measured and the temperature range of intended use. (EN ISO 8990) 
Schumacher, et,. al,.(2013) constructed a hot box and concluded that the thermal performance 
of wall assemblies is complex and heavily influenced by factors such as insulation level, air 
leakage, thermal bridging, operating conditions, moisture content and installation defects and 
argue that simple R value calculation is not sufficient to address the above factors. They 
contend that more sophisticated testing is required before a new metric for testing is 
established. They used finite element programme analysis for the flanking losses. 
International Standards lays down the principles for the design of the apparatus and minimum 
requirement that shall be met. It does not, however, specify a particular design since 
requirements vary, particularly in terms of size, and also to a lesser extent in terms  of 
operating conditions. This International Standard describes also the apparatus, measurement 
technique and necessary data reporting. 
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The air exchange rate (AER) is not often measured in hot box construction and three methods 
using tracer gases exist for its determination. These are the concentration decay method, the 
constant injection method, and the constant concentration method (Laussman e t..  a l .  2011). 
The primary function being to establish additional heat losses at junction interfaces. 

METHODOLOGY 
All thermal bridge calculations were carried out according to EN ISO 10211. Numerical 
simulations were performed using the 2D and 3D finite element program Psi Therm. The U- 
value of the metering chamber was calculated according to EN ISO 6946:2007 

Design for construction 
Concept: It was determined that a calibrated hot box would be the most suitable for the testing 
requirements within the DIT. The limiting factors in design and dimensioning of the apparatus 
were the size of the door openings in different buildings as it was constructed in the Bolton 
street campus, 4-5 Km away. Transportation also determined the overall weight and mobility 
of the unit and had to be factored into the design and construction. The maximum specimen 
area achieved was 715mm (L) by 715 mm (H) by 200mm (T). 200mm was chosen as being 
capable of testing a panel of representative material to achieve accurate results. Bricks from a 
historic building have been prepared to a test standard size of 180 x 80 x 55mm for testing in 
the chamber.  The following items were addressed: Identification of experiments to be carried 
out, Comply with standards, Capable of testing historic elements, Self-contained unit, 
Logging capabilities/ dynamic, Humidifier capacity and location, Highly insulated, Thermal 
bridge free or as low as  practicably  possible, Constructible in DIT and mobile, Good 
compactness ratio, Robust but adaptable specimen holder panel, Cost effective, Compliance 
and Practical implications re; budget, size, mobility.  

Construction of CHB 
The hot box, shown in Figure 1 was constructed using a 45 mm medium density fibreboard 
(mdf) outer structural layer, with one layer of 200mm EPS insulation glued to the inside 
surfaces with PVA glue. Air leakage was prevented by using a brush-on waterproof tanking 
layer, this also ensuring that the insulation and mdf thermal properties do not change due to 
moisture uptake from within. A 100mm wide mdf strip was glued on internally to provide 
fixings for the heaters/fans thus ensuring no fixings penetrated the eps. Heating is produced 
by a single 60W resistance heater located as far as is practicably possible away from the 
specimen. Cooling is provided by the environmental chamber on the other half of the 
apparatus, -a insulated box identical in size and construction to the metering box. The cooling 
is provided by a chiller unit placed on top of the unit with the evaporator connected internally. 
The identical dimensioning of the hot box ensures that air circulation and velocity across the 
sample face should be almost identical as they are placed in the same position in both boxes. 
Both boxes were designed to accommodate a 6mm mdf baffle painted matt black, installed 
200mm from the face of the test specimen. Air circulation is provided by 2 computer fans per 
box placed behind the baffles in identical positions. Each specimen prepared for testing, is 
fitted with insulation plugs around its perimeter, identical to the layers insulating the hot box.  

Four castors per box allow for easy opening and closing of the units. External threaded bars 
are used to tighten the two chambers together during testing, minimising air leakage. A 
humidifier  has been fixed to the outside of the chamber and each chamber is equipped with a 
humidity probe and 8 thermocouples. All data is acquired and managed by the use of a single 
National Instruments cRio datalogger using Labview programming.  
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Calibration: The accuracy of each individual apparatus shall be estimated with reference to 
homogeneous specimens of thermal conductance extending over a range of temperatures, 
close to what the final testing conditions are likely to be. The metering chamber was set up to 
keep steady-state conditions: the set point was 30 °C, with an air flow rate of 3.8 m/s 
measured and RH that ranges in average between 30% - 47% with the environmental (cold) 
chamber value ‘set point’ changing at 5 0C intervals from 25, 20, 15, 10, and 0 0C, until steady 
state environment was reached at each.  

Figure 1.Horizontal section through apparatus.  Figure 2. Components and Heat Pathways 

Air Exchange Rate (AER) 
The air change rate (ACR) through the box as a whole was determined through standard tracer 
gas measurement. After CO2 was released into the chamber, its concentration decays 
exponentially, if no further CO2 supply occurs and if the driving forces for air exchange 
remain constant. After introduction of the CO2 into the sealed enclosure, the concentration of 
the gas decreased as air entered and exited. Plotting the natural logarithm of this exponential 
decay curve against time normally result in a straight line, the slope of which is the (AER)  air 
changes per unit time The mass balance equation is used to describe the relationship between 
the concentrations of gas in a space as a function of time. The general form of the equation for 
calculating air exchange per unit time is given as follows: 

N = [ln(Cint t 0 – Cext) – ln(Cint t 1 – Cext)]/(t1 – t0 )   (1) 

where N= number of air changes, Cint t 0 = internal concentration of tracer gas in enclosure at 
start, Cext = external concentration of tracer gas in room, Cint t 1 = internal concentration of 
tracer gas in enclosure at end, t 0 =time at start (days), t 1 = time at end (days) and ln = natural 
logarithm.  

CHARACTERISATION AND ESTIMATION OF LOSSES 
A characterization panel of known thermal resistance (wood fibre board λ 0.04 W/mK) is used 
in a number of tests, over the expected operating temperature range. Each test determines the 
difference between the measured heat input to the metering chamber and the heat transfer 
through the characterization specimen, calculated from the measured temperature drop across 
it and its known resistance. 
Calculations: A significant difference in temperature across the specimen is suggested. The air 
velocity on both sides was held constant and the heat flow across the sample was measured.  

EN ISO 8990 and ASTM C1363-05 requires the following heat balance equation be verified. 
A schematic showing the heat transfer pathways is given in Figure 2. 
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𝑄𝑄Source = 𝑄𝑄Heater + 𝑄𝑄Fans,  Specimen = 𝑈𝑈Specimen x 𝐴𝐴Specimen x ∆𝑇𝑇 and 
𝑄𝑄metering chamber losses = 𝑈𝑈Chamber x 𝐴𝐴Chamber x ∆𝑇𝑇 + 𝑉̇𝑉𝑐𝑐p𝜌𝜌∆𝑇𝑇 + Qflanking(𝑊𝑊) (2)          

Where: ASpecimen = Sample area (m2), QHeaters = Heat input from heaters (W), QFans = Heat 
input from fans (W), Qm ch= Heat transfer rate through metering walls, floor and ceiling (W), 
Qflanking = Heat transfer rate at junction of specimen to frame (W), Uchamber = Thermal 
conductivity of the chamber (W⁄m2.K), Achamber = Area of chamber walls where losses occur 
(m2),  = Air exfiltration rate m3/s,  = A Specific Heat Capacity of 1007 J/kg.K at 30 0C is 
used,  = Air density between 1.16 – 1.27 kg/m3 used, =Inside to outside temperature 
difference (0C), = Temperature difference between hot and cold surfaces (0C), 
USpecimen = Thermal conductivity of the sample (W⁄m2.K) 

RESULTS 
The results of the CO2 analysis are shown in Figure 3, where the air exchange rate equals the 
slope of the line at 0.087 ach and this is multiplied by the chamber volume to get a volume per 
second time of 1.313E-05 to be used in the heat balance equation. The test was conducted at 
ambient temperature only and accounted for less than 2% of the overall energy input, however 
further tests at different temperatures should further verify this figure.  

Figure 3. CO2 results for air leakage of the chambers. 

Delta T 30_25 30_20 30_15 30_10 30_05 30_00
Qfl 1.28 1.21 1.22 0.93 0.86 1.14
Uch*Ach*dTsurf 3.85 3.70 3.71 3.23 3.01 3.45
V*Cp*p*dTair 0.13 0.12 0.12 0.10 0.09 0.11
Qfl  sample 0.18 0.40 0.62 0.85 1.08 1.14
U*A*dTspecimen 0.99 2.21 3.47 4.73 6.06 6.35
QH+F 6.76 7.94 9.04 10.26 11.39 12.55
Balance equation 0.33 0.29 -0.10 0.42 0.29 0.37
QAER+Qfl+Qfl+Qmw 6.43 7.64 9.14 9.83 11.10 12.18
% Error 4.83 3.69 -1.09 4.14 2.55 2.94

Table 1. Measured and calculated results over delta T of 5, 10, 15, 20 &25 0C

Characterisation results 
Table 1 shows the inputs for the heat balance equation measured over five delta T’s during the 
testing of an 80mm woodfibre board. The stated manufacturer’s lambda value for this panel is 
0.04 W/mK and is used  in the U value component (Table 1) of the U*A*dTspecimen.  As the 
balance equation should read 0, the percentage error shown in the last row is just under 5%.  
The theoretical and experimental results are plotted in Figure 3 and can be seen to have good 
correlation with the distance between the lines representing the gap to be identified. 
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Figure 3. Theoretical versus Experimental losses of wood fibre board over 5 ΔT’s 

ANALYSIS AND DISCUSSION 
The limitations of this CHB are its relatively small size and also the fine levels of accuracy of 
some of the equipment but these have been counteracted by the extra care taken in the 
construction and calibration process. The maximum size of 715mm by 715mm sample area 
size requires that the thermal bridge calculation needs to be extremely accurately identified. 
The advantages of reduced dimensions over more traditional hot box systems however, 
provides a reduced mass and, thus, reduced thermal inertia of the overall system. First tests on 
a wood fibre board of an accepted conductivity (0.04 W/mK) shows very close relationship 
between theoretical and experimental data. The percentages of error varies by approximately 
5%. The average temperatures in both chambers were steady throughout the testing period. 
Investigation is required to establish the cause of the slight non-linearity at delta T, of 15 0C. 
Finally the CHB built in the DIT set out to design and build an affordable testing chamber for 
establishing the material properties of historic building materials with the first step of 
calibrating a panel thickness of 80mm of known thermal conductivity. This was satisfactorily 
achieved and the percentages error of approximately 5% is acceptable for this apparatus The 
next steps of testing historic building materials from a case study building is currently 
underway, with the results being inputted to a hygrothermal simulation.  
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