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epidemiologic evaluation of 
Nhanes for environmental Factors 
and periodontal disease
p. emecen-Huja  1, H-F. Li2, J. L. ebersole  3, J. Lambert4 & H. Bush5

Periodontitis is a chronic inflammation that destroys periodontal tissues caused by the accumulation 
of bacterial biofilms that can be affected by environmental factors. This report describes an association 
study to evaluate the relationship of environmental factors to the expression of periodontitis using 
the National Health and Nutrition Examination Study (NHANES) from 1999–2004. A wide range of 
environmental variables (156) were assessed in patients categorized for periodontitis (n = 8884). 
Multiple statistical approaches were used to explore this dataset and identify environmental variable 
patterns that enhanced or lowered the prevalence of periodontitis. Our findings indicate an array of 
environmental variables were different in periodontitis in smokers, former smokers, or non-smokers, 
with a subset of specific environmental variables identified in each population subset. Discriminating 
environmental factors included blood levels of lead, phthalates, selected nutrients, and pCBs. 
Importantly, these factors were found to be coupled with more classical risk factors (i.e. age, gender, 
race/ethnicity) to create a model that indicated an increased disease prevalence of 2–4 fold across the 
sample population. Targeted environmental factors are statistically associated with the prevalence of 
periodontitis. Existing evidence suggests that these may contribute to altered gene expression and 
biologic processes that enhance inflammatory tissue destruction.

Despite increasing awareness and improvement in oral health, periodontitis, together with dental caries, remain 
major health concerns across the lifespan in the United States1. Periodontal disease occurs as a result of an inter-
action between bacterial biofilms and immunoinflammatory responses. It is anticipated that 80% of the risk for 
periodontal tissue damage is a result of dysregulated host responses against the chronic bacterial insult2–4. This 
interaction can progress to destroy the periodontal tissues and bone, and eventually is the major basis of tooth 
loss in adults with edentulous individuals having difficulty eating, swallowing, and speaking properly5–7. These 
impaired oral functions can greatly impact individual quality of life, negatively affecting societal and economic 
opportunities, and continues to expand as a public health concern in aging populations8.

Similar to many chronic diseases, it is well documented that periodontal disease is a complex disease with 
multiple potential contributing factors. These include genetic and epigenetic influences, patient behaviors, medi-
cation use, and/or environmental factors, which all together promote periodontal disease initiation and progres-
sion9. Low socioeconomic status, poor oral hygiene, psychological stress, depression, increased age, Hispanic 
ethnicity, diet/obesity, and systemic health co-morbidities are well known risk factors that contribute to the prev-
alence of periodontal diseases10–12. However, smoking has been identified as one of the most significant and 
modifiable risk factor in the pathogenesis of periodontitis and tooth loss13,14. Data also support that the number 
of cigarettes smoked per day is directly related to the prevalence and the severity of the disease15–17. Emphasis 
has been placed on the need for more effective management of these modifiable risk factors to impact this global 
disease18, albeit, non-modifiable factors including age, genetics and the existence of various systemic diseases are 
clearly more challenging to address across the population18–21. In this regard, various studies of this chronic dis-
ease have provided some support attributing disease expression and severity to genetic predisposition regulating 
the characteristics of the host response to the oral microbial challenge. These have included genes controlling the 
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production of inflammatory mediators and tissue and bone regulatory molecules22–25 via genetic polymorphisms 
and more recent reports on epigenetic alterations in the genomes of periodontitis patients26,27.

Importantly, studies from other disease models show that various environmental stimuli can contribute to 
these epigenetic changes and underpin the concept of environment-gene interactions related to disease expres-
sion28. While rather limited data is available regarding environmental factors in periodontitis29, the National 
Health and Nutrition Examination Survey (NHANES) provides a robust data set regarding measures of 156 envi-
ronmental factors in blood and urine. This report describes the use of various epidemiologic and statistical tools 
to conduct an association study with periodontitis in the U.S. adult population.

N
No 
Periodontitis Periodontitis p-value Weighted N

Weighted 
Prevalence of 
Periodontitis

Weighted 
p-value

N 8884 7915 (89.1%) 969 (10.9%) . 137140007 8.1% .

Male 4297 (48.4%) 3706 (86.2%) 591 (13.8%) <0.0001 68191901 10.1% <0.0001

Female 4587 (51.6%) 4209 (91.8%) 378 (8.2%) . 68948106 6.2% .

Mexican American 2233 (25.1%) 1913 (85.7%) 320 (14.3%) <0.0001 11566835 12.3% <0.0001

Other Hispanic 417 (4.7%) 355 (85.1%) 62 (14.9%) . 8127478 14.6% .

Non-Hispanic White 4305 (48.5%) 4030 (93.6%) 275 (6.4%) . 97058220 5.8% .

Non-Hispanic Black 1603 (18.0%) 1328 (82.8%) 275 (17.2%) . 13910439 16.0% .

Other Race 326 (3.7%) 289 (88.7%) 37 (11.3%) . 6477034 10.3% .

Age 18~30 2497 (28.1%) 2390 (95.7%) 107 (4.3%) <0.0001 36006214 3.1% <0.0001

Age 31~49 3522 (39.6%) 3068 (87.1%) 454 (12.9%) . 63781453 9.3% .

Age 50~64 1667 (18.8%) 1435 (86.1%) 232 (13.9%) . 26103632 10.9% .

Age 65+ 1198 (13.5%) 1022 (85.3%) 176 (14.7%) . 11248708 11.6% .

Age (Mean, StdErr) 43.12 (0.18) 42.47 (0.19) 48.47 (0.49) <0.0001 41.55 (0.26) 46.51 (0.53) <0.0001

Non Smoker 4967 (55.9%) 4538 (91.4%) 429 (8.6%) <0.0001 73898456 5.8% <0.0001

Current Smoker 1920 (21.6%) 1616 (84.2%) 304 (15.8%) . 32664766 13.4% .

Former Smoker 1997 (22.5%) 1761 (88.2%) 236 (11.8%) . 30576785 8.0% .

Socio-Eco Status (Mean, 
StdErr) 2.75 (0.02) 2.82 (0.02) 2.19 (0.05) <0.0001 3.12 (0.05) 2.50 (0.08) <0.0001

Total Teeth (Mean, 
StdErr) 26.19 (0.04) 26.29 (0.04) 25.38 (0.13) <0.0001 26.26 (0.06) 25.12 (0.17) <0.0001

Table 1. Demographic information by periodontal status.

N Non Smoker
Current 
Smoker

Former 
Smoker p-value Weighted N

Weighted 
Non Smoker

Weighted 
Current 
Smoker

Weighted 
Former 
Smoker

Weighted 
p-value

N 8884 4967 (55.9%) 1920 (21.6%) 1997 (22.5%) 137140007 53.9% 23.8% 22.3%

Male 4297 (48.4%) 2020 (47.0%) 1119 (26.0%) 1158 (26.9%) <0.0001 68191901 48.1% 26.7% 25.2% <0.0001

Female 4587 (51.6%) 2947 (64.2%) 801 (17.5%) 839 (18.3%) 68948106 59.6% 20.9% 19.4% .

Mexican American 2233 (25.1%) 1335 (59.8%) 413 (18.5%) 485 (21.7%) <0.0001 11566835 58.3% 22.6% 19.2% <0.0001

Other Hispanic 417 (4.7%) 243 (58.3%) 91 (21.8%) 83 (19.9%) 8127478 55.6% 24.6% 19.7%

Non-Hispanic White 4305 (48.5%) 2227 (51.7%) 935 (21.7%) 1143 (26.6%) 97058220 51.7% 23.6% 24.7%

Non-Hispanic Black 1603 (18.0%) 963 (60.1%) 408 (25.5%) 232 (14.5%) 13910439 61.9% 25.8% 12.3%

Other Race 326 (3.7%) 199 (61.0%) 73 (22.4%) 54 (16.6%) 6477034 59.2% 24.7% 16.1% .

Age 18~30 2497 (28.1%) 1542 (61.8%) 652 (26.1%) 303 (12.1%) <0.0001 36006214 57.3% 31.6% 11.1% <0.0001

Age 31~49 3522 (39.6%) 1932 (54.9%) 923 (26.2%) 667 (18.9%) 63781453 53.7% 25.6% 20.7%

Age 50~64 1667 (18.8%) 827 (49.6%) 281 (16.9%) 559 (33.5%) 26103632 47.7% 17.2% 35.1%

Age 65+ 1198 (13.5%) 666 (55.6%) 64 (5.3%) 468 (39.1%) 11248708 58.1% 4.5% 37.4%

Age (Mean, StdErr) 43.12 (0.18) 42.20 (0.24) 37.95 (0.29) 50.38 (0.38) <0.0001 41.55 (0.26) 41.09 (0.35) 36.82 (0.33) 47.71 (0.41) <0.0001

Socio-Eco Status 
(Mean, StdErr) 2.75 (0.02) 2.81 (0.02) 2.26 (0.04) 3.09 (0.04) <0.0001 3.12 (0.05) 3.21 (0.06) 2.56 (0.07) 3.48 (0.06) <0.0001

Total Teeth (Mean, 
StdErr) 26.19 (0.04) 26.55 (0.05) 26.05 (0.08) 25.44 (0.08) <0.0001 26.26 (0.06) 26.63 (0.06) 25.98 (0.12) 25.67 (0.10) <0.0001

Table 2. Demographic information by smoking status.



3Scientific RepoRts |          (2019) 9:8227  | https://doi.org/10.1038/s41598-019-44445-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Results
The final statistical analysis was completed on 8,884 individuals who were >18 years old and had 16 or more 
teeth. Males comprised 48.4% of the sample. The majority of subjects were non-smokers (55.9%), and those with 
smoking experience were evenly distributed between former smokers (22.5%) and current smokers (21.6%). The 
ethnic distribution of the group was non-Hispanic white (48.5%), non-Hispanic black (18%), Mexican American 
(25.1%), other Hispanic (4.7%), and other race including multi-racial (3.7%). Approximately 72% of the sample 
population was older than 30 years of age. (Tables 1 and 2). The weighted prevalence of periodontitis was 8.1% 
across the entire >18 years of age population. When the periodontitis group defined by NHANES measures was 
compared to the subset of subjects considered periodontally healthy, individuals with periodontal disease were 
more likely to be male, older than 30 years of age, Mexican American, non-Hispanic black or Hispanic and cur-
rent smoker compared to Non-Hispanic white and non-smoker (p < 0.001) (Tables 1 and 3).

Using survey-weighted logistic regression, there were 44 environmental factors (cotinine, 1 dioxin, 4 heavy 
metals (lead levels in serum and in urine), 8 hydrocarbons, 8 nutrients, 18 PCBs and 3 volatile compounds) that 
resulted in adjusted odds ratio with p-values < 0.01 for disease versus health in this NHANES cohort (Table 4). 
When data was further stratified due to smoking status 8 environmental factors (1 heavy metal (lead in serum), 
and 7 PCBs) in current smokers, 9 factors (acrylamide, 1 heavy metal, 1 nutrient, and 6 PCBs) in former smokers, 
and 4 factors (2 heavy metals, 1 nutrients, and 1 organophosphate) in non-smokers had FDR values of less than 
0.05 (Table 5).

In regression analyses considering each environmental factor separately, blood lead levels were consistently iden-
tified as a factor in both the overall and stratified analyses ([a]OR = 1.54, 95% CI: (1.28,1.87) for current smokers; 
[a]OR = 1.39, 95% CI: (1.18,1.65) for non-smokers; [a]OR = 1.57, 95% CI: (1.27,1.94) for former smokers) (Table 5). 
Among the 17 polychlorinated biphenyls (PCBs) found to be associated with periodontitis in the overall sample, 6 (i.e. 
PCB105, PCB157, PCB172, PCB177, PCB178, and PCB206) were also found to have estimated adjusted odds ratios 
ranging from 1.41 to 5.29. In addition, across these environmental variables, the adjusted OR estimates were lower in 
non-smokers compared to current and former smokers. The smoking population also demonstrated additional factors, 
including 6 PCBs (PCB66, PCB146, PCB167, PCD170, PCB183, PCB187) with adjusted OR estimates from 1.63–2.23. 
It might be expected that the relationship between the array of PCBs and periodontitis risk would be highly correlated. 
Of the 8 coplanar PCBs (28, 66, 74, 105, 118, 156, 157, 167), we noted significant correlations among these ranging from 
50–100% of the other coplanar agents. Similarly 70–90% of the 16 non-coplanar PCBs were significantly correlated 
within this category, while only 10 showed correlations with the coplanar congeners. Thus, there was some measure of 
independence in these relationships that would enable future more granular description of specific PCBs periodontitis 
risk and/or severity. Dioxins (PNCDD, TCDD) showed adjusted OR estimates of 1.66 and 1.81, and blood nutrients 
retinyl stearate and retinyl palmitate exhibited adjusted OR estimates from 1.32–1.35. In contrast, blood nutrients such 
as Vitamin D and cis-ß-carotene were estimated to be protective for periodontitis. Higher levels of Vitamin D estimated 
to decrease the odds of periodontitis by 39% and 24% in former and non-smoker groups, respectively ([a]OR = 0.61, 
95% CI: (0.50, 0.74) for former smokers; [a]OR = 0.76, 95% CI: (0.67, 0.87) for non-smokers), and cis-ß-carotene was 
estimated to decreasing the odds of periodontitis by 22% in non-smokers ([a]OR = 0.78, 95% CI: (0.67, 0.92)) (Table 5).

We subsequently employed Random Forests (RF) and Classification and Regression Tree (CART) analy-
ses to identify and visualize relationships of critical demographic and environmental factors. Based upon the 
variables, which had high importance in the RF for each smoking status, a CART was performed separately 
for each of the smoking, former smoking, and non-smoking subsets. CART analysis on the smoking popula-
tion, presents elevated blood lead levels as an initial discriminator, with age >35 yrs. stratifying patients with an 

Name Weighted N

Weighted 
Percentage of 
Periodontitis Name Weighted N

Weighted 
Percentage of 
Periodontitis

Weighted 
p-value

Male 68191901 10.1% Female 68948106 6.2% <0.0001

Mexican American 11566835 12.3% Other Hispanic 8127478 14.6% 0.3204

Mexican American 11566835 12.3% NonHispanic White 97058220 5.8% <0.0001

Mexican American 11566835 12.3% NonHispanic Black 13910439 16.0% 0.0360

Mexican American 11566835 12.3% Other race 6477034 10.3% 0.3823

Other Hispanic 8127478 14.6% NonHispanic White 97058220 5.8% <0.0001

Other Hispanic 8127478 14.6% NonHispanic Black 13910439 16.0% 0.5380

Other Hispanic 8127478 14.6% Other race 6477034 10.3% 0.1266

Non-Hispanic White 97058220 5.8% NonHispanic Black 13910439 16.0% <0.0001

Non-Hispanic White 97058220 5.8% Other race 6477034 10.3% 0.0017

Non-Hispanic Black 13910439 16.0% Other race 6477034 10.3% 0.0136

Age 18~30 36006214 3.1% Age 31~49 63781453 9.3% <0.0001

Age 18~30 36006214 3.1% Age 50~64 26103632 10.9% <0.0001

Age 18~30 36006214 3.1% Age 65+ 11248708 11.6% <0.0001

Age 31~49 63781453 9.3% Age 50~64 26103632 10.9% 0.0304

Age 31~49 63781453 9.3% Age 65+ 11248708 11.6% 0.0206

Age 50~64 26103632 10.9% Age 65+ 11248708 11.6% 0.5259

Table 3. Weighted directionality of gender, race and age to prevalence of periodontal disease.
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approximate 4-fold prevalence of periodontitis. (Fig. 1) CART analysis on former smoker population, visualizes 
the factors classifying the disease risk in former smokers. In this case, race/ethnicity remained a critical factor. 
Those who reported race/ethnicity other than non-Hispanic white demonstrated increased disease prevalence; 
elevated blood lead levels and age >53, had an increased periodontitis prevalence of 37%. Within the subset of 
non-Hispanic white subjects and other race including multi-racial, a prevalence rate of 12% was observed in those 

Environmental Factor Class
Estimated 
Odds Ratio 95% CI FDR N

PCB206 (ng/g) Pcb 2.65 (1.88, 3.75) <0.001 1925

PCB172 (ng/g) Pcb 2.18 (1.61, 2.97) <0.001 2740

PCB157 (ng/g) Pcb 2.05 (1.46, 2.87) 0.003 2750

PCB178 (ng/g) Pcb 2.00 (1.50, 2.66) 0.001 2774

PCB177 (ng/g) Pcb 1.99 (1.53, 2.60) <0.001 2740

PCB199 (ng/g) Pcb 1.96 (1.29, 2.97) 0.023 1967

PCB183 (ng/g) Pcb 1.84 (1.47, 2.29) <0.001 2775

PCB194 (ng/g) Pcb 1.82 (1.23, 2.69) 0.030 1948

PCB196 & 203 (ng/g) Pcb 1.70 (1.18, 2.43) 0.036 1977

PCB170 (ng/g) Pcb 1.69 (1.28, 2.23) 0.007 2710

PCB167 (ng/g) Pcb 1.69 (1.26, 2.27) 0.009 2754

Lead (µg/dL) heavy metal 1.66 (1.47, 1.87) <0.001 9208

2-fluorene (ng/L) hydrocarbon 1.64 (1.38, 1.94) <0.001 2213

3-fluorene (ng/L) hydrocarbon 1.63 (1.35, 1.96) 0.001 2201

Benzene (ng/mL) volatile compound 1.63 (1.27, 2.10) 0.006 1850

Cotinine (ng/mL) alkaloid 1.56 (1.39, 1.75) <0.001 9029

PCB153 (ng/g) Pcb 1.56 (1.18, 2.06) 0.018 2775

Cadmium (µg/L) heavy metal 1.54 (1.41, 1.68) <0.001 9208

PCB187 (ng/g) Pcb 1.53 (1.19, 1.97) 0.014 2775

PCB156 (ng/g) Pcb 1.52 (1.13, 2.05) 0.038 2758

Toluene (ng/mL) volatile compound 1.51 (1.20, 1.88) 0.009 1909

PCB146 (ng/g) Pcb 1.51 (1.18, 1.94) 0.014 2771

PCB105 (ng/g) Pcb 1.49 (1.22, 1.82) 0.004 2764

Cadmium, urine (ng/mL) heavy metal 1.47 (1.16, 1.85) 0.016 2993

1-pyrene (ng/L) hydrocarbon 1.46 (1.19, 1.79) 0.011 2208

1-napthol (ng/L) hydrocarbon 1.43 (1.22, 1.69) 0.004 2245

PCB66 (ng/g) Pcb 1.43 (1.18, 1.72) 0.007 2757

2-napthol (ng/L) hydrocarbon 1.42 (1.18, 1.70) 0.009 2237

2,3,7,8-tcdd (fg/g) dioxins 1.41 (1.19, 1.68) 0.005 2433

2-phenanthrene (ng/L) hydrocarbon 1.41 (1.14, 1.74) 0.023 2203

1-phenanthrene (ng/L) hydrocarbon 1.38 (1.17, 1.63) 0.009 2204

3-phenanthrene (ng/L) hydrocarbon 1.36 (1.15, 1.61) 0.010 2173

Styrene (ng/mL) volatile compound 1.36 (1.10, 1.69) 0.036 1820

Antimony, urine (ng/mL) heavy metal 1.28 (1.12, 1.45) 0.006 2999

Retinyl stearate (µg/dL) nutrient 1.19 (1.08, 1.32) 0.011 7925

α-tocopherol (µg/dL) nutrient 1.16 (1.05, 1.27) 0.028 8717

Folate, RBC (ng/mL RBC) nutrient 0.85 (0.76, 0.94) 0.021 9169

Vitamin D (ng/mL) nutrient 0.83 (0.73, 0.93) 0.023 6404

trans-β-carotene (µg/dL) nutrient 0.81 (0.70, 0.93) 0.036 6422

Folate, serum (ng/mL) nutrient 0.80 (0.71, 0.90) 0.009 9134

β-cryptoxanthin (µg/dL) nutrient 0.80 (0.71, 0.91) 0.013 6401

α-Carotene (µg/dL) nutrient 0.80 (0.68, 0.93) 0.039 6420

Lead, urine (ng/mL) Heavy Metal 1.29 (1.07, 1.55) 0.041 3075

PCB138 & 158 (ng/g) Pcb 1.43 (1.1, 1.87) 0.046 2770

Table 4. This table presents a subset of the environmental factors and their association with periodontal disease 
regardless of the smoking status. The Odds Ratio estimates, Standard Errors, 95% CI, and FDRs are calculated 
based on the survey weighted logistic regression with dichotomous periodontitis status as the outcome 
adjusting for age, gender, ethnicity, socioeconomic status and number of teeth. All environmental variables were 
log-transformed (natural) and standardized, and the estimates should be interpreted on the same scale. Due to 
missingness in the data, the sample sizes were not the same for most of these analyses. Exclusion of smoking 
status resulted in higher N numbers for folate, cadmium, cotinine and lead.
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Current Smokers Former Smokers Non-Smokers

Est 
OR 95% CI FDR N

Est 
OR 95% CI FDR N

Est 
OR 95% CI FDR N

Lead Heavy metal 1.54 (1.28, 1.87) 0.006 1931 1.57 (1.27, 1.94) 0.008 2114 1.39 (1.18, 1.65) 0.019 4428

PCB105 (ng/g) Pcb 1.68 (1.28, 2.2) 0.018 588 1.89 (1.39, 2.57) 0.008 638 1.41 (1.11, 1.78) 0.098 1316

PCB172 (ng/g) Pcb 2.59 (1.6, 4.21) 0.017 587 4.42 (2.12, 9.23) 0.010 632 1.69 (1.19, 2.4) 0.098 1311

PCB177 (ng/g) Pcb 2.18 (1.42, 3.33) 0.022 585 3.12 (1.69, 5.75) 0.016 627 1.75 (1.24, 2.46) 0.090 1307

PCB178 (ng/g) Pcb 2.65 (1.65, 4.25) 0.013 591 2.78 (1.59, 4.86) 0.017 637 1.58 (1.15, 2.16) 0.098 1323

PCB206 (ng/g) Pcb 3.96 (1.96, 8.01) 0.022 434 5.29 (1.68, 16.65) 0.122 439 1.96 (1.3, 2.94) 0.092 912

PCB183 (ng/g) Pcb 2.23 (1.54, 3.22) 0.008 593 2.03 (1.23, 3.33) 0.120 640 1.53 (1.12, 2.09) 0.119 1321

PCB170 (ng/g) Pcb 1.98 (1.35, 2.92) 0.026 585 1.36 (0.67, 2.76) 0.756 625 1.2 (0.84, 1.73) 0.575 1287

PCB157 (ng/g) Pcb 2.3 (1.31, 4.04) 0.069 584 4.66 (2.14, 10.13) 0.011 633 1.77 (1.23, 2.55) 0.092 1313

PCB66 (ng/g) Pcb 1.63 (1.2, 2.21) 0.055 584 1.83 (1.4, 2.38) 0.004 635 1.24 (0.95, 1.62) 0.334 1319

Acrylamide (pmoL/G Hb) Acrylamide 1.46 (1.06, 2.03) 0.237 622 0.3 (0.2, 0.45) 0.013 643 0.77 (0.54, 1.1) 0.450 1301

Vitamin D (ng/mL) Nutrient 1.15 (0.91, 1.45) 0.584 1393 0.61 (0.5, 0.74) 0.004 1485 0.76 (0.67, 0.87) 0.019 3044

Antimony, urine (ng/mL) Heavy metal 0.87 (0.65, 1.16) 0.672 634 1.45 (1.05, 1.98) 0.186 705 1.51 (1.27, 1.8) 0.004 1407

Diethylphosphate (µg/L) Organo-phosphates 0.76 (0.62, 0.94) 0.109 593 0.8 (0.57, 1.11) 0.640 618 1.57 (1.24, 1.99) 0.023 1342

Mono-n-methyl phthalate Phthalate 1.47 (1.13, 1.92) 0.081 496 0.71 (0.44, 1.15) 0.640 513 0.99 (0.75, 1.31) 0.972 1073

Cadmium (µg/L) Heavy metal 1.32 (1.09, 1.58) 0.069 1931 1.32 (0.96, 1.83) 0.501 2114 1.26 (1.03, 1.55) 0.204 4428

1,2,3,7,8-pncdd (fg/g) Dioxins 1.66 (1.16, 2.37) 0.080 533 1.09 (0.71, 1.67) 0.967 596 1.01 (0.76, 1.34) 0.972 1226

2,3,7,8-tcdd (fg/g) Dioxins 1.81 (1.21, 2.7) 0.069 535 1.63 (1.13, 2.35) 0.136 590 1.22 (0.99, 1.49) 0.290 1213

PCB146 (ng/g) Pcb 1.71 (1.23, 2.4) 0.055 591 1.87 (1.13, 3.09) 0.166 637 1.23 (0.84, 1.79) 0.558 1321

PCB167 (ng/g) Pcb 1.77 (1.23, 2.57) 0.065 583 2.93 (1.29, 6.7) 0.151 635 1.61 (1.11, 2.34) 0.143 1315

PCB187 (ng/g) Pcb 1.75 (1.19, 2.56) 0.075 592 1.47 (0.76, 2.82) 0.647 641 1.15 (0.92, 1.45) 0.495 1049

Retinyl palmitate (µg/dL) Nutrient 1.35 (1.09, 1.67) 0.081 1797 0.98 (0.77, 1.24) 0.976 1938 1.03 (0.88, 1.22) 0.889 4079

Retinyl stearate (µg/dL) Nutrient 1.32 (1.09, 1.59) 0.069 1711 1.28 (1.05, 1.57) 0.166 1831 1.07 (0.92, 1.25) 0.628 377

cis-b-carotene (µg/dL) Nutrient 0.95 (0.81, 1.13) 0.853 1395 1 (0.73, 1.38) 0.992 1481 0.78 (0.67, 0.92) 0.098 3055

1,2,3,4,6,7,8,9-ocdd (fg/g) Dioxins 1.22 (0.89, 1.67) 0.548 525 1.12 (0.55, 2.27) 0.967 579 1.46 (1.12, 1.91) 0.099 1189

Table 5. Environmental variables and the parameter estimates from survey-weighted logistic regressions 
stratified by smoking groups. This table presents a subset of the environmental factors and their association 
with periodontal disease. Environmental variables included are those with False Discovery Rate of <0.05 in at 
least one of the smoking groups highlighted in yellow and an FDR <0.1 highlighted in orange. The Odds Ratio 
estimates, Standard Errors, 95% CI, and FDR are calculated based on the survey weighted logistic regression 
with dichotomous periodontitis status as the outcome adjusting for age, gender, ethnicity, socioeconomic status 
and number of teeth. All environmental variables were log-transformed (natural) and standardized, and the 
estimates should be interpreted on the same scale. Due to missingness in the data, the sample sizes were not the 
same for most of these analyses.

Figure 1. Classification and Regression Tree (CART) analyses on smoker population.
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with elevated blood lead levels. (Fig. 2) For non-smokers, which comprised 56% of the total population, multiple 
variables were identified to have relationships with periodontal disease status. Race-ethnicity and age were impor-
tant distinguishing factors. The prevalence was low across those reporting a non-Hispanic white race, but even 
in this group subjects >44 years demonstrated an increased prevalence. The prevalence was further modified 
by elevated urine antimony that increased the observed prevalence of periodontitis to 33% from as low as 8% in 
the low urine antimony and high cis-ß-carotene group. For those with low levels of cis-ß-carotene, higher blood 
lead levels showed a higher prevalence of periodontitis of 18% compared to 11% for the lower blood lead group. 
(Fig. 3). This data analysis exercise represents an approach consistent with the current trend in precision health, 
in that identification of risk and use of model for early prediction of disease initiation/progression will be critical 
for future improvement of oral health and it impacts on systemic health in the population.

Discussion
The current paradigm of periodontitis is that it represents a dysregulation of the host response to a dysbiotic 
microbiome that occurs in a large portion of the global population. Substantial work is being conducted via the 
Human Microbiome Project30 to discern not only the characteristics of the alterations in the disease microbiome, 
but also interrogating complex metagenomic datasets to assess functional changes in the microbial ecology asso-
ciated with health and disease31. Additionally, a complementary research direction is attempting to document the 
role of individual genetic variation across the population that contributes to disease expression and severity19. 

Figure 2. Classification and Regression Tree (CART) analyses on former smoker population.

Figure 3. Classification and Regression Tree (CART) analyses on non-smoker population.
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These studies have employed SNP analysis of specific targeted genes19,22,32, Genome-Wide Association Studies 
(GWAS)24,33 and epigenetic analyses26,34,35 to help elucidate the complex of factors that interact to create a disease 
susceptible host. This report describes an additional consideration in disease expression focused on the larger 
environmental variation to which individual members and subgroups of the U.S. population are exposed (i.e. 
exposome) as a potential direct contributor to the microbial dysbiosis36 and/or a modifier of host responses 
through altered molecular pathways or modulation of genetic control of the disease27,37. The findings identified 
more classical factors (i.e. age, gender, race/ethnicity) in the disease model, but for the first time integrated a 
subset of environmental factors, both toxins and nutrients, that appear to substantially modify the prevalence 
of periodontitis in the population. The identification of the association of environmental toxins including lead, 
hydrocarbons, polychlorinated biphenyls, and nutrients such as retinyl stearate in models described an increase 
in the prevalence of disease. Thus, the findings support the potential for a role of these factors in modifying the 
challenge (i.e. bacterial biofilms) and/or host responses with a loss of homeostasis and tissue destruction.

The results demonstrated altered levels of various heavy metals, including lead, cadmium and antimony in 
periodontitis patients. A range of literature has shown the toxic properties of systemic elevations in heavy metals 
from environmental sources, including lead38,39. In particular, this toxin has been linked to substantial neurotox-
icity and negative developmental processes in children40,41. This study identified, using CART analysis, an esti-
mated threshold of >2.0 µg/dL that discriminated periodontitis from health in the adult population. While this 
level does not indicate the actual blood lead level across the periodontitis group, since CART attempts to fit the 
discrimination profile in the context of multiple variables, it was clear that in all subsets of smokers, former smok-
ers and non-smokers that lead levels were elevated in periodontitis patients. An earlier evaluation of data from 
NHANES III (1988–94) demonstrated a significantly increased OR for periodontitis in both men and women 
with increased blood lead levels29. Reports examining various iterations of the Korean NHANES (KHANES) 
study demonstrated elevated lead, cadmium, or mercury in subjects with periodontitis, particularly related to 
smoking and in some instances gender associated similar to our data from NHANES42–45. An additional study 
reported that chronic occupational exposure of workers to lead resulted in significant changes in oral health and 
correlated with increasing blood lead levels46. Terrizzi et al., have reported that elevated lead levels under hypoxia 
induces alveolar bone resorption and periodontitis47. More recently they demonstrated that iNOS and PGE2 
levels are altered by lead and hypoxia as inflammatory responses that would contribute to damage of the perio-
dontium48. Furthermore, the lead levels investigated in these previous studies generally targeted levels that have 
been shown in blood to have substantial neurotoxicity (≥10 µg/dL), although levels of >5 µg/dL are considered 
deleterious49. Further studies will be required to identify the relationship of blood lead levels to severity of the 
disease, age of onset, and response to therapy, as well as biologic studies determining the impact of these altered 
levels of lead on host responses, and even the microbial ecology related to the disease process.

Polychlorinated biphenyls (PCBs) were once widely deployed as dielectric and coolant fluids in electrical 
apparatus, carbonless copy paper, and in heat transfer fluids since they do not easily degrade. PCBs’ environmen-
tal toxicity and classification as a persistent organic pollutant resulted their production and use of them being 
banned by the United States Congress in 1979. Coplanar PCBs, e.g. dioxin-like PCBs, since their structure is 
similar to dioxins, allows them to act as agonists of the aryl hydrocarbon receptor (AhR). They are considered as 
contributors to overall dioxin toxicity within the environment. The toxicity of PCBs varies considerably among 
various chemical structural iterations with the coplanar PCBs representing 12/209 possible PCB molecules (i.e. 
PCB 77, 81, 114, 118, 123, 126, 156, 157, 167, 169, 189) generally considered among the most toxic congeners with 
the majority of differences occurring in smokers and former smokers. Interestingly, the overall group of toxins 
included PCB105, PCB146, PCB172, PCB177, PCB178, PCB183, and PCB206, which are all members of the 
non-coplanar group of PCBs appeared to show the most frequent association with periodontitis. Elevated levels 
of non-coplanar PCBs, including PCB153, PCB170, PCB180 and PCB187 were detected in the blood of Canadian 
First Nations communities and were associated with elevated levels of an array of immune activation markers 
including IFNγ, IL-1ß, IL-8, IL-17A and TNFα50. Much of the molecular aspects of PCBs and host responses have 
focused on the coplanar, dioxin like congeners. The current study identified an array of PCBs that were increased 
across the periodontitis population. While some representative true dioxin molecules had increased OR for per-
iodontitis these only were noted in smokers. No other reports are available identifying PCB levels and periodon-
titis in humans or animal models, nor focusing on biologic alterations in cells related to periodontal health and 
disease, thus, this family of exposome factors could present an important area for further investigation of disease 
variation and personalized documentation of disease features within the population. Finally, a single recent report 
demonstrated that PCB126 appeared to exacerbate periodontal disease in a susceptible species of mink51.

An interesting finding was the dichotomy between the effects of selected specific nutrients on the expression 
of periodontitis. Both carotenoids and Vitamin D levels had adjusted Odds Ratios which suggested that they were 
protecting against periodontitis. Carotenoids are organic pigments found in plants and some photosynthetic 
microorganisms and carotenoids from human diets are stored in the fatty tissues. There are over 600 known 
carotenoids classified as xanthophylls (β-cryptoxanthin, lutein, and zeaxanthin; non-vitamin A carotenoids) and 
carotenes (α-carotene, β-carotene, and lycopene). Generally, the health benefits of carotenoids are thought to 
be due to their role as antioxidants with dietary carotenoids proposed to interact with endogenous antioxidant 
enzymes to positively affect immunity52. Thus, various reports have shown that elevations in acute phase proteins 
are accompanied by low vitamin A levels53 and that carotenoids significantly reduced proinflammatory cytokines, 
CRP, and other markers of inflammation in multiple tissues54. A study of inflammation in 60–70 year old men 
demonstrated an inverse relationship between elevated carotenoids and serum CRP levels55. Moreover, low blood 
levels of various carotenoids have been associated with an increased prevalence of periodontitis in 60–70 year old 
men56 and carotenoid levels were related to positive outcomes of scaling and root planing with the relationship 
limited to non-smokers57. Thus, our data from a large population cohort is consistent with these findings and the 
support that increased availability of carotenoids appears to provide some level of protection from periodontitis.
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Vitamin D has received an increasingly detailed examination regarding its potential influence in periodon-
titis. Various reports have linked decreased serum or saliva vitamin D levels with tooth loss and periodonti-
tis58–62 including in smokers63, albeit not all studies are supportive since this was not observed in postmenopausal 
women64. Additionally, a gene polymorphism for vitamin D binding protein increases the risk for periodontitis65 
that appears exacerbated in smokers25. Our analysis of this nutrient was based upon examination of NHANES 
data, and demonstrated an estimated protective feature of this serum nutrient in periodontitis, specifically in 
non-smokers and former smokers. This type of finding is consistent with additional associational data from 
NHANES related to risk of cardiometabolic disease66, asthma67, and coronary heart disease and all-cause mor-
tality68. Interestingly, a single recent report describes the interaction of an environmental exposure to phthalates 
may decrease blood levels of vitamin D69, an observation consistent with our results identifying “competing” 
impact of environmental toxins and nutrients on periodontitis as the clinical outcome.

In contrast, elevated levels of retinyl stearate and retinyl palmitate were each estimated to enhance the risk for 
periodontitis particularly in smokers. The retinoids comprise a class of compounds related to Vitamin A. These com-
pounds have been used to regulate epithelial cell growth, as well as playing a role in vision, regulation of cell prolifer-
ation and differentiation, growth of bone tissue, immune functions, and even activation of tumor suppressor genes70. 
Our data demonstrated an increased OR for blood levels of retinyl stearate and retinyl palmitate in periodontitis. 
In serum, 56% of retinyl esters are retinyl stearate, 33% retinyl palmitate, and 5% retinyl oleate. Retinyl esters in 
humans are derived from animal sources and are hydrolyzed in the intestinal lumen to form retinol and fatty acids, 
such as retinyl palmitate or stearate. Enzymes in the intestinal lumen that hydrolyze dietary retinyl esters include 
cholesterol esterase from the pancreas and a retinyl ester hydrolase intrinsic to cells of the small intestine, which pri-
marily acts on long-chain fatty acids, such as palmitate or stearate70. A single study has been reported regarding these 
compounds and periodontitis. Wang et al.71 demonstrated that all-trans retinoic acid administration modulated the 
Th17/Treg balance and can modulate the expression of periodontitis in a murine model of P. gingivalis infection and 
provided protection against periodontitis with increased Treg activation and decreased Th17 functions. However, 
our data specifically related to endogenous levels of a specific retinoid, retinyl stearate, suggested an increased risk 
for periodontitis. This may relate to the more individualized functions of the various members of this family of die-
tary nutrients, and may highlight some unique features of the diet or intrinsic variation in the hydrolytic enzymes 
across the population that may link retinyl stearate and disease. Clearly additional studies will need to be conducted 
examining in more detail the clinical relationship with this compound, as well as its potential role in affecting an 
array of inflammatory responses that would be related to periodontitis.

This report describes an associational study of a large U.S. population sampled cross-sectionally during a 5 year 
interval via the NHANES project and demonstrated statistical associations of a subset of environmental challenges to 
the expression of periodontitis. A clear limitation in the approach is that the findings do not deliver any cause and effect 
relationship, and are affected by the lack of detailed clinical evaluation of periodontitis that is generally accepted within 
the field. However, the model developed identified an interaction of these exposome factors and more classical risk fac-
tors of age, gender, and race/ethnicity, thus providing some confidence that the findings are providing additional clues 
into population variation in disease expression. The model will also enable future testing with additional NHANES 
datasets, as well as the environmental features and categorization of disease. The individual exposome components that 
were identified can be further evaluated in more detailed clinical studies, and by implementing basic biologic studies 
of the host cells and microbiome components associated with health and disease to delineate modes of actions of these 
environmental factors that could contribute to the disease processes.

Materials and Methods
population data. The NHANES is a complex, multistage probability sample of non-institutionalized U.S. 
civilians and subsequently organized into 6 unique datasets derived from 2-year cycle population sampling 
(Centers for Disease Control and Prevention; National Center for Health Statistics). Each 2-year survey cycle 
examines a representative U.S sample of approximately 10,000 persons and collects health-related data. Full 
descriptions of the sample design for these NHANES datasets are publically available (https://www.cdc.gov/nchs/
nhanes/). These surveys, using the same methods, assessed the health status of a nationally representative sam-
ple of the civilian non-institutionalized US population, selected through a stratified multistage probability sam-
pling design. In this study, periodontal examination data from three NHANES cohorts, 1999–2000, 2001–2002, 
2003–2004, were extracted and combined to comprise the study population. NHANES 1999–2000 (N = 9956), 
2001–2002 (N = 10,477) and 2003–2004 (N = 9643) enlisted persons 1 mo of age or older (https://wwwn.cdc.
gov/nchs/nhanes/Default.aspx). The analysis for this study included only the records of participants who were 
equal to and older than 18 years of age and had 16 or more teeth, which resulted 3,745 of participants in the first 
cohort (1999–2000), 4,258 participants in the second cohort (2001–2002), and 3,834 participants in the third 
cohort (2003–2004) Thus, the combined sample was 11,387. Those with missing smoking status and periodontal 
parameters were excluded leaving a final analytical sample of 8,884 participants.

These data have been merged and processed and can be found at https://github.com/joshuawlambert/
PinarEtal2018/raw/master/data.zip. A unique identifier, SEQN https://wwwn.cdc.gov/Nchs/Nhanes/1999–2000/
DEMO.htm#SEQN for the NHANES participant from our years of study (1999–2004) is included in these data.

Demographics. The demographic variables considered in this study included age, gender, race, socio-economic 
status, smoking status, and number of teeth. Racial-ethnic groups were summarized into five categories: Mexican 
American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and Other Race. Socio-economic status, 
estimated using the poverty income ratio, was computed as the ratio of family/individual income to the appropriate 
federal poverty threshold. Smoking status, current smoker, former smoker, non-smoker, was derived from the two 
self-reported questions. Participants reported having historically smoked more than 100 cigarettes, but currently not 
smoking were defined as former smokers. Non-smokers were defined as reporting never smoking.
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Clinical parameters. Periodontitis was defined as a minimum of 2 or more sites with clinical attachment 
loss (CAL) ≥3 mm and a periodontal pocket ≥4 mm as described by Eke et al.72. NHANES (1999–2004) used 
the partial-mouth periodontal examination (PMPE) protocol to sample teeth and sites. The PMPE protocols 
randomly selected two quadrants of the mouth and specified 2 to 3 sites per tooth for measurement of pocket 
depth, attachment loss, and bleed on probing. In 1999–2000, two sites per tooth (mid-facial and mesio-facial) 
were measured, while three sites per tooth (mid-facial, mesio-facial and distal) were measured in 2001–2002 and 
2003–2004. Dentists trained in the survey examination protocol conducted the periodontal examinations collect-
ing probing depth and attachment loss and bleeding on probing measurements73–75.

environmental variables. The environmental factors were categorized into 15 classes based on NHANES 
categorization. Environmental variables measured in at least one of the three data cohorts (i.e. 1999–2004) were 
included in the study. A total of 156 environmental factors were measured in the NHANES data using blood and 
urine samples. These included chemical toxicants, pollutants, allergens, bacterial/viral organisms and nutrients. 
Environmental factors with laboratory measurements that had greater than 10% of the observations below a 
detection limit threshold defined by NHANES were omitted from analysis. The laboratory measurements using 
mass spectrometry and absorption spectroscopy demonstrated that the majority of the variables were detected in 
small ranges and were skewed and thus all 156 environmental variables were log-transformed (natural), stand-
ardized, and referred to as “processed”.

statistical approaches. Survey-weighted logistic regressions were performed for each of the processed 
environmental factors, adjusting for age, gender, ethnicity, socio-economic status, smoking status and num-
ber of teeth. The R package “survey” was used in R (Version 3.1.2) for the survey-weighted logistic regression. 
Weights were constructed in SAS (Version 9.4) using a 6 year weighting design from the NHANES variable 
WTMEC2YR73 (http://www.cdc.gov/nchs/tutorials/Nhanes/SurveyDesign/Weighting/Task2.htm). Survey 
weighted logistic regression seeks to minimize bias by weighting the samples to reflect the intended population. 
By doing this, better estimates of the standard error are obtained. The Odds Ratio estimates, Standard Errors, 95% 
CI, and FDRs were provided to demonstrate the association between the individual factors and periodontitis. 
These regressions were repeated by smoking status to examine potential associations within smoking categories.

Random forests (RF) and classification and regression trees (CART) were employed to investigate associations 
and potential interactions between environmental factors, demographic and socioeconomic characteristics, and 
periodontitis disease status for each smoking status76. Specifically, for each smoking status RF was used to identify 
important factors (main effects and interactions) and then a single CART was used to visually investigate these 
relationships. Variables which were in the top ten for variable importance, were subsequently used to build a 
CART model with minimum node size of 100 and Bonferroni test for the stopping criteria. These methods were 
selected because the data involved many potentially correlated environmental factors and had the ability to allow 
nonlinearities and interactions without modeling them explicitly77. These analyses were performed using the 
“party”website (Version 1.0–25) package in R (Version 3.1.2). Repository for the data, R code, and SAS code can 
be accessed at https://github.com/joshuawlambert/PinarEtal2018.
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