

University Libraries University of Nevada, Las Vegas

Chemistry and Biochemistry Faculty Publications

Chemistry and Biochemistry

7-8-2019

An Unexpected Rhenium(IV)-Rhenium(VII) Salt: [Co(NH3)6]3[ReVIIO4][ReIVF6]46H2O

James Louis_Jean University of Nevada, Las Vegas, james.louis-jean@unlv.edu

Samudee Mariappan Balasekaran University of Nevada, Las Vegas, samundeeswari.mariappanbalasekaran@unlv.edu

Adelheid Hagenbach University of Berlin

Frederic Poineau University of Nevada, Las Vegas, frederic.poineau@unlv.edu

Follow this and additional works at: https://digitalscholarship.unlv.edu/chem_fac_articles

🔮 Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Chemistry Commons

Repository Citation

Louis_Jean, J., Mariappan Balasekaran, S., Hagenbach, A., Poineau, F. (2019). An Unexpected Rhenium(IV)–Rhenium(VII) Salt: [Co(NH3)6]3[ReVII04][ReIVF6]46H2O. *Acta Crystallographica Section E Crystallographic Communications, 75*(8), 1158-1161. International Union of Crystallography. http://dx.doi.org/10.1107/S2056989019009757

This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself.

This Article has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.

Received 29 May 2019 Accepted 8 July 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hexamine-cobalt; perrhenate; hexafluororhenate.

CCDC reference: 1939234

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

An unexpected rhenium(IV)-rhenium(VII) salt: $[Co(NH_3)_6]_3[Re^{VII}O_4][Re^{IV}F_6]_4 \cdot 6H_2O$

James Louis–Jean,^a* Samundeeswari Mariappan Balasekaran,^a Adelheid Hagenbach^b and Frederic Poineau^a

^aDepartment of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, USA, and ^bDepartment of Chemistry and Biochemistry, Freie University Berlin, Berlin 14195, Germany. *Correspondence e-mail: louisjea@unlv.nevada.edu

The title hydrated salt, tris[hexaamminecobalt(III)] tetraoxidorhenate(VII) tetrakis[hexafluoridorhenate(IV)] hexahydrate, arose unexpectedly due to possible contamination of the K₂ReF₆ starting material with KReO₄. It consists of octahedral $[Co(NH_3)_6]^{3+}$ cation (Co1 site symmetry 1), tetrahedral $[Re^{VII}O_4]^-$ anions (Re site symmetry 1) and octahedral $[Re^{IV}F_6]^{2-}$ anions (Re site symmetries 1 and $\overline{3}$). The $[ReF_6]^{2-}$ octahedral anions (mean Re-F = 1.834 Å), $[Co(NH_3)_6]^{3+}$ octahedral cations (mean Co-N = 1.962 Å), and the $[ReO_4]^-$ tetrahedral anion (mean Re-O = 1.719 Å) are slightly distorted. A network of N-H···F hydrogen bonds consolidates the structure. The crystal studied was refined as a two-component twin.

1. Chemical context

The chemistry of Re^{VII} is dominated by the tetrahedral perrhenate anion, [ReO₄]⁻ (Latimer, 1952; Abram, 2003) while Re^{IV} is typically found in salts containing octahedral $[\text{Re}X_6]^{2-}$ (X = F, Cl, Br, I) anions (Berthold & Jakobson, 1964; Jorgensen & Schwochau, 1965; Grundy & Brown, 1970; Louis-Jean et al., 2018). The salts of $[\text{Re}X_6]^{2-}$ (X = Cl, Br, I) can be prepared in high yield by the reduction of a perrhenate starting material in the corresponding concentrated HX acid (Briscoe et al., 1931; Watt et al., 1963). However, salts of $[\text{ReF}_6]^{2-}$ are typically prepared from the solid-state melting reaction of $[\operatorname{Re} X_6]^{2-}$ (X = Cl, Br, I) with AHF₂ (A = NH₄⁺, K⁺) followed by an aqueous work-up (Ruff & Kwasnik, 1934; Louis-Jean et al., 2018). Such a procedure is found to be challenging. Nonetheless, an improved procedure for the preparation of $A_2[\text{ReF}_6]$ (A = K, Rb, Cs) salts as well as their X-ray single-crystal structures was recently reported (Louis-Jean et al., 2018).

In the process of exploring the coordination chemistry of hexafluororhenate(IV) compounds, the title compound (I), an unexpected mixed-valence rhenium(IV)–rhenium(VII) salt arose in an effort to prepare $[Co(NH_3)_6]_2[ReF_6]_3$ by metathesis from $K_2[ReF_6]$ and $Co(NH_3)_6Cl_3$ in water (353 K). Yellow–orange needle-like crystals of (I) were obtained within two hours by slow evaporation in water at room temperature.

Figure 1

The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level for all non-H atoms. Symmetry codes: (i) 1 - x + y, 1 - x, z; (ii) 1 - y, x - y, z; (iii) $\frac{1}{3} + y, \frac{2}{3} - x + y, \frac{5}{3} - z$; (iv) $\frac{1}{3} + x - y, -\frac{1}{3} + x, \frac{5}{3} - z$; (v) $\frac{4}{3} - x, \frac{2}{3} - y, \frac{5}{3} - z$; (vi) $\frac{2}{3} + x - y, \frac{1}{3} + x, \frac{4}{3} - z$; (vii) $-\frac{1}{3} + y, \frac{1}{3} - x + y, \frac{4}{3} - z$; (viii) $\frac{2}{3} - x, \frac{4}{3} - y, \frac{4}{3} - z$; (ix) -x + y, 1 - x, z; (x) 1 - y, 1 + x - y, z.

The crystals of (I) are air stable over short periods, but decompose to a black material after six months of storage at ambient temperature.

2. Structural commentary

The structure of (I) (Fig. 1) is built up from a $[Co(NH_3)_6]^{3+}$ cation, three distinct $[ReF_6]^{2-}$ anions, one $[ReO_4]^-$ anion, and two water molecules of crystallization: these components are held together by electrostatic forces and hydrogen bonding. Site symmetries for the metal atoms are Co1: 1 (Wyckoff position 18*f*), Re1: 3 (Wyckoff position 6*c*), Re2: 1 (Wyckoff

position 18*f*), Re3: $\overline{3}$ (Wyckoff position 3*a*), and Re4: $\overline{3}$ (Wyckoff position 3*b*).

The octahedral $[Co(NH_3)_6]^{3+}$ cation in (I) is slightly distorted; the average Co–N bond length of 1.962 Å is in agreement with the average Co–N bond lengths of 1.963 Å in $[Co(NH_3)_6](ReO_4)\cdot 2H_2O$ (Baidina *et al.*, 2012) and 1.966 Å in $[Co(NH_3)_6](TcO_4)_3$ (Poineau *et al.*, 2017). In (I), the shortest Co···Co and N···N separations between nearby $[Co(NH_3)_6]^{3+}$ cations are 7.035 (1) and 4.473 (1) Å, respectively.

In the tetrahedral $[\text{ReO}_4]^-$ anion in (**I**), the average Re–O bond length (1.719 Å) is in agreement with the average Re–O bond length of 1.720 Å in $[\text{Co}(\text{NH}_3)_6](\text{ReO}_4)\cdot 2\text{H}_2\text{O}$ (Baidina *et al.*, 2012). In (**I**) the values of three Re–O bond lengths, $[\text{Re1}-\text{O2}^i, \text{Re}-\text{O2} \text{ and } \text{Re}-\text{O2}^{ii} = 1.715$ (8) Å; symmetry codes: (i) 1 - x + y, 1 - x, z; (ii) 1 - y, x - y, z] are slightly shorter than the fourth one [Re-O1 = 1.748 (14) Å]. In (**I**), all O–Re–O bond angles in the $[\text{ReO}_4]^-$ anion are 109.5 (3)°. However, in $[\text{Co}(\text{NH}_3)_6](\text{ReO}_4)\cdot 2\text{H}_2\text{O}$, the $[\text{ReO}_4]^-$ anion is slightly distorted by up to 2.7° (Baidina *et al.*, 2012).

The $[\text{ReF}_6]^{2-}$ anions are slightly distorted, with Re-F bond lengths varying from 1.916 (6) Å to 1.929 (6) Å. All the Re-F bond lengths in the Re3- and Re4-centred anions are of equal distances of 1.952 (6) and 1.950 (6) Å, respectively, by symmetry. Overall, the average Re-F bond length (1.834 Å) in (I) is notably shorter than the average Re-F bond length (1.951 Å) in $A_2[\text{ReF}_6]$ (A = K, Rb, Cs) salts previously studied (Louis-Jean *et al.*, 2018).

3. Supramolecular features

A perspective view of the unit-cell plots for (I) and its component ions $([ReF_6]^{2-}, [ReO_4]^{-}, \text{ and } [Co(NH_3)_6]^{3+})$ are shown in Fig. 2. In the supramolecular structure of the title

Figure 2

Unit-cell plots showing only (*a*) the complete structure of (**I**), (*b*) the $[\operatorname{ReF}_6]^{2^-}$ octahedra, (*c*) the $[\operatorname{ReO}_4]^-$ tetrahedra and (*d*) the $[\operatorname{Co}(\operatorname{NH}_3)_6]^{3^+}$ octahedra viewed along the crystallographic *b* axis. Color of atoms: Re aqua blue, F green, Co purple, N blue, O red, H gray.

research communications

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdots F1^{i}$	0.89	2.34	3.085 (11)	141
$N1-H1A\cdots F5^{i}$	0.89	2.29	3.078 (10)	148
$N1 - H1B \cdot \cdot \cdot F5$	0.89	2.32	3.037 (10)	138
$N1 - H1B \cdot \cdot \cdot F7$	0.89	2.42	3.098 (11)	133
$N1 - H1C \cdot \cdot \cdot F3$	0.89	2.40	3.144 (10)	141
$N1 - H1C \cdot \cdot \cdot O1S^{ii}$	0.89	2.35	3.084 (12)	140
$N2-H2A\cdots F2^{iii}$	0.89	2.46	3.243 (10)	148
$N2-H2A\cdots O2^{iii}$	0.89	2.54	3.089 (12)	121
$N2 - H2B \cdot \cdot \cdot F4$	0.89	2.31	3.137 (12)	155
$N2-H2B\cdots F4^{iii}$	0.89	2.58	3.161 (10)	124
$N2-H2C\cdots F7$	0.89	2.08	2.928 (10)	158
$N3-H3A\cdots F6^{iv}$	0.89	2.57	3.054 (10)	115
$N3-H3A\cdots O2S$	0.89	2.26	3.027 (12)	145
$N3-H3B\cdots F5^{iv}$	0.89	2.52	3.132 (10)	127
$N3-H3B\cdots F7$	0.89	2.32	2.911 (11)	123
$N3-H3C\cdots F5^{i}$	0.89	2.24	3.112 (10)	166
$N4-H4A\cdots F2^{iii}$	0.89	2.16	3.038 (10)	170
$N4-H4A\cdots F6^{iii}$	0.89	2.57	3.126 (10)	121
$N4 - H4B \cdot \cdot \cdot F6^{iv}$	0.89	2.19	2.969 (10)	146
$N4 - H4C \cdot \cdot \cdot F8^{v}$	0.89	2.21	3.019 (11)	150
$N5-H5A\cdots O2S$	0.89	2.08	2.936 (12)	162
$N5-H5B\cdots F1^{i}$	0.89	2.20	3.057 (11)	162
$N5-H5C\cdots F1^{ii}$	0.89	2.49	3.019 (11)	119
$N5-H5C\cdots F2^{ii}$	0.89	2.43	3.261 (11)	157
N6−H6A···F4 ⁱⁱⁱ	0.89	2.55	3.110 (10)	122
$N6-H6A\cdots F6^{iii}$	0.89	2.16	3.037 (10)	168
$N6-H6B\cdots F2^{ii}$	0.89	2.16	2.968 (10)	151
$N6-H6B\cdotsO1S^{ii}$	0.89	2.67	3.227 (11)	122
$N6-H6C\cdots F4$	0.89	2.14	2.982 (10)	159

Symmetry codes: (i) $y - \frac{1}{3}, -x + y + \frac{1}{3}, -z + \frac{4}{3}$, (ii) -y + 1, x - y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + y, -x + 1, z; (v) $-x + \frac{2}{3}, -y + \frac{1}{3}, -z + \frac{4}{3}$.

compound, the ammine ligands of the cations form numerous $N-H\cdots F$ and $N-H\cdots O$ hydrogen bonds with the fluorine atoms of $[ReF_6]^{2-}$ anions and the water molecules (Table 1, Fig. 3).

Figure 3 Detail of the hydrogen bonding (blue dotted lines) in (I). Atom colors as in Fig. 2.

Table 2 Experimental details.	
Crystal data	
Chemical formula	$[Co(NH_3)_6]_3[ReO_4][ReF_6]_4 \cdot 6H_2O$
M _r	2030.40
Crystal system, space group	Trigonal, R3
Temperature (K)	293
$a, c(\mathbf{A})$	15.982 (3), 29.740 (5)
$V(A^3)$	6579 (2)
Z	6
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	15.00
Crystal size (mm)	$0.63 \times 0.08 \times 0.07$
Data collection	
Diffractometer	Bruker D8 QUEST
Absorption correction	Numerical (Krause et al., 2015)
T_{\min}, \bar{T}_{\max}	0.02, 0.43
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	45169, 5223, 4885
R _{int}	0.082
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.635
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.114, 1.08
No. of reflections	5223
No. of parameters	189
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	2.36, -4.16

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and shelXle (Hübschle et al., 2011).

4. Database survey

To the best of our knowledge, (I) is the only reported hexahalogenorhenate-perrhenate structure containing both rhenium(IV) and rhenium(VII). It is noted that $K_2[ReF_6]$ used for the preparation of (I) was not characterized before use and the presence of perrhenate in (I) may be due to the presence of K[ReO₄] in the starting material. Efforts to isolate the technetium (Tc-99) derivative compound, $[Co(NH_3)_6]_3$ $[(Tc^{(vii)}O_4) (Tc^{(iv)}F_6)_4]$ are in progress.

5. Synthesis and crystallization

All chemicals were obtained commercially from Sigma Aldrich[®] and used without any further purification. The starting material, $K_2[ReF_6]$, was prepared following the method described in our previous publication (Louis-Jean *et al.*, 2018).

 $K_2[ReF_6]$ (114 mg, 0.3 mmol) was dissolved in 2 ml of hot water (353 K), and $[Co(NH_3)_6]Cl_3$ (53.5 mg, 0.2 mmol) dissolved in 1 ml of H₂O was added. The solution was allowed to evaporate slowly at room temperature and yellow-orange needle-like crystals of (**I**) were obtained within two hours. The compound was washed with H₂O (3 × 1 ml), followed by isopropanol (3 × 1 ml) and then diethyl ether (3 × 1 ml). Single crystals of (**I**) were grown in H₂O by slow evaporation at room temperature. Yield: *ca* 91%. The presence of perrhenate in (**I**) is probably due to the presence of K[ReO₄] in the starting material (*i.e.* K₂ReF₆).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the co-crystallized water molecules could not be located in the present experiment.

Acknowledgements

The authors thank Ms Julie Bertoia, Mr Charles Bynum, and Dr Hugues Badet for laboratory support.

Funding information

Funding for this research was provided by the US Department of Energy – Nuclear Science and Security Consortium (award No. DE-NA0003180).

References

- Abram, U. (2003). Rhenium. In Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 271– 402. New York: Elsevier Science.
- Baidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112–118.

- Berthold, H. J. & Jakobson, G. (1964). Angew. Chem. Int. Ed. Engl. 3, 445–445.
- Briscoe, H. V. A., Robinson, P. L. & Rudge, A. J. (1931). J. Chem. Soc. pp. 3218–3220.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Jorgensen, C. K. & Schwochau, K. (1965). Z. Naturforsch. Teil A, 20, 65–75.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Latimer, W. M. (1952). *The Oxidation State of the Elements and Their Potential in Aqueous Solutions*. New York: Prentice-Hall Inc.
- Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646–649.
- Poineau, F., Mausolf, E., Kerlin, W. & Czerwinski, K. (2017). J. Radioanal. Nucl. Chem. 311, 775–778.
- Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65-81.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Watt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). *Inorganic Syntheses*, edited by J. Kleinberg, Vol. VII, pp. 189–192. New York: McGraw-Hill.

Acta Cryst. (2019). E75, 1158-1161 [https://doi.org/10.1107/S2056989019009757]

An unexpected rhenium(IV)–rhenium(VII) salt: $[Co(NH_3)_6]_3[Re^{VII}O_4]$ $[Re^{IV}F_6]_4 \cdot 6H_2O$

James Louis–Jean, Samundeeswari Mariappan Balasekaran, Adelheid Hagenbach and Frederic Poineau

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *shelXle* (Hübschle *et al.*, 2011); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b).

Tris[hexaamminecobalt(III)] tetraoxidorhenate(VII) tetrakis[hexafluoridorhenate(IV)] hexahydrate

Crystal data

 $[Co(NH_3)_6]_3[ReO_4][ReF_6]_4 \cdot 6H_2O$ $M_r = 2030.40$ Trigonal, $R\overline{3}$ a = 15.982 (3) Å c = 29.740 (5) Å V = 6579 (2) Å³ Z = 6F(000) = 5592

Data collection

Bruker D8 QUEST diffractometer Radiation source: sealed tube, Siemens KFFMo2K-90 Curved graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ ' φ and ω scans' Absorption correction: numerical (Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.114$ S = 1.085223 reflections 189 parameters 0 restraints $D_{\rm x} = 3.075 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 618 reflections $\theta = 3.2-32.0^{\circ}$ $\mu = 15.00 \text{ mm}^{-1}$ T = 293 KRectangular box, translucent orange $0.63 \times 0.08 \times 0.07 \text{ mm}$

 $T_{\min} = 0.02, T_{\max} = 0.43$ 45169 measured reflections
5223 independent reflections
4885 reflections with $I > 2\sigma(I)$ $R_{int} = 0.082$ $\theta_{\max} = 26.8^{\circ}, \theta_{\min} = 1.6^{\circ}$ $h = -20 \rightarrow 20$ $k = -20 \rightarrow 20$ $l = -37 \rightarrow 37$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0476P)^2 + 166.9724P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 2.36$ e Å⁻³ $\Delta\rho_{min} = -4.16$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.30664 (8)	0.34382 (8)	0.58013 (3)	0.0133 (2)	
N1	0.4055 (5)	0.4205 (6)	0.6252 (2)	0.0215 (15)	
H1A	0.3824	0.3987	0.6526	0.032*	
H1B	0.4211	0.4822	0.623	0.032*	
H1C	0.4577	0.4154	0.6205	0.032*	
N2	0.3377 (7)	0.4637 (6)	0.5488 (3)	0.0257 (17)	
H2A	0.2965	0.4506	0.5262	0.038*	
H2B	0.3977	0.4909	0.538	0.038*	
H2C	0.3333	0.5041	0.5679	0.038*	
N3	0.2114 (6)	0.3556 (6)	0.6173 (3)	0.0244 (16)	
H3A	0.1533	0.3039	0.6133	0.037*	
H3B	0.2098	0.4085	0.6094	0.037*	
H3C	0.228	0.3597	0.6461	0.037*	
N4	0.2051 (6)	0.2661 (6)	0.5359 (3)	0.0236 (16)	
H4A	0.22	0.2963	0.5095	0.035*	
H4B	0.1488	0.2582	0.5454	0.035*	
H4C	0.2008	0.2086	0.5329	0.035*	
N5	0.2754 (6)	0.2239 (6)	0.6122 (3)	0.0255 (17)	
H5A	0.2133	0.1932	0.62	0.038*	
H5B	0.3118	0.2381	0.6367	0.038*	
H5C	0.2869	0.1861	0.5943	0.038*	
N6	0.4042 (6)	0.3341 (6)	0.5441 (2)	0.0220 (15)	
H6A	0.3851	0.3229	0.5155	0.033*	
H6B	0.4115	0.2859	0.5544	0.033*	
H6C	0.4602	0.3893	0.546	0.033*	
Re2	0.65656 (3)	0.62285 (3)	0.58421 (2)	0.02226 (14)	
F1	0.7514 (5)	0.7013 (5)	0.6281 (2)	0.0413 (16)	
F2	0.7555 (5)	0.6161 (5)	0.5496 (2)	0.0356 (14)	
F3	0.6309 (5)	0.5116 (5)	0.6198 (2)	0.0411 (16)	
F4	0.5603 (5)	0.5407 (5)	0.5415 (2)	0.0368 (14)	
F5	0.5608 (5)	0.6319 (5)	0.6196 (2)	0.0337 (14)	
F6	0.6801 (5)	0.7340 (4)	0.54917 (19)	0.0306 (12)	
Re1	0.6667	0.3333	0.51213 (2)	0.02289 (17)	
O1	0.6667	0.3333	0.5709 (5)	0.048 (4)	
O2	0.7663 (6)	0.4359 (6)	0.4929 (3)	0.0384 (17)	
Re4	0.6667	0.3333	0.8333	0.01831 (19)	
F8	0.5515 (4)	0.2843 (5)	0.7957 (2)	0.0336 (13)	
Re3	0.3333	0.6667	0.6667	0.01401 (18)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

F7	0.3284 (5)	0.5638 (5)	0.6295 (2)	0.0396 (15)
O1S	0.7924 (6)	0.4886 (6)	0.6292 (3)	0.0379 (18)
O2S	0.0654 (6)	0.1416 (6)	0.6190 (3)	0.0417 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.0161 (5)	0.0146 (5)	0.0097 (5)	0.0079 (4)	0.0003 (4)	-0.0008 (4)
N1	0.019 (4)	0.028 (4)	0.014 (3)	0.009 (3)	-0.001 (3)	-0.003 (3)
N2	0.040 (5)	0.022 (4)	0.019 (4)	0.019 (4)	0.003 (4)	0.002 (3)
N3	0.027 (4)	0.030 (4)	0.018 (4)	0.015 (4)	-0.003 (3)	-0.009 (3)
N4	0.025 (4)	0.032 (4)	0.016 (4)	0.015 (3)	-0.005 (3)	-0.006 (3)
N5	0.029 (4)	0.024 (4)	0.022 (4)	0.013 (3)	0.002 (3)	0.006 (3)
N6	0.029 (4)	0.025 (4)	0.019 (4)	0.018 (3)	0.003 (3)	0.000 (3)
Re2	0.0227 (2)	0.0252 (2)	0.0173 (2)	0.01086 (15)	0.00121 (13)	0.00071 (13)
F1	0.033 (3)	0.051 (4)	0.026 (3)	0.010 (3)	-0.006(3)	-0.006(3)
F2	0.039 (3)	0.053 (4)	0.027 (3)	0.032 (3)	0.007 (3)	0.004 (3)
F3	0.044 (4)	0.038 (4)	0.045 (4)	0.023 (3)	0.009 (3)	0.018 (3)
F4	0.035 (3)	0.033 (3)	0.031 (3)	0.009 (3)	-0.007 (3)	-0.005 (3)
F5	0.035 (3)	0.038 (3)	0.030 (3)	0.019 (3)	0.010 (3)	0.004 (3)
F6	0.039 (3)	0.026 (3)	0.027 (3)	0.016 (3)	0.003 (3)	0.005 (2)
Re1	0.0219 (2)	0.0219 (2)	0.0248 (3)	0.01097 (11)	0	0
01	0.058 (6)	0.058 (6)	0.028 (7)	0.029 (3)	0	0
O2	0.030 (4)	0.033 (4)	0.043 (4)	0.010 (3)	0.001 (3)	0.001 (3)
Re4	0.0199 (3)	0.0199 (3)	0.0151 (4)	0.00997 (13)	0	0
F8	0.030 (3)	0.033 (3)	0.034 (3)	0.013 (3)	-0.005 (3)	0.001 (3)
Re3	0.0135 (2)	0.0135 (2)	0.0151 (4)	0.00674 (12)	0	0
F7	0.042 (4)	0.034 (3)	0.043 (4)	0.019 (3)	0.003 (3)	-0.015 (3)
O1S	0.033 (4)	0.040 (4)	0.039 (4)	0.017 (4)	-0.006 (3)	-0.003 (3)
O2S	0.032 (4)	0.048 (5)	0.038 (4)	0.015 (4)	0.005 (3)	-0.004(4)

Geometric parameters (Å, °)

Co1—N2	1.958 (8)	N6—H6C	0.89
Co1—N6	1.960 (7)	Re2—F1	1.916 (6)
Co1—N1	1.965 (7)	Re2—F4	1.918 (6)
Co1—N3	1.965 (8)	Re2—F5	1.922 (6)
Co1—N5	1.968 (8)	Re2—F6	1.928 (6)
Co1—N4	1.972 (8)	Re2—F3	1.929 (6)
N1—H1A	0.89	Re2—F2	1.934 (6)
N1—H1B	0.89	Re1—O2 ⁱ	1.715 (8)
N1—H1C	0.89	Re1—O2	1.715 (8)
N2—H2A	0.89	Re1—O2 ⁱⁱ	1.715 (8)
N2—H2B	0.89	Re1—O1	1.748 (14)
N2—H2C	0.89	Re4—F8 ⁱⁱⁱ	1.952 (6)
N3—H3A	0.89	Re4—F8 ^{iv}	1.952 (6)
N3—H3B	0.89	Re4—F8 ⁱⁱ	1.952 (6)
N3—H3C	0.89	Re4—F8 ^v	1.952 (6)

N4—H4A	0.89	Re4—F8	1.952 (6)
N4—H4B	0.89	Re4—F8 ⁱ	1.952 (6)
N4—H4C	0.89	Re3—F7 ^{vi}	1.950 (6)
N5—H5A	0.89	Re3—F7 ^{vii}	1.950 (6)
N5—H5B	0.89	Re3—F7	1.950 (6)
N5—H5C	0.89	Re3—F7 ^{viii}	1.950 (6)
N6—H6A	0.89	Re3—F7 ^{ix}	1.950 (6)
N6—H6B	0.89	Re3—F7 ^x	1.950 (6)
			11,000(0)
N2-Co1-N6	897(4)	F1—Re2—F4	178 1 (3)
N_2 —Co1—N1	89.0 (4)	F1 = Re2 = F5	88 7 (3)
N_{6} Col N_{1}	90.0(3)	F4—Re2—F5	910(3)
N2 Col N3	90.2(4)	$F1 P_{e2} F6$	91.0(3) 92.3(3)
N_{2} C_{01} N_{3}	90.2 (1) 178 6 (3)	$F_{1} = Rc_{2} = F_{0}$	92.3(3)
$N_1 = C_0 I = N_2$	178.0 (3) 99.6 (2)	$F_{4} = R_{2} = F_{0}$	01.2(2)
$N2 C_{2} N5$	00.0(3)	$\Gamma J = Re2 = \Gamma 0$ E1 $Re2 = E2$	91.3(3)
$N_2 = CoI = N_3$	1/9.4(3)	$\Gamma 1 - Re2 - \Gamma 3$	87.9(3)
	90.7 (4)	F4—Re2—F3	90.2 (3)
NI—Col—N5	90.6 (4)	F5—Ke2—F3	87.6(3)
N3—Col—N5	89.4 (4)	F6—Re2—F3	1/8.9 (3)
N2—Co1—N4	91.5 (4)	F1—Re2—F2	89.8 (3)
N6—Co1—N4	91.2 (3)	F4—Re2—F2	90.5 (3)
N1—Co1—N4	178.7 (3)	F5—Re2—F2	178.5 (3)
N3—Co1—N4	90.2 (3)	F6—Re2—F2	88.6 (3)
N5—Co1—N4	88.9 (4)	F3—Re2—F2	92.5 (3)
Co1—N1—H1A	109.5	$O2^{i}$ —Re1—O2	109.5 (3)
Col—Nl—HlB	109.5	$O2^{i}$ —Re1—O2 ⁱⁱ	109.5 (3)
H1A—N1—H1B	109.5	O2—Re1—O2 ⁱⁱ	109.5 (3)
Co1—N1—H1C	109.5	O2 ⁱ —Re1—O1	109.5 (3)
H1A—N1—H1C	109.5	O2—Re1—O1	109.5 (3)
H1B—N1—H1C	109.5	O2 ⁱⁱ —Re1—O1	109.5 (3)
Co1—N2—H2A	109.5	F8 ⁱⁱⁱ —Re4—F8 ^{iv}	90.5 (3)
Co1—N2—H2B	109.5	F8 ⁱⁱⁱ —Re4—F8 ⁱⁱ	180.0 (3)
H2A—N2—H2B	109.5	F8 ^{iv} —Re4—F8 ⁱⁱ	89.5 (3)
Co1—N2—H2C	109.5	$F8^{iii}$ —Re4—F8 ^v	90.5 (3)
H2A—N2—H2C	109.5	$F8^{iv}$ —Re4—F8 ^v	90.5 (3)
H2B—N2—H2C	109.5	$F8^{ii}$ —Re4—F8 ^v	89.5 (3)
Co1—N3—H3A	109.5	F8 ⁱⁱⁱ —Re4—F8	89.5 (3)
Co1 - N3 - H3B	109.5	F8 ^{iv} —Re4—F8	89.6 (3)
H3A—N3—H3B	109.5	$F8^{ii}$ Re4 F8	90.5 (3)
Co1-N3-H3C	109.5	$F8^{v}$ Re4 F8	180.0
H3A_N3_H3C	109.5	$F8^{iii}$ $Re4$ $F8^{i}$	89 5 (3)
H3B_N3_H3C	109.5	$F8^{iv}$ Re4 $F8^{i}$	180.0
Col - N4 - H4A	109.5	$F8^{ii}$ Red $F8^{i}$	90 5 (3)
Co1 - N4 - H4B	109.5	$F8^{v} Re^{A} F8^{i}$	20.5 (3) 80 5 (3)
	109.5	$F_{0} = -K_{0} + F_{0}$	09.5(3)
$C_{01} NA HAC$	109.5	$\begin{array}{c} 1 0 \\ 0 \\ 1$	90.3(3)
$\mathbf{U}_{\mathbf{A}} \mathbf{N}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}} \mathbf{U}$	109.5	$\mathbf{F}_{1} = \mathbf{F}_{2} \mathbf{F}_{1}$	91.0(3)
H4A = N4 = H4C	109.5	$\Gamma / - RC3 - \Gamma /$ E7vii De2 E7	09.0 (3)
П4 D —IN4—II4U	109.3	г / — Кез—Г /	07.0(3)

Co1—N5—H5A	109.5	F7 ^{vi} —Re3—F7 ^{viii}	91.0 (3)
Co1—N5—H5B	109.5	F7 ^{vii} —Re3—F7 ^{viii}	91.0 (3)
H5A—N5—H5B	109.5	F7—Re3—F7 ^{viii}	180.0 (4)
Co1—N5—H5C	109.5	F7 ^{vi} —Re3—F7 ^{ix}	180.0
H5A—N5—H5C	109.5	F7 ^{vii} —Re3—F7 ^{ix}	89.0 (3)
H5B—N5—H5C	109.5	F7—Re3—F7 ^{ix}	91.0 (3)
Col—N6—H6A	109.5	F7 ^{viii} —Re3—F7 ^{ix}	89.0 (3)
Co1—N6—H6B	109.5	F7 ^{vi} —Re3—F7 ^x	89.0 (3)
H6A—N6—H6B	109.5	F7 ^{vii} —Re3—F7 ^x	180.0
Col—N6—H6C	109.5	F7—Re3—F7 ^x	91.0 (3)
H6A—N6—H6C	109.5	F7 ^{viii} —Re3—F7 ^x	89.0 (3)
H6B—N6—H6C	109.5	F7 ^{ix} —Re3—F7 ^x	91.0 (3)

Symmetry codes: (i) -x+y+1, -x+1, z; (ii) -y+1, x-y, z; (iii) y+1/3, -x+y+2/3, -z+5/3; (iv) x-y+1/3, x-1/3, -z+5/3; (v) -x+4/3, -y+2/3, -z+5/3; (vi) x-y+2/3, x+1/3, -z+4/3; (vii) y-1/3, -x+y+1/3, -z+4/3; (viii) -x+2/3, -y+4/3, -z+4/3; (ix) -x+y, -x+1, z; (x) -y+1, x-y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H…A
N1—H1A····F1 ^{vii}	0.89	2.34	3.085 (11)	141
N1—H1A····F5 ^{vii}	0.89	2.29	3.078 (10)	148
N1—H1 <i>B</i> …F5	0.89	2.32	3.037 (10)	138
N1—H1 <i>B</i> …F7	0.89	2.42	3.098 (11)	133
N1—H1C…F3	0.89	2.40	3.144 (10)	141
N1—H1 <i>C</i> ···O1 <i>S</i> ⁱⁱ	0.89	2.35	3.084 (12)	140
N2—H2 A ····F2 ^{xi}	0.89	2.46	3.243 (10)	148
N2—H2A····O2 ^{xi}	0.89	2.54	3.089 (12)	121
N2—H2 <i>B</i> …F4	0.89	2.31	3.137 (12)	155
N2—H2 B ····F4 ^{xi}	0.89	2.58	3.161 (10)	124
N2—H2 <i>C</i> …F7	0.89	2.08	2.928 (10)	158
N3—H3A····F6 ^{ix}	0.89	2.57	3.054 (10)	115
N3—H3 <i>A</i> ···O2 <i>S</i>	0.89	2.26	3.027 (12)	145
N3—H3 <i>B</i> …F5 ^{ix}	0.89	2.52	3.132 (10)	127
N3—H3 <i>B</i> …F7	0.89	2.32	2.911 (11)	123
N3—H3C···F5 ^{vii}	0.89	2.24	3.112 (10)	166
N4—H4 A ···F2 ^{xi}	0.89	2.16	3.038 (10)	170
N4—H4A····F6 ^{xi}	0.89	2.57	3.126 (10)	121
N4—H4 B ···F6 ^{ix}	0.89	2.19	2.969 (10)	146
N4—H4 <i>C</i> ···F8 ^{xii}	0.89	2.21	3.019 (11)	150
N5—H5 <i>A</i> ···O2 <i>S</i>	0.89	2.08	2.936 (12)	162
N5—H5 <i>B</i> ····F1 ^{vii}	0.89	2.20	3.057 (11)	162
N5—H5 <i>C</i> …F1 ⁱⁱ	0.89	2.49	3.019 (11)	119
N5—H5 <i>C</i> …F2 ⁱⁱ	0.89	2.43	3.261 (11)	157
N6—H6A····F4 ^{xi}	0.89	2.55	3.110 (10)	122
N6—H6A···F6 ^{xi}	0.89	2.16	3.037 (10)	168
N6—H6B···F2 ⁱⁱ	0.89	2.16	2.968 (10)	151

N6—H6 <i>B</i> ···O1 <i>S</i> ^{ti}	0.89	2.67	3.227 (11)	122	
N6—H6 <i>C</i> …F4	0.89	2.14	2.982 (10)	159	

Symmetry codes: (ii) -y+1, x-y, z; (vii) y-1/3, -x+y+1/3, -z+4/3; (ix) -x+y, -x+1, z; (xi) -x+1, -y+1, -z+1; (xii) -x+2/3, -y+1/3, -z+4/3.