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Abstract

Load Scheduling with Maximum Demand and Time of Use pricing for

Microgrids

By Hayder Okab Alwan

A Dissertation submitted in partial fulfillment of the requiremnts for the degree of

Doctor of Philosophy at Virginia Commonwealth University

Master of Electrical engineering, Baghdad University, 2009

Adviser: Dr.Sherif Abdelwahed

Professor, Department of Electrical & Computer Engineering

Several demand side management (DSM) techniques and algorithms have been

used in the literature. These algorithms show that by adopting DSM and Time-

of-Use (TOU) price tariffs; electricity cost significantly decreases, and optimal load

scheduling is achieved. However, the purpose of the DSM is to not only lower the

electricity cost, but also to avoid the peak load even if the electricity prices low.

To address this concern, this dissertation starts with a brief literature review on

the existing DSM algorithms and schemes. These algorithms can be suitable for

Direct Load Control (DLC) schemes, Demand Response (DR), and load scheduling

strategies.



Secondly, the dissertations compares two of DSM algorithms to show the perfor-

mance based on cost minimization, voltage fluctuation, and system power loss [see in

Chapter 5]. The results show the importance of balance between objectives such as

electricity cost minimization, peak load occurrence, and voltage fluctuation evolution

while simultaneously optimizing the cost.

The second optimization algorithm has potential to provide more value to the

customer in reducing the cost. This is done by evaluating the voltage of the entire

system and subsequently avoiding the use the appliances at high peak load during

the time when the electricity price period is high. In other words, a good DSM

algorithm should have the objective to minimize the electricity cost for the customer

and maximize the customer convenience to handle large number of appliances of

several types.

The objective of the first part of the dissertation is to set up an optimization

model for the offline household demand side management. The goal is to reschedule

the energy consumption, taking into account the day-ahead dynamic electricity price

[13] and the real production of the photovoltaic system.

The proposed optimization-based model aims to reduce the total electricity bill

but ensuring a comfortable user experience at home. This model can effectively

minimize the energy consumption cost for day-ahead time horizon according to the

forecasted electricity price.

Compared to other related work in the literature, this work has following key

contributions: 1) the proposed DSM model incorporates economic benefits of local

solar PV generation along with negative impacts on voltage fluctuations and deviation

in the distribution network. It should be noted here that most reference works ignore

voltage problem in the presence of photovoltaic system. 2) The first part proposes

a practical model for demand side management with a flexible penalty approach to

i



account for the inconvenience caused by deviation from customer desired schedule.

In other words, customer inconveniences caused by DSM schedule will be translated

into additional compensation cost in the optimization objective function which is

calculated based on some customized rate and intends to effectively discourage or

reduce unnecessary load shifting or changes.

In the second part of the dissertation, an optimization model for a multiple

residential households and two size of commercial loads small and large with a rooftop

PV installation was implemented. This algorithm can take into consideration the

evolution of the system performance in terms of operation parameter such as voltage

fluctuation, power loss of the entire system, and the PV utilization efficiency while

optimizing the electricity cost. In addition the proposed algorithm can handle large

number of controllable appliances in two types of loads residential and commercial

taking into consideration the fact that certain appliances may have higher priority

over other appliances so that these appliances may be shifted to the suitable time. In

the simulation process the algorithm classifies the commercial appliances into three

categories: high, med and low. The appliances in each category subjected to different

penalty prices according to the importance of the appliance.

The key technical contributions of the third part made in this thesis can be

summarized as follows: (1) An optimal load scheduling approach exploited to appro-

priately manage the operations of appliances and allocate the domestic appliances

to the time slots with low costs in accordance to the day ahead price information

provided by Virginia power company; (2) based on the Clonal Selection Algorithm

(CSA), an optimization method is designed and implemented to achieve the optimal

schedule that can help consumer to minimize the daily energy cost; (3) study the

advantage of using small isolated power system of PV profile to be connected to the

household to study the contribution of this source on the energy cost, this study deals

ii



with power scheduling in PV using the clonal selection algorithm (CSA ) to obtain

the least cost of electricity.
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CHAPTER 1

1.1 Introduction

Considering the pressure on global natural energy resources, the new power grids

aim to enable the customers to play a virtual role as an active participant instead of

passive consumption points. With this in mind, and based on the real-time electricity

prices, the smart end-users can reduce their consumption cost by scheduling their

pattern of electricity usage. Indeed, active end-users can receive relevant technical

data from the load service entities and plan the operation of all appliances with the

predefined aim under typical constraints such as costumer preferences and load service

restrictions [1]. With this motivation, several approaches are recently suggested for

the optimal in-home power consumption.

Demand Side Management (DSM) techniques are used and implemented to

schedule loads at the consumer level to save energy, reduce cost, and help grid oper-

ation; however, it is impractical to request a consumer, who is neither an economist

nor an experienced grid operator, to create an optimal schedule from the many pos-

sibilities [2]. Therefore, implementation of load scheduling methods helps consumers

to maintain low energy cost. Demand side management also plays a significant role in

the electricity market [3] [4]. DSM generally refers to actions taken by the consumer

to change the electricity demand in response to variations in the electricity prices over

time [5].

1



1.2 Overall Objective

The objective of this work is to set up an optimization model for the offline house-

hold demand side management. The goal is to reschedule the energy consumption,

taking into account the day-ahead dynamic electricity price [13] and the real pro-

duction of the photovoltaic system. The proposed optimization-based model aims to

reduce the total electricity bill but still ensure a comfortable user experience at home.

This model can effectively minimize the energy consumption cost for day- ahead time

horizon according to the forecasted electricity price. As such, our work is focused on

two distinct applications: 1) proposed household DSM model is aimed to minimize

the electricity cost by scheduling the on/off status of domestic appliances over the

operational periods, considering the dynamic electricity prices, locally available PV

generation, and the penalty prices of appliance operation time-shifting which are in-

cluded in order to manage the customer inconvenience caused by the proposed DSM

program , and 2) extends the single household case to that of multiple households and

commercial load. Using the developed simulation model we evaluate the performance

of decentralized DSM and study their impact on the distribution network operation

and renewable integration, in terms of utilization efficiency of rooftop PV generation,

voltage fluctuation and real power loss.

For the first application proposes a DSM model incorporating economic benefits

of local solar PV generation along with negative impacts on voltage fluctuations and

deviation in the distribution network. It should be noted here that most reference

works ignore the voltage problem in the presence of photovoltaic system. Also, this

model proposed a practical model for demand side management with a flexible penalty

approach to account for the inconvenience caused by deviation from the customers

desired schedule. In other words, customer inconveniences caused by a DSM schedule

2



will be translated into additional compensation cost in the optimization objective

function which is calculated based on some customized rate and intends to effectively

discourage or reduce unnecessary load shifting or changes.

For the second application, we proposed a framework to study both commercial

and residential decentralized demand side management together in a radial distributed

network. Each smart building makes individual appliance scheduling to optimize the

electric energy cost according to the day-ahead forecast of electricity prices and its

willingness for convenience sacrifice.

For practical modeling of DSM for different load types, a compound penalty price

is considered to account for appliances importance and customer willingness for DSM

participation.

Using the developed simulation model we examine the performance of decen-

tralized DSM by comparing its impact on the distribution network operation and

renewable integration, in terms of utilization efficiency of rooftop PV generation,

voltage fluctuation and real power loss. It is found that in a distribution network

which includes both residential and commercial loads, residential DSM has better

performance in sense of electricity cost saving, energy loss reduction and voltage

fluctuation.

Demand Side Management (DSM) strategies are often associated with the ob-

jectives of smoothing the load curve and reducing peak load. Although, the future

of demand side management is technically dependent on remote and automatic con-

trol of residential loads, the end-users play a significant role by shifting the use of

appliances to the off-peak hours when they are exposed to day-ahead market price.

This work proposes an optimum solution to the problem of scheduling of household

demand side management in the presence of PV generation under a set of technical

constraints such as dynamic electricity pricing and voltage deviation.

3



The proposed solution is implemented based on the Clonal Selection Algorithm

(CSA). This solution is evaluated through a set of scenarios and simulation results

show that the proposed approach results in the reduction of electricity bills and the

import of energy from the grid. Simulation was carried out assuming three types

of appliances: base line load, uninterruptible and interruptible appliances using the

Clonal Selection Classification Algorithm (CSCA), an artificial immune system tech-

nique that inspired by the functioning of the clonal selection theory. This proposal

also studies power scheduling in a PV base renewable system using CSA, to obtain

the least cost of electricity. It encourages people to make use of possible wind and

solar potential from the environment aspect.

1.3 Background Information

In recent years, the electricity networks have started to change, with a wide range

of distributed energy suppliers from wind turbine to photovoltaic systems. Along

with distribution networks, modern communication infrastructures have also begun

to be installed, in order to support and improve the reliability and efficiency of the

power networks [1]. In this new electricity network, a large number of data sets are

available for residential consumers to improve the energy consumption policies, by

means of changing their habits in using household appliances [2], [3]. In order to

evaluate the effectiveness of an energy management system, electricity demand needs

to be analyzed in a high-resolution fashion [3]. This is required in order to identify

which type of electricity activities can be modified without any weighty impact on the

consumers lifestyle and freedom [4]-[5]. During the last decade, various models have

been proposed to define household demand side management strategies for improving

the performance of the distribution networks.

But the focuses and contributions of the models tends to be different. Reference

4



Fig. 1. Overview of electricity Distribution network
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[6], proposed a model that based on devices future usage, the consumer is able to

optimally schedule home appliances activities for the next day and with the goal of

minimizing the electricity bill. In [7]-[8], real-time monitoring system is presented as

an effective way to improve the efficiency of different control methods in the energy

management system. This model provides a great potential to control the activities

of appliances especially the indoor temperature control devices. In reference [9]; the

design of a genetic algorithm based control method is presented in order to reduce

the electricity bill but still consider user freedom at home. According to the results

presented in [9], this method can reduce the total electricity cost considering the

real-time monitoring system and the electricity price. In reference [10], the authors

propose an approach to model consumer demand at the appliance level.

Regarding the impact of renewable energy resources, many research works have

been carried out in the literature. A high penetration of distributed generation can

lead to problems in low voltage distribution networks. In [11], the authors proposed

an active DSM model to address issues of integration of renewable energy resources

in distribution networks, this dissertation considered uncertainties in load and power

and proposed multi MGs power dispatch at smart distribution grids. Reference [12]

provided a mathematical definition for electricity generation optimization in a typical

residential load with different energy systems combined heat and a battery system.

Demand side management (DSM) aims to efficiently manage electrical power con-

sumption by engaging energy customers, through offering incentives and price-based

signals to alter their consumption patterns or directly controlling their loads [14].

DSM has attracted significant attention among the DSM research.

References [15] and [16] proposed algorithms to schedule the residential loads

and minimize the electricity cost. Authors in [17] proposed a scheduling approach of

operation and energy consumption of various electrical appliances in a grid connected

6



smart home system. Reference [18] developed a multi-household simulation frame-

work to study the decentralized DSM in a residential distribution network. In [19],

a coordinated algorithm is proposed to minimize the users payments. The proposed

algorithm controls both the household load and distributed energy resources (DERs)

(e.g., PV units).

In reference [20], demand side management strategy is proposed for smart grid for

three different areas: residential, commercial, and industrial. This strategy is based

on load shifting technique for future smart grid. A new optimization technique with

a simple linear programming algorithm was used to minimize the energy cost based

on real-time demand response and renewable energy resource [21]. Reference [22]

provides a home energy management approach based on the neural network analysis

with respect to PV and energy storage system.

The major goal of DSM in References [1]-[6] is to efficiently manage the loads

is such a way that will eventually improve the efficiency of the grid, reduce costly

generation, decrease excessive load pressure, increase power system stability and sus-

tainability by maximizing system capacity without changing whole physical infras-

tructure of the power system. For instance, when researchers in [1] and [2] focused on

the household DSM, they mainly neglected PV utilization efficiency, maximum de-

mand limit, and the customers welfare. While load scheduling schemes for scheduling

residential loads consumption proposed in [3]-[5]. Ref. [4], a combination of DSM

and TOU tariffs, significantly decreases the cost of energy with a high utilization of

PV generation power using a heuristicbase load scheduling scheme is proposed in [3],

these references preset a demand side management strategy based on load shifting

technique in three service areas; residential commercial and industrial.

In some references authors take into the regard the priority of the operation

time for each appliance by proposed time delay function to minimize the customer

7



discomfort. In this work the price rate signal used in the residential load different

from the price rate used in the commercial load. Ref [5] proposed a multi sage

optimization for a typical home energy with assuming a rooftop solar PV; the first

thing to mention in this paper is that the proposed algorithm assumed that the

surplus power will injected to the grid with a reward, the second thing is that the

case study of this paper considered the appliances preference and no penalty was

assumed for the shifted appliances. In [6], a residential load scheduling approach

proposed to manage the operation time and to achieve optimal daily usage of DGs

that locally available, a genetic algorithm is designed and implemented and two levels

of optimization based on the DG based scheduling and RTP-based scheduling, while

in our work the objective function minimize the cost by finding optimal load schedule

and make the best use of PV generation power. Our objective function we include

penalty cost and power loss.

DSM can also be performed by using Direct Load Control (DLC). References

[7]-[15] illustrate that DSM can be performed by using DLC, utility manage the

customer consumption using this method, and customers appliance can be controlled

by information technology (IT). Different types of algorithm are used for DLC, the

authors propose an optimization algorithm that can apply with either on or of time to

manage and control the load in residential and industrial. Also, its found that DCL

can also be used to reduce the peak load for the large scale residential demand response

implantation. Different optimization techniques based on dynamic programming are

used to achieve the optimal DLC strategy. For example, a Genetic algorithm is used

to optimize the scheduling of direct load control (DCL) strategies, and integer linear

programming .Its mentioning that in some DLC optimization algorithm used only

for certain appliances in a household, for example refrigerator, or air conditioning .

However in our work the algorithm implemented used was developed to cover a variety
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of appliances in different types of loads such as commercial loads and residential.

In references [16]-[24], Demand Response (DR) where users are motived to be

an active participant to manage their loads by reducing their consumption at peak

load hours can be the alternative of the DLC. In this regard, the most common

DR includes critical-peak pricing (CPP), time-of-use pricing (TOUP), and real-time

pricing (RTP). For example, in RTP tariffs, the price of electricity changes at different

hours of the day, while the in TOUP electricity prices are previously determined and

the consumer shifts the operation time of the load accordingly. In real time pricing

the problem is that it is difficult and confusing for the consumer to respond to the

variation in the price every hour also peak load may occurs in the low-price time

period. The peak load may cause instability in the system; therefore, it would be

important to deploy TOUP price with max demand limit as block rates. In fact, this

what we include in our research project while we apply the optimization scheduling

technique.

Several methods and studies have been implemented over the past two decades

in order to minimize the electricity cost-based day-ahead price. In these references

DLC algorithm using linear programming was developed, the results show that the

electricity cost charged to the customers reduced after participating in DCL program.

Its worth mentioning that smart pricing adopted to achieve lower electricity cost,

propose power scheduling for demand response in smart grid system, results show

that the proposed scheme leads to reduce the peak demand.

References [21]-[24] proposed direct load control based on a linear program al-

gorithm to manage large number of customers with controlling appliances in order

to achieve maximum load reduction. These linear program models were developed

in the references to optimize system peak period load reduction in commercial and

residential loads. Also, the authors adopted some heuristic based evolutionary algo-
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rithm (EA), these algorithms were also used for energy management applied for load

scheduling for DCL based on load shifting, and this algorithm easily adapts heuristic

in the problem. In our proposal Colonial Selection Algorithm (CSA) method is based

on the biological immune system and the natural defense mechanism of human body.

In CSA the limitation is that the quality of the results depends highly on the initial

population and the probabilities of the mutation. The population size in our work

makes the algorithm converge towards high quality solutions within a few generations,

also its easy to implement and fast convergence.

The main difference between CSA and PSO is that PSO doesnt have genetic

operators with such mutation, but both CSA and PSO shares one aspect thats is

they have memory which means they save the last iterations and updates during the

optimization process. According to literature in these references, PSO is similar to

the genetic algorithm GA as they both have population-based search, in PSO the

memory is important to the algorithm.

In references [25]-[28] to the problem of scheduling of household demand side

management in the presence of PV generation took more attention. For instance,

in [25] optimal scheduling and controlling approach which performs the scheduling

of household appliances and management of local energy resources has been studied.

A high penetration of distributed generation can lead to problems in low voltage

distribution networks, for this there exists a good review of the literature in these

references mainly focused on PV penetration limit due to voltage violation in the

low-level networks. Some of the proposed techniques are based on real-time demand

response and renewable energy. The proposed techniques do not consider the impor-

tance of balance between the objectives, such as energy cost minimization, peak load

minimization and user evaluation of voltage fluctuation, also the voltage monitoring

part was absence from the constraints, and beside the voltage limitation has to be
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taken into account. In another word, a good DSM algorithm should have an objective

that should cover the minimizing the electricity cost and maximizing the consumer

convenient and handle a large number of appliances of several types.

References [29]-[38] focused on load scheduling methods based on a day-a head

optimization process to reduce the users electricity bill by producing or storing energy

to lessen their energy purchased from the grid. Load management technique for the

air conditioner enable a consumer with small air conditioner appliances to participate

in various load management programs such that they can be motivated by incentives

from the utilities to lower their monthly electricity bills. The work in [36] smart load

management is developed for coordinate the scheduling electric vehicles, considering

the grid performance such as voltage limit and the total system power loss. In [37] and

[38] distribution charging problem in electric vehicle propose, the authors proposed

model aims to find the optimal starting time for charging the battery to minimize the

cost delivered by the transformer.

The DSM techniques used in [39]-[42] reduce the peak load of the grid proposed,

the idea in this technique that the load demand provides from the user side using

the smart power system and the energy provider update the energy price accordingly.

The outcomes these references illustrate that the daily power consumption pattern

can be smoother and more controlled through different DSM schemes. For example,

the Demand response scheduling under load uncertainty based on real-time pricing

in a residential grid presented in [40, 41, and 42]; in these references, the authors

used game theory to obtain the optimal load consumption pattern based on provided

price, and the authors model the interaction between the energy provider and the

consumer using game theory.

In [43-49] researches covered optimization of the performance of the micro grid to

make the best use of the renewable generation resource and to reduce the dependency
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on grid energy provider. For example, in [43] and [45] propose energy management

system models including PV generators with storage units. While in [44] the author

introduces a residential PV generation energy storage system that considers the pat-

tern of daily operation load of the homeowner. The benefit of a storage system in

local residential PV installation is presented in [46] and [47], where the authors study

the impact of PV on the quality of the low voltage network.

In addition, works [48] [51] proposed scheduling schemes in smart grid environ-

ment, in order to improve the quality of the power grid and to enable the consumer

to reshape his production and consumption pattern. Moreover, these references are

optimal residential load scheduling models using mixed integer linear programming.

The proposed model also presents the integration of the renewable generation with a

battery storage system. The model aims to help the consumer reschedule the appli-

ances to get optimal benefit and to minimize the electricity bill. The author in [50]

proposed an optimal scheduling technique for residential appliances in smart home

with local PV generation; Results indicate that the proposed strategy has the capabil-

ity of maximizing the savings in electricity cost. The work in [51] studies scheduling

of different types of appliances by adopting dynamic programming-based game theo-

retic approach. Its assumed that the consumers with extra power generation can sell

with specified price so that they can reach the maximum revenue and reduce their

electricity bill.

1.4 Limitations of the Current Micro grid Literature. Contribution

Based on the conducted literature review, we can see current related work.

1. The DSM programs that have been used (e.g. [33], [34], [41]), proposed an effi-

cient energy management system to schedule the electricity use of appliances to

achieve the maximal benefits for customers considering all three types of appli-
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ances; base, interruptible, and curtailable appliances. The proposed algorithms

do not consider the importance of balance between the objectives energy cost

minimization, and peak load minimization. While in this work, a DSM model is

proposed and mathematical models for the grid, and renewable energy resource

represented by rooftop PV generation are presented as well as for different type

of electrical appliances in different types of loads commercial and residential.

This model can effectively minimize the energy consumption cost for day-ahead

time. consumption cost for day-ahead time.

2. The DSM techniques and algorithms used in [12], [14], and [27]. propose a

consumption scheduling mechanism for home area load management in smart

grid using integer linear programming (ILP) technique Most of them are system

specific [12], [13], [10], and some of which are not applicable to practical systems

that have a wide variety of independent appliances. Moreover, the techniques

were developed in [10], [19] using a linear program. These algorithms and

techniques cannot handle a large number of controllable devices from several

types of loads which have several consumption patterns.

3. The (time of-use price) TOUP methods proposed in [38], [40] and [46] applied

to achieve low electricity cost. However, the purpose of the demand side man-

agement is not only to achieve optimal electricity cost but also to prevent higher

power demand peaks even if the electricity price is low. From this point of view,

TOUP applied in these references still has one defect which would be that it

causes the demand to be shifted to hours with low electricity price, and that

would lead to a higher peak electricity demand and peak-to-average ratio during

the low-price time. Therefore, a combination of time of use price with a fixed

threshold which represent max demand is necessary.
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4. Most of DLC optimization algorithms are used for certain appliances in a house-

hold, for example refrigerator and air conditioning [34] - [37] which are catego-

rized as residential load. However, in this work, the algorithm implemented used

was developed and expanded to cover a variety of appliances in different types

of loads such commercial load and residential household although they have dif-

ferent characteristics in terms of load profile, electricity price, appliances, and

their customer willingness for DSM participation.

5. Ref. [17], appropriate TOUP profiles were used for both residential and commer-

cial loads. In fact, the profiles were different for each load [49]. This algorithm

takes into the regard the voltage fluctuation evaluation and the power loss of the

entire system while optimizing the electricity cost. The goal is to reschedule the

energy consumption, considering the day-ahead dynamic electricity price and

the real production of the photovoltaic system.

6. According to [24] PSO the limitation is that the quality of the results depends

highly on the initial population and the probabilities of the mutation. The

population size in my work makes the algorithm converge towards high quality

solutions within a few generations, also its easy to implement and has a fast

convergence. The main difference between CSA and PSO is that PSO doesnt

have genetic operators with such mutations, but both CSA and PSO shares one

aspect in that they have memory which means they save the last iterations and

updates during the optimization process. The PSO is similar to the genetic

algorithm GA as they are both population-based search, in PSO the memory is

important to the algorithm.

The proposed approach may be used in demand side management systems to help

household owners to automatically create optimal load operation schedules based on
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comfort settings of choice and in the presence of dynamic electricity pricing and PV

system or can be manually controlled or programmed using a set . In appendix B a

table of existing models for DSM used for energy management some of these refer-

ences discussed results applicable for program managers who are considering Home

Energy Management System (HEMS) programs , HEMS can be broadly defined as a

system that enable households to manage their energy consumption (including hard-

ware and software linked via a network)[76]. According to Ref. [77] HEMS Can be

in different forms.

Summary

This part of the dissertation gives a brief survey of DSM techniques and algo-

rithms. The DSM programs that have been used in some references proposed an

efficient energy management system to schedule the electricity use of appliances to

achieve maximum benefits for customers considering all three types of appliances;

base, interruptible, and curtailable appliances.

According to the conducting survey :

1. Monitoring the system operational condition while minimizing the

energy cost.

The proposed algorithms do not consider the importance of balance between the

objectives, while the main advantages of our proposed algorithm is the ability

to monitor the voltage fluctuation and power loss of the entire system while

optimizing the electricity cost and avoiding the peak load occurrence.

2. The proposed algorithm can handle large number of controllable ap-

pliances.
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The proposed DSM model is proposed and mathematical models for the grid,

renewable energy resource represented by rooftop PV generation are presented

as well as for different type of electrical appliances in different types of loads

commercial and residential. This model can effectively minimize the energy

consumption cost for day-ahead time.

3. Modeled the customer inconveniences caused by DSM schedule.

The customer inconveniences caused by DSM schedule will be translated into

additional compensation cost in the optimization objective function.

4. The Operation time of the appliances.

The proposed algorithm also take into consideration the fact that certain appli-

ances may have higher priority over other appliances so that these appliances

have to operate in their specified time; hence these type of appliances have less

DSM participation.

1.5 Demand Side Management Techniques:

Six main methods are included in DSM techniques to alter the load profile curve.

These are: 1) peak clipping 2) valley filling 3) load shifting 4) strategic conservation

5) strategic load growth and 6) flexible load shape. In Fig. 2 these six DSM strategies

are illustrated [3], [52]. Cutting off the peak which is higher a certain load range is

called peak clipping. In case of peak clipping, load is directly controlled to reduce

the stress of demand during peak period, but consumers comfort will be effected

accordingly.

Valley filling means rise the loads in the off-peak period by using the storing

energy in batteries or charging electric vehicles [53]. Load shifting technique aims to

shift some of the load during the on-peak loads to off-peak periods, thus lessen the
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Fig. 2. Basic load shape techniques [17]

high-power demand during peak load time. Load shifting technique is widely applied

as the most efficient load management in the distribution networks. At consumer sites

by directly apply demand reduction technique, strategic conservation aims to achieve

the optimal load consumption profile. In case of large demand, regular response is

optimized by strategic load growth. The reliability of a smart grid is prominently

dependent on the Flexible load shape. Utilities stimulate the consumers through var-

ious incentives to be willingly participate in the load control scheme during critical

load periods. [19]. Different DSM techniques are applicable in different cases taking

into the regard the concept of applying optimizing algorithm.

The proposed approach may be used in demand side management systems to help

household owners to automatically create optimal load operation schedules based on

comfort settings of choice and in the presence of dynamic electricity pricing and PV

system or can be manually controlled or programmed using a set . In appendix B a

table of existing models for DSM used for energy management some of these references
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discussed results applicable for program managers who are considering Home Energy

Management System (HEMS) programs , HEMS can be broadly defined as a system

that enable households to manage their energy consumption (including hardware and

software linked via a network)[77]. According to Ref. [78] HEMS Can be in different

forms:

1.6 Demand Side Management in smart grid:

In the power network system, the advance technologies enabled two way of com-

munication involving advance sensors, intelligent control, self-maintain grid, control

strategies and measuring capability for the growing of the widespread monitoring,

security of delivering and reliability of the power network, which these days can be

termed as Smart Grid [1]. Smart Grids major challenge is the ability of connecting

the utilities and the customers with the help of bidirectional connection to ensure

efficient demand side management.

The main purpose of DSM is to efficiently reshape the loads is such a way that will

eventually improve the efficiency of the grid, decrease the cost of the generated power,

reduce the excessive load peak, and increase the network stability and reliability by

maximizing power system capacity without adding more generation unites. [53].

Existing grids transformation into smart grid will open a pristine future of demand

side management. From renewable energy resources, a major portion of generated

electricity is expected to be utilize in a smart grid, although they are discontinuous

resources, so the uncertainty is a challenge for the grid. Load control techniques

became important for such scenario. Moreover, DSM system should be capable of

dealing with the grid communication infrastructure between manageable loads and

central controller [5], [6].

The range of various stander of optimal load consumption can be very broad.
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Fig. 3. An example of architecture in smart grid [76]

Some of the standers could be maximizing penetration of distributed generation,

reduce peak load demand, improve economic benefits by offering rewards to the cus-

tomer to voluntarily lessen the demand during high peak periods [7]-[8]. In general,

a smart grid is the collection of a traditional distribution network and a bidirectional

connection network for control, monitoring, and sending of information on energy

consumptions. An example of architecture in a smart grid is shown in Fig.3. A typ-

ical smart grid includes of multiple power generating unites and power consuming

entities, all linked through the grid. The generators unit provide the energy into the

grid and consumers draw energy from the grid.

1.7 Direct Load Control (DLC)

Modern DLC plans delivered by the energy provider are generally based on the

contract signing up between the customers and the utility, i.e., customers give utilities
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the option to control the appliances remotely by shutting down part of the load

during high peak demand time or power supply contingency, thus, receive incentive

on electricity cost for this participation.

These plans have been considered by many utilities, e.g., [25], [26]. Several re-

strictions occur for these kinds of direct load control DLC programs. First, they are

only for emergency situations so that they do not fully utilize operational flexibil-

ities of appliances to help control the power delivered and demand. Second, when

the customer load is large, the design of the local control scheme used in modern

DLC programs is complicated both in terms of calculation and communication in-

frastructure requirements. Third, another weakness of current direct load control

(DLC) programs is the customers privacy matters because their power consumption

profile is exposed whenever each single appliance is remotely rescheduled by a central

controller.

DSM can be performed by using DLC, utility manage the customer consumption

load using this method, and customers appliance can be controlled by information

technology (IT) [27]. Different type of algorithms used for DLC, in [28] the author

propose an optimization algorithm that can apply with either on or of time to manage

and control the load in residential and industrial.

Direct Load Control (DCL) can be used to reduce the peak load for the large-

scale residential demand response implantation [29], in [30] an optimization technique

based on dynamic programming was used to achieve the optimal DLC strategy. Ge-

netic algorithm used to optimize the scheduling of DCL strategies [31], and integer

linear programming in [32]. Its worth to mention that in some DLC optimization

algorithm used for certain appliances in a household, for example refrigerator, air

conditioning [33-35], [55]. However, in our work the algorithm implemented used de-

veloped to cover a variety of appliances in different types of loads such commercial
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load and residential although household.

1.8 Demand Response (DR) and Load Scheduling

Users are motived to be an active participants to manage their loads by reducing

their consumption at peak load hours can be the alternative of the DLC [36]-[37]. In

this regard, the most common DR include critical-peak pricing (CPP), time-of-use

pricing (TOUP), and real-time pricing (RTP). For example, in RTP tariffs, the price

of electricity changes at different hours of the day, while the in TOUP electricity

prices are previously determined and the consumer shift the operation time of the

load accordingly.

In real time pricing the problem is that is difficult and confusing for the consumer

to response to the variation in the price every hour and also peak load may occurs

in the low-price time period [38].The peak load may cause instability in the system;

therefore, it would be important to deploy TOUP price with max demand limit as

block rates. In fact this what it included in the optimization scheduling technique.

Several methods and studies have been implemented over the past two decades in

order to minimize the electricity cost based day-head price. In [39] DLC algorithm

using linear programming developed, the results show that the electricity cost charged

to the customers reduced after participating in DCL program. Smart pricing adopted

[40] to achieve lower electricity cost, propose a power scheduling for demand response

in smart grid system, results show that the proposed scheme leads to reduce the peak

demand.

In [41] proposed direct load control based on linear program algorithm to control

large number of customers with controlling appliances in order to achieve maximum

load reduction. Another linear program model was developed in [42] to optimize
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system peak demand period, load reduction in commercial area, and residential load.

Heuristic based evolutionary algorithm (EA) also used for energy management in

[43] applied for load scheduling for DCL based on load shifting, this algorithm easily

adapts heuristic in the problem.

In our dissetration Colonial Selection Algorithm (CSA) method based on the

biological immune system and the natural defense mechanism of human body. In

CSA the limitation is that the quality of the results depends highly on the initial

population and the probabilities of the mutation. The population size in my work

makes the algorithm converge towards high quality solutions within a few generations,

also its easy to implement and fast convergence. The main difference between CSA

and PSO is that PSO doesnt have genetic operators such mutation, but both CSA

and PSO shares one aspect thats is they have memory which means they save the

last iterations and updates during the optimization process.

According to [44] PSO similar to the genetic algorithm GA as they both population-

based search. Over the years an optimum solution to the problem of scheduling of

household demand side management in the presence of PV generation took more at-

tention. In [45] optimal scheduling and controlling approach has been studied which

performs the scheduling of household appliances and management of local energy re-

sources. A high penetration of distributed generation can lead to problems in low

voltage distribution networks, for this a good review of the literature in [46] focused

on PV penetration limit due to voltage violation in the low-level networks.

In [47] the author proposed an optimization technique base real-time demand

response and renewable energy. Optimal load scheduling of households appliances

and management of local resource approach assuming a rooftop solar PV.

In [63-69] researches covered optimization of the performance of the micro grid

to make the best use of the renewable generation resource and to reduce the depen-

22



dency on energy provider. For example, in [63] and [65] energy management system

model proposed including PV generators with storage units. While in [64] the author

introduces a residential PV generation energy storage system consider the pattern of

daily operation load of the homeowner.

The benefit of a storage system in local residential PV installation presents in

[66] and [67], the authors study the impact of PV on the quality of the low voltage

network. As highlighted in [68] the proposed techniques did not considered the im-

portance of balance between the objectives, such as energy cost minimization, peak

load minimization and user comfort maximization. In another word a good DSM

algorithm should have the objective that should cover the minimized the electricity

cost and maximizing the consumer convenient and handle large number of appliances

of several types.

In [70, 71, 72 and 73] a DMS methods based on a day -a head optimization process

to reduce the user electricity bill by producing or storing energy. Ref. [74] proposes a

new controller for peak load shaving and scheduling power consumption of domestic

electric water heater using binary particle swarm optimization. Ref. [55] proposed

load management technique for the air conditioner to enables consumer with small

air conditioner appliances to participate in various load management programs such

that they can be motivated by incentives from the utilities to lower their monthly

electricity bills. The work in [56] smart load management is developed for coordinate

the scheduling electric vehicles. In [57] and [58] the authors proposed model which

aims to find the optimal starting time for charging the battery to minimize the cost

delivered by the transformer.

A DSM technique to reduce the peak load of the grid proposed in [59], the idea in

this technique is that the load demand provide of the user side using the smart power

system and the energy provider update the energy price accordingly. The outcomes
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from previous researches illustrate that the daily power consumption pattern can be

smother and more controlled through different DSM schemes.

Demand response scheduling under load uncertainty based on real-time pricing in a

residential grid presented in [60, 61, and 62], in these references, authors used game

theory to obtain the optimal load consumption pattern based on provided price, and

the authors model the interaction between the energy provider and the consumer using

game theory. In additional, several works proposed scheduling schemes in smart grid

environment [6872], In order to improve the quality of the power grid and to enable

the consumer to reshape his production and consumption pattern. For instance,

[68, 69 and 70] propose an optimal residential load scheduling models using mixed

integer linear programming. The proposed model also presents the integration of

the renewable generation with battery storage system. The model aims to help the

consumer to reschedule the appliances to get optimal benefit and to minimize the

electricity bill.

The author in [70] proposed an optimal scheduling technique for residential ap-

pliances in smart home with local PV generation, Results indicate that the pro-

posed strategy have the capability of maximizing the savings in electricity cost. The

work in [71] studies scheduling of different types of appliances by adopting dynamic

programming-based game theoretic approach. Its assumed that the consumers with

extra power generation can choose their offered price and output generation such that

they reach the maximum revenue and reduce their electricity bill.

1.9 Reason in the design of the proposed algorithm

In most of the DSM programs that have been used over the past two decades

(e.g. [33], [34], [41]), the focus has been on interactions between the utility company

and the consumer. Most of the proposed algorithms did not consider the importance
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of balance between the objectives energy cost minimization, peak load minimization

and user comfort.

In this dissertation, a DSM model is proposed and mathematical models for the

grid, renewable energy resource represented by rooftop PV generation are presented as

well as for different type of electrical appliances in different types of loads commercial

and residential. This model can effectively minimize the energy consumption cost for

day-ahead time. Its worth to mention that in some DLC optimization algorithm used

for certain appliances in a household, for example refrigerator, air conditioning [35].

However, in this work the algorithm implemented used developed and expanded to

cover a variety of appliances in different types of loads such commercial load and res-

idential household although they have different characteristic in terms of load profile,

electricity price, appliances, and their customer willingness for DSM participation.

Unlike the work in Ref. [17], an appropriate TOUP profiles were used for both

residential and commercial loads, in fact the profiles were different for each load [49].

Our algorithm takes into the regard the voltage fluctuation and the power loss of

the entire system while optimize the electricity cost. The goal is to reschedule the

energy consumption, considering the day-ahead dynamic electricity price and the real

production of the photovoltaic system. Its worth mentioning that real time pricing the

problem is that is difficult and confuse for the consumer to response to the variation

in the price every hour and also peak load may occurs in the low price time period

as stated in literature survey [38].The peak load may cause instability in the system;

therefore, it would be important to deploy TOUP price with max demand limit as

block rates.

The proposed optimization-based model also aims to reduce the total electric-

ity bill but ensuring a comfortable user experience at home. This model can effec-

tively minimize the energy consumption cost for day-ahead time horizon according
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to the forecasted electricity price, taking into the account the power loss of the sys-

tem. Moreover, the proposed model implemented using Colonial Selection Algorithm

(CSA) method based on the biological immune system and the natural defense mech-

anism of human body. In CSA the limitation is that the quality of the results depends

highly on the initial population and the probabilities of the mutation. The population

size in my work makes the algorithm converge towards high quality solutions within

a few generations, also its easy to implement and fast convergence.

The main difference between CSA and PSO is that PSO doesnt have genetic

operators such mutation, but both CSA and PSO shares one aspect thats is they

have memory which means they save the last iterations and updates during the opti-

mization process. According to [24] PSO similar to the genetic algorithm GA as they

both population-based search, in PSO the memory is important to the algorithm.

To summaries and compared to other related work in the literature, this work

has following key contributions: 1) the proposed DSM model incorporates economic

benefits of local solar PV generation along with negative impacts on voltage fluctu-

ations and deviation in the distribution network. It should be noted here that most

reference works ignore voltage problem in the presence of photovoltaic system. 2)

Propose a practical model for demand side management with a flexible penalty ap-

proach to account for the inconvenience caused by deviation from customer desired

schedule. In other words, customer inconveniences caused by DSM schedule will be

translated into additional compensation cost in the optimization objective function

which is calculated based on some customized rate and intends to effectively discour-

age or reduce unnecessary load shifting or changes. Also, the work extends the single

household case in our previous work [5] to that of multiple households and commercial

load.

Using the developed simulation model, we evaluate the performance of decentral-
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ized DSM and study their impact on the distribution network operation and renew-

able integration, in terms of utilization efficiency of rooftop PV generation, voltage

fluctuation and real power loss. Residential and commercial loads have different char-

acteristics in terms of load profile, electricity price, appliances, and their customer

willingness for DSM participation. In other words, using DSM strategy for residential

and commercial loads does not have same impacts on electricity cost and specifically

distribution network operation.

In fact, decentralized DSM especially for commercial load may have negative

impacts on network operation in terms of power quality and energy loss, however,

for residential decentralized DSM we can improve the network operation indexes

most of the times. Therefore, it is necessary to examine DSM strategy for both

commercial and residential sectors in a distribution network together and compare

their performance in sense of network operation parameters and customer benefit as

savings on electricity cost.

1.10 Clonal Selection Algorithm

The Artificial Immune System (AIS) is a powerful computational intelligence

method based on the biological immune system and the natural defense mechanism

of human body. When an antigen such as a bacterium, a virus, etc. invades the

body, the biological immune system will select the antibodies which can effectively

recognize and destroy the antigen. In AIS, Clonal Selection Algorithms (CSA) are

a class of algorithms inspired by the Clonal selection theory which has become a

widespread accepted model for how the immune system responds to infections. In

the past decade CSA is widely used in power system analysis [21 - 23].

In the Clonal selection algorithm, a candidate solution for the specific problem is

called an antigen, which is recognized by the antibody. Each antibody represents a
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possible solution to the problem. A population consists of a restricted number of an-

tibodies. In this algorithm, after recognizing an antigen, immune system reproduces

antibodies which can identify that particular antigen. Consequently, every antibody

is evaluated by the evaluation mechanism to obtain its affinity. In addition, muta-

tion process is also performed on regenerated antibodies causing partial differences

between them. These differences make the population able to recognize antigens that

were not recognizable for initial antibodies.

With above explanation, steps of the Clonal selection algorithm (CLONALG)

can be described as follows:

1. Produce the initial population randomly in the problem space. The number of

initial antibodies in the population is N.

2. Determine the affinity of each antibodies (evaluating by objective function).

3. Select n antibodies which have the highest affinity.

4. Improve new population which has n antibodies.

Improvement is in proportion to each antibodys affinity, that is, an antibody

with higher affinity will be copied more than other antibodies with lower affinity.

nc = round(B.N/i), i = 1 to n (1.1)

Where nc is the number of offspring antibodies from ith antibody (parent) and

is a constant coefficient which indicates the rate of copy. At the end of this

step, the number of antibodies in the refreshed population would be Nc, which

is defined as follows:
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Nc =
n∑

i=1

round(B.N/i) (1.2)

Mutate Nc antibodies of the population in proportion to their affinities, that

is, antibodies with higher affinity should be mutated less than those with lower

affinity.

5. Determine the affinity of each mutated antibody and select m antibodies with

higher affinity. Therefore, the population consists of m antibodies which will

enter the next generation directly.

6. Generate p new antibodies randomly and add them to the population. These

new antibodies increase the solution diversity and consequently the optimiza-

tion process would be able to escape from the local optima. This step causes

the number of antibodies in the final population to reach (m+p).

7. Return back to step 2 and repeat this cycle until the termination criteria are

met.

1.11 Simulation Parameters

Prices change based on the day as well as the time of day. During the summer,

the highest prices are in the middle of the day between 1 and 7 PM, during the winter

the highest prices are during the early morning and late at night. Each day classified

as a high priced day (A Day), a medium priced day (B Day) or a low priced day (C

29



Day). Low priced (C) days will occur most frequently, at least 280 days a year. There

will be no more than 30 high-priced (A) days per year Dominion provides notification

in advance for high priced days by 6 PM the day before.

For simulations, a day is divided into 48 time slots (0.5 hour per slot). Smart

pricing plan-day classification calendar data is adopted from Dominion Virginia Power

(August 17, 2015) [24]. As depicted in Figure .2.1. The output generation profiles

are also obtained by scaling down the typical solar [25]-[26].

In order to have an actual price signal in our simulation, we add a white noise to

the historical price data. The mentioned white noise follows a normal distribution It

is assumed sixteen types of schedulable domestic appliances in the home these are [13]:

1. Baseline appliances: it is the must-run service that needs to be served immedi-

ately when it is requested by the residents, e.g. lighting, fridge, television.

2. Uninterruptible appliances: it refers to the domestic appliances (e.g. rice cooker,

dish washer washing machine) that require to be operated continuously until

completion of the task.

3. Interruptible appliances: it refers to the appliances which can run and can be

shut down at any time .In this table as we can see that for some appliances

it is assumed a multiple period, consumer in this case has more than one time

duration to turn on the appliance.

30



31



CHAPTER 2

LOAD SCHEDULING WITH MAXIMUM DEMAND AND TIME OF

USE PRICING FOR MICROGRIDS

2.1 Introduction

Along with distribution networks, modern communication infrastructures have

also begun to be installed, in order to support and improve the reliability and efficiency

of the power networks [1]. In this new electricity network, a large number of data sets

are available for residential consumers to improve the energy consumption policies,

by means of changing their habits in using household appliances [2]. They even can

sell their excess energy from renewables to the grid using a smart energy management

system like the one proposed in [3]. In order to evaluate the effectiveness of an energy

management system, electricity demand needs to be analyzed in a high-resolution

fashion [3]. This is required in order to identify which type of electricity activities

can be modified without any weighty impact on the consumers lifestyle and freedom

[4]-[5].

During the last decade, various models have been proposed to define household

demand side management strategies for improving the performance of the distribution

networks. But the focuses and contributions of the models tends to be different.

Reference [6], proposed a model that based on devices future usage, the consumer is

able to optimally schedule home appliances activities for the next day and with the

goal of minimizing the electricity bill.

In [7]-[8], real-time monitoring system is presented as an effective way to improve

the efficiency of different control methods in the energy management system.
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This model provides a great potential to control the activities of appliances espe-

cially the indoor temperature control devices. However, the real-time electricity price

is usually ignored for this type of methods. In reference [9], the design of a genetic

algorithm-based control method is presented in order to reduce the electricity bill but

considering user freedom at home.

According to the results presented in [9], this method can reduce the total elec-

tricity cost considering the real-time monitoring system and the electricity price. In

reference [10], the authors utilized the concept of teletraffic theory to reflect the char-

acteristics of electricity consumption. This framework can be used to compare and

evaluate different demand side management approaches. Regarding the impact of

renewable energy resources, many research works have been carried out in the litera-

ture.

A high penetration of distributed generation can lead to problems in low voltage

distribution networks. For example, in residential areas with a high level penetration

of installed photovoltaic generation, situations occur when the power flow reverses

and the total generation of PV system exceed the peak load. In [11], the authors

proposed an active DSM model to address issues of integration of renewable energy

resources in distribution networks. Reference [12] provided a mathematical definition

for electricity generation optimization in a typical residential load with different en-

ergy systems. This reference deals with an economical electricity storage system to

optimize simultaneously the electric shiftable loads.

The objective of this chapter is to set up an optimization model for the offline

household demand side management. The goal is to reschedule the energy consump-

tion, taking into account the day-ahead dynamic electricity price and the real pro-

duction of the photovoltaic system. The proposed optimization-based model aims to

reduce the total electricity bill but ensuring a comfortable user experience at home.
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This model can effectively minimize the energy consumption cost for day-ahead time

horizon according to the forecasted electricity price. Compared to the existing work,

the key contributions made in this work can be summarized as follows:

1. This work deals with the economic benefits of PV system along with its negative

effect on voltage deviation in the distribution feeder. It should be noted here

that the most of the references ignore the voltage stability in the presence of

photovoltaic system.

2. This work proposes a practical model for demand side management based on

penalty approach. In this model the deviation from the desired schedule will

be penalized based on the market price or a relatively larger value that can

effectively prevent and/or reduce deviations.

2.2 System Model and Mathmatical Formulation

In this Section, we set up a physical and mathematical model to show the archi-

tecture of household demand side management system.

2.2.1 System Model

Figure 4 illustrates the architecture of system model for a residential smart home

including PV panels and a set of active appliances under a real-time pricing environ-

ment. This model contains a single line feeder with thirteen buses. We assume that

a mid-size smart home is located at the end of the feeder and equipped with a 4.5

kW PV panel. It should be noted here that all the household electric devices can be

controlled in order to minimize the energy consumption.
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Fig. 4. Hybrid system layout for a single house scenario

In this model we intend to consider the most widespread used appliances that

are categorized into three different types based on their operational futures: 1) In-

terruptible appliances: it refers to the electric devices which are allowed to operate

and can be shut down at any time; 2) Uninterruptible appliances: it refers to electric

devices that need to be operated continually; and 3) baseline appliances: this type of

appliances should be active for entire simulation time (24 hour). It is assumed that

all the appliances need to meet the operational limits and operate at specific power

rating.

Although the proposed DSM model approximates a constant power rating for

each appliance, this can be easily enhanced to simulate appliances that exhibit non-

linear power usage, given the availability of such detailed load profile data. Note that

in reality each household has a specific set of electric devices, with different power

ratings and operational features, while the proposed model assumes a certain homo-

geneity between household appliances to make the configuration more reasonable.
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Fig. 5. Photovoltaic system generation

2.2.2 Duration of operation

For all simulations, a day is divided into 48 time slots which are represented

by their starting times. The starting slot over the whole day is 00:00 A.M and the

ending slot is 11:30 P.M. For each appliance, there is a specific operation time which

is presented by a minimum starting time and a maximum ending time. The end-user

is free to operate each appliance on any time as long as he/she respects the constraint

of starting and ending times.

2.2.3 Photovoltaic System

A typical micro-grid for residential homes integrates the operation of different

type of energy sources and demand. This work considers a 4.5 kW rooftop PV panel

with off-grid connection to distribution feeder. Off-grid connection means that during

any time if the output of the rooftop PV system is more than the expected demand,

the extra electricity will not be exported to grid, but we can save it by using the

energy storage system. Fig. 5 shows the power profile of a typical 4.5 kW rooftop

panel.
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2.3 Problem Formulation

The proposed household DSM model is aimed at minimizing the electricity cost

by switching on/off domestic appliances over the operational periods, considering the

varying electricity price. In the concept of smart home operation, the focus is on

the best decision to be taken for given short-term, say one day, operating condition.

Thus, the operation costs of the PV rooftop system is negligible during the time sim-

ulation, and making the best use of the rooftop PV system can dramatically reduce

the purchase of electricity from the grid. In the case that the total load is less than

PV generation, no electricity purchase is required. However, for higher total load the

economical purchase of the electricity is needed. This procedure can be modeled as

an optimization problem which is presented as follows:

min Ce + Cp

[ua(t)]

Subject to:

C
e

= 0.5×
T∑
t=1

Pload(t)πe(t) (2.1)

Cp = 0.5×
A∑
a=1

πp · ra · ∆Ta (2.2)

pload(t) = max((
A∑
a=1

ra × ua(t)− α · ppv(t)), 0) (2.3)

A∑
a=1

ra × ua(t) ≤MD ∀ a ∈ {1 to A} (2.4)

T∑
t=1

ua(t) = Da ∀ a ∈ {1 to A} (2.5)
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ua(t) = 0 ∀ t < Sa or ∀ t > fa (2.6)

∆Ta = 1T · |tstnewa − tstolda | ∀ a ∈ {1 to A} (2.7)

tstnewa = [t|unewa (t) = 1]1×Da
∀ a ∈ {1 to A} (2.8)

tstolda = [t|uolda (t) = 1]1×Da
∀ a ∈ {1 to A} (2.9)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (2.10)

Eloss =
T∑
t=1

L∑
l=1

| i tL |2 RL (2.11)

σv =

√√√√ 1

TN

T∑
t=1

N∑
i=1

(vti − v)2 (2.12)

ua is the operation status of the appliance a; its 0 when the appliance is off, and 1

when it ON, with following format:

[ua(t)]A×T = [u11, u
2
1, ...., u

T
1 ; u11, u

2
2, ..., u

T
2 ; ....; u1A, u

2
A, ..., u

T
A]

minCe + CP :Minimize electricity cost penalty price Over a 24h (30 min per

slot) period

Constraints

Eq. 2.3 : Avoid negative electricity cost

Eq. 2.4 : Maximum Demand (MD) constraint

2.5 and 2.6 : Total operation duration and the allowable turnon time of appliances

Eq. 2.7 : calclute the long shit.

Eq. 2.8 and 2.9: the original and the new starting point for duration of timeshifting

for flexible appliances

Eq. 2.10: voltage constraint in the distribution network. using power flow calcula-

38



tion.

Eq. 2.11: calculate the energy lost .

Eq. 2.12: to calculate the voltage fluctuation.

ua Binary status of appliance a; 0 = off, 1 = on

It is worth to mention here that in the simulation the run time cost is negligible and

PV cost is static.

Where:

Ua :The operation status of the appliance a; ON/OFF

ra: Power in kW for appliance .

A : Interruptible and uninterruptible number.

A: The appliances number.

T : number of the time slots, T= 48 slots each slots of 30 minutes.

t : Index refer to the time slot.

Da: Time duration of each appliance.

Sa, fa: The possible starting and ending time slot for each appliance.

tstnew
a : Refers to the New Time slot after apply DSM.

tstolda : Refers to the Old time slot befor DSM .

ppv(t): Refers to the Power generated by the solar PV.

πe(t):Time-of Use Pricing .

πp: Penalty price in Cent.

∆Ta:Refers to the number of the slots shifted after apply DSM.

MD: Refers to the threshold of the energy usage.

Ce: Refer to the energy usage cost.
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It means that for a typical interruptible appliance, as illustrated in Figure 2.4 ,

there is no the uniform value of time-shifting for all operation time slots, and in order

to have a fair comparison, each time slot should be treated individually. Normally

when there is no shift the penalty cost is zero (Cp = 0 $/day) which means there is

no time shifting slots for the operated appliances and (∆Ta = tstnew
a,m − tstolda,m = 0), in

this case consume has to pay for the consumed energy kW/h as electricity Ce based

on the TOUP.

With optimal shifting the total cost that consumer has to pay will reduced due to

the cost saving (Csaving) in c/kWh that comes after shift the operation time from high

price to low price period, in this case consumer will pay extra cost as penalty cost. Its

important to mention that the algorithm make shift whenever there is cost saving in

another world (Csaving > Cp) and the total cost paid by consumer is (Ce−Csaving+Cp).

(7)- (9) represent the distribution network constraints of AC power flow balance

and real power loss and to avoid the violation may happen in the distribution net-

work. We impose a 5% limit on each bus, in another word node voltages should be

in their normal limit (+/- 5%). Power loss is due to the high of resistance of the line

and the load at the bus, both are contribute to the total power loss of the system.

The math representation of the Ploss(t) :

Ploss =
∑nbr

i=1 |Ii|2ri (2.13)

Where nbr : number of nodes in the feeder, |Ii| : is the node current, ri is the resis-

tance.
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2.3.1 Algorithm Steps for Adding Penalty Part

We have U as optimization variables

Let U0 = [u0j(t)](mt), where U0 represents our starting benchmark

In fact u0j(t) denotes whiter the appliance j is on or at off state.So, ([u0j(t)](mt)) rep-

resents a binary matrix.

Let v denotes the iteration step, which means we optimized U for each step. And for

each iteration step we need to optimize U to get uvj (t) after v iteration step.

In order to evaluate the time shift for each appliance.

1- Compare (u0j(t)) with uvj (t) . To have a fair comparison each operation time slot

treated individually. To do that we need to define an operating time vector for the

jthapplianceTj.

T0
j = [t|u0j(t) = 1](lj1) , here we need to find out the staring time slots that equal

to one and put them in sequential order, where lj denotes the duration of operating

states of the jth appliance.

2- After v iteration step the final staring time slots for the jth appliance will be:

T v
j = [t|uvj (t) = 1](lj1)

3- Compute Tj , which represent the difference between T 0
j and T v

j

Tj= 1T .|T 0
j − T v

j |

From the last equation above we conclude that:

A) For inflexible appliances we have all the time slots equal to one, so that Tj will

always equal to zero, which means no penalty added in this case.

B) For uninterruptible appliances we will have lj of time slots continuously and
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Fig. 6. Example of Uninterruptible appliances

Fig. 7. Example of Interruptible appliances

|T 0
j −T v

j | will be an even shift, which has the same time of shift.See Fig 6 C) For in-

terruptible appliances we will have ljoftimeslotsnoncontinuous, and— T0
j − T v

j | will

be non-uniform time shift, Tj not equal. See Fig.7
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The aforementioned DSM optimization model will not simply move the operation

times from peak-hours to off-peak time slots to save the electricity cost. A penalty

cost included in the objective function (2) takes into account the customer willingness

to change the appliances operation time. This means to discourage unnecessary load

shifting that only causes small reduction in electricity cost (Ce) than the increase

from inconvenience-penalty cost (Cp).

A heuristic algorithm called Clonal Selection Algorithm (CSA) is adopted to find

the optimal operation schedule for the household appliances. The CSA is a powerful

computational algorithm based on the biological immune system and the natural de-

fense mechanism of human body. This method considers each candidate solution and

its distance from global optimal solution, as an antibody and an antigen, respectively.

The affinity of every single antibody is calculated via evaluation mechanism and then,

they are sorted based on their affinity values. Finally, a new enhanced population

is generated using immune operators [14]. In DSM problem, the optimal solution of

this algorithm will determine the minimum total cost of electricity and time-shifting

penalty, achieved with an optimal schedule [ua(t)](AT ) which represents operation

status of each appliance at each time slot.

It should be noted that the optimization process, presented above, is not simply

moving the operation times to some specific time slots with lower electricity price.

In fact, implementation of the DSM would solve the aforementioned optimization

problem that electricity consumers face, however, in order to work reliably, it is nec-

essary that the DSM system schedules the appliances based on the desired (original)

operational times. Therefore, all deviations from the desired schedule will be penal-

ized based on the market price or a relatively larger value that can effectively prevent

and/or reduce deviations. In this paper, it is assumed that the penalty will be applied

when the deviation is positive, i.e., the decline in the electricity price after moving
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the operating time. Negative deviation will not be penalized in our proposed model.

This issue is further investigated in numerical results.

In this paper, Clonal Selection Algorithm CSA is adopted to find the optimal

operation time for household appliances. The results of this algorithm contain the

total operation cost and the optimal schedule [u(t)](tm) which represents operation

times and power consumptions.

See the flow char of the CSA PROCESS

Algorithm 1: PV-based demand scheduling Required: MD, M, 0, c, Ppv, r, R, l, To,T v,t

1: Initialization: IterationMax, Pop size, , mt

2: Gen, U0 = ua(t) Original schedule

3: Check technical constraints

4: Gen initial population ua(t), Shifting the time slots

5: Check technical constraints

6: FOR i= 1 to IterationMaxDO

7 : FOR j = 1 to PopsizeDO.

8 : Calculatefitnessvalue

9 : ENDFOR

10 : Sort candidate schedules based on fitness values

11 : Copy sorted candidate schedules

12 : IF rand(0, 1) < mt

13 : Mutate some candidate schedules

14 : End If

15 : Gennewua(t), add to the mutated candidates

16: Calculate fitness value

17: Sort candidate schedules

18: Select the best schedules
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19: END FOR

2.4 Numerical Results

The main purpose of this part is to investigate the performance of the proposed

household DSM model in terms of cost and the effect of PV generation on voltage

deviation. In this section, the proposed approach is tested on three different scenarios,

each with different type of setting. Figure 2.7 shows the forecasted electricity price

data, adopted from Dominion Virginia Power [13], and PV generation from 6 kW

roof-top photovoltaic system. For all simulation a mid-size home is considered with

the major electricity consuming appliances such as washing machine, dish washer,

water heater and air conditioner. It is assumed that the number of controllable and

baseload appliances are up to 27 and 4, respectively. Each individual appliance is

modeled using four parameters: s(j, ) fj, lj and rj, where [s(j, )fj] shows the possible

operating time during which the appliance j may be switched on, s(j),fj denote the

starting and the ending of the possible operating range respectively, rj and lj denote

the power rating and the operating cycle time, respectively .The detailed operational

futures are presented in [14].

The simulation consists three different scenarios, not all of them necessarily

unique. In the first scenario DSM model is considered without PV generation and

penalty. The second scenario can optimally determine the best schedule in the pres-

ence of PV generation. And in the last scenario we investigate the impact of penalty

factor in DSM optimization problem.
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Fig. 8. Overview of the Tasks and workflow of CSA
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Fig. 9. Time of use pricing (TOUP) profile

2.4.1 First scenario (DSM without PV and Penalty Factor)

In this scenario, the proposed DSM approach takes into account forecasted day-

ahead hourly electricity price and user preferences. Figure 10 shows the demand

profile without any optimal scheduling approach (original profile). Its assumed that

the consumer decides the usage of electrical appliances only according to his/her

preference without any sacrifice of convenience. Fig. 6 illustrates the power drawn

from the grid, in case no PV generation is set to the household.

As Figure 11 shows, the DSM allocates the domestic appliances to the least-

price slots causing peaks to emerge early in the morning and end of the day. Then,

a hard operation time is considered to be active from 2:00 A.M. to 8:00 A.M., and

10:00 P.M. to 12:00 P.M. in which the electricity prices are the lowest. In order to

show the economic benefit of the proposed DSM approach, the operation cost is also

calculated for day-ahead horizon time. From the obtained results we can see that the

daily operation cost is dramatically reduced from ($12.58/day)to($8.21/day).
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Fig. 10. Original Load profile without DSM

Fig. 11. Load profile with DSM (No PV, No penalty)
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2.4.2 Second scenario (DSM with Penalty factor))

As stated in section II, deviations from the desired schedule will be penalized

based on the market price or a relatively larger value that can effectively prevent

and/or reduce deviations. The deviation cost is the penalty imposed on the objective

function in case the operation time deviates from the original (desired) schedule. In

the third scenario, the obtained results show the impact of different penalty fee on

the DSM optimization. Technically, if the profit resulted from time-shifting becomes

higher than expected penalty value, the suggested change in the user schedule will be

accepted (otherwise rejected).

Fig. 12 shows the impact of different penalty values on DSM optimization. This

figure plots the load profile for πp = 0, 5and10 c/kWh) . As we can see, for πp = 5

c/kWh), the final load profile has some considerable difference with Figure 2. 8 (orig-

inal profile), especially for the time slots between 12:00 pm and 6:00 pm. However,

when we increase the value of penalty to πp = 25 c/kWh) or higher, we can see

minimum deviation in the original schedule. This comes from the fact that for any

shifting in the operation time the expected profit is less than deviation cost.

2.4.3 Third scenario (DSM with PV and Penalty factor)))

In this scenario, the effect of local electricity generation is studied through in-

stallation of 4kW PV rooftop system. It should be highlighted here that when there

is enough PV generation the energy consumption is supplied entirely by photovoltaic

system. However, for higher energy consumption, electricity is drowned from the

grid. In this scenario, the PV panel is capable of charging the smart house during

the period from 9:00 A.M to 3:00 P.M.
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Fig. 12. Load profiles for different penalty values with DSM (No PV))
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Fig.13 and 14 illustrate the load and cost profile, respectively, in the presence

of PV system. From Fig.13, one can easily figure out that if we take the effect

of photovoltaic system, the imported power from the grid decreased and the PV-

DSM can effectively reduce the peak load and provide a great economic benefit for

end-user. The obtained results show that the daily operation cost is reduced from

$8.21/dayto$4.18/day showing a reduction of 49 %. It is worth noting that at 2:00

pm (slot 14) in Fig. 13, the photovoltaic generation decreased to 2.0538 kW, while

the load at 2:00 pm was 2.7 Kw, in this we have 0.6462 kW will not covered by the

solar generation and by multiplying this reaming load by the price at this time which

is 44.331/kWh the cost will be 28.646/kWh as it shown in Figure 2.12 at slot 14.

Fig. 15 and 16 illustrate the impact of installed PV system on voltage at con-

nection point and along the distribution feeder. In these figures, we can also see a

boost in voltage level along the feeder around noon which delivers a smoother voltage

profile and improves voltage quality. Fig.17 shows the impact of different penalty

values on DSM optimization. As we can see, for πp = 5 c/kWh the final load profile

has some difference with Fig. 12. However, when we increase the value of penalty

to πp = 0 c/kWh or higher, we can see minimum deviation in the original schedule.

Table 2.1 illustrates the summary of obtained results.

Due to the small number of distributed loads connected along the single line

feeder considered in this work, constraints (5) and (6) tend to be ineffective in the

objective function, and the voltage maintained in the safe voltage zone, as this is

depicted in Fig. 15 and 16.



52

Fig. 13. Cost profile with DSM (with PV, No Penalty))

Fig. 14. Load profile with DSM (with PV, No Penalty)
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Fig. 15. Voltage profile at connection point with DSM

Fig. 16. Voltage profile along distribution feeder with DSM and PV

Fig. 17. Load profiles for different penalty values
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2.5 Conclusion

In this chapter, an approach has been presented for demand side management in

smart residential homes. We first introduce the architecture of DSM in residential ar-

eas and then provide a practical approach for optimal operation time scheduling. Our

numerical results show that an effective demand side management provides benefits

not only to the end users but also to the utilities by reducing the peak load demand

and overall cost.

Our proposed approach can be used in demand side management systems to help

household owners to automatically create optimal load operation schedules based on

comfort settings and in the presence of a PV rooftop system and dynamic electricity

pricing. In this chapter, we just consider a single photovoltaic system connected to the

end of the feeder. In the future further experiments and verification on other realistic

distribution networks and based on distributed PV generation will be performed.
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CHAPTER 3

PHOTOVOLTAIC LOCATION TEST OF AN OFF-GRID

RENEWABLE SYSTEM USED FOR TYPICAL RESIDENTIAL

HOUSEHOLDS

3.1 Introduction

This chapter aims to present an approach for demand side management for a

group of residential homes which can be used in response to day-ahead electricity

price signal, and to maximize the usage of the power generated. This task is a dual-

scenario case study of four households that are participants in a DSM program on

a single feeder line. In the first scenario, each of the four households has local PV

generation.

In the second scenario, PV generation is provided only by other non-participant

households on the same feeder.

Simulation results confirm that the proposed scheduling algorithm can effectively

reflect and affect users energy consumption behavior and achieve the optimal time of

electricity usage. For practical consideration, we have also taken into consideration

the impact of PV generation on the total electricity cost. Analysis shows that appli-

cation of higher penalty factors can significantly improve the PV utilization efficiency

while reducing fluctuations in the voltage profile for the entire system. The impact

of applying a DSM algorithm on the total power losses of the feeder is also studied

in this chapter. The proposed solution is implemented based on the Clonal Selection

Algorithm (CSA).

Demand side management (DSM) aims to efficiently manage electrical power
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consumption by engaging energy customers, through offering incentives and price-

based signals to alter their consumption patterns or through directly controlling their

loads [1]. Recently, residential DSM has attracted significant attention among DSM

researchers [3-10]. Reference [5] proposed a scheduling approach of operation and

energy consumption of various electrical appliances in a grid connected smart home

system. Reference [6] developed a multi-household simulation framework to study

decentralized DSM in a residential distribution network.

In [7], a coordinated algorithm is proposed to minimize electricity cost, and con-

trols both household load and distributed energy resources. Reference [8] proposed a

DSM strategy for three different demand classes: residential, commercial, and indus-

trial. A new optimization technique using a simple linear programming algorithm was

used to minimize the energy cost based on real-time demand response and renewable

energy resources in [9].

Generally, many researchers focused on the household DSM, but neglected PV

utilization efficiency, maximum demand limits, and customer welfare. Some other

load-scheduling schemes used for scheduling residential loads consumption were pro-

posed in [12]. [13] Used the combination of DSM and time-of-use (TOU) tariffs to

significantly decrease the cost of energy with a high utilization of PV generation

power. However, the purpose of the DSM is not only lower the electricity cost, but

also to avoid the peak load even in lower energy cost periods. Therefore, in our

work, a combination of time-of-use pricing (TOUP) with a fixed threshold of load

consumption was applied to two types of load: residential and commercial.

A heuristicbased load scheduling scheme was proposed in [14] and [15]. These

references present a demand side management strategy based on load shifting tech-

niques for residential, commercial, and industrial services. However, neither voltage

fluctuations nor voltage limitation were considered. In other words, a good DSM
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algorithm must have the objective of minimizing electricity costs and maximizing

consumer convenience while handling a wide variety of appliances. Also, the focus of

most DSM programs (e.g., [16], [17], and [18]), has been on interactions between the

utility company and the consumer.

The proposed algorithms do not consider the importance of balance between the

objectives of energy cost minimization, peak load minimization and user comfort. In

this work, we propose a DSM algorithm, and mathematical models for the grid and

for renewable energy resources represented by rooftop PV generation as well as for

different type of electrical appliances in different types of residential loads.

This algorithm can effectively minimize the energy consumption cost for day-

ahead time. While some other algorithms such as [19] or [20] are specific to particular

appliances in the household, our algorithm can be expanded to cover a variety of

appliances.

3.2 System Overview

This section describs the system model of the proposed distributed residential

demand management. To show the impact of proposed DSM on multiple housholds

with more diversified combinations of appliances, we consider residential loads over a

radial distribution network with a set of households. There are total of four partici-

pated housholds the line feeder.Table 3.1 summarised the number of the interruptible

and uninteruptible appliances in each houshold with the aggreed maximum demand

(MD).

Fig. 18-A illustrates the eletric price tarrif , while B illusterates the PV genreate

power considered in the simulaton. Household appliances can be classified into three

types: interruptible, baseline, and uninterruptible appliances. More details and def-

initions of each type of households can be found in our previous paper [4]. As we
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Fig. 18. A) Electricity Price signal (/kWh). B) Photovoltaic system generation

mentioned, four households in the line feeder with different capacities of appliances

under a real-time pricing enviroment are chosen to test our model as depicted in Table

3.1. u(a,m) Represents a binary status of appliance a; 0 = off, 1 = on at Household

m, with following format:

[u(a,m)(t)](AT ) = [u11, u
2
1, , u

T
1 ;u12, u

2
2, u

T
2 ; ..;u1A, u

2
A, ..., u

T
A] (1) Where T is total

number of time slots (T=48), and t is the index of the time slots. Each appliance

is modeled using four parameters sa,fa,ra and Da, where[s(am, )f(a,m)] defines the

allowable operating time during which the appliance a in the household m may be

switched on, and r(a,m) and D(a,m) denote the power rating and the total number

of operating time slots as requested in the household m, respectively.
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3.3 Mathematical Formulation

In our previous work [4] the household DSM model aimed to minimize electricity

costs by scheduling the on/off status of domestic appliances over the operational

period considering dynamic electricity prices and locally available PV generation.

The previous algorithm also considered a penalty factor which accounted for the

inconvenience to the customer caused by the time shift in appliance operation.

In this work, the optimization model developed based on this system is expanded to

include multiple feeders and scaled-up community size. The performance of the DSM

will have tested in two suggested scenarios:

3.4 DSM with PV Peneterations

In this scenario we test the performance of the proposed DSM on the four house-

holds, with each assumed to have local rooftop PV. The results obtained

XCDSM(t) = V (t), PL(t), PLoss(t)CDSM (3.1)

The results obtained from PL
CDSM(t) will represent the optimal load profile of the

household, and PLoss
CDSM represents the total power loss of the feeder.

minCm
e + Cm

p (3.2)

Subject to:

m

C
e

= 0.5×
T∑
t=1

Pm
load(t)πe(t) (3.3)

Cp
e = 0.5×

A∑
a,m

mπp · ra,m · ∆Ta,m=1 (3.4)
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pmload(t) = max((
Am∑

a,m=1

ra,m × ua,m(t)− α · pmpv(t)), 0) (3.5)

Am∑
a,m=1

ra,m × ua,m(t) ≤MDm ∀ a ∈ {1 to Am
}

(3.6)

T∑
t=1

ua,m(t) = Da,m ∀ a ∈ {1 to Am
}

(3.7)

ua,m(t) = 0 ∀ t < Sa,m or ∀ t > fa,m (3.8)

∆Ta,m = 1T · |tstnewa,m − tstolda,m | ∀ a ∈ {1 to Am
}

(3.9)

tstnewa,m = [t|unewa,m (t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(3.10)

tstolda,m = [t|uolda,m(t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(3.11)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (3.12)

Eloss =
T∑
t=1

L∑
l=1

| i tL |2 RL (3.13)

σv =

√√√√ 1

TN

T∑
t=1

N∑
i=1

(vti − v)2 (3.14)

Where m is the home index, ua,m is the operation status of the appliance a; its 0

when the appliance is off, and 1 when it ON, with following format:

[ua,m(t)]A×T = [u11, u
2
1, ...., u

T
1 ; u11, u

2
2, ..., u

T
2 ; ....; u1A, u

2
A, ..., u

T
A]

T refers to number of time slots, T = 48, and t is the time slots index. The house-

hold appliances were modeled using the measurable factors: sa, fa, ra and Da, where

[sa,m, fa,m] are parameters define the operating period when the household appliance

a can be operated, ra,m and Da,m for the appliance power rating and the time duration

of the appliance a respectively.

Where (3.2)and (3.3) for the electricity and for the penalty cost; Eq.(5) Eq. 3.5)
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to remove the negative cost. In this model, the surplus gene tarted power from PV

can be delivered in to the grid with zero reward, therefore the cost at each time slots

should be not less than zero α in Eq. (3.5) is a binary parameter stands for status

of PV installation at DSM household. The Maximum load to use at each time slots

was indicated in (3.6).This load limit can help in prevention of occurrence the load

peak even when the electricity price is low.

Constraints (3.7) and (3.8) defines total operation time status of an appliance.

Constraint (8)indicates the number of the tome slots shifted by calculate the difference

between the old slots and the new slots. Constraints (3.9) and (3.10) specify the old

time slot before shifting and the starting time slots, tstolda,m and tstnew
a,m respectively, to

specify the time duration of the incorruptible appliances.

Constrain (3.12) for load flow calculation Where Pg(t) injected power from sub-

station is,P PV
g (t) is available PV generation, and P ∗

L(t) is the electrical load after

DSM scheduling. (3.13) Calculates the system power loss where itL is current of the

feeder L at time t and RL is resistance of line L. (3.14) defines the voltage fluctuation

(σv) index with vti as the voltage of bus i at time t and v =
∑T

t=1

∑N
i=1 v

t
i as average

voltage in the network.

Normally when there is no shift the penalty cost is zero (Cp = 0 $/day) which

means there is no time shifting slots for the operated appliances and (∆Ta = tstnew
a,m −

tstolda,m = 0), in this case consume has to pay for the consumed energy kW/h as electric-

ity Ce based on the TOUP. With optimal shifting the total cost that consumer has

to pay will reduced due to the cost saving (Csaving) in c/kWh that comes after shift

the operation time from high price to low price period, in this case consumer will pay

extra cost as penalty cost. Its important to mention that the algorithm make shift

whenever there is cost saving in another world (Csaving > Cp) and the total cost paid

by consumer is (Ce − Csaving + Cp).
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3.5 DSM without PV Penetrations

In this scenario, the method is tested on each of the four houses, assuming that

PV is rooftop-connected to households that are on the same feeder line but do not

participate in DSM. The results obtained XdDSM(t) = V (t), PL(t),PLoss(t)dDSM .

In this case, power generated by PV is considered zero in the calculation of electricity

cost Cm
e . The results obtained from PL

dDSM(t) again represent the optimal load

profile of the household, and PLoss
dDSM denotes the total power loss of the feeder.

minCm
e + Cm

p (3.15)

Subject to:

m

C
e

= 0.5×
T∑
t=1

Pm
load(t)πe(t) (3.16)

Cp
e = 0.5×

A∑
a,m=1

mπp · ra,m · ∆Ta,m (3.17)

pmload(t) = (
Am∑

a,m=1

ra,m × ua,m(t)) (3.18)

Am∑
a,m=1

ra,m × ua,m(t) ≤MDm ∀ a ∈ {1 to Am
}

(3.19)

T∑
t=1

ua,m(t) = Da,m ∀ a ∈ {1 to Am
}

(3.20)

ua,m(t) = 0 ∀ t < Sa,m or ∀ t > fa,m (3.21)

∆Ta,m = 1T · |tstnewa,m − tstolda,m | ∀ a ∈ {1 to Am
}

(3.22)

tstnewa,m = [t|unewa,m (t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(3.23)
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tstolda,m = [t|uolda,m(t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(3.24)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (3.25)

3.6 Numerical Simulations and Results

This section applies the proposed household DSM approach over the two scenar-

ios. For this scenario, the voltage load profile V0(t), theoriginalloadprofilePo
L(t), and

the active power loss PLoss
o(t) must be calculated for each of the four households.

The obtained results XO(t) = V 0(t), P o
L(t),PLoss

o(t) from the AC power flow equa-

tion will be compared with the results from the DSM algorithm. Fig. 19 shows the

original households consumption profiles of the smart homes without DSM schedul-

ing with maximum peak as specified in Table 1. Each of the four profiles in Table 1

represents customer preference, which indicates two demand peaks from 7:00 to 9:00

and from 17:00 to 20:00. As depicted in the price signal Fig.2A) there is a peak price

rate during the peak load, such that the peak demand from 17:00 to 20:00 will cost

much more than any other time

3.6.1 DSM with PV

Fig.19 Illustrates the original load profiles for each household. The performance

of the implemented DSM algorithm was tested on two configurations. In the first

scenario, the four households are connected in locations 12, 14, 17, and 22 of the line

feeder, and each household has rooftop PV. The result is a significant improvement in

the daily load consumption pattern and a reduction of total electricity cost. According

to Fig 20. The cost of households 1, 2, 3, and 4 were $4.08, $6.41, $3.88, and $3.65

per day, respectively.

Comparing those costs with the original costs in Fig. 19, household 1 sees a

reduction of 76%. In households 2, 3, and 4, the cost reduction is 70%, 70.23%,
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Fig. 19. Original households consumption profile with DSM

and 66%, respectively. Most peak loads during high-priced hours moved to off-peak

periods, except for the non-flexible appliances. Also, with local PV generation, during

the time slots with PV availability, appliance operation is free.

Fig. 21 shows the impact of applying different penalty pricing on load shifting.

As we can see, at πp = 5 c/kWh, the final consumption profile is considerably different

from Fig. 20. In fact, as the penalty cost becomes larger, the final consumption profile

increasingly resembles the original profile because the penalties prevent the profitable

time-shifting of loads. Indeed, at πp = 20 c/kWh, despite surplus PV generation

between 10:00 and 14:30, the final load profile closely resembles the original load

profile. When the DSM algorithm is applied to a system with available PV generation,

more appliances shift to the time slots between 14:00 and 16:00, compared to the case

without PV generation (contrast Fig. 20 with Fig. 22).

Table 3.2 summarizes the impact on PV utilization of applying the proposed
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Fig. 20. Consumption profile for each household with DSM (PV, πp = 0 c/kWh)

Fig. 21. Consumption profile for each houshold with DSM πp = 0 c/kWh)
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Fig. 22. Consumption profile for each houshold with DSM πp = 20 c/kWh)
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DSM algorithm at various penalty factors πp; specifically, that as penalty pricing

increases, PV utilization efficiency suffers. Thus, the opportunity to use free and

clean PV-generated power at highest utilization efficiencies (occurring at πp = 0

c/kWh is lost.

3.6.2 DSM without PV Different Site [dDSM]

In the second scenario, the four households participate in the proposed DSM

program without local PV power generation. The four homes are found at locations

8, 15, 22, and 25 of the feeder, while the four rooftop PVs are installed in different

sites along the same feeder. The performance of the proposed DSM algorithm can

be seen in Fig. 23. The red solid line represents original load profile. With an

optimal appliance operation schedule, a new set of shifted consumption profile will

be achieved with the total daily cost reduced to $5.91, $8.47, $5.70, and $5.37 for

households 1, 2, 3, and 4, respectively. This corresponds to 68.36%, 63.7%, 60.63%,

and 54.4% savings, respectively. Fig. 23 also indicates that most demand, apart from

non-flexible appliances, has been moved from high-priced hours to off-peak periods.

Table 3.3 contains a summary of the obtained results for both scenarios. As in

the previous section, the penalty pricing factor influences the customers willingness to

participate in the DSM program. With increasing penalty factor, household electricity

costs approach the original household costs before DSM.

A comparison of power losses at various penalty prices is tabulated in Table

3.4. Again, we see that the customers power and cost-saving opportunities become

increasingly limited as penalty prices rise. They cannot profitably leverage PV gen-

eration or demand time-shifting. In particular, the time-shifting of uninterruptible

loads, since they must operate continuously once started, becomes infeasible at the

highest penalties.
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Fig. 23. Consumption profile for each houshold with DSM (No PV, πp = 0 c/kWh)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (3.26)

The power flow equation (Eqn. 13) is applied to evaluate the voltage profile at

each household bus connected to the line feeder in the two cases. As depicted in Fig.

24, the voltage along the feeder always stays within specification (i.e., between 0.95

and 1.05 P.U.), including in locations 12, 14, 17, and 22 which are managed by the

proposed DSM.

3.7 Conclusion

With this chapter, a developed DSM algorithm which can be scaled to large com-

munities of residential households with differing capacities, based on the day-ahead

price signal and the availability of local PV generation. On top of improving PV
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Fig. 24. Voltage profile of the feeder



70



71

utilization and cost savings, voltage fluctuations are reduced, resulting in a smoother

feeder voltage profile. We have shown the stifling effects of penalty pricing on PV

utilization under this system, as illustrated by Table 2; increasing penalty price dis-

courages households from shifting appliance use to off-peak hours, resulting in in-

creased power losses. Our results in Table 3 demonstrate the potential to maximize

cost savings via optimal usage of PV-generated power. Lastly, from the data in Table

4, we conclude that active participants in DSM programs can help reduce total power

losses of the feeder. Our proposed DSM approach can help homeowners automatically

create optimal load operation schedules based on comfort settings while considering

dynamic electricity pricing and PV systems.
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CHAPTER 4

OPTIMIZED ENERGY UTILIZATION IN SMALL AND LARGE

COMMERCIAL LOADS AND RESIDENTIAL AREAS

4.1 Introduction

In smart grid, the demand side management (DSM) techniques need to be de-

signed to process a large number of controllable loads of several types. In this chapter,

we proposed a framework to study the demand side management in smart grid which

contains a variety of loads in two service areas, one with multiple residential house-

holds, and one bus with commercial customers.

Specifically, each household may have renewable generation as well as interrupt-

ible and uninterruptible appliances to make individual scheduling to optimize the

electric energy cost by making the best time of the electricity usage according to the

day ahead forecast of electricity prices. A high load bus represents a commercial area

employed to demonstrate the impact of high load at any bus on voltage profile, power

loss, and load flow condition, and to show the performance of the proposed DSM

for large number of appliance. Using the developed simulation model, we examine

the performance of the proposed DSM and study their impact on the distribution

network operation and renewable generation, overall voltage deviation, real power

loss, and possible problems such as reverse power flows, voltage rise have examined

and compared, these problems can easily be seen at the commercial load bus. The

benefits of DSM include financial and system reliability, among others. Financial

benefits are gained in the bill savings and incentive payments earned by customers

that adjust their electricity demand in response to time-varying electricity rates or
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Fig. 25. Distribution network of households

incentive-based programs [1]. Reliability benefits are the operational security and

adequacy savings that result because DSM lowers the likelihood and consequences of

forced outages that impose financial costs and inconvenience on customers [2].

In the United States, many DSM programs are widely implemented by com-

mercial and industrial customers. These are mainly interruptible load, direct load

control, real-time pricing and time-of-use programs [3]. On the other hand, very

few DSM programs are in use today for residential customers. Authors in [4] put for-

ward a scheduling approach of operation and energy consumption of various electrical

appliances in a grid connected smart home system.

Reference [5] and [6] introduced an algorithm that simulated residential load

shifting under time of use (TOU) regimes using previously generated profile data to

model realistic demand response behavior. Reference [7] shows the economic benefits

of DSM on the agriculture and industrial sectors. Majority of DSM application have

focused on large commercial loads, these loads have a large amount of demand to

make a considerable contribution to the stability of the grid [8].
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In this chapter develops an optimization model for a multiple residential house-

holds and two size of commercial loads with a rooftop PV installation. This algorithm

has the ability to take into consideration the evolution of the system performance in

terms of operation parameter such as voltage fluctuation, power loss of the entire

system, and the PV utilization efficiency while optimizing the electricity cost. In ad-

dition the proposed algorithm can handle large number of controllable appliances in

two types of loads residential and commercial taking into consideration the fact that

certain appliances may have higher priority over other appliances so that these appli-

ances may shifted to the suitable time according to their importance.in the simulation

process the algorithm classifies the commercial appliances into three categories: high,

med and low. The appliances in each category subjected to different penalty prices

according to the importance of the appliance.

4.2 System Modeling

This section describes a system model for the proposed DSM in a single radial dis-

tribution network with thirty buses to demonstrate the effectiveness of the proposed

approach, the DSM strategy is tested on two different areas, each with different type

of customers; residential and commercial. Each area has different type of controllable

appliances.

4.2.1 Residential Community Area

As depicted in Fig. 25, bus 1 represents a substation while the rest of the buses

represent the simulated residential community with up to 29 households with a more

diverse combination of appliances. Each smart home will optimize individually using

the proposed decentralized DSM algorithm its appliance operation schedule to save

electricity costs according to the day-ahead residential and commercial time of use
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Fig. 26. Large Commercial and small Load

pricing (TOU) as shown in Fig. 27 and rooftop PV (if available).

4.2.2 Commercial Area

The devices subjected to load control in the commercial area (delivered by Bus

No.17) have consumption ratings which are slightly higher than those in the. Fig.26

show the curves for the one commercial activity, also the curve show that there is

one peak load occurs during the period from 9:00 AM to 5:00 PM. Each appliance is

modeled using four parameters sa, fa,ra and Da, wheresa, fa defines the allowable op-

erating time during which the appliance a may be switched on, ra and Da denote the

power rating and the total number of operating time slots as requested, respectively.

4.3 Mathematical Formulation

The DSM optimization for each household can be defined as below:

minCm
e + Cm

p (4.1)
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Fig. 27. Time-of Use (TOU) Price for Residential and Commercial loads

Subject to:

m

C
e

= 0.5×
T∑
t=1

Pm
load(t)πe(t) (4.2)

Cp
e = 0.5×

Am∑
a,m=1

πp · ra,m · ∆Ta,m (4.3)

pmload(t) = (
Am∑

a,m=1

ra,m × ua,m(t)) (4.4)

Am∑
a,m=1

ra,m × ua,m(t) ≤MDm ∀ a ∈ {1 to Am
}

(4.5)

T∑
t=1

ua,m(t) = Da,m ∀ a ∈ {1 to Am
}

(4.6)

ua,m(t) = 0 ∀ t < Sa,m or ∀ t > fa,m (4.7)

∆Ta,m = 1T · |tstnewa,m − tstolda,m | ∀ a ∈ {1 to Am
}

(4.8)

tstnewa,m = [t|unewa,m (t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(4.9)

tstolda,m = [t|uolda,m(t) = 1]1×Da,m
∀ a ∈ {1 to Am

}
(4.10)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (4.11)
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T refers to number of time slots, T = 48, and t is the time slots index. The house-

hold appliances were modeled using the measurable factors: sa, fa, ra and Da, where

[sa,m, fa,m] are parameters define the operating period when the household appliance

a can be operated, ra,m and Da,m for the appliance power rating and the time dura-

tion of the appliance a respectively. Where (2)and (3) for the electricity and for the

penalty cost; Eq.(4) Eq. (4) to remove the negative cost.

In this model, the surplus gene tarted power from PV can be delivered in to the

grid with zero reward, therefore the cost at each time slots should be not less than

zero α in Eq. (4) is a binary parameter stands for status of PV installation at DSM

household. The Maximum load to use at each time slots was indicated in (5).This

load limit can help in prevention of occurrence the load peak even when the electricity

price is low.

Constraints (6) and (7) defines total operation time status of an appliance. Con-

straint (8)indicates the number of the tome slots shifted by calculate the difference

between the old slots and the new slots. Constraints (9) and (10) specify the old time

slot before shifting and the starting time slots, tstolda,m and tstnew
a,m respectively, to specify

the time duration of the incorruptible appliances.

constrain (11) for load flow calculation Where Pg(t) injected power from substa-

tion is,P PV
g (t) is available PV generation, and P ∗

L(t) is the electrical load after DSM

scheduling. (12) Calculates the system power loss where itL is current of the feeder L

at time t and RL is resistance of line L. (13) defines the voltage fluctuation (σv) index

with vti as the voltage of bus i at time t and v =
∑T

t=1

∑N
i=1 v

t
i as average voltage in

the network.
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4.4 Numerical Simulation Results

4.4.1 DSM Residential Area

The red sold line illustrates the original load profiles for each household. The

performance of the implemented DSM algorithm was tested on two configurations.

Each of the 29 households has rooftop PV. The result is a significant improvement in

the daily load consumption pattern and a reduction of total electricity cost. According

to Fig. 28. The cost of households 1, 2, 3, and 4 were 4.08,6.41, 3.88, and3.65 per

day, respectively. Comparing those costs with the original costs, household 1 sees

a reduction of 76%. In households 2, 3, and 4, the cost reduction is 70%, 70.23%,

and 66%, respectively. Most peak loads during high-priced hours moved to off-peak

periods, except for the non-flexible appliances. Also, with local PV generation, during

the time slots with PV availability, appliance operation is free.

4.5 Voltage Fluctuations

To check if there is any voltage violation, Fig. 29 clarify the voltage deviation

of the Bus No. 17 for the small commercial load, as we can see that there was a

slight difference between the voltage profile in case of considering DSM with PV,

the voltage increased between the 12:30 pm and 4:00 pm as most of the demanded

load covered by the generated PV power. In other word, the voltage rise due to

the reverse power flow can be suppressed by reducing the amount of active power

produced by PV. In this work, Voltage rise occurs when the load demand is low and

the PV generation in its max level. The possible solution for voltage rise can be done

during our simulation by either reduce the network resistance. Or by reduce the PV

penetration Level. As we can see the reduction in the PV penetration level to the

half caused slight reduction in voltage level. Maximum and minimum feeder voltages
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Fig. 28. DSM four different conditions
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Fig. 29. Voltage profile at commercial load

were recorded for each simulation, and simulations were continued at increasing PV

levels as depicted in Fig. 29.

4.6 Real Power loss

From Fig. 30, it is clearly that, the power loss decrease when injecting PV

generated power. As we can see during the time 8 : 00 am - 12 : 30 pm the power

loss reduced. The overall reduction in power loss was 26%. As in Fig. 15 (A) black

dotted line, the case of DSM (No PV, πp = 0 c/kWh) there is an increased in the
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power loss between 8 Am and 12:00 PM, the load demand at this time is high ,also

the current drawn from the grid will be high .The blue dotted line is the feeder power

loss in the presence of solar PV generation, as in Fig. 30 in the time from 8:00 AM

to 12:00 the power loss has significant reduction, this is because both of the loads are

consumed the power from the solar PV, and consequently, the current reduced.

Table II summarized the effectiveness of considering high tariff on the efficiency

of the solar PV usage, it shows that the efficiency of the solar PV usage dropped

for the residential area, while it in-creased in the commercial building as PV highest

power generated at the period of peak commercial load [see Fig. 26].Generally, the

feeder power losses calculation done using the formula:

Ploss =

nbr∑
i=1

|Ii|2ri (4.12)

Where nbr : number of nodes in the feeder, |Ii| : is the node current, ri is the resis-

tance.

4.6.1 DSM in the Commercial Area

Fig.31 shows that when assuming πp = 0 c/kWh more load moved to time slots

with low price periods.as stated in the introduction for a more realistic scenario, the

proposed algorithm also take into consideration the fact that certain appliances may

have higher priority over other appliances so that these appliances have to operate in

their specified time; hence these types of appliances have less DSM participation.

The obtained results for the commercial area are given in Figs (32 a-b), and 33,
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Fig. 30. Overall feeder power Loss when A) Small commercial load connected B)

Large commercial load connected
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the comparison of the preferred load [original load consumption] as it appears in sold

line with the new profile after apply the DSM as in Figs 8 and 9 [green dotted line],

also Figs 32 and 33 clarify that there is only a high load period from 9: 30 to 4: 30.

Fig.34-a illustrates the cost saving of the shifted appliances and the corresponding

penalty cost for πp = 0, 1, 3 c/kWh which re-ported the penalty prices applied for

Low, Med, and high critical respectively.

The obtained results show that one high critical appliance participated in the

DSM with onetime slots shifts, while five appliances under Med-critical categories

participated and shifted slots of the appliances increased, it is worth noting that the

corresponding cost saving depends not only on reduced electricity price caused by

the shifted slots but also on power rate of the appliance. Lastly for Low-critical we

see that number of the appliances participating in DSM increase to nine with much

higher cost saving and higher time shifted slots, also we see from Fig.34-(a) that the

low-critical appliances have zero penalty cost as πp = 0 c/kWh.

Fig. 37 clarify the voltage deviation of the original system, as we see that the

voltage profile has decreased between the 10:00 AM and 5:00 pm as the load demand

in highest level, in case of residential (at DSM πp = 0 c/kWh), we see that the voltage

profile starts to increase at 12:00 pm to 16:00 pm as the residential load shift to the
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Fig. 31. DSM results for the commercial at πp = 0 c/kWh

low price time from early morning to 11:30 am [see residential price Fig.5],beside, the

availability of the PV power and reached the highest level at 1:30 pm and the overall

the voltage profile in case of residential DSM more fluctuated and reached to 1.038

P.U. in some parts in compare to the original profile.

In case of commercial DSM, the voltage profile decreases during the early hours

during the day when parts of the load rescheduled to the low-price time [see commer-

cial price Fig.27] and increase during the daytime hours (8:00-16:00) when the rooftop

PVs generate power, However, the DSM scheduling shift some appliance usage into

those time slots and mitigate to any voltage violation may occurs.

4.7 DSM for Thirty Households and for Different Participation Level

Fig. 38 compares the voltage profile at the end of the feeder for different par-

ticipation levels with πp = 0 c/kWh considering the two scenarios, i.e., with PV
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Fig. 32. A and B Represent DSM Results for commercial at Different πp

Fig. 33. Demand side management (DSM) of commercial Load
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Fig. 34. Demand side management (DSM) of commercial Load
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Fig. 35. Cost saving and Penalty Cost for Commercial DSM

Fig. 36. Cost saving and Penalty Cost at πp = 0, 2, 3 c/kWh
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installation.it is found that with increasing in the number of customers participated

in DSM will tend to smooth the voltage devotions profile and improves the voltage

fluctuation caused by load changes. Moreover, when the rooftop PV in highest gener-

ated level during the period (from 8:00 am to 16:00 pm), the DSM at πp = 0 c/kWh)

will help to mitigate the voltage rise problem during these hours.

Fig. 34 illustrates feeder total power loss at different number of customers with

the presence of rooftop PV, as we can see with higher DSM participations (note that

in this case 100% means the all 30 customers participate in DSM program) will reduce

the power loss that occurs during the on-peak price as illustrates in Table 4.2 As its

depicted in Fig.39 with DSM (at penalty πp = 0 c/kWh) more loads shifted to the

time of the PV power generation during the mid-day time and that will mitigate the

real power loss.

Last scenario is the comparison of the voltage profiles at the end of the feeder

with 30 smart homes participating in the DSM program, this test applied at different

value of penalties with the presence of rooftop PV, as it illustrates in Fig. 41 when

the value of the πp increased to 5 and 10 /kWh the voltage less flattering and more

fluctuated, also less fewer appliances can shift to the time of the PV powergenerated.
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4.8 Conclusion

For radial grid layout comprising 30 buses, we assessed (1) the reduction in

the operating cost, (2) PV utilization efficiency, (3) real power loss, and (4) voltage

fluctuation. The electricity cost of the residential area show reduction of 37.1%, while

the commercial area show reduction of 50.3%, although the customers in commercial

building less willing to change their consumption patterns, due to high power rate of

the appliances in the commercial load. The reduction in power loss in the commercial

area was higher than the reduction of power loss in residential load, as the peak load

in the original commercial load profile occur at the time of the peak PV generation

period .

Lastly, the results obtain from voltage profile show that when the value πp in-

creased the voltage less flattering and more fluctuated, also fewer appliances can shift

to the time of the PV power generated, in other word, apply DSM without high

penalty for load shifting will, reduce the voltage rise, encourage renewable energy

consumption, and avoid the overvoltage might occurs due to high penetration level.
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Fig. 37. Voltage profile of Original, Residential, and Commercial
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Fig. 38. Voltage profile of the feeder for different DSM Participation level

Fig. 39. Power Loss of the feeder at different participation level
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Fig. 40. Feeder power loss for different households DSM Participation level

Fig. 41. Voltage Profile with 30 DSM at different penalty
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Fig. 42. Voltage Profile with 30 DSM at different penetration level
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CHAPTER 5

DSM ALGORITHMS AND PERFORMANCE COMPARISON

5.1 Introduction

Several demand side management (DSM) techniques and algorithms used to show

that by adopting DSM and Time-of-use (TOU) price tariffs, electricity cost signifi-

cantly decreases, and optimum load scheduling is achieved.

In the first part, this task gives a comprehensive literature review on DSMs that

are related to load scheduling, Direct Load Control (DLC), and Demand Response

(DR). In the second part, two algorithms are chosen to compare performance in

terms of load consumption profile, Photovoltaic (PV) utilization efficiency, and power

loss. These algorithms are implemented to find the optimal electric load consumption

profile with presence of local PV generation. Furthermore, this work aims to present

two approaches for DSM for a residential home. These approaches can be used in

response to changes in the price of electricity overtime and in the presence of PV

generation to minimize the consumption cost and change the consumption pattern

by shifting part of the load to off-peak hours.

In addition, a case study of a single household with a single line is considered

under the assumptions of its participation in a DSM program. Results show that

the proposed scheduling algorithms can effectively reflect and affect users energy

consumption behavior and achieve optimal time distribution of electricity usage. Nu-

merical results show the impact of applying DSM algorithms on total power losses of

the feeder.

The major goal of Demand Side Management (DSM) [1] [6] is to efficiently man-
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age loads in such a way that will improve efficiency of the grid, reduce costly gener-

ation, and decrease excessive load pressure, and increase power system stability and

sustainability. This is done by maximizing system capacity without changing the

entire physical infrastructure of the power system.

For instance, researchers in [1] and [2] focused on household DSM, neglecting

photovoltaic (PV) utilization efficiency, maximum demand limit, and customers wel-

fare. While load scheduling schemes for scheduling residential loads consumption

proposed in [3] [5]. Ref.[4] A combination of DSM and Time-Of-Use (TOU) tariffs

significantly decreases the cost of energy with high utilization of PV generation by

using a heuristicbased load scheduling scheme as proposed in [3]. These references

present a DSM strategy based on load shifting techniques in three services which

are residential, commercial, and industrial. The authors consider the priority of the

operation time for each appliance by a proposed time delay function to minimize the

customer discomfort.

It is worthy to mention here that the authors used the same TOU price for com-

mercial, residential, and industrial; while in our work the electrical price signal used in

the residential load differs from the electrical price signal used in the commercial load.

In [5], a multi stage optimization for a typical home energy with assumed rooftop solar

PV is proposed. The proposed algorithm assumed that the surplus power is injected

to the grid with a reward.

The second thing the case study of this paper considered is the appliances pref-

erence and no penalty assumed for the shifted appliances. In [6], a residential load

scheduling approach is proposed to manage the operation time and to achieve opti-

mal daily usage of DGs. That locally available, genetic algorithm is designed and

implemented with a two level of optimization base on the DG-based scheduling and

RTP-based scheduling. In our work the objective function minimizes the cost by find-
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ing optimal load scheduling and makes the best use of PV generation. Our objective

function includes penalty cost and power loss.

References [7] [15] illustrate that DSM can be performed by using Direct Load

Control (DLC). Utility companies manage the customer consumption using this method,

with the customers appliance controlled by networked technology embedded system.

Different type of algorithms are used for DLC. For instance, in [7] and [8], the author

proposes an optimization algorithm that can apply with either on or off time to man-

age and control the load in residential and industrial locales. DLC can also be used

to reduce the peak load for large-scale residential demand response implantation [9].

In [10] an optimization technique based on dynamic programming is used to

achieve the optimal DLC strategy. A genetic algorithm is used to optimize the

scheduling of direct load control (DLC) strategies in [11], and integer linear pro-

gramming is used for the same problem in [12]. It is notable to mention that some

DLC optimization algorithm is used for certain appliances in a household, for ex-

ample refrigerator and air conditioning in [13] [15]. However, in [5] the developed

algorithm covers a variety of appliances in different types of loads; commercially and

residentially.

In [16] [24], a Demand Response (DR) program, where users are motivated to

be an active participant in managing their loads by reducing their consumption at

peak load hours can be the alternative to DLC. In this regard, the most common DR

programs include critical-peak pricing (CPP), time-of-use pricing (TOUP), and real-

time pricing (RTP). For example, in RTP tariffs, the price of electricity changes at

different hours of the day; while the TOUP electricity prices are previously determined

and the customer shifts operation time of the load accordingly. In real time pricing,

it is difficult and confusing for the customer to respond to the variation in the price

every hour. Also, peak load may occur in the low-price time period [18]. Peak
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load may cause instability in the system; therefore, it would be important to deploy

TOUP price with max demand limit as block rates. In fact, this is included in the

second optimization algorithm in this paper. Several methods and studies have been

implemented over the past two decades in order to minimize the electricity cost-based

day head price.

In [19], a DLC algorithm using linear programming is developed; the results

showing the electricity cost charged to the customers reduced after participating in

this DLC program. Smart pricing adopted in [20] to achieve lower electricity cost

proposes a power scheduling for demand response in smart grid system; with results

showing the proposed scheme leads to reduction in the peak demand.

In [21], a proposed direct load control based on a linear programming algo-

rithm to manage large number of customers controlling appliances in order to achieve

maximum load reduction. Another linear programming model was developed in [22]

to optimize system peak period load reduction in commercial and residential load.

Heuristic-based evolutionary algorithm (EA) used for energy management in [23],

is applied for load scheduling for DLC based on load shifting, this algorithm easily

adapts heuristically in the problem.

In this dissertation, a Clonal Selection Algorithm (CSA) method based on the

biological immune system and the natural defense mechanism of human body is used.

In CSA, the limitation is that the quality of the results depends highly on initial

population and probabilities of mutations. Population size selection in the simulation

process makes the algorithm converge towards high quality solutions within a few

generations. In addition, it is easy to implement. The main difference between

Clonal Selection algorithm (CSA) and Particle swarm optimization (PSO) is that

PSO doesnt have genetic operators such as mutation, but both CSA and PSO share

one aspect which is memory. This means they save the last iterations and update
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during the optimization process.

According to [24], PSO is similar to the genetic algorithm (GA) as they both are

population-based searches; with PSO having memory as important to its algorithm.

Moreover, the optimal solutions in references [25]-[28] to the problem of schedul-

ing household DSM in the presence of PV generation took more precedence. For

instance, in [25], an optimal scheduling and controlling approach has been studied

which performs scheduling of household appliances and management of local energy

resources. A high penetration of distributed generation can lead to problems in low

voltage distribution networks. A good review of the literature is presented in [26] that

is focused on PV penetration limit due to voltage violation in low-level networks.

In [27], the author proposed an optimization technique base real-time demand

response using renewable energy. Optimal load scheduling of households appliances

and management of local resource approach assuming a rooftop solar PV. As men-

tioned in [28] the proposed techniques do not consider the importance of balance

between the objectives, energy cost minimization, peak load minimization and user

comfort maximization. Also the voltage monitoring part was absent from the con-

straints. Additionally, the voltage limitation has to be taken into account. This shows

that a good DSM algorithm should minimize the electricity cost and maximize the

convenience for the customer.

The authors in [29] [38] focused on load scheduling methods based on a day-

ahead optimization process to reduce the customers electricity bill. This is achieved

by producing or storing energy to lessen their energy purchased from the grid. For

instance, in [35], the author proposed a load management technique for air condition-

ers to enable customers with small air conditioner appliances to participate in various

load management programs. This motivates the customer by receiving incentives

from the utilities to lower their monthly electricity bills. The work in [36] utilizes
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smart load management for coordinating the schedule of electric vehicles, taking into

account the grid performance such as voltage limit and the total system power loss.

In [37] and [38], the authors proposed model, which aims to find the optimal

starting time for charging the battery to minimize the cost delivered by the trans-

former to minimize distribution charging problems in electric vehicles.

The DSM techniques used in [39]-[42] reduce the peak load of the grid proposed.

The idea in this technique is that the load demand information of the user side using

the smart power system is provided to the energy provider and the energy price

is updated accordingly. The outcomes of these references illustrate that the daily

power consumption pattern can be smoother and more controlled through different

DSM schemes. For example, the Demand response scheduling under load uncertainty

based on real-time pricing in a residential grid is illustrated in [40, 41, and 42]. In

these references authors used game theory to obtain the optimal load consumption

pattern based on provided price. The authors model the interaction between the

energy provider and the customer using this theory.

In [43-49] researchers covered optimization of the performance of the micro grid

to make the best use of renewable generation resources and to reduce dependency on

grid energy providers. For example, in [43] and [45], an energy management system

model proposed including PV generators with storage units. While in [44], the author

introduces a residential PV generation energy storage system considering the pattern

of daily operation load of the homeowner. The benefit of a storage system in local

residential PV installation presents in [46] and [47], wherein the authors study the

impact of PV on the quality of the low voltage network.

The works [48] [56] proposed scheduling schemes in a smart grid environment

to improve the quality of the power grid and to enable the customer to reshape his

production and consumption pattern. Moreover, in these references an optimal resi-
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dential load scheduling models uses mixed integer linear programming. The proposed

model also presents the integration of renewable generation with a battery storage

system. The model aims to help the customer to reschedule the appliances to get

optimal benefit and to minimize their electricity bill.

The author in [57]-[71] proposed an optimal scheduling technique for residen-

tial appliances in smart homes with local PV generation. Results indicate that the

proposed strategy has the capability of maximizing the savings in electricity cost.

The work in [72]-[76] studies scheduling of different types of appliances by adopt-

ing a dynamic programming-based game theory approach. It is assumed that cus-

tomers with extra power generation can inject their unused power and receive revenue

to reduce their electricity bill.

The previous work in [5], develops an optimization model for a single household

DSM model. This model contains a single distribution feeder line supplying a small

community of thirteen houses based on a day-ahead household DSM system with

local PV generation. The proposed algorithm searches for the optimal solution to the

problem of scheduling household DSM in the presence of PV generation under a set of

technical constraints such as dynamic electricity pricing and voltage deviation. The

proposed solution is implemented based on the Clonal Selection Algorithm (CSA).

5.2 Limitations of the Current Micro grid Literature

Based on the conducted literature review, we review in the rest of this section

related current work and discusses their limitations.

1. The DSM programs that have been used (e.g. [33], [34], [41]), proposed an ef-

ficient energy management system to schedule the electricity use of appliances

to achieve maximum benefits for customers considering all three types of appli-

ances; base, interruptible, and curtailable appliances. The proposed algorithms
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do not consider the importance of balance between the objectives energy cost

minimization and peak load minimization. While in our work, a DSM model

is proposed and mathematical models for the grid, renewable energy resource

represented by rooftop PV generation are presented as well as for different type

of electrical appliances in different types of loads commercial and residential.

This model can effectively minimize the energy consumption cost for day-ahead

time.

2. The DSM techniques and algorithms used in [12], [14], and [27] propose a con-

sumption scheduling mechanism for home area load management in smart grid

using an integer linear programming (ILP) techniques. Most of them are system

specific [12], [13], [10], and some of which are not applicable to practical systems

that have a wide variety of independent appliances. Moreover, the techniques

were developed in [10], [19] using a linear program. These algorithms and tech-

niques cannot handle a large number of controllable devices from several types

loads which have several consumption patterns.

3. The TOUP methods proposed in [38], [40] and [46] were applied to achieve low

electricity payment. However, the purpose of the DSM is not only to achieve

optimal electricity cost, but also to prevent higher power demand peaks even

if the electricity price is low. From this point of view, TOUP applied in these

references still has limits causing the demand to be shifted to hours with low

electricity price and would lead to a higher peak electricity demand and peak-

to-average ratio. During the low-price time, a combination of TOUP with a

fixed threshold which represents max demand is necessary.

4. Most DLC optimization algorithms are used for certain appliances in a house-

hold, for example refrigerator, air conditioning [34]-[37] which are categorized as
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residential load. However, in our work the developed algorithm is expanded to

cover a variety of appliances in different types of loads, commercial or residen-

tial. Even if they have different characteristic in terms of load profile, electricity

price, appliances, and their customer willingness for DSM participation.

5. In [17], appropriate TOUP profiles were used for both residential and commer-

cial loads, where the profiles were different for each load [49]. Our algorithm

takes into account the voltage fluctuation evaluation and the power loss of the

entire system while optimizing the electricity cost. The goal is to reschedule the

energy consumption, considering the day-ahead dynamic electricity price and

the real production of the photovoltaic system.

6. According to [24], the limitation of PSO is that quality of the results depends

highly on the initial population and the probabilities of mutation. The pop-

ulation size in my work makes the algorithm converge towards high quality

solutions within a few generations, while also easy to implement. The main

difference between CSA and PSO is that PSO doesnt have genetic operators

such as mutation, but both CSA and PSO share one aspect that is they both

have memory. This means they save the last iterations and updates during the

optimization process. PSO is similar to the genetic algorithm (GA) as they are

both population-based searches, where in PSO the memory is important to the

algorithm.

5.3 System Model and input Parameters

This section describes the system model with input parameters. This model

consists of a single line feeder supplying a small community of thirteen households

based on day-ahead pricing. The proposed algorithms used for comparison search
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Fig. 43. Figure 6.2: A-Time-of-Use price(/kWh B- PV generated power)

Fig. 44. Figure 5.4: Original Load Profile (kW)

for the optimal solution for load scheduling with presence of local PV generation.

The two models used for comparison will have the same input parameters. In other

words, the same PV generation profile, the same power consumption profile, and the

same electricity price signal. These parameters are used to show the impact of the

proposed DSM on a single household with more diversified combination of applicances.
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5.4 Mathematical Formulation

The work in [4] shows the household DSM model is aimed to minimize the elec-

tricity cost by scheduling the on/off status of domestic appliances over the operational

periods, considering the dynamic electricity prices, locally available PV generation,

and the penalty prices of appliance operation time-shifting which are included to

manage the customer inconvenience caused by the proposed DSM algorithms.

The optimization model developed is based on this system. The performance of the

DSM algorithms will be tested and compared based on the load scheduled and power

loss. First, the model we talk about now aims to make the best of the PV power

generation. This reduces the demand on the power grid and reduces the electricity

purchased from the grid. The implemented algorithm in this work tries to arrange

the operation of the appliance through the day and to find the optimal electric con-

sumptions pattern and hence, reduce the demand during the peak load.

A. The first optimal energy management approach used for the performance compar-

ison [29] formulated as:

min
48∑
h=1

P h
DG − P h

must −
m+n∑
a=1

Xh
a × Pa

In the case, the power used by the customer is smaller than the PV generated

power, and therefore, no electricity purchase. However, when the demand exceeds

the PV generated power the customer needs to reschedule the electricity load to a
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lower electricity price to reduce the electricity bill.

xh
a = 0, 1,∀ a ∈

{
1 to A

}
βa − αa>da

ha : is the time that appliance a may operate.

xha : is appliance a on/off condition.

da : length of operation time

Pa , Rated power of appliance a [a, a]Allowable operation time range. tsatart , opeation

statim slot teand, operation end time

m, No. uninterruptible appliance

n, No. of interruptible appliance

P h
DG, DG power generation at time h

P i
flexible Total flexible loads consumed at i

RTP j/RTP k The time of use pricing at time j or k

P i
must Total baseline loads consumed at time h

Cj
a Energy to buy after the curtailment of appliance a at time j

In the case where the required power demand is smaller than the DG outputs during

the operational periods, no electricity purchase is needed.

In the next stage of optimization, the real time pricing scheme (RTP) will be consid-

ered

And the optimization problem which is formulated as flows:

min 0.5×cja ×RTPj + 0.5 cka ×RTP k

Pi
DG < P i

must + P i
flexible,∀ i ∈

{
1 to 48

}
s.t xk

a = 0, k = [αa, βa]

cja = (0, P j
DG>P

j
must + P j

flexible − xjaPa or

P j
must + P j

flexible − P
j
DG, P

j
DG < P j

must + P j
flexible − xjaPa)
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cka = (0, P k
DG>P

k
must + P k

flexible + Pa or

P k
must + P k

flexible + Pa − P k
DG, P

k
DG < P k

must + P k
flexible + Pa)

Where j is the time when the energy requirement exceeds the output of DGs

after full utilization of DG generation. And k the time slot to which appliance a

is shifted. It is important to mention here that each appliance is only periodically

scheduled every half an hour.

cja, is energy to buy at the interruptible appliance a at time j, cka, is energy to buy

after the increased shifted appliance a at tome k.

In this work, the domestic appliances are categorized into the following typing based

on their operation characteristics see Appendix -A.

1. Baseline load: it is the must-run service that needs to be served immediately

when it is requested by the residents, e.g. lighting, fridge, computer, television.

The energy supply to such must-run services is considered not schedulable and

needs to be included into the load demand as the baseline load.

2. Uninterruptible flexible load: it refers to the domestic appliances (e.g. rice

cooker, dish washer, washing machine) that require to be operated continuously

until completion of the task, and their starting and ending times can be flexibly

set.

3. Interruptible flexible load: it refers to the appliances which are allowed to run

and can be shut down at any time in the given time interval, e.g. air conditioner,

clothes dryer, pool pump, floor cleaning robot, electric radiator.
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5.4.1 The Second Approach

The proposed household DSM model is aimed to minimize the electricity cost

by scheduling the on/off status of domestic appliances over the operational periods,

considering the dynamic electricity prices, locally available PV generation, and the

penalty prices of appliance operation time shifting which are included to manage the

customer inconvenience caused by the proposed DSM program. Assume that the

proposed DSM program is scheduled day-ahead over a 24-h (30 min per slot) period.

The decision variables are the operational status of appliances ua(t) over the next

24 hours and a typical schedule [ua(t)]A×T ) is a binary (0/1) matrix with following

format:

[ua(t)]A×T )=[u1
1, u

2
1, , u

T
1 ;u12, u

2
2, u

T
2 ; ..;u1A, u

2
A, ..., u

T
A]

The objective function and constraints of the second proposed DSM model can be

presented as below:

min Ce + Cp

[ua(t)]

Subject to:

C
e

= 0.5×
T∑
t=1

Pload(t)πe(t) (5.2)

Cp = 0.5×
A∑
a=1

πp · ra · ∆Ta (5.3)

pload(t) = max((
A∑
a=1

ra × ua(t)− α · ppv(t)), 0) (5.4)

A∑
a=1

ra × ua(t) ≤MD ∀ a ∈ {1 to A} (5.5)
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T∑
t=1

ua(t) = Da ∀ a ∈ {1 to A} (5.6)

ua(t) = 0 ∀ t < Sa or ∀ t > fa (5.7)

∆Ta = 1T · |tstnewa − tstolda | ∀ a ∈ {1 to A} (5.8)

tstnewa = [t|unewa (t) = 1]1×Da
∀ a ∈ {1 to A} (5.9)

tstolda = [t|uolda (t) = 1]1×Da
∀ a ∈ {1 to A} (5.10)

[v(t)] = fAC (Pg(t), P
PV
g (t), P ∗L(t) |Ybus) (5.11)

Eloss =
T∑
t=1

L∑
l=1

| i tL |2 RL (5.12)

σv =

√√√√ 1

TN

T∑
t=1

N∑
i=1

(vti − v)2 (5.13)

5.5 Simulations and Numerical Results

As we can see from the first algorithm there is no MD limit on the load consump-

tion. Therefore, the first algorithm tested at MD = 0 kW where the customer is free

to shift the load without any concern about the maximum demand limit. Also, the

objective function of the first algorithm Eq. 1 neglects the power loss of the feeder.

While in the second approach, the algorithm considers that additional cost will be

added due to power loss of the system.

Moreover, the first approach has no penalty portion in the objective function.

While the objective function takes into consideration the customer inconveniences

caused by DSM scheduling which will be translated into additional compensation

cost in the optimization objective function. This additional cost represents penalty

due to shift of the time operation slots of appliances so that it includes penalty part,

Cp. It is important to mention that to make a fair comparison, it is assumed that
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the amount of Cp equal to zero which means πp = 0 c/kWh) when applied to the

simulation. In this case, the customer can shift the time slots of the appliances.

Results in figs. 45, 46, and 5.8 are from the first algorithm.

As we can see, Fig. 5.6 illustrates the typical load profile of the residential

household seen in Fig. 43 with most of the load shifted to the low-price period.

The red solid line represents the original energy consumption with two peak loads

from 6:00AM - 10:00 AM and from 4:00PM - 10:00 PM while blue bars represent

the load scheduled after applying the first DSM approach. Fig.45 also shows that

the cost reduced from 18.4 to 4.41 ($/day). However, there is one defect here which

is the occurrence of high load during the low-price time between 5- 8 AM. The PV

Utilization efficiency was 98.1%. Fig 46 represents the power loss of the feeder as its

found equal to 103 kW. Fig. 47 Illustrates the voltage profile of the bus node with

the household connected. As we can see there is voltage drop during the peak load

time and voltage increased during the maximum PV generated time.

Results in Figs 48, 49, and 50 are from the second algorithm.Fig.47 illustrates

the load consumption profile of the households where the red solid line represents

the original energy consumption while blue bars represent the load scheduled after

applying the second DSM algorithm. Fig.48 also shows that the cost increase to

4.46 ($/day) with just 5/day difference as compared with the first DSM algorithm.

However, there are some advantages in the second algorithm.

The first advantage is that there is no overload after applying the DSM algorithm,

and the reason is that this algorithm includes a fixed power consumption represented

by MD this constraint indicates the MD that the aggregate appliance power of a

household cannot exceed at any time; with 12.4 kW assumed as MD in the simulation.

The second advantage is that this algorithm takes into consideration the addi-

tional cost due to the feeder loss, which makes the algorithm close to the realistic



112

Fig. 45. Scheduled Load Profile

Fig. 46. Power Loss
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Fig. 47. Voltage Profile

costs. It is also important to mention here that there is one more advantage in the

second algorithm and that is the constraints included the voltage limit to maintain

the voltage profile swing between the accepted values as illustrated in Fig. 49. The

voltage increased from 8:00AM to 4:30 PM. Fig. 50 shows the system power loss

after applying DSM algorithm, this figure clarifies the behavior of the line loss with

load consumption, the total power loss decreased to 99.3kW as the PV utilization

efficiency increased to 98.8%.
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Fig. 48. Scheduled Load Profile

Fig. 49. Voltage Profile
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5.6 Conclusion

Several demand side management (DSM) techniques and algorithms has been

used in the literature. These algorithms show that by adopting DSM and Time-

of-Use (TOU) price tariffs; electricity cost significantly decreases, and optimal load

scheduling is achieved. However, the purpose of the DSM is to not only lower the

electricity cost, but also to avoid the peak load even if the electricity prices low.

To address this concern, this chapter starts with a brief literature review on

the existing DSM algorithms and schemes. These algorithms can be suitable for

Direct Load Control (DLC) schemes, Demand Response (DR), and load scheduling

strategies.

Secondly, comparison of two DSM algorithms to show the performance based on

cost minimization, voltage fluctuation, and system power loss. The results show the

importance of balance between objectives such as electricity cost minimization, peak

load occurrence, and voltage fluctuation evolution while simultaneously optimizing

the cost. The second optimization algorithm has potential to provide more value to

the customer in reducing the cost. This is done by evaluating the voltage of the entire

system and subsequently avoiding the use the appliances at high peak load during

the time when the electricity price periods is high. In other words, a good DSM

algorithm should have the objective to minimize the electricity cost for the customer

and maximize the customer convenience to handle large number of appliances of

several types.
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CHAPTER 6

THESIS SUMMARY AND FUTURE WORK

Daily load consumption pattern of electricity in the developed network is controlled

by energy management of the consumer side in a way to maintain the load con-

sumption curve within the desired limit by reshaping the electricity demand curve.

Utilization of electricity power saving technology, monetary reward, bill rate, decrease

the demand during the peak load period instead of adding more generation unites or

more distribution and transmission took more attention and concerns of demand side

management [32], [33]. By using suitable objective and appropriate methodology of

demand side management techniques peak load periods of the electricity consumption

pattern can be rescheduled effectively to maintain the reliability of the system and

avoid the system instabilities caused due to peak load periods. DSM has multiple

necessity in a smart grid system. The advantages of DSM are described below:

1. Electricity cost reduction: Sometimes to meet the peak demand, more high

rating generators with high costs are required in the power system. When the

peak load demand is shifted from peak to off-peak periods then the grid would

tend to be more stable; thus, the cost of the kW/h would be reduced. Moreover,

if dynamic pricing is apply then minimizing peak load demand can also help

in cost minimization. In additional, DSM plays a key role in preventing costly

infrastructure for the power grids, transmission and distribution substations

[39].

2. Environmental benefit by employ more energy efficient household appliances

can remarkably decrease peak load demand leading to lessen the greenhouse
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gas emissions.

3. Reliability and electric network issues: In the smart grid, DSM solve differ-

ent challenges to keep the system to be more reliable by avoid the peak period

demand. Self-maintenance technology of DSM helps to overcome network prob-

lems easily without any further disruption in the power grid [6].

The numerical results in chapter two of this dissertation show that an effective demand

side management provides benefits not only to the customers but also to the utilities

by reducing the peak load demand and overall cost without violating the constraints

of voltage deviation and peak load at any time.

The proposed approach may be used in demand side management systems to help

household owners to automatically create optimal load operation schedules based on

comfort settings of choice and in the presence of dynamic electricity pricing and

PV system. The work in chapter two only considers a single photovoltaic system

connected to a smart household at the end of the feeder. Simulation results in chapter

three work confirm that the proposed scheduling algorithm can effectively reflect and

affect users energy consumption behavior and achieve the optimal time of electricity

usage.

From the results in chapter four, it is clear that commercial DSM show better

effectiveness than the residential DSM and the electricity cost shows 37.1% of reduc-

tion, while in commercial load it shows 50.3% decrease, due to high power rate of

the appliances in the commercial load so that any small shift will tend to save much

higher than the residential appliance.

Also the commercial load profile shows time-alignment with local solar insolation

hence the PV generation as well; therefore, commercial DSM usually exhibit better

electricity cost savings, higher efficiency of the solar PV usage, larger electric energy
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loss decreasing, better improvement of voltage fluctuation. In addition, the overall

simulation illustrate that decentralized DSM shows a negative effect on grid energy

loss. Thus, it is necessary in the future to adopt the coordination DSM optimization

for the commercial loads and see how it impacts on the system performance.

Results in chapter five show that the proposed scheduling algorithms can effec-

tively reflect and affect users energy consumption behavior and achieve optimal time

distribution of electricity usage. The results also show that these approaches can be

used in response to changes in the price of electricity overtime and in the presence

of PV generation to minimize the consumption cost and change the consumption

pattern by shifting part of the load to off-peak hours.

For the future work, the suggestion is to evaluate the impact of Coordination

Demand Side Management (Co DSM) for load scheduling optimization, in this case

the implemented algorithm will apply on the entire system [households and the com-

mercials load] as the same time, which is unlike the decentralized DSM algorithm

that deals with each load bus individually, the results then need to compare with,

comparing its impact on the distribution network operation and renewable integra-

tion, in terms of utilization efficiency of rooftop PV generation, voltage fluctuation

and real power loss.

The second suggested study the advantage of using small isolated power system

of wind and PV profile to be connected to the household to study the contribution

of these two sources on the energy cost, this study deals with power scheduling in

PV/Wind using the clonal selection algorithm (CSA ) to obtain the least cost of

electricity. This work can also extended to study the fast dynamics of renewable

distributed generation and their impacts on the voltage regulations and transient

stability of distribution network.

In addition, it is of interest to find the optimal location and penetration level
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for distributed PV both from economic and electric stability points of view. Its

important to mention that an alternative formulation for the optimization problem

using continuous variables need to be applied as a future study.

Lastly, the error correction technique and forecasting methods, instead of using

historical data, needs to be assessed. The proposed algorithm can also be applied to

the load management problem with respect to the energy storage systems. Further

research results will be reported in the future publications.
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Appendix-A
Some algorithms and difference with the proposed model

1. Batchu, and Naran M. Pindoriya. ”Multi-stage scheduling for a smart

home with solar PV and battery energy storageA case study.” Inno-

vative Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE. IEEE, 2015.

Description:

minimize energy cost:∑T
t=1 P

m
load(t)πe(t)F1=min(

∑H
h=1 Cl,hLh )/(

∑H
h=1CL,hLh)max

Stage− 1

Minimis user discomfort :

F2 = min(
∑A

a=1)λeleca).ρ
(DTRa))/(

∑A
a=1)λ(elec, a).ρ(DTRa))(max)

stage− 2 :

0 ≥ St ≤ 1DTRa = (ta − h(a, s))/(ha,f − la − h(a, s)).

Stage one calculate the cost of the overall load, and the denominator calculate

the cost taking in to the regard if the customers used the appliance in the pre-

ferred time. Second stage is to minimize the inconvenience of the customers,where

ρ(DTRa)isthedelaytimerate.Lh, is the time of the day and C(L, h) is the tariff rate.

λelec,a denotes thepriority of appliancea, ρ is the delay parameter.

Similarity and Differences

For similarity in this reference, the customers comfort function included in the objec-

tive function, and the difference battery involved as free power. The advantage here
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is that he algorithm add minimization of battery utilization cost.

2. Ruan, Bingjie, et al. ”Demand response under real-time pricing for domes-

tic energy system with DGs.” Power System Technology (POWERCON), 2014

International Conference on. IEEE, 2014.

Description:

min 0.5×cja ×RTPj + 0.5 cka ×RTP k

Pi
DG < P i

must + P i
flexible,∀ i ∈

{
1 to 48

}
s.t xk

a = 0, k = [αa, βa]

cja = (0, P j
DG>P

j
must + P j

flexible − xjaPa or

P j
must + P j

flexible − P
j
DG, P

j
DG < P j

must + P j
flexible − xjaPa)

cka = (0, P k
DG>P

k
must + P k

flexible + Pa or

P k
must + P k

flexible + Pa − P k
DG, P

k
DG < P k

must + P k
flexible + Pa)

To minimize the difference between the DG output and power loads through the day.

j is the time when the energy requirement exceeds the output of DGs after full uti-

lization of DG generation. And k the time slot to which appliance a, is shifted. cja,

is energy to buy at the curtailment appliance a at time j , cka, is energy to buy after

the increased shifted appliance a at tome k.
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Similarity and Differences

In this reference the author used two level of optimization base on the DG based

scheduling and RTP-based scheduling, while in our work the objective function mini-

mize the cost by finding optimal load schedule and make the best use of PV generation

power. Our objective function we include penalty cost and power loss. Moreover, in

this reference, constrains not include the voltage boundary, and also the max demand

MD limitation for each time slots were not included.

min Ce + Cp

[ua(t)]

Subject to:

Ce = 0.5×
∑T

t=1 Pload(t)πe(t)

Cp = 0.5×
∑A

a=1 πp · ra · ∆Ta

pload(t) = max((
∑A

a=1 ra × ua(t)− α · ppv(t)), 0)

3. Ahamed, TP Imthias, and Vivek S. Borkar. ”An efficient scheduling
algorithm for solving load commitment problem under Time
of Use Pricing with bound on Maximum Demand.” Power Elec-
tronics, Drives and Energy Systems (PEDES), 2014 IEEE International
Conference on. IEEE, 2014.

Description:

min fu = min
∑m

j=1

∑k=24
k=1 Ckrju

k
j + g(udcj, u

k
j )

s.t∑k=24
k=1 ukj = lj
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For j 1 , to .mukj = 0,
fork ≤ Sjor k ≥ fj∑m

j=1 rju
k
j≤M

fork to 24m from 1 to M.
In this reference the objective function isthesumofwoterms.
Thefirst term capture he costofenergy and the second term cost of delay.
f(u) =

∑m
j=1

∑(
k=1 k = 24Ckrju

k
j +

∑m
j=1

∑k=24
k=1 g(udcj, u

k
j ).

In this reference the algorithm can be used under with bound on MD.
Consumers assume to pay heavy penalty once he exceed the contractu-
ally bound Penalty assumed.

Similarity and Differences:

The term g(udcj, u
k
j ) used to capture the delay depend on the decision

ukj , this can be the similar to our algorithm. Also the MD agreed by
the consumer is not restricted, which mean the customer can exceed
the amount and pay penalty cost, while in our algorithm we used MD
as restricted constraint.

4. Zhao, Zhuang, et al. ”An optimal power scheduling method for
demand response in home energy management system.” IEEE
Transactions on Smart Grid 4.3 (2013): 1391-1400.

Description:

Pa =[P1
a, P

2
a,, P

120
a, ]

Where P u
a donates power consumption for appliance a.

In this reference the power consumption scheduling problem as the fol-
lowing optimization problem:
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minw1F1(Pscd) + w2F2(DTRa)
s.t
ta[αa, βa]DTRa = (ta − αa)/(βa − αa)
the reference introduce formula to calculate the delay time rate for each
appliances.

F1(Pscd =
∑120

u=1 prCu(P
u
scd).

F2(DTRa) =
∑

(A)pDTRa.

In this reference, the author introduce scheduling method for home
power usage Base on real electric price signal received through en-
ergy management system EMS. Where w1 and w2 the weights rep-
resenting the importance of objectives. DTRa Denotes the delay time
rate of appliance a .Pscd.Thetotalpowerconsumptionscheduling.αa,βa
starting and ending operation time respectively.ta Operation starting
time of appliance a. prCu, deotes the energy price at the uth time slot.

Similarity and Differences:

The resolution is 12- minute, 5 time slots. The reference take in to
the regard the time delay of the appliances, while no penalty added.
The reference also introduce approach for connection the EMS in a
HAN. The performance measure cost with and without consider RTP.
also in this reference the appliances classify into wo type automatically
operated and manually.

5. Logenthiran, Thillainathan, Dipti Srinivasan, and Tan Zong Shun. ”De-
mand side management in smart grid using heuristic optimiza-
tion.” IEEE transactions on smart grid 3.3 (2012): 1244-1252.

Description:

min
∑N

t (Pload(t)-Objective (t))Pload(t) = Forecast(t)+Connect(t)−
Disconnect(t)
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Connect(t)=
∑D

k=1Xkit.P1k +
∑t−1

l=1

∑D
k=1Xki(t− 1)P((1 + t)k)

Disconnect (t)=
∑t+1

g+1

∑D
k=1 Xktg P1k +

∑j−1
l=1

∑D
k X(k(t− 1)q)

s.t

The number of devices sifted cannot be a negative value.

X(kit) ≥ 0

The number of devices shifted less the devices available for control.

∑N
t=1Xkit ≤ Ctralabl(i)

This reference presents a demand side management strategy based on
load shifting technique in three service area residential, commercial ,
and industrial.

Where Objectivet is the value of the objective curve at time t, and
Pload(t) is the actual consumption at time t. Xkit is the number of
devices of type k That shifted fom time step i to t P((1 + t)k) Power
consumption at time step t+1. D is he number of device type. j is
the total duration of consumption for device of type k. q ,m is the
maximum allowable delay.

Similarity and Differences:

This reference proposed demand side management that can handle large
number of devices, In three types of area residential, commercial and
industrial. The difference with our work is that the same TOP price
signal apply for the all areas, while we used two different TOP for com-
mercial and residential. The advantage of this reference was taking into
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regard the importance of the appliance in their operations time. Simu-
lation results in this wok mainly focuses on the cost minimization with
and without DSM. The performance measured the power consumption
distributing, and the cost reduction.

6. Ruzbahani, Hossein Mohammadi, and Hadis Karimipour. ”Optimal
incentive-based demand response management of smart house-
holds.” Industrial and Commercial Power Systems Technical Confer-
ence (ICPS), 2018 IEEE/IAS 54th. IEEE, 2018.

Description:

The proposed load shifting technique is mathematically formulated :
min J(t, p) = |P t

C − P t
O|.

Pt
C =

∑a
i=1 S

t
ipi +

∑β
j=1 f

t
jpj −

∑
k=1 S

t
kpk

In this reference the algorithm Take into account the lifestyles of the
customers by assume different weight

min
∑S

s=1 d
t
ss.t

Sti, f
t
j , S

t
k ≥ 0for all i, j, k

∑
k=1 S

t
kDc

Each device supposed to work for specific duration Ts∑(
n=T s

s
T se )xsn

s = from 1 , → S

In this reference incentive based DR optimization model is proposed
to efficiently schedule household appliances for minimum usage during
peak hours. Where P t

C and P t
O are the value of actual consumption at

time t and objective curve at time t. w is weight , dts is the customer
discomfort. DcNumberofdeviceskavailableforcontrol.pi, pj, pk power
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of the device type i, j , k . a, Number of shiftable appliances, β repre-
sents number of fixed appliances. xsn is the binary variable defined for
each appliance and for each time slot n N .

Similarity and Differences

In this reference the algorithm take in to the regard that some load may
have higher priority and need to shift to appropriate time steps. The
results in this reference show an improvement of the power mismatch
between the actual and after apply the algorithm. Also the perfor-
mance measure the energy efficiency and customers bill reduction. The
algorithm in this reference involved a hardware devise that can main-
tain two way communication between the utility and the appliances.
Its worth noting that the case study considered 300 households.

7. Shigenobu, Ryuto, et al. ”Optimal scheduling of real-time pric-
ing electrical power market considering participation rate of
demand response.” Future Energy Electronics Conference (IFEEC),
2015 IEEE 2nd International. IEEE, 2015

Description:

The objective function is used to minimize the distribution losses PLoss
in terms of the node voltages

minF (PLB,QLB, ) =
∑2

t 4
∑N

i PLi(t)

Vmin ≤ , m ≤ Vmax

Pm
f inPf(t)
leqPm

f ax

Qm
f inf (t)≤Qm

f ax
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The equations above are the voltage constraints , active power con-
straints, and reactive power constraints . the state of charging con-
straints:

Bmin ≥ LB(t) ≤ Bmax

PV capacity constraints:

√
(P 2

PV (t) +Q2
PV )(t) ≤ SPV (t)

The active power flow PfG that is flowing from the grid to customers.
PfG(t) = PLoad(t)− PPV (t)

Vmin,Vmax minimum and max appropriate voltage ,Pm
f in,Pm

f ax The
max and minimum active power in the distributed system. Qm

f in,Qm
f ax

Represents the max and minimum of reactive power constraints in the
system.

Similarity and Differences

In this reference proposed DR with real RTP technique based o real-
time pricing to reduce the total demand also this reference include
battery and PV as a green sources of energy, While in our algorithm,
the surplus power generated by PV assumed to be injected to the grid
without reword.
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Appendix-B
Computational Complexity

This part calculate the convergence time of the participated households, in case of

πp = 0 c/kWh. As we can see in Fig.50 the time taken for single household was

53 seconds. While when the Decentralized DSM applied for different number of

households (e.g. 4, 8, 12, 16, 20, 24, 28, and 30 households).In this simulation results

maximum iteration was 50 and was good to reach the optimum solution in each case.

It important to mention here that its assume that the price data provided to the

residential area day ahead at 6 pm.

Fig. 50. Computational Complexity for Different Number of Participated Households
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