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ABSTRACT 
To reduce the experimental effort and time required for the hygric characterisation of building 
materials, dynamic measurements in combination with parameter estimation are promising. 
However, noisy input data as well as limited and noisy output data complicate a reliable 
estimation of the material properties. A well-considered design of the dynamic experiments is 
advisable to reduce parameter uncertainty and to resolve non-identifiability issues.   
Based on a virtual hygric test case, this paper shows the profile likelihood analysis to be an 
interesting starting point for the optimal design of hygric experiments. Trajectories of internal 
observables, such as relative humidity, plotted for the parameter sets along the profile 
likelihood curve are used to map highly uncertain ranges in the prediction space. This way, a 
first indication of information-rich (but originally non-measured) readouts that can reduce the 
parameter uncertainty is achieved. A profile likelihood sensitivity (PLS) index is used to 
quantify the individual uncertainty impact of the model parameters on a dynamic model 
prediction. Additionally, the PLS entropy quantifies the parameters’ individual contribution to 
the overall prediction uncertainty. Both quantitative measures are applied to select the optimal 
readouts for reducing parameter uncertainty. The major advantage of the methodology is that 
it is a sample-based approach, and hence no gradient or curvature information of the objective 
function is required. This renders the methodology preferable over classical approaches based 
on Fisher information especially when dealing with non-linear problems. 
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INTRODUCTION 
The reliable evaluation of moisture transfer in building materials is of great importance for the 
assessment of hygric damage patterns, building energy consumption, etc. In this respect, an 
accurate description of the moisture storage and transport properties of building materials is 
essential. Traditionally, these hygric properties are mainly determined based on steady-state 
measurements, which are tedious and time-consuming though. To reduce the experimental 
efforts required for such hygric material characterisations, dynamic measurements in 
combination with inverse parameter estimation show a lot of promise (Vereecken et al., 
2018). However, noisy input data together with a limited and noisy output can complicate a 
reliable estimation of the properties. A well-considered design of the dynamic experiment 
helps reducing parameter uncertainty and could even resolve non-identifiability issues (i.e. 
parameters that cannot be uniquely derived from the available experimental output). Optimal 
Experimental Design (OED) methods can be applied to define such a purposeful information-
rich design. Often, these OED methods aim at maximizing an optimality criterion that makes 
use of the Fisher information matrix (a.o. Dantas et al., 2002; Balsa-Canto et al., 2007), which 
is a matrix that quantifies the amount of information about an unknown model parameter 
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comprised in an observable. Unfortunately, the calculation of the Fisher information matrix 
requires information on the curvature or gradient of the log-likelihood objective function, 
which can be hard or even impossible to obtain for non-linear problems.  
To resolve these issues, this paper explores, for a virtual hygric test case, the applicability of a 
sample-based OED approach evolved in systems biology research (Raue et al., 2009; Flassig 
et al., 2015). The method uses the information obtained in a profile likelihood analysis to map 
highly uncertain ranges in the prediction space. In this way, information-rich (but originally 
perhaps non-measured) readouts that reduce the parameter uncertainty can be selected. 
Quantitative measures for the uncertainty impact of the model parameters and their individual 
contribution to the overall prediction uncertainty are applied to make a rational selection 
between different potential readouts.  

METHODS 
The next paragraphs describe the virtual benchmark case, the parameter estimation method, 
the profile likelihood analysis and how to use this information to make a rational selection of 
suitable additional readouts in further experimental planning.   

Initial benchmark description 
In the benchmark case, the vapour resistance factor and the sorption isotherm of a calcium 
silicate sample are to be determined based on a dynamic experiment. The material’s actual 
hygric properties (= target values) are shown in Figure 1a-b. A cylindrical sample with a 
diameter of 8 cm, a height of 4 cm and at an initial relative humidity of 12% is exposed to a 
dynamic step function in relative humidity (see Figure 1c). The sample’s side and bottom are 
covered with a vapour-tight foil, which yields one-dimensional moisture transport. The mass 
transfer coefficient at the top of the sample is 3∙10-8 s/m + N(μ,σ2) with μ = 0 and σ = 2∙10-9. 
The moisture transfer in the sample is simulated by use of a control volume model in order to 
create the virtual experimental output. Initially, the sample’s mass change measured with a 1-
hour time interval is assumed to be the experimental output. This output is subjected to white 
measurements noise ε ~ N(μ,σ2) with μ = 0 and σ = 0.011.  

a) b) c) 
Figure 1. a) Actual sorption isotherm and b) actual vapour diffusion resistance of the calcium 
silicate sample; c) relative humidity in the environment above the top of the sample. 

Parameter estimation 
The parameters searched for are given in Table 1, together with the target values (= actual 
values in the benchmark case) and the lower and upper values of the search space. To estimate 
the unknown parameters, Bayesian inference is applied. Thereto, the Differential Evolution 
Adaptive Metropolis algorithm developed by Vrugt (2016) is used. In the estimation process, 
the moisture transfer in the calcium silicate sample is simulated with the same control volume 
model as used to simulate the benchmark experiment. A maximum log-likelihood (LL) is 
pursued, with the log-likelihood expressed as:   
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where nm the number of measurement points for the sample’s mass increase, tσ
∧

 the standard 

deviation of the observations’ measurement noise and ty
∼

 and ty  the mass increase in the 
virtual experimental data set and simulated in the estimation process, respectively. For the 
priors in the Bayesian inference, a uniform distribution is assumed.    

Table 1. Unknown parameters together with the target values and the upper and lower 
boundaries in the search space. The parameter wsat in the sorption balance is assumed to be 
known (811.14 kg/m3). Additionally, w(0.54) is assumed to be measured beforehand (= 2.9 
kg/m3) and is used to infer the parameter k in the sorption balance. 

Vapour resistance 
μ(RH) =  

1/(a+b∙exp(c∙RH)) 

Sorption isotherm 
w(RH) =  

wsat∙[1+(k∙ln(RH))1/(1-m)]-m 

Noise 
balance 

Mass 
transfer 

coefficient 
Parameters a b c m σM ß 
Target value 
Lower boundary 
Upper boundary 

0.174 
0.05 
0.8 

2.806∙10-4 
10-10

10-1

7.229 
4 

30 

0.4321 
0.1 
0.8 

0.011 
10-5

1 

3∙10-8 
10-9 

10-6

Profile likelihood analysis 
To assess the identifiability and the confidence of the estimated model parameters, the profile 
likelihood analysis developed by Raue et al. (2009) is applied. In this approach, the profile 
likelihood PL curve for a model parameters θi is calculated by:  

( ) ( )maxi j
j i

PL L
θ

θ θ
≠

= (2) 

with L the likelihood and θj the other parameters searched for in the estimation process. 
Hence, the PL curve for a parameter θi can be constructed by a re-optimisation of the 
parameters θj≠i for fixed values of θi within an interval in the search space. In the current 
study, the knowledge on the likelihood of the candidate solutions analysed in the Bayesian 
inference procedure is used to draw the PL curves. A frequentist optimisation method as 
applied in (Vereecken et al., 2018) is furthermore used to create additional points to check and 
to complete the PL curves. The profile likelihood-based confidence region (CR) is defined by: 

( )( ) 2| 2 log 2logi iPL L αθ θ χ
∧  − ≤ − +  

  
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with 2
αχ  the αth quantile of the 2

dfχ -distribution, with df = 1 degree of  freedom and L
∧

 the 
maximum likelihood estimate. The borders of this confidence region define the confidence 
interval (CI). A finite CI indicates a practically identifiable parameter, which means that - 
based on the available data - for θi a limited range of values with a likelihood not significantly 

∧

different from L  can be determined. A (semi-)infinite CI with a variable likelihood level is 
associated with practical non-identifiability, whereas an infinite CI with a constant likelihood 
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level below the desired threshold indicates that the parameter is both practically and 
structurally non-identifiable and, thus, that a unique parameterisation is theoretically not 
possible for the model. 

Optimal experimental design 
To define an OED, insight on the impact of the parameter’s uncertainty on model predictions 
is required. To analyse this impact, in the current approach, the set of parameters along the PL 
curves in the confidence  region are used (in case of a semi- or infinite confidence region the 
set of parameters along the PL curve in a region of a few orders of magnitude around the 
maximum likelihood estimate (MLE) can be used). The spread of the model prediction 
trajectories drawn for this set of parameters contains information on the parameter’s 
uncertainty impact; a large spread indicates a large impact of the uncertainty of the specific 
parameter on the specific model prediction. To quantify the individual uncertainty impact of a 
model parameter θi on a model prediction pi(tk), the profile likelihood sensitivity (PLS) as 
defined by Flassig et al. (2015) can be used:   
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where max/min({pi(tk)}) define the maximum/minimum for a model prediction pi at time tk and 
where the denominator corresponds to the time average of the model prediction for the MLE 
of the parameters. The overall uncertainty of the set of model parameters (nθ) for a specific 
model prediction over a period defined by nt time-points can be obtained as: 

1 1
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To reduce the uncertainty on a model prediction, and thus to reduce the uncertainty of the 
parameters that produce this prediction uncertainty, an additional readout that maximizes the 
PLS index (si or stot depending on the interest in a single parameter θi or in the total set of 
parameters, respectively) should be selected. When a reduction of the uncertainty of a set of 
model parameters it pursued, it is furthermore of importance to look for a design with a more 
or less equal contribution of these parameter uncertainties to the PLS index. Shannon’s 
entropy gives information on this contribution and can be calculated as (Flassig et al., 2015):  
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The larger Shannon’s entropy the more homogenous the PLS index of the individual 
parameters (si) contributes to the total PLS index (stot).  

RESULTS 
The OED methodology is applied to define the best position to measure the relative humidity 
in the sample. Four possible designs are compared: a RH-sensor at 1, 2, 3 or 4 cm from the 
top of the sample. Figure 2 shows the PL curves for the model parameters that define the 
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hygric properties, and this for the case when the experimental output is limited to the sample’s 
mass increase (and thus without a RH-sensor). The four parameters are practically 
identifiable, as is the case with the other model parameters (not shown) as well. Based on the 
parameter sets along the PL curves below the 95% threshold, the trajectories of different 
model predictions are drawn. As an example, Figure 3a shows the trajectories for RH4 (= RH 
at the bottom of the sample), and this for the model parameter m. The individual PLS indices 
as a function of time are given in Figure 3b, and this for the model prediction RH4. Finally, 
Figure 3c shows for the four designs the criterion space with the total PLS index and entropy. 
The maximum PLS index and entropy is obtained for RH4. Hence, of the four designs this is 
the best option to choose as an additional readout. Overall, the largest reductions of the 
confidence intervals are obtained when including data on RH4, as indicated in Table 2. Note 
also that some CI’s become slightly wider after including a RH-sensor, which might be the 
result of the extra noise term RHσ included in the parameter estimation process.

Figure 2. Profile likelihood curves for the model parameters a, log(b), c and m. 

 a)  b) 

RH1

RH2

RH3

RH4

 c) 
Figure 3. a) Trajectories of RH4 along the PLS curve for the parameter m, b) PLS indices of 
the different model parameters for prediction RH4 and c) criterion space. 

Table 2. Upper and lower bounds of the CI’s for the initial experiment and the experimental 
designs. The narrowest CI’s are indicated in bold. 

Mass only Mass + RH1 Mass + RH2 Mass + RH3 Mass + RH4 
a 
log(b) 
c 
m 
σM 
σRH 
ß 

[0.145; 0.22] 
[-6; -2] 

[3.7; 14] 
[0.405; 0.455] 

[-2; -1.88] 
/ 

[-7.825; -6.85] 

[0.15; 0.2] 
[-6; -2] 

[4; 13.5] 
[0.426; 0.442] 

[-2; -1.94] 
[-1.84; -1.72] 
[-7.8; -6.5] 

[0.154; 0.2] 
[-6.8; -2.18] 

[5; 15] 
[0.428; 0.438] 
[-1.99; -1.87] 

[-1.875; -1.77] 
[-7.75; -6.9] 

[0.16; 0.19] 
[-5.8; -3] 
[5.6; 13] 

[0.428; 0.438] 
[-1.99; -1.87] 

[-1.875; -1.77] 
[-7.75; -6.9] 

[0.142; 0.178] 
[-4.0; -2] 
[3.4; 8.7] 

[0.426; 0.436] 
[-1.99; -1.88] 
[-1.83; -1.72] 
[-7.74; - 6.93] 

DISCUSSION 
A sample-based approach that starts from the information in a profile likelihood analysis is 
used to make a decision on the optimal position of a RH-sensor in a hygric experiment. A RH- 
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sensor at the bottom of the sample is found to be most efficient in reducing the confidence 
region. However, it should be kept in mind that such a reduction is not necessarily always 
accompanied by a closer agreement with the target values.   
One of the advantages of the presented sample-based approach is that it is based on 
information that is already at hand when analysing the practical identifiability based on the PL 
curves. Additionally, the method yields information on the uncertainty induced by the 
individual parameters and their contribution to the overall prediction uncertainty. This way, 
one can also focus on specific model parameters. A disadvantage of the sample-based 
approach might be its limitation to the readouts in experimental planning. In its current form 
no direct information on the best input conditions is achieved. Ultimately, as with all OED 
methods, the OED process is an iterative process that requires a priori knowledge. In the 
presented approach, a first experiment should be performed before a rational selection of 
further readouts can be made, whereas in the classical OED approaches initial parameter 
assumptions have to be made.  

CONCLUSIONS 
The profile likelihood analysis is shown to be a highly valuable starting point for the optimal 
design of hygric experiments. Based on the trajectories of internal observables  plotted for the 
parameter sets along the profile likelihood curve uncertain ranges in the prediction space are 
mapped. A quantitative measure of the parameters’ uncertainty (PLS index) and their 
contribution to the overall uncertainty (PLS entropy) enable a rational selection of highly 
informative readouts. The major advantage of the methodology is that it is a sample-based 
approach, which makes that no gradient or curvature information of the objective function is 
required. This way, especially when dealing with non-linear problems, the methodology is 
preferable over classical approaches based on Fisher information. 
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