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Abstract.  During the past several years, crop models have successfully been used to test the 
hypothesis that water stress is the primary factor that causes spatial yield variability in soybean 
[Glycine max (L.) Merr.] fields. However, there have been few attempts to validate this hypothesis 
through direct temporal and spatial measurements of water stress during the season. Recently, a 



 

technique has been developed to relate plant tissue 13C levels to the temporal water stress 
experienced by soybean plants. The purpose of this work was to compare the spatial yield loss 
simulated by a crop model with yield loss measured by 13C discrimination (∆) for a soybean field in 
South Dakota.  The field was divided into 0.9-ha grids and the CROPGRO-Soybean model was 
calibrated to minimize error between simulated and observed yield in each grid over two seasons 
(1998, 2000). 13C discrimination was measured at 50 points representing 23 of the grids used in the 
crop modeling analysis in 2000. Simulated yield loss in grids that encompassed each 13C point in 
2000 were compared to measurements of yield loss using the 13C discrimination technique.  Initially, 
the root mean square error and r2 between simulated and measured yield loss was 259 kg ha-1 and 
0.24, respectively. Upon closer inspection, it was observed that yield in 5 grids with the highest error 
likely were influenced by processes that are not represented in the crop model. Removing these 
values dramatically improved the agreement between simulated and observed yield loss, giving an 
RMSE of 216 kg ha-1 and r2 of 0.81.  Both 13C discrimination and simulation results indicated that 
substantial yield loss occurred due to water stress in the summit/backslope areas of the field.  

 

Keywords.  Spatial yield variability, CROPGRO-Soybean model, 13C discrimination, water stress 
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Introduction 

 
 Water stress is one of the leading causes of yield loss for non-irrigated soybean 
production. Recently, produces and researchers have focused much attention on trying to 
quantify the effect of spatial water stress in creating spatial yield variability within fields.  The 
working hypothesis is that if we can understand the magnitude of within-field variability of water 
stress, producers can likely capitalize on this information by changing production practices, 
which will lead to improved profits.  Assessment of spatial yield variability within a field is 
necessary to be able to make better management decisions.  Current agricultural research 
technologies offer tools for farmers in identifying different factors affecting yield variability. 
 

The CROPGRO soybean growth model has proven to be a useful tool for identifying 
causes of spatial yield variability in soybean fields in the Midwestern United States. Through 
data collection and model analysis, researchers have verified that water stress is one of the 
leading contributors to spatial yield variability within soybean fields (Paz et al, 1998, 2001, 2002; 
Irmak et al, 2002a; Batchelor et al. 2002).  In studies by Paz et al. (1998, 2002), the model was 
calibrated to fit measured historical soybean yield variability over several years in several non-
irrigated fields in Iowa and Illinois.   A limitation with crop models is that little work has been 
done to validate the underlying hypothesis used for model calibration, namely, that water stress 
is the primary cause of yield variability.  

 
One way to verify model conclusions is to measure spatial water content at several sites 

during the season.  Irmak et al. (2002b) investigated the variations in soil water content and the 
effect on soybean yield in 30 sites across a field.  Water balance at each site was calculated in 
order to quantify water stress and timing of stress.  Results of their study showed soybean yield 
was highly correlated to water stress.   

 

An alternative approach is to use stable isotopic 13C discrimination (∆), which can be 
used as a diagnostic tool to evaluate nitrogen and water stress in wheat (Clay et al., 2001b), 
soybean (Clay et al., 2003), and corn (Clay et al., 2001a).  In C3 plants such as soybean, ∆ can 
be used as an indicator of water stress because when the plant is not water stressed, the 
stomata are open, stomatal conductance is high, and CO2 diffusion in and out of the leaf is 
relatively free.  Under these conditions, ribulose bisphosphate carboxylase (RuBisCo) 
preferentially fixes 12CO2 and the fixed CO2 becomes depleted in 13C.  As water stress 
increases, plants reduce water loss by closing the stomata, which reduces CO2 diffusion 
between the pore and the atmosphere.  The net result of stomatal closure is increased 13CO2 
fixation by RuBisCo and decreased ∆ of fixed C (Boutton, 1991; O’Leary, 1993). 

 
 The objective of this study was to compare spatial yield loss determined by 13C 
discrimination with yield loss simulated by a soybean crop model to determine if model 
accurately represents spatial yield loss due to water stress.    
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Materials and Methods 

Field Description 

This research was conducted in an eastern South Dakota production field designated as 
Moody (65-ha).  The site has a crop sequence of corn (Zea mays L.) followed by soybean and is 
located at  44o 10’ N latitude and 96o 37’W longitude.  Dominant soils were Cubden (Aeric 
Calciaquoll), Wauby (Aquic Hapludoll), Kranzburg (Calcic Hapludoll), and Vienna (Calic 
Hapludoll).   Additional details about the soils at these sites are available in Clay et al. (2001a).   
Corn was planted in 1995, 1997, and 1999 and soybeans were planted in 1996, 1998, and 
2000.   Grain yield was measured with a calibrated yield monitor mounted in a combine 
equipped with differential corrected global positioning system (DGPS).    Yield information was 
collected every second as the combine harvested the crop.  Yield monitor data were removed 
from the database if the combine speed was lower than 1.78 m sec-1 or higher than 3.05 m sec-1 
and if the flow rate exceeded ±3 standard deviations of the average flow rate. 

   
Herbicides and fertilizers were applied to minimize or eliminate yield reductions due to 

pests and nutrient deficiency.   Maintenance was conducted on the tile lines located in poorly 
drained areas of the fields (footslope area) between 1996 and 1997.  Rainfall and air 
temperatures were measured at a weather station located near the research sites.  Elevation at 
all sampling sites was measured with a carrier-phase DGPS.  Gravimetric soil water contents 
were measured on soil samples (0-15 and 15-60 cm) collected from 50 sampling points on 7 
June, 28 June, 18 July, 5 September, and 27 September.  The 50 sampling points were located 
on 4 transects with each sampling point located every 30 m. 

 
Grain samples collected from the sampling points were analyzed for oil and protein on a 

NIR S5000 Foss Tech (Silver Spring, MD).  Grain samples were also analyzed for total N and 
the amounts of 13C and 12C in the sample on a 20-20 Europa ratio mass spectrometer (Europa 
Scientific Ltd., UK) (Clay et al., 2003).  The ratio between C13 and C12 was the R value (O’Leary, 
1993). The R value was used to calculate *13C using the equation:  

*13C = [R(sample)/R(standard)-1] x 1000‰      [1] 

where R(sample) was the 13C/12C ratio of the sample and R(standard) was the 13C/12C ratio of 
PDB, a limestone from the Pee Dee formation in South Carolina (O’Leary, 1993; Farquhar and 
Lloyd, 1993).  Typically, *13C values for air, C3, and C4 plants are -8, -27, and -13‰, 
respectively.  A negative sign indicates that the sample has a lower 13C/12C ratio than PDB.  In 
many cases, it is convenient to report 13C discrimination ()), which is calculated using the 
equation: 

) =  (*13Ca - *13Cp )/(1+ *13Cp/1000)       [2] 

 

where *13Ca  is the *13C value of air(-8‰) and  *13Cp is the measured value of the plant. 
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Model Calibration 

 The CROPGRO-Soybean crop model (Hoogenboom et al., 1994) is a process-oriented 
model that was developed to compute growth, development, and yield of soybeans on 
homogeneous units and has been demonstrated to adequately simulate crop growth at a field or 
research plot scale.  This model requires inputs including management practices and 
environmental conditions.  From this information, daily growth of vegetative, reproductive, and 
root components are computed as a function of daily photosynthesis, growth stage, and water 
and nitrogen stress.   
 

In order to use the model to estimate the soybean yield loss due to water stress, specific 
model parameters were calibrated.  The technique outlined by Paz et al. (2001) was used to 
calibrate the model. In calibration, the field was subdivided into 70 0.9-ha grids.  Two model 
parameters which could not be measured, saturated hydraulic conductivity (KSAT), and root 
hospitality (RHRF), were calibrated to minimize the root mean square error (RMSE) between 
simulated and observed yields for each grid over the 2 seasons of data, resulting in a unique set 
of parameters for each grid.  These model parameters primarily affect water movement and 
rooting depth, which creates water stress condition mirroring the degree of water stress that the 
soybean plant is subjected to in the field.  After calibration, the maximum soybean yield in each 
grid was determined by the running the model with the water stress option turned off.  The yield 
loss due to water stress in 2000 was calculated by subtracting the estimated yield in each grid 
from the maximum potential yield. 

 

Results and Discussion 

Field Results 

Clay et al. (2003) showed that water stress was responsible for yield losses of between 
25 and 60%, and that 13C discrimination could be used as an index for water stress in soybean 
(Figure 1).  Based on this relationship, ∆ estimated yield losses due to water stress (CYL) were 
calculated using the equation: CYL= 3300- (-5230+387)).   In transects 1 and 2 there was an 
elevation change of approximately 15 m. Soil water content in the highest elevation areas were 
less than soil water content in low elevation areas.  Yield was negatively correlated to elevation 
and positively correlated to CYL (Fig. 1 and 2).  In high elevation areas, adding water increased 
yield and ).  Based on ) information, low, moderate, and high water stressed areas in the field 
were identified.  Soybean plants growing at low elevation sampling points had low water stress, 
while plants growing at high elevation sampling points had high water stress. 

 

Model calibration 

The CROPGRO-Soybean model was calibrated in Moody field in Brookings, South 
Dakota for 1998 and 2000.   We found that predicted soybean yields were in good agreement 
with measured yield (r2 = 0.81) after calibrating two model parameters (Figure 3).  The root 
mean square error (RMSE) indicates the degree of variation of predicted yields with respect to 
the measured yield; and low RMSE value is desirable.  The RMSE value was low for Moody 
(161 kg ha-1 or 2.8 bu ac-1).   In examining yield prediction in all grids for each year, results show 
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that in 1998, errors between simulated and measured yields in 58 out of 70 grids (83%) were 
within ±10%, and in 2000, yield estimates in 65 out of 70 grids (93%) were within ±10% of the 
measured yield (Table 1).  These findings provide strong evidence that water stress is the 
dominant factor affecting yield variability in Moody field.  Further, this allows the calibrated 
model to be used in determining the magnitude and spatial distribution of soybean yield loss 
across the field. 
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Figure 1.  Relationship between yield and 13C discrimination using data points  

at several fields in South Dakota. 
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Figure 2.  The relationships between elevation, yield, 13C discrimination, and gravimetric soil 

water content at Moody field. 
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Figure 3.  Comparison of measured and predicted soybean yield at Moody field  after calibrating 

the CROPGRO-Soybean model and using two years (1998, 2000) of yield data.  
 
 

Table 1.   The number and percentage of grids in Moody field within different yield prediction 
error categories over two years of data. 

Prediction Error Year 
±10% ±15% ±20% 

1998 58 (83%) 64 (91%) 67 (96%) 
2000 65 (93%) 67 (96%) 69 (99%) 

 
 

Estimating Yield Loss Due to Stress 

The maximum potential soybean yields at Moody (2000) were estimated by running the 
calibrated model with no water stress (Figure 4).  We assumed that there were no other 
stresses due to soybean cyst nematode (SCN) and weeds.  This was a good assumption 
because scouting of the field showed that SCN was not present and weed populations were low 
to non-existent.  Average crop model estimated yield loss due to water stress was 710 kg ha-1. 

 



 

8 

1000

1500

2000

2500

3000

3500

1000 1500 2000 2500 3000 3500

Measured Yield (kg ha-1)

P
re

d
ic

te
d

 Y
ie

ld
 (

k
g

 h
a-1

)

Maximum potential yield

Water stress turned on

Yield loss due to
water stress

 
 

Figure 4.  Maximum potential soybean yield in Moody Field (2000) and variations in predicted 
soybean yield due to water stress. 

 
 
The locations of the 13C sampling points were superimposed on a digital elevation model 

of the Moody field that was generated using ArcView geo-processing extension (Figure 5).  This 
information helped identify topographic characteristics of individual grids especially those with 
high yield loss due to water stress.  Spatial distribution of soybean yield loss in grids and C-13 
sampling points are shown in figure 6.  Grids with high yield loss (> 750 kg ha-1) were located in 
the summit/backslope areas. 
 

The relationship between yield loss computed by the ∆ technique and yield loss 
estimated by the model was examined using grids with 13C sampling points.  In order to do this 
analysis, the grid layout used for the crop model calibration was superimposed on top of the 13C 
point locations using ArcView, and the subsequent intersected layer yielded 23 grids containing 
50 13C sampling points.  It is important to note that the layout of grids used for model calibration 
was made without regard to the location of the 13C sampling points.  Hence, a grid may contain 
one or more 13C data points.   For grids with two or more sampling points, the average value of 
∆ and yield loss was computed. 
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Figure 5.  Elevation map and location of 13C sampling points in Moody field. 
 

 
Figure 6.  Estimated soybean yield loss due to water stress in Moody Field using 13C 

discrimination and CROPGRO-Soybean model. 
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The relationship between yield loss computed by the crop model and 13C resulted in an 

r2 of 0.24 and RMSE of 259 kg ha-1 (Figure 7).   These findings may suggest a weak relationship 
between these two techniques, however it is important to note that (a) while results of model 
calibration were very good, yield variability may be attributed to factors other than water stress; 
and (b) the ∆ and calculated yield loss based on ∆ is not a 1:1 relationship.   Based on field 
notes of the different 13C sampling points in 2000, 5 points were removed from the analysis. 
These points were removed because the water flow at these sites was not well defined which 
resulted in either ∆ values, measured yields, or crop model estimates that were outliers relative 
to the surrounding values.  Subsequent removal of these points resulted in significant 
improvement of r2 value (0.81) between yield losses computed using ∆ and the model estimated 
yield loss, and lower RMSE (216 kg ha-1) (Figure 8).   These findings support the results of 
previous model-based analysis (Paz et al. 1998; Batchelor et al., 2002) of soybean yield 
variability in non-irrigated fields.  More significant is that these results show: (a) two mutually 
exclusive techniques came to the same conclusion – that water stress is a dominant factor 
responsible for soybean yield variability; (b) the CROPGRO-Soybean growth model and ∆ can 
be used to determine the magnitude of soybean yield loss due to water stress; and (c) one 
technique can be used to cross-check the results of the other technique. 
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Figure 7.  Yield loss due to water stress computed using 13C discrimination and  

the CROPGRO soybean growth model. 
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Figure 8.  Yield loss due to water stress computed using 13C discrimination and the CROPGRO 

soybean growth model after removing five data points from the analysis. 

 

Summary 

Two techniques, ∆ and crop growth model were used to determine the effects of water 
stress on soybean yield loss in Moody field in Brookings, South Dakota.   The calibrated model 
was used to estimate the soybean yield loss due to water stress in each of 70 0.9-ha grid in the 
field.   Isotopic 13C discrimination of grain samples from 50 sampling points were determined 
from a field experiment in 2000, and used in computing yield loss to water stress. Grids with 
high yield loss (> 750 kg ha-1) were located in the summit/backslope areas.  Similar results were 
obtained for estimated yield loss based on ∆.   Relationship between yield loss due to ∆ and 
model estimated yield loss due to water stress was examined using grids with 13C sampling 
points.  Results of this study provide strong evidence that water stress is a dominant factor 
responsible for soybean yield variability, and these techniques can be used to determine the 
magnitude of soybean yield loss due to water stress. 
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