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ABSTRACT 

2,6-bis(benzimidazol-2-yl)pyridine derivative (G-BZIMPY, G = NBn, N(3,5-

CF3)Bn, N-allyl and O) have been used as pincer ligands to coordinate and isolate 

various group 13-15 complexes. For Group 13, treatment of G-BZIMPY with two 
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This Ga(III) complex can be reduced to a Ga(I) centre using K2[Fe(CO)4] as a reducing 

agent to result in the Ga(I) complex [(NBn-BZIMPY)(Cl)Ga–Fe(CO)4] (Chapter 2). 

Group 14 complexes of G-BZIMPY have been synthesized in a similar fashion 

through the self-ionization reactions of G-BZIMPY with two equivalents of MCl2 (M = 

Ge, Sn) to yield [G-BZIMPYMCl][MCl3]. Attempts to reduce these complexes into the 

M(0) centre were not successful. Other reactivities and UV-vis studies are detailed in 

this dissertation (Chapter 3). Comparison of group 13 and 14 complexes of G-BZIMPY 

to complexes of the structurally similar bis(imino)pyridine (DIMPY) are studied and 

reveal G-BZIMPY as a stronger donor than DIMPY for group 13 coordination. For 

group 15 elements, treatment of PnCl3 (Pn = P, As, Sb) with G-BZIMPY does not yield 

any reactivity, however, the addition of TMS-OTf (Trimethylsilyl 

trifluoromethanesulfonate) results in the isolation of [G-BZIMPYPnCl][OTf]2 (Chapter 

4). 

In-addition, a tetradentate ligand tris((1-ethyl-benzoimidazol-2-

yl)methyl)amine (BIMEt3) has been investigated. A series of cationic complexes 

involving a pnictogen(III) (Pn = P, As, Sb) centre coordinated to BIMEt3 have been 

synthesized and comprehensively characterized. Oxidation of [P(BIMEt3)]3+ with 
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XeF2 provides access to [PF2(BIMEt3)]3+ representing the first structurally 

characterized example of a phosphorus(V) centred trication (Chapter 5). 

Attempts to synthesize an anionic carbon(0) are detailed in chapter 6. 

Although obtaining an anionic carbon(0) was not successful, it lead to a series of 

interesting compounds and results. Compounds containing carbon centre behave 

differently than their heavier group-14 analogues of the same bidentate anionic 

bisphosphine ligand. 
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CHAPTER 1: 
Introduction 

1.1 General Introduction 

The renaissance of Main Group Chemistry was born in the mid-1980s with the 

October issue of Chemical Reviews in 1985 entitled “Main Group Chemistry”.1 Main 

group chemistry is made up of both s- and p- block elements. s- and p- block elements 

make up more than 90% of the elemental composition of the Earth’s crust.2 

Additionally, elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, and 

sulfur are the most common elements found in biological organisms.3 The periodic 

table is organized in different groups (columns) labeled 1-18 (using Arabic numerals) 

or IA-VIIIA (using Roman numerals). Our group is mainly interested in p-block 

elements, more specifically, groups 13-15 elements in lower than usual oxidation 

states. 

Group 13 elements, also known as the boron group or triels, contain boron (B), 

aluminium (Al), gallium (Ga), indium (In) and thallium (Tl) with more attention given 

to boron through indium due to the high toxicity of thallium. Triels contain three 

valence electrons and have many industrial applications. For example, boron is 

commonly used in fiberglass, ceramics, and bleach. Aluminium is used in various 

electrical devices, construction materials and is widely used for food storage for its 

inertness towards food products.4 Gallium arsenides are used in semiconductors, 

solar cells and make up a major component of LEDs (Light Emitting Diodes).5 Indium 
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is usually used as an alloy with other metals for various applications, mainly 

conductive coating for displays like LCDs (liquid crystal displays).6 

Group 14 elements, also known as the carbon group or tetrels, contain carbon 

(C), silicon (Si), germanium (Ge), tin (Sn) and lead (Pb). Tetrels contain four valence 

electrons with +4 as the most common oxidation state found (for C, Si, and Ge). 

Carbon exists in various allotropes that include amorphous carbon, graphite, 

diamond, fullerenes, buckyballs, nanotubes, nanobuds and nanofibers.7 Carbon is of 

particular interest in organic chemistry because it’s the backbone for organic 

compounds and living organisms in general. Carbon is smaller than its group 14 

analogs and can have a more effective overlap of p-orbitals making it possible for 

carbon to obtain double and triple bonds. Uses of carbon vary depending on the form 

used, for example, crude oil containing hydrocarbon chains and charcoal are used as 

fuel sources, while diamond is considered very precious and expensive. Silicon is the 

second most abundant element in earth’s crust with various applications that range 

from use in toothpaste to being a major component of glass.8 Germanium oxide is 

mainly used in fiber optics (microscopes, camera lenses, etc.) due to its high index of 

refraction and low optical dispersion.9 Tin’s most common use is in soldering where 

solder is used to create a permanent bond between metal pieces like copper pipes or 

binding a wire to a circuit board.8  When it comes to lead, most of the lead produced 

is used in the creation of lead-acid batteries. Just like thallium, lead is toxic and the 

use of lead decreased over time due to concerns of its toxicity. 
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Group 15 elements, also known as the nitrogen family or pnictogens, contain 

nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) and bismuth (Bi). 

Pnictogens contain 5 valence electrons and exist mainly in +3 and +5 oxidation states. 

In their elemental forms, the physical and chemical properties of these pnictogens 

vary considerably. Nitrogen is found as a non-metal diatomic gas, phosphorus exists 

as different allotropes and is a non-metal solid in most of these allotropes, arsenic and 

antimony are metalloids and bismuth is considered a metal. Nitrogen (N2) makes up 

most of the atmosphere on Earth and can be isolated by fractional distillation of air. 

With a boiling point of –196 °C, nitrogen is commonly used as a cryogenic liquid.10 

Both nitrogen and phosphate are used in fertilizers and elemental phosphorus is used 

in the making of matches.10 Arsenic is highly toxic, as a result, one of its uses is as an 

insecticide. Another use is in the form of an alloy with gallium in the making of LEDs 

as mentioned above. 

1.2 Oxidation States 

Oxidation state is an integer number assigned to an atom which provides a 

charge indicating the degree of oxidation. The degree of oxidation refers to the 

number of electrons that have been removed from a neutral atom. French chemist, 

Antoine Lavoisier was the first to use the term oxidation in reference to a reaction of 

a substance with oxygen. The definition has been extended to include all reactions in 

which electrons are lost.11 
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An oxidation state is used to assign electrons to individual atoms within a 

molecule and thus can give an insight into the electron rich, poor and neutral sites 

within a molecule. There are numerous ways of assigning oxidation states, but most 

commonly, oxidation state is determined by disregarding the concept of shared 

electrons (in covalent bonds) and assigning those electrons merely on the basis of 

electronegativity where the more electronegative atom is assigned the electrons in a 

chemical bond.12 Another term used, valence state, is based on the number of 

electrons involved in bonding while taking charges into consideration. Both terms are 

sometimes used interchangeably to describe the same thing which can be confusing 

in many cases. 

 

Oxidation 
State 

+3 +1 –1 –3 –3 ±3 

Valence State 3 3 3 3 3 5 

Figure 1.1. Oxidation states of phosphorus in different molecules showing how oxidation state 
is not always consistent with valence state. 

By examining the different phosphorus compounds shown in Figure 1.1, one 

can see how oxidation state is not always in agreement with valence state. Oxidation 

state itself is not always consistent and/or representative of the reactivity of a 

compound. Comparing the first three compounds that contain pnictogens in a 

cyclohexyl arrangement, one can observe that the phosphorus centres are assigned 



CHAPTER 1 
Introduction 

5 

very different oxidation states when they are similar in nature and bonding. 

Comparing phosphine (PH3) and phosphide (Li3P), based on oxidation state rules, 

they are assigned the same oxidation state (–3) when they are very different 

compounds. 

In the Macdonald group, we like using a more convenient model that is based 

on the number of lone pairs in a given atom.13,14 In the case of phosphorus, 

phosphorus with no lone pairs is in the +5 oxidation state (PV), phosphorus with one 

lone pair is in the +3 oxidation state (PIII) and phosphorus with two lone pairs is in 

the +1 oxidation state (PI). This model can be extended to other main group elements 

and is particularly useful for group 13-15 main group elements. Figure 1.2 shows the 

assignment of oxidation state for carbon using this model where carbon with no lone 

pairs, one lone pair, two lone pairs, three lone pairs and four lone pairs are assigned 

as carbon(+4), carbon(+2), carbon(0), carbon(–2) and carbon(–4), respectively. 

 

+4 +2 0 –2 –4 

Oxidation State 

Figure 1.2. A more convenient model to assigning an oxidation state based on the number of 
lone pairs present on a given atom. 

Every system has its shortcomings, and in this case, as the assignment depends 

on the number of lone pairs present, it’ll heavily depend on the structure drawn. A 
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Lewis structure can be ambiguous as it’s possible to draw more than one plausible 

structure for a given system. In the case of a carbodiphosphorane for example, two 

phosphines are bound to a carbon centre as shown in Figure 1.3. The oxidation state 

assignment can vary greatly depending on the way the structure is drawn. Lewis 

structure is a tool to help illustrate basic connectivity of a given molecule, but to be 

able to obtain more accurate electron density delocalization, computational methods 

would be an ideal way of figuring out and assigning the presence or absence of lone 

pairs on a given atom.15 

 

+4 +2 0 

Oxidation State 

Figure 1.3. Different Lewis drawings of carbodiphosphorane showing how the assignment of 
oxidation state on the carbon centre can be different depending on the way the Lewis structure 

is drawn. 

1.3 Chemical Bonding: The Covalent Bond 

The concept of a molecule dates to the seventeenth century, but it wasn’t until 

the twentieth century that chemists got a better understanding of the structure of a 

molecule. Gilbert Newton Lewis (1875–1946), was an American chemist that 

discovered the covalent bond and the concept of an electron pair. He postulated the 

idea of atoms sharing one or more electrons and developed a dot system to help keep 
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track of electrons. Lewis also devised the octet rule which states that any non-

hydrogen atom will tend to form bonds until the octet rule is satisfied meaning it’ll be 

surrounded by eight valence electrons.16,17  

The Lewis model gave chemists a rationale for molecule formation, covalent 

bonding and a way to help predict molecular geometries, but it didn’t answer the 

question as to why molecules come together. Likewise, the octet rule was believed to 

only work for the first two rows of the periodic table with the reasoning that atoms 

in third shell or higher have access to d-orbitals, allowing for hybridization (orbital 

mixing) yielding new orbitals capable of expanding beyond the octet rule. Firstly, d-

orbitals are high in energy and inaccessible to an atom like phosphorus and secondly, 

there are examples of first and second row elements breaking the octet rule and 

forming hypervalent compounds.18 Another downside to the Lewis model is the fact 

that a Lewis structure of O2 (Figure 1.4) does not explain the paramagnetic 

properties observed in liquid oxygen. This was the case until the introduction of 

quantum mechanics. 

 

Figure 1.4. A Lewis structure of a dioxygen atom (O2). 

Molecular Orbital Theory (MO theory) is a method that describes a molecular 

structure by combining atomic orbitals into orbitals that describe the bonding in a 

molecule as a whole rather than assigning electrons to individual bonds between 

atoms. By considering two overlapping 1s atomic orbitals (H2 molecule), MO theory 
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dictates that the combination of these two orbitals would result in two molecular 

orbitals, one bonding, and one anti-bonding. This is in accordance with Pauli 

exclusion principle where no two electrons in a molecule can have the same set of 

quantum numbers. Therefore, it’s necessary that the two originating atomic orbitals 

be split into two molecular orbitals as shown in Figure 1.5. 

 

Figure 1.5. Molecular orbital diagram of dihydrogen. 

MO theory not only helps in rationalizing bonding but also explains why 

bonding happens. Sharing of electrons can help stabilize a given molecule by bringing 

down the energy of electrons as shown in Figure 1.5. Going back to the O2 example, 

sketching the MO diagram (Figure 1.6) will make it clear why dioxygen is 

paramagnetic. According to Hund’s rule, every orbital within a subshell is singly 

occupied before an orbital is doubly occupied, thus, with two electrons to fill the 

doubly degenerate π* orbital, each orbital must be filled with an electron before 

pairing electrons and this is why dioxygen is paramagnetic. 
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Figure 1.6. Molecular orbital diagram of an O2. 

1.4 Pincer Ligands 

Early work in organometallic chemistry focused on monodentate and chelate 

ligands; recent work, however, showed a lot of interest in pincer ligands due to their 

versatility and ease of use. The term ‘pincer’ dates back to 1989 in which van Koten 

used the term to describe tridentate ligands with an anionic carbon centre.19 Over the 

past 15 years, the term pincer broadened to generally refer to any tridentate (three-

coordinate) ligand with adjacent binding sites that usually adopt a meridional (mer-) 

geometry but can also be found with facial (fac-) geometry (butterfly-like) in some 

cases. There are examples of pincer complexes adapting a fluxional process between 
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the two geometries.20 Figure 1.7 illustrates an [ONO] type ligand that is fluxional in 

the sense that it can be present in a T-shaped geometry or a bent geometry, more 

details to follow in section 1.5.21 

 

Figure 1.7. Arduengo’s 10–As–3 T–shaped complex (mer-, left) and in the bent shape (fac-, 
right). 

Due to their broadened definition, there is ambiguity regarding the 

classification and nomenclature of pincer ligands. In a recent review, Peris and 

Crabtree20 classify pincer ligands based on the charge and symmetry of the pincer 

ligand. The term palindromic is used to describe symmetric donor arms (regardless 

of the central donor), thus, coordinating atoms like [N,N,N], [O,N,O] and [P,C,P] are all 

considered to be palindromic, as long as the substituents on terminal donors are the 

same. In cases where the two terminal arms have differing donor atoms like [N,N,P], 

or different substituents like [LN,N,NL’], the ligand is considered to be non-

palindromic. Regardless of the palindromicity of the pincer ligand, it can also be 

further classified based on the overall charge of the ligand. It can be neutral (L3), 

anionic (XL2), dianionic (X2L) or trianionic (X3) as illustrated in Figure 1.8.  
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L3 XL2 X2L X3 
Figure 1.8. Classification of pincer ligands based on the overall charge of the pincer ligand, 

neutral (L3), anionic (XL2), dianionic (X2L) or trianionic (X3). 

The use of pincer ligands with transition metals gained a lot of interest due to 

the stability pincer ligands, the ease of tunability and cooperativity (through non-

innocent pincer ligands). Non-innocent ligands are redox active ligands that can 

accept or lose electrons in its π-system resulting in significant change in the internal 

bond distances of the ligand. This allows for the coordinated metal to maintain its 

starting oxidation state or undergo reactivity that otherwise would not be possible. 

Pincer ligands are very robust, which makes them a great choice in reactions that 

require harsh conditions. Goldman and Brookhart22 reported the production of n-

alkanes using an iridium pincer catalyst (Figure 1.9) that can undergo extreme 

reaction conditions, such as in the metathesis of n-decane that requires heating at 175 

°C for nine days. Another example of the robustness of such systems is the Ni(II) 

complex, Figure 1.9 (right), that is very thermally stable to the point that it can be 

sublimed in air at 240 °C in air without decomposition.23 
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Figure 1.9. Goldman and Brookhart’s Iridium(III) catalyst (left) and Moulton’s Nickel(II) 
(right) are examples of robust metal pincer catalysts. 

Pincer ligands also allow for tunability of the ligand framework, which gives 

chemists a handle to manipulate the reactivity of the overall catalyst by modifying the 

pincer ligand. The importance of pincer ligand design is illustrated in the Ni(II) 

catalyst shown in Figure 1.10 that is used in the Sonogashia coupling between 

terminal alkynes and alkyl halides. Dissociation of an amine sidearm is the rate 

determining step of the reaction, a more labile amine (right) results in the catalyst 

being active at room temperature, while a more rigid amine group (left) results in the 

catalyst requiring temperatures exceeding 100 °C for the dissociation of the amine to 

occur and for the catalyst to become active.24 

 

Figure 1.10. An example of how the tuning of pincer ligand can affect the reactivity of the 
catalyst. 

Another interesting aspect of pincer ligands is the possibility of introducing 

chirality into the ligand design, allowing for enantioselective catalysis. Anionic 

[N,N,N] pincer ligands like the ones depicted in Figure 1.11 have shown to yield 
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highly enantioselective transformations. The high kinetic stability of the resulting 

catalysts allow for reduced catalyst loadings.25 

 

Figure 1.11. Examples of chiral [N,N,N] pincer ligands. 

Although pincer complexes are generally viewed as stable compounds, where 

the ligand framework remains unchanged under harsh reaction conditions, there are 

cases where the pincer ligand itself undergoes transformations resulting in unusual 

reactivities. This occurs in cases where there is a great delocalization of electron 

density over multiple aromatic rings resulting in a lowered HOMO–LUMO gap, that is 

ligand based, allowing it to participate in electron transfer reactions.20 In such cases, 

the ligand is considered to be “non-innocent” and is redox active. Figure 1.12 

illustrates the reaction of a Ta(V) complex with a phenyl azide yielding in a nitrene 

transfer onto the metal centre. The oxidation state of the tantalum centre does not 

change, where tantalum maintains its preferred +5 oxidation state; however, the 

pincer ligand goes from being a trianionic (X3) ligand to a monoanionic (XL2) ligand, 

meaning, the ligand underwent a two-electron oxidation.26 
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Figure 1.12. An example of a redox non-innocent ligand that allows Ta(V) undergo reaction 
with nitrene without changing the preferred oxidation state of the metal centre. 

1.5 Pincer Complexes of Group 15 Elements and Their Role 

in Modern Main Group Chemistry 

Main group elements combined with various types of pincer ligands resulted 

in some of the most interesting complexes to appear in the literature over the past 

decade.25,27 In the 1980s, Arduengo was a pioneer in multidentate pnictogen 

complexes.21,28–31 In the 1990s, he went on to synthesize the first stable carbene that 

will be further discussed in Chapter 6 of this dissertation.32 Arduengo reported the 

phosphorus complex of 5-aza-2,8-dioxa-3,7-di-tert-butyl-1-phosphabicy- 

clo[3.3.0]octa-3,6-diene (ADPO), which is referred to as a 10–P–3 complex if it 

assumes T–shaped geometry (Figure 1.13, left).30 The 10 denotes the number of π–

electrons in the system and the 3 refers to the number of coordination sites. If the 

complex assumes a bent geometry, then there are 8 π–electrons in the system and the 

system is referred to as an 8–P–3 complex (Figure 1.13, right). 
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Figure 1.13. Arduengo’s 10–P–3 T–shaped complex and its different resonance structures 
(left), and 8–P–3 bent complex (right). 

Arduengo additionally reported the complexation of other pnictogens to the 

same ligand (ADPnO). Arsenic and antimony both adapted the 10–Pn–3 T–shape 

geometry21,28 while bismuth reacted with three equivalents of the ligand to yield a 

20–Bi–9 complex (Figure 1.14, right).31 Upon treatment of ADPnO with silver, 

Arduengo observed that, in the cases of arsenic and antinomy, the ligand system 

maintained the T–shaped geometry resulting in a 10–Pn–4 complex, while in the case 

of phosphorus, the coordination resulted in bent structure yielding an 8–Pn–4 

system.33 

 

Figure 1.14. Pnictogens with 10–Pn–3 system, P, As and Sb (left), and 20–Bi–9 system (right). 



CHAPTER 1 
Introduction 

16 

ADPnO complexes have interesting reactivities, starting with the ADSbO, as 

treatment with hexafluoro-2-butyne afforded an unprecedented addition of a 

substrate to hypervalent species as shown in Scheme 1.1, where two acetylenes add 

across the antimony and carbon backbone. The reaction of ADSbO with 

hexafluorobiacetyl results in the 4–coordinate adduct shown in the scheme below 

(10–Sb–4) where two oxygens add across the antimony centre with an appended arm 

of the tridentate ligand. In the case of arsenic, ADAsO reacts with 

bis(trifluoromethyl)dithiete in a similar manner to that of the hexafluorobiacetyl 

(with ADSbO) where the two sulfurs add across the arsenic centre; except that the 

resulting complex is 5–coordinate (12–As–5). 

 

Scheme 1.1. The Reaction of ADSbO with hexafluoro-2-butyne (right) and with 
hexafluorobiacetyl (left). The reaction of bis(trifluoromethyl)dithiete with ADAsO (bottom). 

In light of recent advancements in main group chemistry in the activation of 

dihydrogen and other small molecules using Frustrated Lewis Pairs (FLPs),34 
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chemists have been searching for other ways to activate small molecules using main 

group elements. The ADPO complex that was first synthesized by Arduengo has been 

recently investigated by Radosevich for possible catalytic activity.30,35,36 Practically, 

tricoordinate P(III) compounds will tend to adopt a pyramidal geometry (Figure 

1.15, left); however, through appropriate ligand design, it’s possible to deviate from 

such geometry and by doing so, change the reactivity at the phosphorus centre. 

Lowering the symmetry of a phosphine results in a smaller HOMO–LUMO gap that 

results from destabilization of the HOMO and the stabilization of the LUMO. This gives 

rise to a biphilic phosphorus centre capable of behaving as an electron donor and an 

electron acceptor at the same site.35,36   

 

Figure 1.15. Different geometries adapted by tricoordinate phosphorus: C3V, Cs and C2V 
respectively. 

Radosevich demonstrated that Arduengo’s phosphine (ADPO) is capable of 

activating N–H and O–H bonds of small molecules across the phosphorus centre. 

Calculations show that this reaction does not undergo a concerted oxidative addition 

via a three-centre transition; rather, an  amine molecule would bind first to the 

electrophilic phosphorus followed by a heterolytic cleavage of the N–H bond and a 

proton transfer from N to P.36 ADPO is also capable dehydrogenating an ammonia–

borane complex (Scheme 1.2) to yield a P(V)–H2 complex, which can also be accessed 

via the treatment of a P(V)–Cl2 complex with sodium cyanoborohydride. 



CHAPTER 1 
Introduction 

18 

 

Scheme 1.2. Radosevich’s synthesis of P(V)–H2 complex. 

The resulting pentacoordinate P(V)–H2 complex can transfer hydrogens onto 

an unsaturated organic substrate. The reaction was shown to be catalytic in the 

presence of both ammonia–borane and azobenzene. A 10 mol% catalyst loading of 

P(V)–H2 can transfer hydrogenate onto azobenzene substrate in yields exceeding 

80% at room temperature. The difference between this method of transfer 

hydrogenation and FLPs is that in the case of an FLP, the phosphorus acts as an 

electron donor and requires the presence of a Lewis acid to act as an electron 

acceptor. In the case of ADPO, however, both the electron donor and acceptor are on 

the same site making it possible to perform two-electron redox transformations that 

are observed in transition metal catalysts.35 The proposed mechanism for this 

transformation is shown in Scheme 1.3 with an equilibrium between P(III) and P(V) 

that illustrates the redox capability of the phosphorus centre. Other recent work by 

Radosevich showed evidence of the formation of pentacoordinate phosphorus via a 

concerted cyclic transition suggesting the potential of organophosphorus catalysis via 

it’s biphilic centre.37 
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Scheme 1.3. Proposed mechanism of transfer hydrogenation catalysis of ADPO catalyst. 

Pincer ligands have been used in the isolation of other various low valent main 

group elements. In 2006, Cowley demonstrated that upon treating AsCl3 with SnCl2, 

the arsenic is reduced to the arsenic(I) species (“AsCl”) that can be isolated by 

treatment of the resulting suspension with an α,α’–diiminopyridine ligand (also 

known as diiminopyridine, DIMPY and DIP), resulting in the arsenic(I) salt as shown 

in Scheme 1.4.38 Ragogna later illustrated that the same ligand can be used in the 

isolation of a phosphorus(I) salt by treatment of DIMPY ligand with PI3 resulting in a 

P(I) centre and an I3– as the counterion (31P δ = 169 ppm). Ragogna reported that the 

use of PCl3 and PBr3 resulted in either no reaction or in indiscernible mixtures. 

Including a halide abstracting agent like cyclohexene in the presence of PCl3 didn’t 

show any reactivity; however, there was conversion into product in the case of PBr3 
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with cyclohexene with much smaller yields (28% compared to >80% in the case of 

PI3).39 

 

Scheme 1.4. Examples of Group 15 low valent pincer complexes. 

1.6 Pincer Complexes of Group 14 Elements and Their Role 

in Modern Main Group Chemistry 

The use of pincer ligands with group 14 elements dates back to 1985, before 

the term pincer was even adopted, where Archer and co-workers reported the 

synthesis of a tripyridine tin(II)chloride (Figure 1.16).39 Reid and co-workers 

reported the synthesis of a germanium(II) salt of a triamine, pmdta 

(MeN(CH2CH2NMe2)2) (Figure 1.16) by treatment of pmdta with 2 equivalents of 

GeX2 (X = Cl, Br) yielding to the self-ionization of the GeX2 centre into a GeX+ and GeX3– 

fragments.40 Although this is a more flexible ligand and is capable of adopting a facial 

geometry, it rather adopts a planar meridional geometry. 

 

Figure 1.16. Early examples of pincer-type complexes of group 14 main group elements. 
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As mentioned earlier, one of the reasons pincer ligands are attractive ligands 

is the possibility to tune the ligand, thus, asymmetry can be introduced into the ligand 

yielding a chiral metal centre. Evans and co-workers demonstrated this via the use of 

a chiral ligand PYBOX (bis(oxazoline)pyridine) in the isolation of a chiral tin(II) Lewis 

acid (Figure 1.17) that is capable of catalyzing aldol condensation reactions.42 With 

10 mol% loading, aldol reactions can be performed between ethyl glyoxylate and 

silylketene acetals  to yield respective products in good yields in greater than 90% ee. 

 

Figure 1.17. Evans’ tin(II) chiral Lewis acid complex. 

DIMPY ligands have been important in development of group 14 low-valent 

main group chemistry, Roesky reported that using such ligands, one is able to isolate 

the self-ionization product of germanium(II) and tin(II) (Scheme 1.5).43 Nikonov 

later reported that the treatment of a DIMPY-Ge(II) complex with two equivalents of 

potassium graphite (KC8) in benzene results in a germanium(0) complex as 

illustrated in Scheme 1.5.44 Other variants of the M(II) DIMPY (M = Ge, Sn) have also 

been reported.45,46   
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Scheme 1.5. Roesky’s DIMPY-M(II) complex (M = Ge, Sn) and Nikonov’s reduced Ge(0) 
complex. 

Although Sn(0) has not been synthesized in the same manner (reduction from 

Sn(II) to Sn(0)) as in the case of germanium, Flock and co-workers were successful 

using a different variant of DIMPY ligand with Sn[N(SiMe3)2]2 resulting in a 

transamination reaction that yields a Sn(0) complex by eliminating two amine 

equivalents (Scheme 1.6).47 

 

Scheme 1.6. Mechanism of the transamination reaction of DIMPY ligand with Sn[N(SiMe3)2]2 
to yield a Sn(0) complex. 

Zaitsev’s group reported a different variant of dianionic tridentate complexes 

of group 14 elements and have demonstrated that the main group element centre is 
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reactive and can undergo reactions like oxidative addition and transition metal 

coordination (Scheme 1.7).48–50 Coordination of germanium and tin complexes to 

tungsten and molybdenum carbonyl compounds have been successful. In addition, 

both germanium and tin complexes are capable of oxidatively adding small molecules 

like MeI, Br2, and Ph2S2. Furthermore, DIMPY-Sn(II) complexes have been employed 

in various transition metal coordination as a result of the work of Jambor and co-

workers.51,52 

 

Scheme 1.7. Zaitsev’s tridentate complexes and reactivity. 

1.7 Pincer Complexes of Group 13 Elements and Their Role 

in Modern Main Group Chemistry 

Pincer complexes of group 13 main group elements are more prominent in 

literature in comparison to either group 14 and 15, particularly, after their recent 

advancement as supporting ligands (metalloligand scaffold) for transition metal 

catalysts.53 An example of this is the use of metalloligand pincer scaffolds’ of group 13 

elements that forms an overall pincer ligand with a group 13 element as the central 

atom (Scheme 1.8).54–56  
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Scheme 1.8. Zwitterionic complexes containing ambiphilic pincer ligands. 

The presence of a Lewis acid (e.g. boron or aluminium containing compounds) 

at or near transition metals results in altered reactivity of the metal centre.57 Lewis 

acids have been used in conjunction with transition metal catalysts as external 

activators or co-catalysts. Only recently have Lewis acids been incorporated within 

ligand motif resulting in ambiphilic ligands where the Lewis acid acts as a σ-acceptor 

(Z-type) ligand. The different donor types can be described as L (2-electron donor), X 

(1 electron donor) and Z (2-electron acceptor) type ligands. σ-acceptors can have 

different goals in coordinating transition metals, they can be used to generate a 

reactive electron-deficient metal centre and can also be used in cooperative metal-

ligand activation of small molecules.57–59 Having a group 13 element acting as a σ–

acceptor have mostly been investigated in use as an external activator or a co-catalyst, 

but not until recently has it been investigated as part of a ligand scaffold to yield a Z–

type ligand (Figure 1.17).60 Z–type ligands are considered Lewis acids and when 

coordinated to a metal centre, both electrons come from the metal centre. Recent 
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studies show that the use of Lewis acids or Z-type donors in general at or near 

transition metals result in increased reactivity of the metal centre.34,53,60,61 

 

Figure 1.18. MO diagram depicting the difference between an L- and a Z-type ligand 
coordinating to a transition metal. 

One example that illustrates this altered reactivity by incorporating a group 

13 element is the work of Takaya and Iwasawa.53 The palladium(II) complex 

proposed contains a group 13 main group element (E) within the ligand scaffold that’s 

directly coordinated to palladium as illustrated in Figure 1.19. This catalyst is used 

towards the hydrosilylation of CO2 and depending on the main group element 

incorporated, the resulting reactivity of the catalyst was altered. Aluminium showed 

the highest reactivity in the group 13 series and was much more reactive in 

comparison to either gallium or indium. The aluminium containing catalyst exhibited 

the highest catalyst activity reported for hydrosilylation of CO2 to be reported at the 

time. This result shows a promising future for the development of new catalysts with 

various tunable metalloligands. 
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Figure 1.19. Takaya and Iwasawa’s palladium(II) catalyst with E = Al, Ga and In. 

Although pincer metalloligands have gained popularity over the past decade 

due to the altered reactivity, the use of pincer ligands with group 13 elements have 

been useful in the isolation of various +1 and +3 group 13 elements. Diiminopyridine 

(DIMPY) ligands that were introduced earlier have been used in the isolation of group 

14 and 15 main group elements in various oxidation states. Attempts to isolate 

gallium(I) using DIMPY ligand by employing “GaI” as a gallium(I) source by Mills and 

Richeson yielded mixtures of gallium(III) and gallium(II) radical species as shown in 

Scheme 1.9.62,63 Initially it wasn’t clear as to why this was the case, however, solid-

state analysis by Ragogna’s group presented that the simple mixing of gallium metal 

with half an equivalent of iodine does not yield the anticipated “GaI”, rather, a mixture 

with an overall formula of [Ga0]2[Ga+]2[Ga2I62−] was observed. Varying the reaction 

time would result in a different mixture; for example, a shorter reaction time (40 

minutes) yields the overall formula: [Ga0]2[Ga+][GaI4−].64 Treatment of DIMPY with 

two equivalents of GaI3 or AlCl3 results in the clean isolation of self-ionized products 

[DIMPY-MX][MX4] (Scheme 1.9). 
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Scheme 1.9. Reaction of DIMPY ligand with GaI, 2GaI3 or 2AlCl3. 

Mills reported that the treatment of two equivalents of InCl with DIMPY ligand 

results in the deposition of indium metal and the coordination of InCl3 to DIMPY.63 

Later work by Richeson demonstrated that using a more appropriate In(I) source 

(InOTf) with DIMPY ligand results in the isolation of [In-DIMPY][OTf] as shown in 

Scheme 1.10.65. Additionally, Richeson showed that the indium(III) complex of 

DIMPY can be conveniently prepared by treatment of DIMPY with two equivalents of 

InCl3 to yield the self-ionized product shown in the scheme below. 

 

Scheme 1.10. Reaction of DIMPY ligand with InOTf (left) and two equivalents of InCl3 (right). 

DIMPY complexes of aluminium are more common than either indium or 

gallium, which is due to the fact that DIMPY-Al complexes have been useful in the 

activation of small molecules and play an important role in studies of catalytic 

reactions like Ziegler–Natta catalysis.66–68 Among the very first examples of DIMPY-

Al complexes was the work of Gambarotta and co-workers where they isolated 

paramagnetic Al complexes of DIMPY via treatment of DIMPY–FeCl2 with either AlMe3 
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or AlEt3 in an attempt to study the mechanism involved in this Ziegler-Natta catalyst 

where aluminium is used as a cocatalyst (Scheme 1.11).69 

 

Scheme 1.11. Reaction of DIMPY–FeCl2 with AlMe3 and AlEt3. 

Berben et. al. reported the synthesis of two square planar complexes of 

DIMPY-AlX (X = Cl, H).68 These complexes were synthesized by initially reducing the 

ligand by 2 electrons using sodium metal, followed by the introduction of aluminium 

trichloride or dichloroalumane, respectively, to yield the square planar complexes 

shown in Scheme 1.12. The hydride complex is capable of activating N−H bonds via 

a metal−ligand cooperative mechanism.67 In-addition, Berben demonstrated that the 

same aluminium hydride catalyst can promote selective dehydrogenation of formic 

acid to H2 and CO2 via an aluminium–ligand cooperative mechanism (Scheme 1.12).66  
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Scheme 1.12. Reaction of DIMPY with AlCl3 and AlCl2H. 
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CHAPTER 2: 
2,6-Bis(benzimidazol-2-yl)pyridine as More 

Electron-Rich and Sterically Accessible Alternatives 
to 2,6-bis(imino)pyridine for Group 13 

Coordination Chemistry 

2.1  Introduction 

Pincer ligands have proven to be vital in transition metal chemistry and 

have been studied to a great extent.1 The use of a neutral trinitrogen donor 

ligand such as bis(imino)pyridine (DIMPY) with iron and cobalt resulted in 

highly active catalysts for ethylene polymerization.2 This ligand has proven to 

be redox active, which is useful for metal-ligand cooperative catalysis.3,4 The 

use of pincer ligands with main group (MG) elements has not been exploited to 

the same extent as with transition metals but there are some noteworthy 

reports.  In particular,  DIMPY ligand (A) has been used to isolate different low 

valent MG species including In(I)5, As(I)6, P(I)7, Ge(0)8 and Sn(0)9. 

 

Scheme 2.1. DIMPY complexes of group 13 elements. 

Reports of ‘Ga(I)’ with DIMPY ligands yielded mixtures of Ga(III) 

([DIMPYGaI2][GaI4]) and radical Ga(II) species ([iPrDIMPYGaI2]•); similarly with 

AlCl3 the corresponding [DIMPYAlCl2][AlCl4] is formed.10,11 Richeson however, 
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showed that using an appropriate In(I) source like InOTf yielded the complex 

[DIMPYIn(I)][OTf].5 In the case of aluminium, the two square planar complexes 

of DIMPY-AlX (X = Cl, H) are formed by first reducing the ligand with two 

electrons, followed by the treatment with aluminium trichloride or 

dichloroalumane as shown in Scheme 2.2.12 The hydride complex was shown 

to activate N−H bonds via a metal−ligand cooperative mechanism13 and is 

capable of promoting selective dehydrogenation of formic acid to H2 and CO2.14  

 

Scheme 2.2. The synthesis of square planar Al(III) complexes. 

Aluminium cocatalysts are used to activate late transition metal DIMPY 

complexes in polymerization reactions. To that end, Gambarotta and co-

workers studied the reaction of [iPrDIMPYFeCl2] with AlMe3 and AlEt3 as shown 

in Scheme 2.3.15 Both resulting complexes are paramagnetic and contain 

trivalent aluminium centres. 
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Scheme 2.3. Reaction of [iPrDIMPYFeCl2] with AlMe3 and AlEt3. 

In this work, we explore the coordination of group 13 elements to 

bisbenzimidazole ligands B shown in Figure 2.1 with G = NH, NMe, NEt, NBn, 

N(3,5-CF3)Bn, N-Allyl and O. These ligands are more rigid than their DIMPY 

counterparts and they have been used in transition metal chemistry for 

supramolecular self-assembly,16 photoinduced CO release in biological 

systems,17 anti-cancer agents,18 and catalysts for transfer hydrogenation of 

ketones.19 Coordination of BZIMPY ligand to indium have been previously 

reported,20,21 among other group 14 complexes.22–29 This work presented 

herein represents its first application to gallium. Similar imidazole and 

benzimidazole tripodal ligand coordination to MG elements have been 

previously investigated.30–32  

 

Figure 2.1. DIMPY ligand, B: BZIMPY ligand (G = NH, NBn, N(3,5-CF3)Bn, N-Allyl and O). 
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2.2  Results and Discussion 

2.2.1  Synthesis and Characterization 

Initial attempts to coordinate group 13 halides, MCl3 (M = Al, Ga, In) to 

NH-BZIMPY (Compound B with G = NH) resulted in the precipitation of 

coloured materials that were insoluble in common organic solvents. These 

reactions were carried out in dichloromethane, acetonitrile and 

tetrahydrofuran with one or two equivalents of MCl3. In all cases, the resulting 

materials could not be characterized by NMR spectroscopy or X-ray 

crystallography. To increase the solubility of the resulting complexes, the NH 

nitrogen sites were substituted using different alkylating agents to introduce 

Me, Et, Allyl, Bn and (3,5-CF3)Bn derivatives. While the methyl and ethyl 

substituted ligands exhibit increased solubility compared to the free NH ligand, 

the resultant coordination complexes remained poorly soluble in common 

organic solvents. Fortunately, the use of allyl and benzyl (Bn) substituents 

allowed for the isolation of soluble materials that could be characterized by 

heteronuclear NMR spectroscopy and grown into single crystals suitable for X-

ray diffraction analysis (Figure 2.2).  
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Figure 2.2. Solid state structure of the cations in [NBn-BZIMPYGaCl2][GaCl4] (1, left) and 
[NAllyl-BZIMPYGaCl2][GaCl4] (3, right). Thermal ellipsoids are shown at 50% probability level. 
Hydrogen atoms, solvent molecules and counter anions are omitted for clarity. Selected bond 

distances and angles are given in Table 2.1. 

First we studied the known self-ionization process (L + MCl3 → 

[LMCl2][MCl4]) which is evident and well-studied in combination with the 

structurally related DIMPY ligands.11,33 These reactions went to completion by 

using two equivalents of metal halide, the halide displacement at the 

coordinated MG element was always observed regardless of the stoichiometry 

added (Scheme 2.4). The products (1, 2 and 3) ([G-BZIMPYGaCl2][GaCl4] were 

obtained by treating G-BZIMPY with two equivalents of GaCl3 in 

dichloromethane (DCM), resulting in an immediate clear yellow solution. DCM 

was removed under reduced pressure and the resulting solid is suspended in 

toluene, filtered, dried under vacuum and collected to yield yellow solid in 

almost quantitative yields. Slow evaporation from a DCM solution yields yellow 

crystals of (1, 2 and 3) suitable for X-ray diffraction. 
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Scheme 2.4. Self-ionization reactions of GaCl3 with G-BZIMPY ligands. 

The uncoordinated 2,6-bis(benzoxazol-2-yl)pyridine (O-BZIMPY) is 

very poorly soluble in common organic solvents; however, treating the ligand 

with two equivalents of GaCl3 in DCM and sonicating for 24 hours yielded a 

yellow/green insoluble material with yellow microcrystals of complex 4, [O-

BZIMPYGaCl2][GaCl4] (Figure 2.3). A dilute solution in CD3CN allowed for NMR 

spectral analysis of the compound. 

 

Figure 2.3. Solid state structure of the cation in [O-BZIMPYGaCl2][GaCl4] (4). Thermal ellipsoids 
are shown at 50% probability level. Hydrogen atoms, solvent molecules and counter anion are 
omitted for clarity. Selected bond distances and angles are given in Table 2.1. 

Next, we were interested in comparing the coordination of Ga halides to 

G-BZIMPY to that of DIMPY. [iPrDIMPYGaI2][GaI4] (iPrDIMPY = 2,6-Bis-[1-(2,6-

diisopropylphenylimino)ethyl]pyridine) has already been reported by Mills as 

a disproportionation product from GaI treated with iPrDIMPY.11 To our 

knowledge, there are no reports of the chloride equivalent of gallium complex 
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of iPrDIMPY, therefore, the ligand was treated with two equivalents of GaCl3. 

This resulted in the clean and quantitative formation of [iPrDIMPYGaCl2][GaCl4] 

(5) (Figure 2.4, left). [iPrDIMPYAlCl2][AlCl4] has been reported by Budzelaar as 

a 1:1 mixture with the free ligand iPrDIMPY.33 Treatment of iPrDIMPY with two 

equivalents of AlCl3 resulted in the clean and quantitative formation of 

[iPrDIMPYAlCl2][AlCl4] (6) (Figure 2.4, right), which upon crystallizing from 

DCM yielded crystals that were solvomorphic to the structure reported by 

Budzelaar. 

 

Figure 2.4. Solid state structure of the cations in [iPrDIMPYGaCl2][GaCl4] (5, left) and 
[iPrDIMPYAlCl2][AlCl4] (6, right). Thermal ellipsoids are shown at 50% probability level. 

Hydrogen atoms, solvent molecules and counter anions are omitted for clarity. Selected bond 
distances and angles are given in Table 2.1. 
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 1 2 3 4 5 6 7 

M-N1 2.051(3) 2.055(2) 2.0543(13) 2.116(3) 2.1711(15) 2.0985(16) 2.174(3) 
M-N2 2.051(3) 2.074(2) 2.0640(12) 2.058(3) 1.9940(16) 1.9481(15) 2.148(3) 
M-N3 2.063(3) 2.029(2) 2.0458(13) 2.099(3) 2.1751(16) 2.0961(16) 2.172(3) 
M-Cl 2.1905(11); 

2.1771(12) 
2.1831(8); 
2.1545(8) 

2.1893(4); 
2.1809(4) 

2.1517(9); 
2.1436(10) 

2.1574(6); 
2.1569(6) 

2.1121(7); 
2.1174(7) 

Ga-Cl 
2.2477(10) 

Ga-Fe 
2.3861(7) 

N1-C1 1.330(5) 1.327(3) 1.3312(19) 1.301(4) 1.281(3) 1.287(2) 1.316(4) 
C1-C2 1.476(5) 1.466(4) 1.464(2) 1.447(5) 1.486(3) 1.483(2) 1.463(5) 
C2-N2 1.342(5) 1.342(3) 1.3434(19) 1.337(4) 1.330(2) 1.337(2) 1.347(4) 
N2-C3 1.339(5) 1.343(3) 1.3421(18) 1.344(4) 1.336(2) 1.339(5) 1.349(4) 
C3-C4 1.467(5) 1.467(4) 1.466(2) 1.454(5) 1.483(3) 1.488(5) 1.467(5) 
C4-N3 1.332(5) 1.326(4) 1.3312(19) 1.302(4) 1.285(2) 1.287(2) 1.313(4) 
N1-M-N2 76.47 76.06(9) 76.43(5) 75.93(11) 76.35(6) 76.98(6) 72.75(10) 
N2-M-N3 76.76 76.29(9) 76.66(5) 76.22(11) 76.31(6) 77.37(6) 71.88(10) 
N2-M-N3 151.49 152.22(10) 152.35(5) 152.05(11) 150.25(7) 150.69(13) 137.28(11) 

Table 2.1. Selected bond distances (Å) and angles (°) of complexes 1-7. 

The M-N bond distances in the DIMPY complexes are significantly 

shorter for the pyridine interaction M-N2 (M = Ga, Al) than the ones to the imine 

side arms (M-N1 and M-N3) (Table 2.1). This is probably attributable to the 

steric hindrance of the bulky imine donors. In the case of G-BZIMPY, the bond 

distances for the pyridine interaction and the side arms are similar with slight 

asymmetry of the side arms due to the more rigid nature of the ligand forcing 

the gallium to be slightly off-centre. Although the M-N2 interaction with 

pyridine is shorter in DIMPY (5) than G-BZIMPY (1-4), the imidazole donors 

feature shorter distances to the gallium centre than the imine donors of DIMPY. 

This suggests that G-BZIMPY is a better donor ligand than DIMPY; this postulate 

is corroborated by the snapping energy calculations detailed below. 
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2.2.2  Reduction of Ga(III) to Ga(I) 

Germanium(0) and tin(0) complexes  of DIMPY ligand have been 

isolated, but there have been no reports of DIMPY stabilized group 13 metals 

in the +1 oxidation state apart from the unique example prepared by Richeson 

described earlier.5,8,9 To this end, we were interested in reducing the  [G-

BZIMPYGaCl2][GaCl4] to Ga(II), Ga(I) or even Ga(0). Treatment of [NBn-

BZIMPYGaCl2][GaCl4] with 1, 2 or 3  equivalents of KC8, potassium or sodium 

naphthalide in THF have all resulted in reduction of the gallium centre to 

gallium metal and the release of the free NBn-BZIMPY ligand. This is likely 

attributable to the relative absence of steric protection on the front end of the 

BZIMPY ligand; however, we reasoned that the lack of steric bulk could allow 

for a nucleophilic attack with a redox active nucleophile. In this context 

K2[Fe(CO)4] was added stoichiometrically to a solution of 1 in THF at –50 °C, 

which resulted in an immediate colour change to a red/purple solution with 

the formation of a precipitate. Single crystals grown from the filtered reaction 

mixture identified the product as a reduced gallium species with a direct 

gallium iron bond (Scheme 2.5).  

 

Scheme 2.5. Reaction of [NBn-BZIMPYGaCl2][GaCl4] with K2[Fe(CO)4] in THF to yield [(NBn-
BZIMPY)(Cl)Ga—Fe(CO)4] (7). 
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The two metal centres in [(NBn-BZIMPY)(Cl)Ga—Fe(CO)4] (7, Figure 

2.5) are best described as a Ga(I) centre coordinated to an Fe(0) centre 

(LGaI→Fe(CO)4). This structure is reminiscent to that of a gallium complex 

reported by Driess featuring a biscarbene ligand.34 The Ga(I)-Fe bond distance 

reported by Driess (2.4010(12) Å) is slightly longer than that observed in 

complex 7 (2.3861(7) Å). Complex 7 has a trigonal bipyramid geometry at the 

iron centre with an axCO-Fe-Ga angle of 179.09(13)°. The gallium centre sits 

0.610 Å above the plane of the ligand with Ga-N bond distances significantly 

longer than in the parent compound 1 and has a distorted trigonal bipyramid 

geometry with N1-Ga-N2 angle being 137.29(11)°. The Ga-Cl distance of 

2.2477(10) Å is significantly longer than any of those observed for the 

gallium(III) complexes and is consistent with the 2.2463(6) Å value reported 

by Driess for their analogous complex34 and that of 2.269(2) Å reported by 

Fischer for the complex [(tmeda)(Cl)Ga—Co(CO)5].35 

Reduction of 1 to 7 resulted in an increase of the Ga–N bond distances 

by approximately 0.11 Å (Table 2.2). No significant change was observed in 

the bond distances within the ligand framework suggesting in innocent 

BZIMPY ligand with the electron pair of the monovalent gallium delocalized in 

the dative GaI→Fe bond. DIMPY’s square planar aluminium (iPrDIMPY-AlCl) 

complex reported by Berben12 involves an initial reduction of DIMPY ligand 

with sodium metal followed by the introduction of aluminium trichloride. 

Comparing bond distances of the two complexes shows a decrease in the Al-N 

bond distances (opposite to that observed in NBn-BZIMPY) and a significant 
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change in the bond distances within the ligand. The changes observed in the 

ligand are reflective of the redox non-innocent nature of DIMPY resulting in a 

dianionic ligand making the aluminium centre more appropriately described 

as an AlIII centre. Finally, the Ga–Cl distance is also consistent with the 

assignment of a +1 oxidation state to gallium. 

 

 1 7 [DIMPY-
AlCl2]+ (6) 

[DIMPY-
AlCl]12 

M-N1 2.051(3) 2.174(3) 2.0985(16) 1.936(1) 
M-N2 2.051(3) 2.148(3) 1.9481(15) 1.820(1) 
M-N3 2.063(3) 2.172(3) 2.0961(16) 1.930(1) 
M-Cl 2.1905(11); 

2.1771(12) 
Ga-Cl, 

2.2477(10) 
2.1121(7); 
2.1174(7) 

2.1453(8) 

N1-C1 1.330(5) 1.316(4) 1.287(2) 1.362(2) 
C1-C2 1.476(5) 1.463(5) 1.483(2) 1.426(2) 
C2-N2 1.342(5) 1.347(4) 1.337(2) 1.386(2) 
N2-C3 1.339(5) 1.349(4) 1.339(5) 1.387(2) 
C3-C4 1.467(5) 1.467(5) 1.488(5) 1.413(2) 
C4-N3 1.332(5) 1.313(4) 1.287(2) 1.366(2) 

Table 2.2. Selected bond distances (Å) of [NBn-BZIMPYGaCl2][GaCl4] (1),  [(NBn-
BZIMPY)(Cl)Ga—Fe(CO)4] (7),  [iPrPDIAlCl2][AlCl4] (6) and Berben’s [iPrPDIAlCl]. 
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Figure 2.5. Solid state structure of [(NBn-BZIMPY)(Cl)Ga—Fe(CO)4] (7). Thermal ellipsoids are 
shown at 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 
Selected bond distances (Å) of 7: Ga-Fe 2.3861(7), Ga-Cl 2.2477(10), axC-O 1.148(5), eqC-O 
1.160(4), 1.152(5), 1.162(5). Selected bond distances (Å) of Driess’ complex: Ga-Fe 2.4010(12), 
Ga-Cl 2.2463(6), axC-O 1.149(3), eqC-O 1.168(3), 1.157(2), 1.156(3). Other selected bond 
distances and angles of 7 are given in Table 2.2. 

IR absorption bands for complex 7 νCO = 2072(w), 1980(s) and 1865(s) 

cm–1) are slightly more spread out in comparison to that reported by Fischer 

for [(tmeda)(Cl)Ga—Fe(CO)4] (νCO = 2011, 1928 and 1881 cm–1). Overall, νCO 

absorptions of complex 7 are shifted hypsochromic by ~ 60-80 cm–1 in 

comparison to the chloro and alkyl derivatives of the tmeda complexes (Table 

2.3). Other metal carbonyl (M = Fe, W, Cr and Mo) complexes of gallium and 

aluminium have been reported where the carbonyl absorption bands generally 

range between 1863 and 2050 cm–1.35–37 

Complex νCO 

[(L)(CH3)Ga—Fe(CO)4] 1992 (vs), 1905 (s), 1863 (vs) 
[(L)(CH2CH3)Ga—Fe(CO)4] 1992 (vs), 1905 (s), 1863 (vs) 
[(L)(Cl)Ga—Fe(CO)4] 2011 (vs), 1928 (vs), 1881 b (vs) 
[(L’)Ga—Fe(CO)4] 2032 (s), 1959 (s), 1941 (vs) 
[(L’’)Ga—Fe(CO)4] 2037 (s), 1966 (s), 1942 (vs) 
[(L’’’)(Cl)Ga—Fe(CO)4] (7) 2072(w), 1980(s) and 1865(s) 

Table 2.3. IR absorptions in the νCO range of complex 7, Fischer’s tmeda based complexes35 and 
Robinson’s multi-bonded Fe-Ga complex38 and Jutzi’s Cp*Ga-Fe(CO)4 complex39. L = tmeda, L’ = 

2,6-bis(2,4,6-triisopropylphenyl)-phenyl, L’’ = Cp* and L’’’ = NBn-BZIMPY. 
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2.2.3  Computational Studies 

Density functional theory calculations (M062X/cc-pVTZ) were 

performed on simplified models of DIMPY (model A with R=R’=H) and BZIMPY 

(model B with G=NH and imidazoles in-place of benzimidazoles) in an effort to 

help rationalize the electronic differences between the two ligands. Selected 

molecular orbitals of both simplified ligand sets and their optimized 

geometries are depicted in Figure 2.6. The HOMOs of both ligands are π-type 

MOs and the energy of this MO is significantly higher for BZIMPY, suggesting 

that this ligand should be a stronger donor. This conclusion is also consistent 

with the shorter imidazole N-Ga distances in 1-3 (determined 

crystallographically and reproduced computationally) as compared to the 

imine N-Ga distances in 5. It is worthy to note however that the energies of the 

MOs corresponding to the pyridine "lone pair" are energetically very similar for 

both ligands. The LUMO of DIMPY is significantly lower in energy than that of 

BZIMPY (–0.89 eV vs –0.47 eV), which suggests that BZIMPY should be a worse 

electron-acceptor than DIMPY, which is reputed for its non-innocence. 

Snapping energies of the [LGaCl2]+ (L = BZIMPY or DIMPY ligands) complexes 

were calculated from optimized complex models and indicate that BZIMPY 

forms a stronger complex with the [GaCl2]+ fragment than does DIMPY by 

approximately 75 kcal/mol. This result suggests that, while DIMPY complexes 

benefit significantly from kinetic stabilization (as discussed previously), the 

BZIMPY ligand forms more thermodynamically stable complexes with [GaCl2]+ 
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that are not as sterically cumbersome. We postulate that this combination 

should facilitate further chemistry at the metal site. 

 

Figure 2.6. Optimized geometries and selected molecular orbitals of simplified models of 
DIMPY and BZIMPY (M062X/cc-pVTZ). 

2.3  Conclusions 

We report Ga(III) coordination to 2,6-Bis(benzimidazol-2-yl)pyridine 

(G-BZIMPY, G = NBn, N(3,5-CF3)Bn, N-Allyl and O) ligands. The G-Bzimpy 
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ligands proved to be more electron-rich and sterically accessible alternatives 

to 2,6-bis(imino)pyridine (DIMPY) ligands for Group 13 coordination. 

Compound 1 can be readily reduced to Ga(I) using K2[Fe(CO)4] which results in 

the bimetallic complex NBn-BZIMPYGaClFe(CO)4 (7) that contains a rare Ga(I)-

Fe(0) linkage with a sterically accessible GaCl that may be available for further 

chemistry.  

2.4  Experimental 

2.4.1  General Remarks 

All manipulations were carried out using standard inert-atmosphere 

techniques. All reagents and chemicals were obtained from Sigma-Aldrich. All 

reagents were used without further purification. MeCN-d3 was dried over 

calcium hydride or phosphorus pentoxide, and dichloromethane-d2 was dried 

over phosphorus pentoxide. All other solvents were dried on a series of 

Grubbs-type columns and were degassed prior to use.40 All glassware was 

stored in a 170 °C oven for several hours and was degassed prior to use. 2,6-

Bis(benzimidazol-2-yl)pyridine (NH-BZIMPY),41 2,6-bis(benzoxazol-2-

yl)pyridine (O-BZIMPY)42 and K2[Fe(CO)4]43 were all prepared according to the 

literature procedures.  

NMR spectra were recorded at room temperature on Bruker Avance III 500 

MHz, Bruker Avance Ultrashield 300 MHz, and Bruker Avance DPX 300 MHz 

spectrometers. Chemical shifts are reported in parts per million relative to 
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internal standards for 1H and 13C (the given deuterated solvent) and external 

standards for 19F (CFCl3). Coupling constants |J| are given in hertz. Elemental 

analysis was performed at the University of Windsor Mass Spectrometry 

Service Laboratory using a Perkin-Elmer 2400 combustion CHN analyzer. 

Infrared spectra were recorded using the neat solids on a Bruker ALPHA FT-IR 

spectrometer using a Platinum ATR sampling module. Stretching frequencies 

(ν) are reported in cm–1 and intensities are reported using the following 

abbreviations: vw = very weak, w = weak, m = medium, s = strong, vs = very 

strong. 

2.4.2  Synthesis 

Alkylation reactions of NH-BZIMPY were carried according to general 

procedure for the synthesis of NBn-BZIMPY.55 Similar procedures were carried 

out to isolate the NAllyl, N(3,5-CF3)Bn derivates: 

 

[N(3,5-CF3)Bn-BZIMPY] A 100 mL round bottom flask was charged with NH-

BZIMPY (600 mg, 1.93 mmol) and KOH (249 mg, 4.44 mmol) in 30 mL acetone. 

The reaction mixture was refluxed at 60 °C for one hour before adding 3,5-

bis(trifluoromethyl)benzyl bromide (0.78 mL, 4.26 mmol) and was further 

refluxed for another 12 hours. Volatiles were removed under reduced pressure, 

and the residue was treated with dichloromethane (20 mL) and filtered. 
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Filtrate was dried under vacuum and the resulting precipitate was suspended 

in hexane and collected by filtration to yield N(3,5-CF3)Bn-BZIMPY as an off-

white precipitate. Ligand was further dried in a vacuum oven at 60 °C for 16 

hours (1.31 g, 89%). 1H NMR (CD2Cl2) δ: 8.44 (d, 2H, 3JHH = 8 Hz), 8.10 (t, 1H, 

3JHH = 8 Hz), 7.88 (d, 2H, 3JHH = 8 Hz), 7.78 (b, 2H), 7.38 (s, 6H), 7.30 (m, 2H), 

7.18 (d, 2H, 3JHH = 8 Hz), 5.80 (s, 4H). 13C{1H} NMR δ: 150.05, 150.03, 143.46, 

140.21, 139.13, 136.41, 132.52 (2JCF = 33 Hz), 126.96, 126.54, 124.67, 123.78, 

123.34 (1JCF = 272 Hz), 122.23, 120.99, 110.61, 47.88. 19F{1H} NMR δ: –63.47. 

 

[NAllyl-BZIMPY] A 100 mL round bottom flask was charged with NH-BZIMPY 

(800 mg, 2.57 mmol) and KOH (331 mg, 5.90 mmol) in 30 mL acetone. The 

reaction mixture was refluxed at 60 °C for one hour before adding allyl bromide 

(0.5 mL, 5.77 mmol) and was further refluxed for another 12 hours. Volatiles 

were removed under reduced pressure, and the residue was treated with 

dichloromethane (20 mL) and filtered. Filtrate was dried under vacuum and 

the resulting precipitate was suspended in hexane and collected by filtration to 

yield NAllyl-BZIMPY as a white precipitate. Ligand was further dried in a 

vacuum oven at 60 °C for 16 hours (762 g, 76%). 1H NMR (CD2Cl2) δ: 8.40 (d, 

2H, 3JHH = 8 Hz), 8.03 (t, 1H, 3JHH = 8 Hz), 7.83 (m, 2H), 7.46 (m, 2H), 7.33 (m, 

4H), 5.96 (ddt, 2H, 3JHH = 18 Hz, 3JHH = 10 Hz, 4JHH = 5 Hz), 5.45 (m, 4H), 5.12 (dd, 

2H, 3JHH = 10 Hz, 2JHH = 2 Hz), 4.92 (dd, 2H, 3JHH = 18 Hz, 2JHH = 2 Hz). 13C{1H} 
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NMR δ: 150.29, 143.30, 138.34, 136.98, 133.48, 125.90, 123.82, 123.04, 120.46, 

116.96, 111.28, 47.82. 

 

[NBn-BZIMPYGaCl2][GaCl4] (1) A 100 mL Schlenk flask was charged with 

NBn-BZIMPY (500 mg, 1.02 mmol) and GaCl3 (360 mg, 2.04 mmol). To that was 

added 40 mL of dichloromethane resulting in an immediate formation of a 

yellow solution. After 2 hours of stirring, the solvent was evaporated under 

reduced pressure and the resulting solid was suspended in toluene (20 mL), 

collected and washed with toluene (2×10 mL) yielding 1 as a pale-yellow solid 

(788 mg, 92%). Slow evaporation from dichloromethane yielded crystals 

suitable for X-ray Diffraction.  1H NMR (CD2Cl2) δ: 8.50 (t, 1H, 3JHH = 8 Hz), 8.33 

(d, 2H, 3JHH = 8 Hz), 8.17 (d, 2H, 3JHH = 8 Hz), 7.63 – 7.75 (m, 6H), 7.34 – 7.41 (m, 

6H), 7.17 (d, 4H, 3JHH = 8 Hz), 6.01 (s, 4H). 13C{1H} NMR δ: 149.05, 143.01, 

140.85, 138.09, 135.56, 132.27, 130.21, 129.51, 128.60, 128.11, 125.76, 125.02, 

119.30, 112.21, 49.81. Anal. Calc. for C33H25Cl6Ga2N5 (843.75 g/mol): C, 46.98; 

H, 2.99; N, 8.30. Found: C, 46.97; H, 3.09; N, 8.06. 

 

[N(3,5-CF3)Bn-BZIMPYGaCl2][GaCl4] (2) A 20 mL vial was charged with 

N(3,5-CF3)BnBZIMPY (40 mg, 0.052 mmol) and GaCl3 (19 mg, 1.04 mmol). 5 mL 
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of CD3CN was added, resulting in the formation of a yellow solution. The 

solution was stirred for 1 hr and the solvent was then evaporated under 

reduced pressure resulting in a yellow solid. Slow evaporation from 

DCM/CH3CN mix resulted in 2 as yellow crystals suitable for X-ray Diffraction 

(44 mg, 91%). 1H NMR (CD3CN) δ: 8.53 (t, 1H, 3JHH = 8 Hz), 8.32 (b, 2H), 8.24 (t, 

2H, 3JHH = 8 Hz), 8.06 (s, 2H), 7.90 (s, 4H) 7.69-7.77 (m, 6H), 6.18 (s, 4H). 13C{1H} 

NMR δ: 147.97, 145.15, 144.53, 137.93, 136.62, 131.96 (2JCF = 33 Hz), 128.04, 

127.59, 127.21, 127.15, 124.95, 123.25 (1JCF = 272 Hz), 122.80, 118.51, 112.79, 

48.77. 19F{1H} NMR δ: –63.45. Anal. Calc. for C37H21Cl6F12Ga2N5 (1115.74 

g/mol): C; 39.83; H, 1.90; N, 6.28. Found: C; 39.56; H, 1.85; N, 5.97.  

 

[NAllyl-BZIMPYGaCl2][GaCl4] (3) A 20 mL vial was charged with 

NAllylBZIMPY (30 mg, 0.08 mmol) and GaCl3 (29 mg, 0.16 mmol). 5 mL of 

CD2Cl2 was added, resulting in the formation of a yellow solution. The solution 

was allowed to stir overnight and was then left to slowly evaporate resulting in 

3 as yellow crystals (50 mg, 85%). 1H NMR (CD2Cl2) δ: 8.83 (t, 1H, 3JHH = 8 Hz), 

8.42 (d, 2H, 3JHH = 8 Hz), 8.28 (m, 2H), 7.72 (b, 6H), 6.27 (ddt, 2H, 3JHH = 18 Hz, 

3JHH = 10 Hz, 4JHH = 4 Hz), 5.50 (d, 2H, 3JHH = 10 Hz), 5.43 (b, 4H), 5.14 (d, 2H, 3JHH 

= 18 Hz). 13C{1H} NMR δ: 149.02, 142.88, 141.35, 137.89, 135.77, 129.34, 

128.71, 128.23, 125.15, 119.90, 119.20, 112.48, 48.78. Anal. Calc. for 
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C25H21Cl6Ga2N5 (743.63 g/mol): C, 40.38; H, 2.85; N, 9.42. Found: C, 39.62; H, 

2.58; N, 9.24. 

 

[O-BZIMPYGaCl2][GaCl4] (4) A 20 mL vial was charged with O-BZIMPY (30 

mg, 0.1 mmol) and GaCl3 (36 mg, 0.2 mmol). 5 mL of CH2Cl2 was added, and the 

mixture was sonicated for 24 hours resulting in a yellow suspension and yellow 

crystals surrounding the inside of the vial, suitable for X-ray diffraction. Upon 

evaporating DCM, 4 was collected as a yellow solid that is poorly soluble; A 

dilute solution in CD3CN however, allowed for NMR analysis (50 mg, 85%). 1H 

NMR (CD3CN) δ: 9.00 (t, 1H, 3JHH = 8 Hz), 8.82 (d, 2H, 3JHH = 8 Hz), 8.17 (b, 2H), 

8.05 (b, 2H), 7.83 (b, 4H). 13C{1H} NMR δ: 159.93, 154.27, 150.54, 140.42, 

134.45, 131.14, 129.74, 127.48, 119.73, 114.37. Anal. Calc. for 

C19H11Cl6Ga2N3O2 (665.46 g/mol): C, 34.29; H, 1.67; N, 6.31. Found: C, 33.91; H, 

1.49; N, 6.29. 

 

[iPrPDIGaCl2][GaCl4] (5) A 100 mL Schlenk flask was charged with iPrPDI (313 

mg, 0.65 mmol) and GaCl3 (229 mg, 1.30 mmol). To that was added 40 mL of 

dichloromethane resulting in an immediate formation of a yellow solution. The 

reaction was stirred for 16 hours, solvent was then evaporated under reduced 

pressure and the resulting solid was suspended in Et2O (20 mL), collected and 
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washed with Et2O (2×10 mL) yielding 5 as a yellow solid (430 mg, 81%). Slow 

evaporation from dichloromethane yielded crystals suitable for X-ray 

Diffraction.  1H NMR (CD3CN) δ: 8.96 (t, 1H, 3JHH = 8 Hz), 8.78 (d, 2H, 3JHH = 8 

Hz), 7.42 (dd, 2H, 3JHH = 8 Hz), 7.36 (d, 4H, 3JHH = 8 Hz), 2.82 (sept, 4H, 3JHH = 7 

Hz), 2.65 (s, 6H), 1.23 (d, 12H, 3JHH = 7 Hz), 1.07 (d, 12H, 3JHH = 7 Hz). 13C{1H} 

NMR δ: 172.19, 149.70, 144.61, 142.29, 137.93, 131.93, 129.86, 125.81, 29.60, 

25.25, 24.53, 20.01. Anal. Calc. for C33H43Cl6Ga2N3 (833.87g/mol): C, 47.53; H, 

5.20; N, 5.04. Found: C, 48.16; H, 4.78; N, 4.64. 

 

[iPrPDIAlCl2][AlCl4] (6) A 100 mL Schlenk flask was charged with iPrPDI (456 

mg, 0.95 mmol) and AlCl3 (252 mg, 1.90 mmol). To that was added 40 mL of 

dichloromethane resulting in an immediate formation of a yellow solution. The 

reaction was stirred for 16 hours, solvent was then evaporated under reduced 

pressure and the resulting solid was suspended in Et2O (20 mL), collected and 

washed with Et2O (2×10 mL) yielding 6 as a yellow solid (680 mg, 96%). Slow 

evaporation from dichloromethane yielded crystals suitable for X-ray 

Diffraction.  1H NMR (CD3CN) δ: 8.93 (t, 1H, 3JHH = 8 Hz), 8.70 (d, 2H, 3JHH = 8 

Hz), 7.41 (dd, 2H, 3JHH = 8 Hz), 7.34 (d, 4H, 3JHH = 8 Hz), 2.84 (sept, 4H, 3JHH = 8 

Hz), 2.63 (s, 6H), 1.20 (d, 12H, 3JHH = 8 Hz), 1.07 (d, 12H, 3JHH = 8 Hz). 13C{1H} 

NMR δ: 174.66, 148.30, 145.29, 141.43, 137.97, 130.14, 128.73, 124.92, 28.55, 
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25.25, 24.27, 22.19. Anal. Calc. for C33H43Cl6Al2N3 (748.39 g/mol): C, 52.96; H, 

5.79; N, 5.61. Found: C, 52.35; H, 6.06; N, 5.46. 

 

NBn-BZIMPYGaClFe(CO)4 (7) A 20 mL vial was charged with 1 (30 mg, 0.036 

mmol) and K2[Fe(CO)4] (9 mg, 0.036 mmol). 5 mL of pre-cooled (–40 °C) THF 

was added resulting in an immediate formation of a dark red/purple solution. 

The solution stirred for 1 hr before filtration. The filtrate was collected and left 

at –40 °C for two days to yield (7) as deep red crystals suitable for X-ray 

Diffraction (15 mg, 56%). IR (νCO, cm–1): 2072(w), 1980(s) and 1865(s). 1H 

NMR (THF-d8) δ: 8.55 (d, 2H, 3JHH = 8 Hz), 8.28 (t, 1H, 3JHH = 8 Hz), 8.17 (d, 2H, 

3JHH = 8 Hz), 7.62 (d, 2H, 3JHH = 8 Hz), 7.47 (m, 4H), 7.33 (m, 6H), 7.22 (d, 4H, 

3JHH = 8 Hz), 6.07 (s, 4H). 13C{1H} NMR δ: 220.08, 149.84, 142.70, 138.54, 

138.21, 135.78, 130.15, 129.89, 129.19, 128.61, 127.81, 126.50, 125.54, 121.95, 

111.55, 48.97. Anal. Calc. for C37H25ClFeGaN5O4 (765.65 g/mol): C, 58.12; H, 

3.30; N, 9.16. Found: C, 56.71; H, 3.46; N, 8.90. 

2.4.3  Computational Details 

Calculations were performed with the Gaussian 09 suite of programs44 

using Compute Canada's Shared Hierarchical Academic Research Computing 

Network (SHARCNET). Model complexes were fully optimized with no 

symmetry constraints using the M06-2X density functional method,45 in 
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conjunction with the cc-pVTZ basis set.46,47 Geometry optimizations were 

started using models in which the relevant non-hydrogen atoms were placed 

in positions found experimentally by X-ray crystallography using Gaussview.48 

Frequency calculations were also performed at the same level of theory in 

order to confirm that the optimized structures were minima on the potential 

energy hypersurface and to determine thermochemical and vibrational 

information. Natural bond orbital (NBO) analyses49 to determine orbital 

contributions, Wiberg Bond Indices and orbital energies were obtained using 

the routine included in the Gaussian distributions.50 Visualizations of the Kohn-

Sham orbitals and optimized geometries were made using Gaussview.48 

Snapping energies were calculated by subtracting the sum of the single point 

energies of the GaCl2+ and ligand fragments (separately) from the energy of 

their optimized complexes. 

2.4.4  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a 

goniometer head, and then rapidly cooled under a stream of cold N2 of the low-

temperature apparatus (Oxford Cryostream) attached to the diffractometer. 

The data were then collected using the APEXII (Bruker AXS) software suite on 

a Bruker Photon 100 CMOS diffractometer using a graphite monochromator 

with MoKα (λ = 0.71073 Å). For each sample, data were collected at low 

temperature. APEXII software was used for data reductions and SADABS 

(Bruker AXS) was used for absorption corrections (multi-scan; semi-empirical 
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from equivalents). XPREP was used to determine the space group and the 

structures were solved and refined using the SHELX51 software suite as 

implemented in the WinGX52 or OLEX253 program suites. Validation of the 

structures was conducted using PLATON54 and the structures have been 

deposited in the Cambridge Structural Database (CCDC 1857723-1857729).  
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Compound Name [NBn-BZIMPYGaCl2] 
[GaCl4] 

[N(3,5-CF3)Bn-
BZIMPYGaCl2] 

[GaCl4] 

[NAllyl-
BZIMPYGaCl2] 

[GaCl4] 

Label 1 2 3 
CCDC ID 1857729 1857726 1857728 

Empirical formula C33H27Cl6Ga2N5 C37H21Cl6F12Ga2N5 C25H20Cl6Ga2N5 
Formula weight 845.73 1115.73 742.6 

Temperature (K) 170 170 169.81 
Crystal system triclinic triclinic monoclinic 

Space group P–1 P–1 P21/n 
a (Å) 7.7334(9) 9.0074(7) 9.6466(7) 
b (Å) 13.7970(16) 14.0425(10) 18.8631(12) 
c (Å) 16.6692(17) 17.2131(14) 16.5594(11) 
α (°) 92.736(4) 81.875(2) 90 
β (°) 102.861(4) 86.671(3) 102.788(2) 
γ (°) 101.348(4) 75.708(2) 90 

Volume (Å3) 1692.2(3) 2088.1(3) 2938.5(3) 
Z 2 2 4 

ρcalc (g·cm−3) 1.66 1.775 1.679 
μ (mm−1) 2.099 1.765 2.405 

F(000) 848 1100 1476 
Crystal size 

(mm3) 
0.34 × 0.2 × 0.2 0.34 × 0.311 × 0.3 0.31 × 0.24 × 0.075 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.622 to 61.204 5.68 to 60.068 5.884 to 60.058 

Index ranges –11 ≤ h ≤ 11 
–19 ≤ k ≤ 19 
–23 ≤ l ≤ 21 

–12 ≤ h ≤ 12 
–19 ≤ k ≤ 19 
–24 ≤ l ≤ 24 

–13 ≤ h ≤ 13 
–26 ≤ k ≤ 26 
–23 ≤ l ≤ 23 

Reflections 
collected 

110801 121980 115507 

Independent 
reflections 

10302 
Rint = 0.0465 

Rsigma = 0.0236 

12167 
Rint = 0.0356 

Rsigma = 0.0202 

8584 
Rint = 0.0695 

Rsigma = 0.0268 
Data/restraints 

/parameters 
10302/0/415 12167/40/587 8584/0/359 

Goodness-of-fit 
on F2 

1.079 1.059 1.039 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0579 
wR2 = 0.1827 

R1 = 0.0458 
wR2 = 0.0994 

R1 = 0.0268 
wR2 = 0.0611 

Final R indexes 
[all data] 

R1 = 0.0715 
wR2 = 0.1947 

R1 = 0.0622 
wR2 = 0.1130 

R1 = 0.0357 
wR2 = 0.0648 

Largest diff. 
peak/hole (e·Å−3) 

1.72/–1.03 1.69/–0.98 0.65/–0.78 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 2.4. Crystallographic data and structure refinement. 
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Compound Name [O-BZIMPYGaCl2] [GaCl4] [iPrPDIGaCl2][GaCl4] 
C4H8O 

[iPrPDIAlCl2][AlCl4] 
CH2Cl2 

Label 4 5 6 
CCDC ID 1857724 1857725 1857727 

Empirical formula C76H44Cl24Ga8N12O8 C37H51Cl6Ga2N3O C34H45Al2Cl8N3 
Formula weight 2661.79 905.94 833.29 

Temperature (K) 170.08 170 170 
Crystal system monoclinic monoclinic monoclinic 

Space group P21/c P21/n P21/c 
a (Å) 9.692 9.7574(9) 10.3391(10) 
b (Å) 9.329 10.4579(9) 31.617(3) 
c (Å) 26.919 41.051(4) 13.0556(12) 
α (°) 90 90 90 
β (°) 99.92 95.473(2) 106.521(2) 
γ (°) 90 90 90 

Volume (Å3) 2397.6 4169.8(6) 4091.6(7) 
Z 1 4 4 

ρcalc (g·cm−3) 1.844 1.443 1.353 
μ (mm−1) 9.119 1.709 0.622 

F(000) 1304 1864 1728 
Crystal size 

(mm3) 
0.43 × 0.37 × 0.15 0.37 × 0.218 × 0.176 0.37 × 0.34 × 0.33 

Radiation CuKα (λ = 1.54178) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
6.666 to 149.228 5.724 to 58.402 5.9 to 58.444 

Index ranges –12 ≤ h ≤ 12 
–11 ≤ k ≤ 11 
–33 ≤ l ≤ 33 

–13 ≤ h ≤ 13 
–14 ≤ k ≤ 14 
–56 ≤ l ≤ 56 

–14 ≤ h ≤ 13 
–43 ≤ k ≤ 43 
–17 ≤ l ≤ 17 

Reflections 
collected 

38330 111488 80246 

Independent 
reflections 

4898 
Rint = 0.0732 

Rsigma = 0.0464 

11291 
Rint = 0.0330 

Rsigma = 0.0178 

11071 
Rint = 0.0327 

Rsigma = 0.0192 
Data/restraints 

/parameters 
4898/162/289 11291/0/452 11071/51/463 

Goodness-of-fit 
on F2 

1.166 1.072 1.043 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0664 
wR2 = 0.1744 

R1 = 0.0380 
wR2 = 0.0818 

R1 = 0.0523 
wR2 = 0.1268 

Final R indexes 
[all data] 

R1 = 0.0670 
wR2 = 0.1752 

R1 = 0.0458 
wR2 = 0.0851 

R1 = 0.0599 
wR2 = 0.1323 

Largest diff. 
peak/hole (e·Å−3) 

0.91/–1.64 1.07/–0.91 1.59/–1.52 

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 2.5. Crystallographic data and structure refinement. 
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Compound Name [NBn-BZIMPYGa–Fe(CO)4] 
2(C4H8O) 

Label 7 
CCDC ID 1857723 

Empirical formula C45H41ClFeGaN5O6 
Formula weight 908.85 

Temperature (K) 170.05 
Crystal system monoclinic 

Space group P21/c 
a (Å) 9.7841(14) 
b (Å) 15.069(2) 
c (Å) 28.034(4) 
α (°) 90 
β (°) 92.701(4) 
γ (°) 90 

Volume (Å3) 4128.8(10) 
Z 4 

ρcalc (g·cm−3) 1.462 
μ (mm−1) 1.124 

F(000) 1872 
Crystal size 

(mm3) 
0.26 × 0.2 × 0.09 

Radiation MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.856 to 53.466 

Index ranges –12 ≤ h ≤ 12 
–19 ≤ k ≤ 19 
–35 ≤ l ≤ 35 

Reflections 
collected 

64624 

Independent 
reflections 

8735 
Rint = 0.0777 

Rsigma = 0.0474 
Data/restraints 

/parameters 
8735/132/532 

Goodness-of-fit 
on F2 

1.118 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0623 
wR2 = 0.1433 

Final R indexes 
[all data] 

R1 = 0.0866 
wR2 = 0.1568 

Largest diff. 
peak/hole (e·Å−3) 

0.73/–0.89 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 2.6. Crystallographic data and structure refinement. 
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CHAPTER 3: 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of 

Group 14 Elements 

3.1  Introduction 

Neutral trinitrogen donor ligands such as bis(imino)pyridine (R’DIMPY, 

A) have played an important role in transition metal chemistry and have 

generated highly active catalysts1–3 for ethylene polymerisation.4 In several 

instances, variously substituted R’DIMPY ligands bound to main group elements 

have allowed for the isolation of different low valent fragments including: 

Ge(0)5, Sn(0) 6, As(I)7, P(I)8, and In(I)9. 

 

Scheme 3.1. Top: DIMPY (A) vs G-BZIMPY (G = NH, NBn, N(3,5-CF3)Bn, NAllyl and O). Bottom: 
DIMPY complexes of group 14 elements. 

The use of pincer ligands with group 14 elements dates back to 1985 - 

before the term “pincer” was even adopted - where Archer and co-workers 

reported the synthesis of a tripyridine tin(II)chloride complexes.10 Pincer 
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ligands are very tuneable allowing for the introduction of asymmetry in the 

ligand producing a chiral catalyst. Evans and co-workers reported the tin(II) 

chiral Lewis acid shown in Figure 3.1 that have been used in aldol 

condensation reactions, resulting in good yields with greater than 90% ee.11 

 

Figure 3.1. Evans tin(II) chiral Lewis acid catalyst. 

DIMPY ligands have also been important in the development of group 14 

low-valent chemistry. Roesky reported the self-ionization products of iPrDIMPY 

with the corresponding GeCl2 and SnCl212   to yield [iPrDIMPYMCl][MCl3] (M = 

Ge, Sn). Nikonov later showed that treating the germanium complex with 2 

equivalents of potassium graphite (KC8) in benzene results in a Ge(0) complex 

[iPrDIMPYGe(0)] as shown in Scheme 3.2.5 Other variants of the R’DIMPYE(II) 

(E = Ge, Sn) have also been reported.13,14 

 

Scheme 3.2. Nikonov’s synthesis of [iPrDIMPYGe(0)]. 

In this work, we explore the coordination of group 14 elements to 

different variants of G-BZIMPY (ligands B, Scheme 3.1). These ligands are 
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more rigid than their DIMPY analogues and there have been a few examples of 

complexes reported featuring transition metals.15–18 We recently reported  the 

coordination of different G-BZIMPY ligands to Ga(III) centres, and determined 

that G-BZIMPY are electron-rich and sterically accessible alternatives to DIMPY 

ligands for group 13 coordination chemistry.19 Complexes of BZIMPY ligands 

with indium20,21 and lead have also been investigated.22–28  Recent work by 

Schmedake29 and co-workers reported the synthesis of a Si(BZIMPY)2 complex 

(Scheme 3.3) as a potential electron transport layer and electroluminescent 

layer in organic electronic devices. 

 

Scheme 3.3. Synthesis of Si(BZIMPY)2. 

The parent ligand, NH-BZIMPY can be easily prepared and functionalized 

at the nitrogen atom of the benzimidazole allowing for tuning of the electronic 

and steric properties. Analogous imidazole and benzimidazole tripodal ligand 

coordination to main group elements have also been investigated.30–34 
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3.2  Results and Discussion 

3.2.1  Synthesis and Characterization 

Treatment of the parent ligand NH-BZIMPY with MCl2 (M = Ge, Sn) 

resulted in coloured materials that were insoluble in common organic solvents 

and thus, further characterisation was not possible. To increase the solubility 

of the resulting complexes, NH nitrogen sites were substituted using different 

alkylating agents to introduce allyl, Bn and (3,5-CF3)Bn derivatives. These 

derivatives allowed for increased solubility and thus, characterisation by 

means of heteronuclear NMR spectroscopy and X-ray crystallography (Figure 

3.2).  

 

Figure 3.2. Solid state structure of the cations in [NBn-BZIMPYGeCl][GeCl3] (1, left) and [NBn-
BZIMPYSnCl][SnCl3] (2, right). Thermal ellipsoids are shown at 50% probability level. 

Hydrogen atoms, solvent molecules and counterions are omitted for clarity. Selected bond 
distances and angles are listed in Table 3.1. 

The self-ionization process (L + 2 MCl2 → [LMCl][MCl3]) has been 

previously reported for the structurally related DIMPY ligands.12-14 A 1:1 

reaction of BZIMPY and MCl2 results in 50% yield of the self-ionized product, 

[BZIMPYMCl][MCl3]; thus, it was necessary to use two equivalents of metal 

halide for the reaction to go to completion (Scheme 3.4). Products 1 and 2 
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([NBn-BZIMPYMCl][MCl3]) were obtained in high yields (>85%) and large 

scales by treating NBn-BZIMPY with two equivalents of MCl2 in 

dichloromethane (DCM), resulting in an immediate intense yellow solution for 

1 (M = Ge) and a slower more pale-yellow solution for 2 (M = Sn). Slow 

evaporation from a DCM solution yields yellow crystals of 1 and 2 suitable for 

X-ray diffraction. Compounds 3 and 4 ([N(3,5-CF3)Bn-BZIMPYMCl][MCl3]) 

were obtained by treatment of N(3,5-CF3)Bn-BZIMPY with two equivalents of 

MCl2 in CD3CN. Similarly, reaction with GeCl2 resulted in a faster and more 

intense yellow colour than SnCl2. Crystals of 3 and 4 suitable for X-ray 

diffraction were obtained from slow evaporation of CD3CN solutions. 

 

Scheme 3.4. Self-ionization reactions of MCl3 (M = Ge, Sn) with G-BZIMPY ligands. 

G-BZIMPY complexes of germanium are more soluble than their tin 

counterparts. As a result, G-BZIMPY ligands with G = NAllyl and O were very 

poorly soluble when coordinated to tin and only slightly soluble in the case of 

germanium. [NAllyl-BZIMPYGeCl][GeCl3] (5) and [O-BZIMPYGeCl][GeCl3] (6) 

were obtained by treating two equivalents of GeCl2 with the corresponding G-

BZIMPY followed by sonication for 24 hours to yield a sparingly soluble yellow 



CHAPTER 3 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 14 Elements 

74 

solution. Crystals suitable for X-ray diffraction were obtained by slow 

evaporation of a dilute solution of 5 and 6. 

 

 1 [DIMPY-
GeCl]+ 

2 [DIMPY-
SnCl]+ 

3 4 5 6 

M-N1 2.1999(17) 2.2669(14) 2.3335(13) 2.411(2) 2.149(4) 2.356(6) 2.230(2) 2.485(2) 

M-N2 2.1373(16) 2.0712(15) 2.3750(13) 2.286(2) 2.169(4) 2.416(5) 2.158(2) 2.196(2) 

M-N3 2.2340(16) 2.2548(8) 2.3424(13) 2.404(2) 2.306(3) 2.373(5) 2.231(2) 2.286(1) 

M-Cl 2.2871(6) 2.2434(8) 2.4667(4) 2.4359(9) 2.262(1) 2.448(2) 2.279(7) 2.266(6) 

N1-C1 1.315(3) 1.277(2) 1.326(2) 1.280(3) 1.327(6) 1.333(7) 1.325(3) 1.294(3) 

C1-C2 1.470(3) 1.482(2) 1.470(2) 1.488(4) 1.458(6) 1.456(7) 1.465(3) 1.455(3) 

C2-N2 1.355(2) 1.348(2) 1.3526(19) 1.353(3) 1.351(7) 1.352(6) 1.355(3) 1.345(2) 

N2-C3 1.355(3) 1.348(2) 1.350(2) 1.343(3) 1.347(5) 1.335(7) 1.349(3) 1.342(2) 

C3-C4 1.464(3) 1.481(2) 1.475(2) 1.492(4) 1.470(8) 1.482(7) 1.466(3) 1.446(3) 

C4-N3 1.324(2) 1.275(2) 1.3309(19) 1.274(3) 1.318(6) 1.325(7) 1.325(3) 1.302(2) 

N1-M-
N2 

73.14(6) 73.28(7) 67.94(5) 68.79(7) 73.48(13) 67.29(16) 73.03(8) 70.62(6) 

N2-M-
N3 

72.54(6) 73.52(7) 67.25(4) 68.71(7) 71.73(13) 66.51(15) 72.91(8) 73.14(5)) 

N2-M-
N3 

142.82(6) 145.99(7) 131.37(5) 136.87(7) 141.72(13) 129.42(15) 144.48(8) 143.33(6) 

Table 3.1. Selected bond distances (Å) and angles (°) of complexes 1-6, and 
[iPrDIMPYMCl]+ (M = Ge, Sn)12. 
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Figure 3.3. Solid state structure of the cations in [Allyl-BZIMPYGeCl][GeCl3] (5, left) and [O-
BZIMPYGeCl][GeCl3] (6, right). Thermal ellipsoids are shown at 50% probability level. 

Hydrogen atoms, solvent molecules and counterion are omitted for clarity. 

Next, we were interested in comparing the G-BZIMPY complexes of 

germanium and tin to those of iPrDIMPY. [iPrDIMPYMCl][MCl3] complexes of 

germanium and tin were reported by Roesky as the products of the reaction of 

iPrDIMPY with two equivalents of the corresponding GeCl2 and SnCl2.12 The 

germanium and tin coordination complexes of iPrDIMPY have a shorter bond 

distance to the pyridine (M-N2) than the imine donors (M-N1 and M-N3) 

(Table 3.1). This trend was also observed in group 13 complexes of iPrDIMPY 

and is likely due to the steric hindrance of the bulky imine donors.19 Complexes 

1 and 2 contain shorter M-N1 and M-N3 distances (benzimidazole donors) than 

their iPrDIMPY counterparts (imine donors) suggesting a stronger BZIMPY 

donor ligand than iPrDIMPY. This was also observed and confirmed by 

computational analysis with group 13 complexes of G-BZIMPY.19 

Complex 3 shows slight asymmetry in the solid state with the 

germanium coordinating closer to N1 and N2 (M-N1: 2.149(4)Å and M-N2: 
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2.169(4)Å) than to N3 (M-N3: 2.306(3)Å). This asymmetry is not observed in 

the room temperature proton NMR spectrum, which is likely due to the Ge 

centre exchanging between N1 and N3 at a rate faster than the NMR time scale. 

This asymmetry could be a result of crystal packing effects in the solid state. 

Asymmetry in the solid-state structure is also observed in [O-

BZIMPYGeCl][GeCl3], complex 6 (Table 3.1). Complex 5 shows an 

intermolecular interaction between the Ge–Cl fragment of the cation and a Ge–

Cl fragment of the anion (Figure 3.3, left). These interactions (3.3961(7) Å and 

3.543(1) Å) are within the Van der Waals radii expected for Ge (2.13 Å) and Cl 

(1.89 Å) (Ge–Cl= 4.02 Å).35 

As introduced earlier, Evans’ chiral Lewis acid contains a dicationic 

tin(II) pincer complex with two triflate anions.11 In an effort to produce a 

similar Lewis ([G-BZIMPY-M][OTf]2), complex 1 was treated with 1, 2 and 5 

equivalents of trimethylsilyl trifluoromethanesulfonate (TMS-OTf) in CD3CN 

yielding the monocationic complex [NBn-BZIMPYGeCl][OTf] (7, Figure 3.4, 

left) where the [GeCl3] anion is exchanged by a triflate anion [OTf]. Treatment 

of the commercially available Sn(OTf)2 with an equivalent of NBn-BZIMPY in 

CD3CN results in the dicationic tin complex, [NBn-BZIMPYSn][OTf]2 (8, Figure 

3.4, right). Slow evaporation of both complexes from an acetonitrile solution 

results in yellow crystals suitable for X-ray diffraction. 
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Figure 3.4. Solid state structure of the cations in [NBn-BZIMPYGeCl][OTf] (7, left) and 
[NBn-BZIMPYSn][OTf]2 (8, right). Thermal ellipsoids are shown at 50% probability 
level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond 

distances and angles are listed in Table 3.2. 

The Lewis acidity of the resulting complexes was assessed using the 

Gutmann-Beckett method.36,37 A CH3CN solution was prepared containing an 

equivalent of triethylphosphine oxide and 8. This solution exhibited a singlet in 

the 31P{1H} NMR at δ = 76.5 ppm, which is significantly shifted from the free 

phosphine oxide (Δδ = 35.5 ppm). Using the Gutmann-Beckett method, this 

shift corresponds to an acceptor number of 78. To put this into perspective, 

other commonly used boron containing Lewis acids have the following 

acceptor numbers: B(C6F5)3 (82) <BF3 (89) < BCl3 (106) < BBr3 (109) < BI3 

(115).38 This suggests that the Lewis acidity of 8 is slightly weaker than that of 

B(C6F5)3 (BCF). As a result of the Lewis acidic tin, the two triflate anions 

coordinate to the tin centre in the solid state resulting in a pseudo-square 

pyramidal geometry around tin. Assessing the Lewis acidity of 7 using the same 

method results in a more significant shift in the 31P{1H} NMR with a singlet at δ 
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= 91.9 ppm. This shift of Δδ = 50.9 ppm (from free phosphine oxide) yields an 

acceptor number of 112, suggesting that 7 is a very strong Lewis acid and is 

comparable to other strong BX3 (X = Cl, Br, and I) Lewis acids. 

Complexes 1 and 7 have similar bond distances around the germanium 

and within the ligand framework. Complex 1 is more soluble in 

dichloromethane while complex 7 is more soluble in acetonitrile. In the case of 

tin, comparing complexes 2 to 8 where the chloride is absent in the latter, the 

bond distances of the tin centre to the ligand are similar, however, the two 

triflate anions are now bound to the tin centre forming a pseudo-square 

pyramidal geometry around the tin centre unlike complex 7 where the triflate 

was non-coordinating. 
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 7 8 9 

M-N1 2.1865(13) 2.329(4) 2.095(2)/2.088(3) 

M-N2 2.1589(12) 2.401(5) 2.038(2)/2.036(2) 

M-N3 2.1947(13) 2.347(5) 2.105(2)/2.079(3) 

M-Cl 2.2703(4) – – 

N1-C1 1.327(2) 1.323(6) 1.324(3)/1.336(3) 

C1-C2 1.467(2) 1.482(8) 1.475(3)/1.478(4) 

C2-N2 1.355(2) 1.343(7) 1.345(3)/1.348(4) 

N2-C3 1.353(2) 1.363(8) 1.345(3)/1.335(4) 

C3-C4 1.469(2) 1.476(8) 1.471(3)/1.480(4) 

C4-N3 1.327(2) 1.330(7) 1.326(3)/1.333(3) 

N1-M-N2 72.84(5) 67.70(15) 77.20(8)/77.74(8) 

N2-M-N3 72.40(5) 67.66(15) 77.72(8)/78.16(9) 

N2-M-N3 142.67(5) 134.83(16) 154.86(8)/155.82(9) 

Table 3.2. Selected bond distances (Å) and angles (°) of complexes 7-10. 

3.2.2  UV-vis Studies 

UV-vis absorption spectra of complexes 1-8 were collected in 

dichloromethane (DCM). Complex 1 in DCM gives a yellow solution that shows 

intense absorption band at 322 nm (Ɛ = 23,000 L mol–1 cm–1) and a moderate 

band at 375 nm (Ɛ = 9,700 L mol–1 cm–1). Absorption bands are assigned in-

accordance with other BZIMPY metal complexes reported in literature where 

the high-energy intense band is attributed to an intra-ligand (IL) transition, 

while the low-energy band is assigned to a metal-to-ligand charge-transfer 
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(MLCT).39,40 Increasing the polarity of the solvent in 1 (CH3CN) results in 

negative solvatochromism of the low-energy band. Figure 3.5a illustrates this 

blue-shift of the CT band resulting in a single overlapping band at 314 nm (Ɛ = 

29,000 L mol–1 cm–1). The same observation was made in 6 (Figure 3.5c) 

where a DCM solution yielded two bands at 376 nm (Ɛ = 6,200 L mol–1 cm–1) 

and 321 nm (Ɛ = 31,000 L mol–1 cm–1); while in CH3CN, negative 

solvatochromism of the low-energy band shifts and disappears under the IL 

band at 316 nm (Ɛ = 37,200 L mol–1 cm–1). [NBn-BZIMPYSnCl][SnCl3] (2) 

exhibits a MLCT band at 370 nm with a molar absoritivity of Ɛ = 19,600 L mol–

1 cm–1 that is significantly stronger than its germanium counterparts. Using a 

more polar solvent (CH3CN) with 2 does not result in a significant change to the 

MLCT, 364 nm (Ɛ = 19,400 L mol–1 cm–1) as shown in Figure 3.5b. IL band of 2 

in DCM (318 nm, Ɛ = 23,600 L mol–1 cm–1) does not shift upon increasing the 

polarity of the solvent (317 nm, Ɛ = 24,500 L mol–1 cm–1). It is worth noting that 

the different group-14 element bound to G-BZIMPY not only results in a 

difference in the intensity of the MLCT band, but it can dictate whether or not 

negative solvatochromism is observed. In light of the differences between the 

UV-vis spectra of the germanate (1) and triflate (7) salts of an identical cation, 

the solvent effects observed for the germanium-containing complexes are 

likely primarily a consequence of differing cation-anion-solvent interactions. 

For both the germanium and tin complexes, changing the R group in the 

NR-BZIMPY ligands has a negligible effect on the observed absorbance. 

Germanium complexes of NR-BZIMPY (1, 3 and 5) have an IL band at 311-322 
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nm (Ɛ = 20,800-21,200 L mol–1 cm–1) and a MLCT band at 375-384 nm (Ɛ = 

9,600-12,800 L mol–1 cm–1). Tin counterparts (2 and 4) have a relatively similar 

IL band at 318-320 nm (Ɛ = 21,200-23,600 L mol–1 cm–1) but a significantly 

more intense MLCT band at 365-370 nm (Ɛ = 17,900-19,600 L mol–1 cm–1). 

To study the impact of changing the counter-ion and the abstraction of 

the chloride on absorption bands, UV-vis spectra of 7 and 8 were collected in 

DCM. The low-energy band in 7 is likely blue-shifted and not observed, as a 

result, a single broad absorption is observed at 319 nm with a molar 

absorptivity of Ɛ = 31,100 L mol–1 cm–1 (Figure 3.5a). The absorption bands in 

8 (368 nm, Ɛ = 23,900 L mol–1 cm–1 and 318 nm, Ɛ = 29,300 L mol–1 cm–1) do 

not shift in comparison to 2, confirming that Sn(II)-BZIMPY complexes are not 

sensitive to polarity of the solvent nor the environment surrounding the tin(II) 

centre. 
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Figure 3.5. a) UV-vis absoption of 1 in DCM vs CH3CN along with 7 in DCM. b) UV-vis 
absoption of 2 in DCM vs CH3CN along with 8 in DCM. c) UV-vis absoption of 6 in DCM 
vs CH3CN. d) UV-vis absoption of 3-5 in DCM. Spectra collected in CH3CN are indicated 

by the dashed line. 

3.2.3  Reduction Attempts 

Reduction of the [iPrDIMPYGe(II)Cl]+ into the Ge(0) complex was 

reported by Nikonov as noted above (Scheme 3.2).5 We thus investigated 

similar reactions in which complexes 1 and 2 were treated with different 

reducing agents including KC8, potassium, or sodium naphthalide in THF; each 

of these reactions resulted in the deposition of the main group element and the 

release of the free NBn-BZIMPY ligand. We recently reported the successful 

reduction of Ga(III) to Ga(I) BZIMPY complex using Collman’s reagent 
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(K2[Fe(CO)4]) to yield of [(NBn-BZIMPY)(Cl)Ga—Fe(CO)4].19 Again, attempts to 

extend this chemistry to group 14 complexes by treating complexes 1 or 2 with 

an equivalent of K2[Fe(CO)4] in THF results in the free NBn-BZIMPY ligand 

along with an insoluble precipitate. Using an equivalent of [Ni(COD)2], we 

anticipated the reduction of the main group element and the oxidation of the 

Ni(0) centre to Ni(II). Although the nickel centre is indeed oxidized, it displaces 

the main group element to yield [(NBn-BZIMPY)2Ni][MCl3]2 (M = Ge (9), Sn 

(10), Figure 3.6). 

 

Figure 3.6. Solid state structure of the cations in [(NBn-BZIMPY)2Ni][GeCl3]2 (9, left) 
and [(NBn-BZIMPY)2Ni][SnCl3]2 (10, right). Thermal ellipsoids are shown at 50% 
probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 

Selected bond distances and angles are listed in Table 3.2. 

These reactions were repeated using half an equivalent of Ni(COD)2 to 

yield 9 and 10 in 34-37% yields (Scheme 3.5). The crystal structures of 9 and 

10 are isomorphous, having the same unit cell parameters with the tin 

replacing the germanium in complex 10. 
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Scheme 3.5. Reduction attempt of complexes 1 and 2 using Ni(COD)2 to yield complexes 9 and 
10 respectively (R = Bz). 

In an effort to elucidate possible reasons for the observed G-BZIMPY 

ligand behaviour in reducing conditions, cyclic voltammetry experiments of 

NBn-BZIMPY were undertaken. From the voltammograms (Figure 3.7), it was 

determined that there is a single irreversible reduction that occurs at –0.902 V 

(versus Fc/Fc+). 

 

Figure 3.7. Overlapping CVs of 0.01M solution of ferrocene (Fc/Fc+) in black and 0.01M 
solution of ferrocene/NBn-BZIMPY in red. Both solutions were prepared in DCM with 
0.1M [NBu4][PF6]. Working and counter electrodes were Pt, the reference electrode 

was Ag/AgCl, and the scan rate was 100 mVs–1. 



CHAPTER 3 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 14 Elements 

85 

3.2.4  Computational Studies 

Gas phase geometry optimizations on simplified NH-BZIMPY models 

(2,6-di(1H-imidazol-1-yl)pyridine) of compound 1 and 2 (1’ and 2’ 

corresponding to Ge and Sn complexes of the simplified ligand, respectively) 

performed at the M062X/cc-pVTZ level of theory result in models with near 

perfect Cs symmetry and metrical parameters that are close to the values 

determined experimentally using single crystal X-ray diffraction. Inspection of 

the molecular orbitals of 1’ reveal that the HOMO has significant contributions 

from germanium, corresponding to the “lone pair”.  The energy of the HOMO (–

10.89 eV) is significantly higher than the HOMO of the model [ClGe(HDIMPY)]1+ 

calculated at the same level of theory (–11.48 eV) and suggests that 1’ should 

be a superior donor. Interestingly, NBO analyses corroborate the conclusion 

regarding germanium “lone pair” energies but suggest that the donor abilities 

of NH-BZIMPY and HDIMPY are similar. The HOMO−1 and HOMO−2  of 1’ are π-

type ligand-based MOs with A'' and A' symmetry, respectively, and the 

HOMO−3 and HOMO−4, represent the “lone pairs” on the chlorine atom. The 

LUMO has A' symmetry, but does not exhibit any metal-ligand anti-bonding 

character and thus does not explain why reduction attempts were unsuccesful. 

Models of the putative Ge(0) species [Ge(NH-BZIMPY)] and [Ge(HDIMPY)] 

exhibit similar structural features and HOMO-LUMO energy differences and do 

not provide any obvious electronic rationale for the instability of the NH-

BZIMPY variant. Given the foregoing, it is likely that kinetic instability of the 

putative reduced compound precludes its isolation. 
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Figure 3.8. Optimized geometry and selected occupied molecular orbitals of 1’ 
(M062X/cc-pVTZ). 

3.3  Conclusions 

We presented Ge(II) and Sn(II) coordination to 2,6-Bis(benzimidazol-2-

yl)pyridine (G-BZIMPY, G = NBn, N(3,5-CF3)Bn, NAllyl and O) ligands. Some of 

the salts were assessed to be potent Lewis acids using the Gutman-Beckett 

method. UV-vis absorption spectra of these complexes feature an intense high-

energy intra-ligand band and a moderate low-energy MLCT band. Negative 

solvatochromism was observed in germanium-containing complexes upon 

increasing polarity of the solvent, but this was not observed in those of tin.  

Attempts to reduce these M(II) complexes into low-valent M(0) complexes 

were not successful; this is likely attributable to kinetic instability of the 

resulting reduced compounds. 
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3.4  Experimental 

3.4.1  General Remarks 

All manipulations were carried out using standard inert-atmosphere 

techniques. All reagents and chemicals were obtained from Sigma-Aldrich. All 

reagents were used without further purification. MeCN-d3 was dried over 

calcium hydride or phosphorus pentoxide, and dichloromethane-d2 was dried 

over phosphorus pentoxide. All other solvents were dried on a series of 

Grubbs-type columns and were degassed prior to use.41 All glassware was 

stored in a 170 °C oven for several hours. 2,6-Bis(benzimidazol-2-yl)pyridine 

(NH-BZIMPY),42 2,6-bis(benzoxazol-2-yl)pyridine (O-BZIMPY),43 NBn-

BZIMPY,44 N(3,5-CF3)Bn-BZIMPY,19 NAllyl-BZIMPY,19 and K2[Fe(CO)4]45 were 

all prepared according to the literature procedures. 

NMR spectrum was recorded at room temperature on Bruker Avance III 500 

MHz, Bruker Avance Ultrashield 300 MHz, and Bruker Avance DPX 300 MHz 

spectrometers. Chemical shifts are reported in parts per million relative to 

internal standards for 1H and 13C (the given deuterated solvent) and external 

standards for 19F (CFCl3). Coupling constants |J| are given in hertz. Elemental 

analysis was performed at the University of Windsor Mass Spectrometry 

Service Laboratory using a Perkin-Elmer 2400 combustion CHN analyzer. 

Cyclic voltammetry was performed in dry CH2Cl2 solutions using 

[NBu4][PF6] (0.1 M) as the electrolyte with analyte concentration of 

approximately 0.01 M. A platinum electrode, a platinum wire, and 1.0 M 
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Ag/AgCl electrode were used as the working, auxiliary, and reference 

electrodes, respectively. The experiments were run with a scan rate of 100 

mV/s and a sensitivity of 100 μA/V and the potentials reported are referenced 

to ferrocene/ferrocenium (E1/2 = 0.0 V). 

3.4.2  Synthesis 

 

[NBn-BzimpyGeCl][GeCl3] (1) A 100 mL Schlenk flask was charged with NBn-

BZIMPY (465 mg, 0.95 mmol) and GeCl2.dioxane (438 mg, 1.9 mmol). To that 

was added 40 mL of dichloromethane resulting in an immediate formation of a 

yellow/green solution. After 2 hours of stirring, the solvent was evaporated 

under reduced pressure and the resulting solid was suspended in toluene (20 

mL), collected and washed with toluene (2×10 mL) yielding 1 as a yellow solid 

(630 mg, 85%). Slow evaporation from dichloromethane yielded yellow 

crystals suitable for X-ray Diffraction. 1H NMR (CD2Cl2) δ: 8.45 (t, 1H, 3JHH = 8 

Hz), 8.20 (b, 4H), 7.65 (m, 4H), 7.37 (b, 4H), 7.24 (b, 8H), 6.02 (s, 4H). 13C{1H} 

NMR δ: 145.81, 145.38, 144.47, 137.88, 137.31, 133.96, 130.07, 129.18, 127.91, 

126.75, 126.23, 125.10, 119.20, 112.32, 50.10. Anal. Calc. for C33H25Cl4Ge2N5 

(778.68 g/mol): C, 50.90; H, 3.24; N, 8.99. Found: C, 50.59; H, 3.12; N, 8.82. 
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[NBn-BzimpySnCl][SnCl3] (2) A 100 mL Schlenk flask was charged with NBn-

BZIMPY (500 mg, 1.0 mmol) and SnCl2 (386 mg, 2.0 mmol). To that was added 

40 mL of dichloromethane resulting in an immediate formation of a yellow 

solution. After allowing the reaction to stir overnight, the solvent was 

evaporated under reduced pressure and the resulting solid was suspended in 

toluene (20 mL), collected and washed with toluene (2×10 mL) yielding 2 as a 

pale-yellow solid (910 mg, 98%). Slow evaporation from dichloromethane 

yielded yellow crystals suitable for X-ray Diffraction. 1H NMR (CD2Cl2) δ: 8.27 

(t, 1H, 3JHH = 8 Hz), 8.16 (d, 2H, 3JHH = 8 Hz), 8.07 (d, 2H, 3JHH = 8 Hz), 7.62 (m, 

5H), 7.42 (m, 5H), 7.13 – 7.26 (m, 6H), 6.03 (s, 4H). 13C{1H} NMR δ: 148.32, 

144.93, 144.48, 137.89, 134.26, 130.08, 129.09, 127.48, 126.70, 126.55, 126.20, 

125.50, 119.11, 112.35, 50.50. Anal. Calc. for C33H25Cl4Sn2N5(toluene)0.5 

(916.89 g/mol): C, 47.81; H, 3.19; N, 7.64. Found: C, 48.01; H, 3.25; N, 7.16. 

 

[N(3,5-CF3)Bn-BzimpyGeCl][GeCl3] (3) A 20 mL vial was charged with N(3,5-

CF3)Bn-BZIMPY (40 mg, 0.052 mmol) and GeCl2.dioxane (24 mg, 1.0 mmol). 5 

mL of CD3CN was added, resulting in the formation of a yellow solution. The 
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solution was allowed to stir overnight and was then left to evaporate resulting 

in 3 as yellow crystals (47 mg, 85%). 1H NMR (CD3CN) δ: 8.46 (t, 1H, 3JHH = 8 

Hz), 8.22 (m, 4H), 8.02 (s, 2H), 7.85 (s, 4H), 7.62-7.74 (m, 6H), 6.15 (s, 4H). 

13C{1H} NMR δ: 148.04, 146.55, 144.60, 138.32, 137.74, 132.82 (2JCF = 33 Hz), 

128.48, 128.04, 127.97, 127.36, 125.87, 124.20 (1JCF = 272 Hz), 123.52, 119.55, 

113.24, 49.65. 19F{1H} NMR δ: –64.40. Anal. Calc. for C37H21Cl4F12Ge2N5 

(1050.65 g/mol): C, 42.30; H, 2.01; N, 6.67. Found: C, 42.08; H, 2.20; N, 6.33. 

 

[N(3,5-CF3)Bn-BzimpySnCl][SnCl3] (4) A 20mL vial was charged with N(3,5-

CF3)Bn-BZIMPY (40 mg, 0.052 mmol) and SnCl2 (20 mg, 1.0 mmol). 5 mL of 

CD3CN was added to the vial, resulting in the formation of a pale-yellow 

solution. The solution was allowed to stir overnight and was then left to 

evaporate resulting in 4 as yellow crystals (58 mg, 97%). 1H NMR (CD3CN) δ: 

8.24 (t, 1H, 3JHH = 8 Hz), 8.21 (m, 2H), 8.13 (d, 2H, 3JHH = 8 Hz), 8.03 (s, 2H), 7.85 

(s, 4H), 7.62-7.68 (m, 6H), 6.13 (s, 4H). 13C{1H} NMR δ: 147.97, 144.80, 144.25, 

137.68, 137.25, 131.90 (2JCF = 33 Hz), 127.23, 127.15, 127.09, 126.30, 125.38, 

123.40 (1JCF = 272 Hz), 122.58, 118.63, 112.24, 48.94. 19F{1H} NMR δ: –62.63 

(s). Anal. Calc. for C37H21Cl4F12Sn2N5 (1142.81 g/mol): C, 38.89; H, 1.85; N, 6.13. 

Found: C, 39.11; H, 2.12; N, 6.35. 
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[NAllyl-BZIMPYGeCl][GeCl3] (5) A 20mL vial was charged with NAllyl-

BZIMPY (20 mg, 0.051 mmol) and GeCl2.dioxane (24 mg, 0.10 mmol). 5 mL of 

CD3CN was added to the vial, resulting in the formation of a yellow precipitate. 

The solution was sonicated overnight to yield a pale-yellow solution with 

yellow precipitate. Solvent was evaporated to yield 5 as yellow precipitate (26 

mg, 75%). Crystals were formed by dissolving a few milligrams of 5 in CH3CN 

and leaving the solution to slowly evaporate yielding yellow crystals suitable 

for X-ray diffraction.1H NMR (CD2Cl2) δ: 8.67 (t, 1H, 3JHH = 8 Hz), 8.47 (d, 2H, 

3JHH = 8 Hz), 8.13 (d, 2H, 3JHH = 8 Hz), 7.81 (d, 2H, 3JHH = 8 Hz), 7.66 (m, 4H), 6.30 

(b, 2H), 5.29 – 5.47 (m, 6H), 5.09 (d, 2H, 3JHH = 18 Hz). Compound is not soluble 

enough to obtain a 13C NMR. Anal. Calc. for C25H21Cl4Ge2N5 (678.54 g/mol): C, 

44.25; H, 3.12; N, 10.32. Found: C, 43.81; H, 2.96; N, 9.98. 

 

[O-BZIMPYGeCl][GeCl3] (6) A 20mL vial was charged with O-BZIMPY (20 mg, 

0.064 mmol) and GeCl2.dioxane (30 mg, 0.13 mmol). 4 mL of CD3CN and 1 mL 

of CD2Cl2 were added to the vial, resulting in the formation of a yellow solution. 

The solution was allowed to stir overnight, and slow evaporation of the solvent 

yielded yellow crystals of 6 (35 mg, 92%). 1H NMR (CD2Cl2/CD3CN (1:4)) δ: 8.69 
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(m, 3H), 8.08 (d, 2H, 3JHH = 8 Hz), 7.91 (d, 2H, 3JHH = 8 Hz), 7.76 (t, 2H, 3JHH = 8 

Hz), 7.66 (t, 2H, 3JHH = 8 Hz). 13C{1H} NMR δ: 159.88, 152.01, 145.02, 143.55, 

137.90, 129.56, 127.90, 127.47, 120.57, 113.06.; Anal. Calc. for 

C19H11Cl4Ge2N3O2(CH3CN)0.33 (613.89 g/mol): C, 38.46; H, 1.97; N, 7.59. Found: 

C, 38.83; H, 1.85; N, 7.28. 

 

[NBn-BzimpyGeCl][OTf] (7) A 20 mL vial was charged compound 1 (50 mg, 

0.064 mmol). 5 mL of CD3CN was added, followed by excess TMSOTf (0.035 mL, 

0.19 mmol). The solution was stirred for an hour and left to slowly evaporate 

yielding 7 as yellow crystals (45 mg, 94%). 1H (CD3CN) δ: 8.39 (t, 1H, 3JHH = 8 

Hz), 8.25 (d, 2H, 3JHH = 8 Hz), 8.18 (m, 2H), 7.62 (m, 4H), 7.76 (m, 2H), 7.66 (m, 

2H), 7.33 – 7.40 (m, 6H), 7.20 (d, 2H, 3JHH = 8 Hz), 6.01 (s, 4H). 13C{1H} NMR δ: 

146.21, 145.64, 144.26, 142.12, 138.16, 137.47, 134.74, 130.06, 128.18, 127.07, 

126.57, 123.72 (1JCF = 313 Hz), 119.17, 112.99, 49.94. 19F{1H} NMR δ: –77.83 

Anal. Calc. for C34H25F3N5O3SGe (748.74 g/mol): C, 54.54; H, 3.37; N, 9.35. 

Found: C, 54.09; H, 3.10; N, 9.22. 
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[NBn-BzimpySn][OTf]2 (8) A 20 mL vial was charged with NBn-BZIMPY (40 

mg, 0.082 mmol) and Sn(OTf)2 (35 mg, 0.084 mmol). 5 mL of CD3CN was added, 

resulting in the formation of a yellow solution. The solution was allowed to stir 

overnight and was then left to evaporate resulting in 8 as yellow crystals (59 

mg, 80%). 1H NMR (CD3CN) δ: 8.31 (t, 1H, 3JHH = 8 Hz), 8.22 (d, 2H, 3JHH = 8 Hz), 

8.19 (d, 2H, 3JHH = 8 Hz), 7.74 (d, 2H, 3JHH = 8 Hz), 7.62 (m, 4H), 7.35 (m, 6H), 

7.17 (d, 4H, 3JHH = 8 Hz), 6.03 (s, 4H). 13C{1H} NMR δ: 149.42, 145.40, 144.79, 

138.61, 138.36, 135.15, 130.32, 129.39, 127.95, 127.23, 126.99, 126.33, 122.07 

(1JCF = 316 Hz), 119.40, 113.39, 50.32. 19F{1H} NMR δ: –79.50 Anal. Calc. for 

C35H25F6N5O6S2Sn (908.43 g/mol): C, 46.28; H, 2.77; N, 7.71. Found: C, 45.88; H, 

3.02; N, 7.59. 

 

[(NBn-BZIMPY)2Ni][GeCl3]2 (9) A 20 mL vial was charged with compound 1 

(36 mg, 0.046 mmol) and Ni(COD)2 (7 mg, 0.025 mmol). 5 mL of THF (precooled 

to –40 °C) was added resulting in a colour change from yellow to deep 

brown/red solution. The reaction was allowed to warm up to room 
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temperature and stir for 1 hr before filtering. 1 mL of hexane was added to the 

filtrate and was allowed to sit are room temperature overnight, resulting in 

deep brown crystals of 9 (12 mg, 37%). Anal. Calc. for C66H50Cl6Ge2N10Ni 

(1399.85 g/mol): C, 56.63; H, 3.81; N, 10.01. Found: C, 56.60; H, 3.81; N, 9.75. 

[(NBn-BZIMPY)2Ni][SnCl3]2 (10) A 20 mL vial was charged with compound 2 

(48 mg, 0.055 mmol) and Ni(COD)2 (8 mg, 0.029 mmol). 5 mL of THF (precooled 

to –40 °C) was added resulting in a colour change from yellow to a deep brown 

solution. The reaction was allowed to warm up to room temperature and stir 

for 1 hr before filtering. 1 mL of hexane was added to the resulting filtrate and 

was allowed to sit are room temperature overnight, resulting in light brown 

crystals of 10 (14 mg, 34%). Anal. Calc. for C66H50Cl6Sn2N10Ni (1492.20 g/mol): 

C, 53.13; H, 3.38; N, 9.39. Found: C, 49.81; H, 3.23; N, 8.68. 

Gutmann-Beckett method: 

Reaction of 7 with OPEt3; A 20mL vial was charged with 7 (14 mg, 0.019 mmol) 

and OPEt3 (3 mg, 0.022 mmol) in 1 mL CH3CN. Reaction mixture was stirred for 

30 minutes before collecting phosphorus NMR. 31P{1H} NMR (CH3CN) δ: 91.9. 

Reaction of 8 with OPEt3; A 20mL vial was charged with 8 (34 mg, 0.037 mmol) 

and OPEt3 (5 mg, 0.037 mmol) in 1 mL CH3CN. Reaction mixture was stirred for 

30 minutes before collecting phosphorus NMR. 31P{1H} NMR (CH3CN) δ: 76.5. 
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3.4.3  Computational Details 

Calculations were performed with the Gaussian 09 suite of programs46 

using Compute Canada's Shared Hierarchical Academic Research Computing 

Network (SHARCNET). Model complexes were fully optimized with no 

symmetry constraints using the M06-2X density functional method,47 in 

conjunction with the cc-pVTZ basis set.48,49 The cc-pVQZ-PP basis set 

employing a relativistic small-core pseudopotential was used for tin.50 

Geometry optimizations were started using models in which the relevant non-

hydrogen atoms were placed in positions found experimentally by X-ray 

crystallography using Gaussview.51 Frequency calculations were also 

performed at the same level of theory in order to confirm that the optimized 

structures were minima on the potential energy hypersurface and to determine 

thermochemical and vibrational information. Natural bond orbital (NBO) 

analyses52 to determine orbital contributions, Wiberg Bond Indices and orbital 

energies were obtained using the routine included in the Gaussian 

distributions.53 Visualizations of the Kohn-Sham orbitals and optimized 

geometries were made using Gaussview.51 

3.4.4  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a 

goniometer head, and then rapidly cooled under a stream of cold N2 of the low-

temperature apparatus (Oxford Cryostream) attached to the diffractometer. 

The data were then collected using the APEXIII (Bruker AXS) software suite on 
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a Bruker Photon 100 CMOS diffractometer using a graphite monochromator 

with MoKα (λ = 0.71073 Å). For each sample, data were collected at low 

temperature. APEXIII software was used for data reductions and SADABS 

(Bruker AXS) was used for absorption corrections (multi-scan; semi-empirical 

from equivalents). XPREP was used to determine the space group and the 

structures were solved and refined using the SHELX54 software suite as 

implemented in the WinGX55 or OLEX256 program suites. Validation of the 

structures was conducted using PLATON57 and the structures have been 

deposited in the Cambridge Structural Database (CCDC 1895464-1895473).  

  



CHAPTER 3 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 14 Elements 

97 

Compound Name [NBn-BZIMPYGeCl] 
[GeCl3] 0.5(CH2Cl2) 

[NBn-BZIMPYSnCl] 
[SnCl3] 

[N(3,5-CF3)Bn-
BzimpyGeCl][GeCl3] 

Label 1 2 3 
CCDC ID 1895464 1895465 1895466 

Empirical 
formula 

C133H102Cl18Ge8N20 C33H27Cl4N5Sn2 C37H21Cl4F12Ge2N5 

Formula weight 3199.16 872.77 1050.57 
Temperature (K) 170 170 170 

Crystal system triclinic triclinic triclinic 
Space group P–1 P–1 P–1 

a (Å) 14.1393(9) 7.4012(4) 8.9182(8) 
b (Å) 15.1768(9) 13.5942(8) 14.4073(13) 
c (Å) 16.3072(11) 16.4392(9) 16.3208(14) 
α (°) 86.094(2) 80.1799(19) 73.936(3) 
β (°) 74.051(2) 87.4275(19) 80.147(3) 
γ (°) 76.567(2) 79.968(2) 75.525(3) 

Volume (Å3) 3272.6(4) 1604.65(16) 1939.4(3) 
Z 1 2 2 

ρcalc (g·cm−3) 1.623 1.806 1.799 
μ (mm−1) 2.238 1.923 1.921 

F(000) 1602 856 1036 
Crystal size 

(mm3) 
0.21 × 0.21 × 0.135 0.25 × 0.17 × 0.12 0.47 × 0.2 × 0.1 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.872 to 61.186 5.912 to 61.176 5.664 to 58.45 

Index ranges –20 ≤ h ≤ 20 
–21 ≤ k ≤ 21 
–23 ≤ l ≤ 23 

–10 ≤ h ≤ 10 
–19 ≤ k ≤ 19 
–23 ≤ l ≤ 22 

–12 ≤ h ≤ 12 
–19 ≤ k ≤ 19 
–22 ≤ l ≤ 22 

Reflections 
collected 

224637 107568 88406 

Independent 
reflections 

20073 
Rint = 0.0470 

Rsigma = 0.0236 

9854 
Rint = 0.0273 

Rsigma = 0.0119 

10430 
Rint = 0.0474 

Rsigma = 0.0255 
Data/restraints 

/parameters 
20073/24/820 9854/0/397 10430/72/569 

Goodness-of-fit 
on F2 

1.07 1.192 1.073 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0375 
wR2 = 0.0839 

R1 = 0.0220 
wR2 = 0.0526 

R1 = 0.0632 
wR2 = 0.1738 

Final R indexes 
[all data] 

R1 = 0.0598 
wR2 = 0.0973 

R1 = 0.0256 
wR2 = 0.0553 

R1 = 0.0707 
wR2 = 0.1787 

Largest diff. 
peak/hole (e·Å−3) 

1.36/–1.11 0.47/–1.11 1.67/–1.17 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 3.3. Crystallographic data and structure refinement. 
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Compound Name [N(3,5-CF3)Bn-
BzimpySnCl][SnCl3] 

[NAllyl-BZIMPYGeCl] 
[GeCl3] 

[O-BZIMPYGeCl] 
[GeCl3] 

Label 4 5 6 
CCDC ID 1895467 1895468 1895469 

Empirical formula C37H21Cl4F12N5Sn2 C25H21Cl4Ge2N5 C19H11Cl4Ge2N3O2 
Formula weight 1142.77 678.45 600.29 

Temperature (K) 170.2 220 170 
Crystal system triclinic monoclinic monoclinic 

Space group P–1 P21/c P21/n 
a (Å) 9.1861(13) 10.4681(7) 10.4493(7) 
b (Å) 13.4274(18) 16.4860(9) 12.5471(7) 
c (Å) 17.478(2) 15.2025(9) 16.9264(10) 
α (°) 75.357(4) 90 90 
β (°) 80.979(4) 94.718(2) 96.429(2) 
γ (°) 79.243(4) 90 90 

Volume (Å3) 2035.5(5) 2614.7(3) 2205.2(2) 
Z 2 4 4 

ρcalc (g·cm−3) 1.865 1.723 1.808 
μ (mm−1) 1.581 2.734 3.233 

F(000) 1108 1352 1176 
Crystal size 

(mm3) 
0.325 × 0.31 × 0.305 0.25 × 0.22 × 0.07 0.48 × 0.44 × 0.13 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.93 to 55 5.918 to 61.998 5.824 to 58.414 

Index ranges –11 ≤ h ≤ 11 
–17 ≤ k ≤ 17 
–22 ≤ l ≤ 22 

–15 ≤ h ≤ 15 
–22 ≤ k ≤ 23 
–22 ≤ l ≤ 21 

–14 ≤ h ≤ 14 
–17 ≤ k ≤ 16 
–23 ≤ l ≤ 23 

Reflections 
collected 

99263 128096 73857 

Independent 
reflections 

9248 
Rint = 0.0393 

Rsigma = 0.0177 

8324 
Rint = 0.0602 

Rsigma = 0.0283 

5953 
Rint = 0.0320 

Rsigma = 0.0142 
Data/restraints 

/parameters 
9248/150/597 8324/0/341 5953/0/271 

Goodness-of-fit 
on F2 

1.098 1.144 1.049 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0617 
wR2 = 0.1484 

R1 = 0.0415 
wR2 = 0.0824 

R1 = 0.0268 
wR2 = 0.0635 

Final R indexes 
[all data] 

R1 = 0.0715 
wR2 = 0.1594 

R1 = 0.0796 
wR2 = 0.1009 

R1 = 0.0322 
wR2 = 0.0673 

Largest diff. 
peak/hole (e·Å−3) 

2.62/–2.03 0.97/–0.91 0.92/–0.72 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 3.4. Crystallographic data and structure refinement. 
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Compound Name [NBn-BzimpyGeCl] 
[OTf] 

[NBn-BzimpySn] 
[OTf]2 

[(NBn-BZIMPY)2Ni] 
[GeCl3]2 1.5(C4H4O) 

Label 7 8 9 
CCDC ID 1895470 1895471 1895472 

Empirical formula C34H25ClF3GeN5O3S C35H25F6N5O6S2Sn C72H62Cl6Ge2N10NiO1.5 
Formula weight 748.69 908.41 1507.9 

Temperature (K) 170 169.94 170 
Crystal system triclinic monoclinic triclinic 

Space group P–1 P21 P–1 
a (Å) 8.9152(4) 14.776(11) 13.6605(8) 
b (Å) 13.6048(6) 12.477(11) 14.1678(9) 
c (Å) 14.3903(7) 20.178(16) 19.8848(14) 
α (°) 117.3640(10) 90 82.572(2) 
β (°) 95.9400(10) 111.21(2) 76.130(2) 
γ (°) 90.1870(10) 90 62.991(2) 

Volume (Å3) 1539.21(12) 3468(5) 3327.9(4) 
Z 2 4 2 

ρcalc (g·cm−3) 1.615 1.74 1.505 
μ (mm−1) 1.214 0.945 1.473 

F(000) 760 1816 1540 
Crystal size 

(mm3) 
0.3 × 0.23 × 0.168 0.28 × 0.2 × 0.18 0.35 × 0.22 × 0.22 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.862 to 61.268 5.916 to 51.904 5.642 to 55.754 

Index ranges –12 ≤ h ≤ 12 
–19 ≤ k ≤ 19 
–20 ≤ l ≤ 20 

–18 ≤ h ≤ 18 
–15 ≤ k ≤ 15 
–24 ≤ l ≤ 24 

–17 ≤ h ≤ 17 
–18 ≤ k ≤ 18 
–26 ≤ l ≤ 26 

Reflections 
collected 

107376 84848 44388 

Independent 
reflections 

9453 
Rint = 0.0257 

Rsigma = 0.0130 

13043 
Rint = 0.0449 

Rsigma = 0.0293 

15560 
Rint = 0.0270 

Rsigma = 0.0316 
Data/restraints 

/parameters 
9453/0/433 13043/1/991 15560/174/893 

Goodness-of-fit 
on F2 

1.04 1.125 1.031 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0312 
wR2 = 0.0776 

R1 = 0.0294 
wR2 = 0.0666 

R1 = 0.0403 
wR2 = 0.0919 

Final R indexes 
[all data] 

R1 = 0.0382 
wR2 = 0.0828 

R1 = 0.0322 
wR2 = 0.0676 

R1 = 0.0599 
wR2 = 0.1055 

Largest diff. 
peak/hole (e·Å−3) 

1.25/–0.64 0.95/–0.48 0.88/–1.02 

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 3.5. Crystallographic data and structure refinement. 
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Compound Name [(NBn-BZIMPY)2Ni] 
[SnCl3]2 1.5(C4H8O) 

Label 10 
CCDC ID 1895473 

Empirical formula C72H59Cl6N10NiO1.5Sn2 
Formula weight 1597.08 

Temperature (K) 170 
Crystal system triclinic 

Space group P–1 
a (Å) 13.7350(7) 
b (Å) 14.0932(8) 
c (Å) 19.9403(12) 
α (°) 82.180(2) 
β (°) 76.134(2) 
γ (°) 63.862(2) 

Volume (Å3) 3362.1(3) 
Z 2 

ρcalc (g·cm−3) 1.578 
μ (mm−1) 1.307 

F(000) 1606 
Crystal size 

(mm3) 
0.17 × 0.14 × 0.04 

Radiation MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.566 to 61.016 

Index ranges –19 ≤ h ≤ 19 
–20 ≤ k ≤ 20 
–28 ≤ l ≤ 28 

Reflections 
collected 

223779 

Independent 
reflections 

20496 
Rint = 0.0465 

Rsigma = 0.0243 
Data/restraints 

/parameters 
20496/183/893 

Goodness-of-fit 
on F2 

1.099 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0378 
wR2 = 0.0781 

Final R indexes 
[all data] 

R1 = 0.0607 
wR2 = 0.0917 

Largest diff. 
peak/hole (e·Å−3) 

1.09/–1.41 

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 3.6. Crystallographic data and structure refinement. 
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CHAPTER 4: 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of 

Group 15 Elements 

4.1  Introduction 

Trinitrogen donors have played an important role in the development of 

recent main group chemistry.1–11 Among these notable ligands is the redox-

active bis(imino)pyridine (DIMPY) that is useful in preparing highly active 

transition metal catalysts.12–14 Cowley and Reeske reported that treatment of 

DIMPY to a mixture of AsCl3 with SnCl2 generates the arsenic(I)-DIMPY 

complex shown in Scheme 4.1, right.4 Later work by Ragogna resulted in the 

isolation of a P(I) cation using PI3 and DIMPY (Scheme 4.1, left).3,5  

 

Scheme 4.1. Low valent P(I) and As(I) complexes of DIMPY. Dipp = 2,6-diisopropylphenyl. 

Stephan and co-workers reported the synthesis of a P(III) dicationic 

complex of tripyridine that can be prepared as shown in Scheme 4.2.15 The 

resulting Lewis acid has proven to be useful in catalytic hydrodefluorination 

(HDF) of unactivated fluoroalkanes. 
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Scheme 4.2. Stephan’s dicationic P(III) catalyst. 

Tridentate ligands, in general, have led to many interesting pnictogen 

containing compounds.16–32 In particular, early work by Arduengo presented 

new and unusual bonding in 10-P-3 ADPO allowing for the idea of a shape-

shifting compound.33 Recently, work by Radosevich and co-workers illustrated 

that such compounds with distorted tricoordinate phosphorus result in an 

active phosphorus centre capable of transfer hydrogenation and small 

molecule activation.34,35 An example containing a trinitrogen ligand (Figure 

4.1) can readily activate E-H (O-H and N-H) bonds to yield a phosphorus(V) 

centre that is reversible to the phosphorus(III) centre at elevated 

temperatures.36 

 

Figure 4.1. Arduengo’s 10–P–3 (T-shaped) and 8–P–3 (bent) phosphines. 

In this work, we explore the coordination of group 15 elements to 

bisbenzimidazole (BZIMPY) ligands B shown in Figure 4.2 with G = NBn. These 
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BZIMPY ligands are more rigid than their DIMPY counterparts and have been 

used to a much lesser extent with transition metals.37–40 We have recently 

reported that BZIMPY ligands are more electron-rich and sterically accessible 

alternatives to DIMPY ligands for group 13 and 14 coordination chemistry.9,41 

Other literature main group complexes of BZIMPY contain indium,42,43 lead,44–

50 and silicon.51 Parent NH-BZIMPY ligand allows for the introduction of 

different substituents to tune the electronic and steric properties. Analogous 

imidazole and benzimidazole tripodal ligand coordination to MG elements have 

also been investigated.52–56  

 

Figure 4.2. A: DIMPY ligand, B: BZIMPY ligand (G = NH, NBn, N(3,5-CF3)Bn, N-Allyl and O). 

4.2  Results and Discussion 

4.2.1  Synthesis and Characterization 

Coordination of group 13 and 14 elements to G-BZIMPY has proven to be 

successful by treatment of G-BZIMPY with two equivalents of group 13 or 14 

metal halides (MCl3 and MCl2) yielding the self-ionized products: [G-

BZIMPYMCl2][MCl4] and [G-BZIMPYMCl][MCl3], respectively. Extending this 

approach to group 15 metal halides, MCl3 (M = P, As and Sb), does not result in 

any reactivity or any indication of coordination to G-BZIMPY.  



CHAPTER 4 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 15 Elements 

110 

As noted above, Cowley4 and Ragogna5 were successful in isolating the 

As(I) and P(I) complexes of DIMPY using AsCl3/SnCl2 and PI3, respectively. 

Attempts to implement this method with NBn-BZIMPY resulted in grey 

insoluble materials with PCl3/SnCl2 and orange insoluble materials with PI3. 

The only materials collected and characterized from these reactions were those 

of free NBn-BZIMPY ligand. 

On the other hand, following Stephan’s15 work, the introduction of 

excess TMS-OTf to a solution containing NBn-BZIMPY and PCl3 in DCM/CH3CN 

results in an immediate intense yellow colour (Scheme 4.3). After allowing the 

reaction mixture to stir overnight, solvents were removed under reduced 

pressure and the resulting solid was suspended in toluene, filtered and dried 

under vacuum to yield [NBn-BZIMPYPCl][OTf]2 (1) as a yellow solid in good 

yield (79%). Slow evaporation from a DCM/CH3CN mixture yields yellow 

crystals of 1 suitable for X-ray diffraction (Figure 4.3). A similar procedure was 

carried out to prepare and isolate [NBn-BZIMPYAsCl][OTf]2 (2) and [NBn-

BZIMPYSbCl][OTf]2 (3) in decent yields (65-83%). 

 

Scheme 4.3. Reaction of MCl3 (M = P, As, Sb) with Bn-BZIMPY to yield complexes 1, 2 and 3. 
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Figure 4.3. Solid state structure of the [NBn-BZIMPYPCl][OTf]2 (1, top), [NBn-
BZIMPYAsCl][OTf]2 (2, left),  and [NBn-BZIMPYSbCl] [OTf]2 (3, right). Thermal ellipsoids are 

shown at 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 
Selected bond distances and angles of complexes 1-3 are in Table 4.1. 

The phosphorus centre in 1 is binding symmetrically to both 

benzimidazole donors with P-N bond distances of 1.913(2) and 1.916(2) Å. The 

P-N bond distance to the pyridine nitrogen (1.855(2) Å) is significantly shorter, 

which is different from that observed in group 13 and 14 complexes where the 

M-N bond distances to pyridine nitrogen are longer than M-N bond distances 

to benzimidazole nitrogens. To assess the planarity of complex 1, the pyridine 

para-carbon, pyridine nitrogen and phosphorus angle is examined. For 

complex 1, C5-N2-P angle is 175.8(1)°, which is close to 180°, suggesting a 

planar complex. As the binding element increases in size going to As and Sb, 

this angle decreases as the main group element sits slightly above the plane of 



CHAPTER 4 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 15 Elements 

112 

the ligand, resulting in slight distortion to the planarity and the C5-N2-M angles 

being 164.0(4)° for arsenic and 166.2(1)° for antimony. 

As a result of this distortion in planarity, the solid-state structure is not 

symmetric, resulting in differences in the M-N bond distances to the two 

benzimidazole arms. In arsenic, the As-N bond distances to benzimidazoles are 

2.089(7) and 2.130(7) Å, while the As-N bond distance to the pyridine nitrogen 

is 2.002(7) Å, consistent with the observation made in 1, having a shorter M-N 

bond distance to pyridine. Similarly, antimony binding results in slight 

distortion in the planarity of the ligand with the antimony centre sitting closer 

to N1 and N2 (2.253(2) and 2.260(2) Å, respectively) compared to N3 (2.292(2) 

Å). 
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 1 2 3 

M-N1 1.913(2) 2.089(7) 2.253(2) 

M-N2 1.855(2) 2.002(7) 2.260(2) 

M-N3 1.916(2) 2.130(7) 2.292(2) 

M-Cl 2.0549(11) 2.168(2) 2.3585(9) 

N1-C1 1.326(4) 1.317(11) 1.335(3) 

C1-C2 1.452(4) 1.455(11) 1.462(4) 

C2-N2 1.366(3) 1.363(10) 1.357(3) 

N2-C3 1.367(3) 1.353(10) 1.358(3) 

C3-C4 1.451(4) 1.455(11) 1.469(3) 

C4-N3 1.326(4) 1.313(10) 1.331(3) 

N1-M-N2 79.83(9) 76.4(3) 70.54(8) 

N2-M-N3 80.08(9) 76.5(3) 70.16(7) 

N2-M-N3 156.89(10) 149.5(3) 136.10(8) 

C5-N2-M 175.8(1) 164.0(4) 166.2(1) 

Table 4.1. Selected bond distances (Å) and angles (°) of complexes 1, 2 and 3. 

While the reaction has a distinct colour change from colourless to yellow 

upon the addition of TMS-OTf, the 1H NMR spectrum exhibits a clear downfield 

shift of the ligand protons upon binding of the metal centre which can be used 

as a handle to confirm coordination. The C5-H proton in particular is very 

sensitive to pnictogen binding and this sensitivity is dependent on the main 

group element bound. The downfield shift, Δδ, observed increases going from 

Sb to As to P as shown in Figure 4.4. Thus, going up the periodic table results 

in greater influence on the shift of the ligand protons. 
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CH3CN solutions were prepared containing an equivalent of 

triethylphosphine oxide with 1, 2 and 3. These solutions exhibited a significant 

shift (Δδ  ~51 ppm) in the 31P{1H} NMR spectrum from the free phosphine 

oxide (δ= 41.0 ppm). Using the Gutmann-Beckett method, these shifts 

correspond to acceptor numbers of 112-113 for complexes 1-3. To put this into 

perspective, other commonly used boron containing Lewis acids have the 

following acceptor numbers: B(C6F5)3 (82) <BF3 (89) < BCl3 (106) < BBr3 (109) 

< BI3 (115). This suggests that complexes 1-3 are very strong Lewis acid and 

are comparable to other strong BX3 (X = Cl, Br, and I) Lewis acids. 

 

Figure 4.4. 1H NMR of 1 (red), 2 (green), 3 (blue), and free NBn-BZIMPY ligand (black). 

4.3  Conclusions 

We present group 15 (P, As, and Sb) coordination to 2,6-Bis(benzimidazol-2-

yl)pyridine (NBn-BZIMPY) ligand. The resulting complexes are characterized by FT-
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NMR and SC X-ray Diffraction. Further chemistry and reactivity are currently under 

way. 

4.4  Experimental 

4.4.1  General Remarks 

All manipulations were carried out using standard inert-atmosphere 

techniques. All reagents and chemicals were obtained from Sigma-Aldrich. All 

reagents were used without further purification. MeCN-d3 was dried over 

calcium hydride or phosphorus pentoxide, and dichloromethane-d2 was dried 

over phosphorus pentoxide. All other solvents were dried on a series of 

Grubbs-type columns and were degassed prior to use.57 All glassware was 

stored in a 170 °C oven for several hours and was degassed prior to use. 2,6-

Bis(benzimidazol-2-yl)pyridine (NH-BZIMPY),58 and the alkylation of NBn-

BZIMPY59 were prepared according to literature procedures. Alkylation 

reactions of NH-BZIMPY were carried according to general procedure reported. 

9,59 

NMR spectra were recorded at room temperature on Bruker Avance III 

500 MHz, Bruker Avance Ultrashield 300 MHz, and Bruker Avance DPX 300 

MHz spectrometers. Chemical shifts are reported in parts per million relative 

to internal standards for 1H and 13C (the given deuterated solvent) and external 

standards for 19F (CFCl3) and 31P (85% H3PO4). Coupling constants |J| are given 

in hertz. Elemental analysis was performed at the University of Windsor Mass 
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Spectrometry Service Laboratory using a Perkin-Elmer 2400 combustion CHN 

analyzer. 

4.4.2  Synthetic Information 

 

[NBn-BZIMPYPCl][OTf]2 (1) To 100 mL Schlenk flask charged with NBn-

Bzimpy (305 mg, 0.62 mmol) in 40 mL CH3CN, PCl3 (56 µL, 0.62 mmol) was 

added followed by TMSOTf (0.45 mL, 2.5 mmol). This resulted in an immediate 

formation of a yellow solution that was allowed to stir for 18 hours. Solvents 

were removed under reduced pressure and the resulting solid was suspended 

in Et2O (20 mL), collected and washed with Et2O (2×10 mL) yielding 1 as a 

yellow solid (420 mg, 79%). Slow evaporation from dichloromethane yielded 

crystals suitable for X-ray Diffraction. 1H NMR (CD3CN) δ: 8.99 (t, 1H, 3JHH = 8 

Hz), 8.82 (d, 2H, 3JHH = 8 Hz), 8.45 (d, 2H, 3JHH = 8 Hz), 7.99 (d, 2H, 3JHH = 8 Hz), 

7.88 (m, 4H), 7.40 (m, 10H), 6.18 (s, 4H). 13C{1H} NMR δ: 152.62 (d, JCP = 5 Hz) 

141.63, 140.77 (d, JCP = 13 Hz) 138.62 (d, JCP = 8 Hz), 133.61, 132.63, 130.75, 

130.41, 129.94 (d, JCP = 13 Hz), 127.83, 127.72, 127.26 (d, JCP = 7 Hz), 119.75 (q, 

1JCF = 315 Hz), 118.48, 115.08, 50.89. 19F{1H} NMR δ: –78.56. Anal. Calc. for 

C35H25ClF6N5O6PS2 (856.15g/mol): C, 49.10; H, 2.94; N, 8.18. Found: C, 48.91; 

H, 3.23; N, 8.05. 
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[NBn-BZIMPYAsCl][OTf]2 (2) To a 20 mL vial was charged with NBn-Bzimpy 

(30 mg, 0.06 mmol) in 5 mL CD3CN, AsCl3 (5.3 µL, 0.06 mmol) was added 

followed by TMSOTf (44 µL, 0.24 mmol). This resulted in an immediate 

formation of a yellow solution that was allowed to stir for 18 hours. The 

solution was then slowly evaporated to yield 2 as yellow crystals (36 mg, 65%). 

1H NMR (CD3CN) δ: 8.75 (t, 1H, 3JHH = 8 Hz), 8.58 (d, 2H, 3JHH = 8 Hz), 8.33 (d, 

2H, 3JHH = 8 Hz), 7.94 (d, 2H, 3JHH = 8 Hz), 7.84 (m, 4H, 3JHH = 8 Hz), 7.38 (m, 6H), 

7.27 (d, 4H, 3JHH = 8 Hz), 6.15 (s, 4H). 13C{1H} NMR δ: 151.10, 143.75, 142.45, 

138.57, 135.02, 133.81, 130.44, 130.16, 130.03, 129.80, 129.55, 127.60, 127.20, 

119.98 (q, 1JCF = 318 Hz), 118.70, 114.50, 50.66. 19F{1H} NMR δ: –78.58. Anal. 

Calc. for C35H25ClF6N5O6AsS2 (900.10g/mol): C, 46.70; H, 2.80; N, 7.78. Found: 

C, 47.26; H, 3.12; N, 7.76. 

 

[NBn-BZIMPYSbCl][OTf]2] (3) To a 20 mL vial was charged with NBn-Bzimpy 

(30 mg, 0.06 mmol) in 5 mL CD3CN, SbCl3 (14 mg, 0.06 mmol) was added 

followed by TMSOTf (44 µL, 0.24 mmol). This resulted in an immediate 

formation of a yellow solution that was allowed to stir for 18 hours. The 

solution was then slowly evaporated to yield 3 as yellow crystals (48 mg, 83%). 



CHAPTER 4 
2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 15 Elements 

118 

1H NMR (CD3CN) δ: 8.59 (t, 1H, 3JHH = 8 Hz), 8.48 (d, 4H, 3JHH = 8 Hz), 7.88 (d, 

2H, 3JHH = 8 Hz), 7.75 (p, 4H, 3JHH = 8 Hz), 7.38 (m, 6H), 7.23 (d, 4H, 3JHH = 8 Hz), 

6.14 (s, 4H). 13C{1H} NMR δ: 148.63, 146.93, 142.55, 138.46, 136.56, 134.06, 

130.44, 129.70, 129.52, 128.92, 127.85, 127.06, 119.58 (q, 1JCF = 317 Hz), 

119.20, 114.04, 50.79. 19F{1H} NMR δ: –78.46. Anal. Calc. for 

C35H25ClF6N5O6SbS2 (946.94 g/mol): C, 44.39; H, 2.66; N, 7.40. Found: C, 44.34; 

H, 2.97; N, 7.29. 

Gutmann-Beckett method: 

General Method; A 20mL vial was charged with 1, 2 or 3 (0.02 mmol) and OPEt3 

(0.02 mmol) in 1 mL CH3CN. Reaction mixture was stirred for 30 minutes 

before collecting phosphorus NMR spectrum. 31P{1H} NMR (1 + OPEt3) (CH3CN) 

δ: 110.2 (P-Cl), 92.0 (OPEt3). 31P{1H} NMR (2 + OPEt3) (CH3CN) δ: 92.0. 31P{1H} 

NMR (3 + OPEt3) (CH3CN) δ: 91.9. 

4.4.3  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a goniometer 

head, and then rapidly cooled under a stream of cold N2 of the low-temperature 

apparatus (Oxford Cryostream) attached to the diffractometer. The data were then 

collected using the APEXIII (Bruker AXS) software suite on a Bruker Photon 100 

CMOS diffractometer using a graphite monochromator with MoKα (λ = 0.71073 Å). 

For each sample, data were collected at low temperature. APEXIII software was used 

for data reductions and SADABS (Bruker AXS) was used for absorption corrections 

(multi-scan; semi-empirical from equivalents). XPREP was used to determine the 
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space group and the structures were solved and refined using the SHELX60 software 

suite as implemented in the WinGX61 or OLEX262 program suites. Validation of the 

structures was conducted using PLATON63 and the structures have been deposited in 

the Cambridge Structural Database (CCDC 1900124-1900126). 
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Compound Name [NBn-BzimpyPCl][OTf]2 [NBn-BzimpyAsCl] 
[OTf]2 

[NBn-BzimpySbCl] 
[OTf]2 

Label 1 2 3 
CCDC ID 1900124 1900125 1900126 

Empirical formula C37H28ClF6N6O6PS2 C35H25AsClF6N5O6S2 C35H25ClF6N5O6S2Sb 
Formula weight 897.19 900.09 946.92 

Temperature (K) 170 170.02 170 
Crystal system triclinic triclinic monoclinic 

Space group P–1 P–1 P21/c 
a (Å) 10.868(3) 10.3092(10) 10.468(3) 
b (Å) 12.773(4) 12.1838(12) 38.097(11) 
c (Å) 14.929(5) 15.3923(16) 8.951(3) 
α (°) 113.309(10) 75.358(3) 90 
β (°) 90.838(10) 86.818(4) 96.418(7) 
γ (°) 92.882(9) 75.649(4) 90 

Volume (Å3) 1899.6(9) 1812.1(3) 3547.4(18) 
Z 2 2 4 

ρcalc (g·cm−3) 1.569 1.65 1.773 
μ (mm−1) 0.339 1.212 1.058 

F(000) 916 908 1888 
Crystal size 

(mm3) 
0.33 × 0.19 × 0.1 0.12 × 0.1 × 0.08 0.3 × 0.27 × 0.24 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
6.39 to 53.46 5.744 to 55.136 5.784 to 59.15 

Index ranges –10 ≤ h ≤ 13 
–16 ≤ k ≤ 16 
–18 ≤ l ≤ 18 

–13 ≤ h ≤ 13 
–15 ≤ k ≤ 15 
–20 ≤ l ≤ 20 

–13 ≤ h ≤ 14 
–49 ≤ k ≤ 52 
–12 ≤ l ≤ 12 

Reflections 
collected 

23186 83558 27892 

Independent 
reflections 

7973 
Rint = 0.0529 

Rsigma = 0.0646 

8292 
Rint = 0.1186 

Rsigma = 0.0531 

9818 
Rint = 0.0369 

Rsigma = 0.0399 
Data/restraints 

/parameters 
7973/0/533 8292/0/505 9818/0/505 

Goodness-of-fit 
on F2 

1.017 1.129 1.091 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0482 
wR2 = 0.1135 

R1 = 0.1030 
wR2 = 0.2660 

R1 = 0.0391 
wR2 = 0.0917 

Final R indexes 
[all data] 

R1 = 0.0817 
wR2 = 0.1287 

R1 = 0.1262 
wR2 = 0.2785 

R1 = 0.0461 
wR2 = 0.0947 

Largest diff. 
peak/hole (e·Å−3) 

1.08/–0.39 3.04/–0.87 0.84/–1.41 

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 4.2. Crystallographic data and structure refinement.  
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CHAPTER 5: 
Tris(benzoimidazol)amine (L) complexes of 

pnictogen(III) and  pnictogen(V) cations and the 
[LP]3+/[LPF2]3+ redox couple 

5.1  Introduction 

Phosphorus(III) centres can undergo reversible oxidative addition of N-H and 

O-H bonds and have potential application as catalysts in organic transformations. 

This traditional Lewis basic reactivity extends to pnictogen(III) centres in general, 

but has been challenged by the realization of the Lewis acid “umpolung” made 

possible by the introduction of a cationic charge.2 A variety of pnictogen(III) based 

cations have been synthesized by halide abstraction from PnX3 derivatives in the 

presence of various ligands and weakly coordinating anions.3 The cationic charge not 

only lowers the energy of the pnictogen based LUMO but also lowers the energy of 

the HOMO, so that oxidation is impeded. Consequently, examples of redox couples of 

the type [Pn(III)]3+ : [Pn(V)R2]3+ have not been reported. The fluorophilicity of 

phosphenium cations4 and dications5 is well established and has led to the discovery 

of effective catalysts for hydrofluorination reactions.6 The Lewis acidity of [LPR]2+ 

with L = terpyridine is an active catalyst for dehydrofluorination of fluoroalkanes, 

suggesting a substantial fluoride affinity.7  

We have recently shown that the multidentate BIMEt3 ligand encapsulates a 

germanium dication that is readily oxidized to [BIMEt3GeF2][OTf]2, and have now 

exploited the versatility of this ligand to synthesise [P(BIMEt3)][OTf]3.8 As an 

analogue of the Verkade superbases (I),9 the trication adopts a proazaphosphatrane 
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type cage structure, and is oxidized by XeF2 to give [P(BIMEt3)F2][OTf]3, which 

represents a rare example of a cationic Pn(V) centre with a charge > +2.10 (e.g. for +2 

charge [Ph3PnLx][OTf]2, Pn = As11, Sb, Bi12; and +3 charge [Ph2SbLx][OTf]313). The 

synthesis and characterization of the heavier tricationic pnictogen salts 

[BIMEt3Pn][OTf]3 (Pn = As, Sb) are also reported. 

 

Figure 5.1. Highlight of the phosphorus containing compounds synthesized (left), BIMH3 
ligand (right). 

5.2  Results and Discussion 

 P(BIM) was synthesized from the reaction of BIMH314  (Figure 5.1) and PCl3 

in the presence of a slight excess of NaH in THF at room temperature. Quantitative 

formation of P(BIM) was evidenced by a single peak in the 31P NMR spectrum (31P δ 

= 44.7 ppm). Crystals of P(BIM) were obtained by slow evaporation of the solvent 

from a DCM/MeCN solution. In the solid state structure (Figure 5.2a), two 

enantiomers are present in the unit cell, with the benzoimidazole groups arranged 
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either in their S or R enantiomer. The geometry at N1 is essentially planar (319.48° 

and 317.75°, respectively) and features a pre-ordered N1 --- P bond with an average 

distance of 2.925 Å. The P – N3 bonds (1.721 Å) are significantly longer than those 

observed in I (e.g. 1.694 Å for N(CH2-CH2-NR)3P with R = CH(Me)Ph).15 The 

nucleophilic behaviour of P(BIM) was explored by reactions involving a variety of 

stoichiometric ratios of methyl triflate. In each case the 31P-NMR spectrum of the 

reaction mixture indicated the formation of several products which we speculate to 

result from simultaneous methylation of the nitrogen and phosphorus atoms. We 

have modelled the energetic profile of the reactions using DFT calculations at the 

PBEPBE/6-311+G(d,p) level of theory.16 Structure optimizations for each complex 

imply that methylation is favoured at the imino nitrogen atoms (coloured blue). In 

the gas phase each methylation of an imino centre is exergonic. Similar results were 

obtained with MeCN as a solvent model but an energetic minimum was not evident 

for [PMe(BIMMe3)]4+ (Table 4.1 and SI), and consistently, complicated reaction 

mixtures are observed for MeOTf and P(BIM). Nevertheless, addition of excess MeOTf 

resulted in a colourless precipitate (insoluble in common organic solvents) which 

suggests for the potential formation of [PMe(BIMMe3)]4+. 
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N-methylation eV P-methylation eV 

P(BIM) + 4 Me+ 0 P(BIM) + 4 Me+ 0 

[P(BIMMe)]+ + 3 Me+ –5.38 [PMe(BIM)]+ + 3 Me+ –4.96 

[P(BIMMe2)]2+ + 2 Me+ –8.34 [PMe(BIMMe)]2+ + 2 Me+ –7.40 

[P(BIMMe3)]3+ + 1 Me+ –8.90 [PMe(BIMMe2)]3+ + 1 Me+ –7.49 

[PMe(BIMMe3)]4+ –5.21 [PMe(BIMMe3)]4+ –5.21 

Table 5.1. Summary of Gibbs free energies for optimized gas phase structures for the stepwise 
methylation of [P(BIM)] at the PBEPBE/6-311+G(d,p) level of theory. N-methylation in blue 

and P-methylation in red. 

Based on the modelled stability of [P(BIMMe3)]3+, we examined the reaction of 

BIMEt3 17 with “P(OTf)3” by mixing PCl3 and AgOTf acetonitrile in the presence of 

BIMEt3. A singlet at δ = 56.1 ppm in the 31P NMR spectrum indicates the quantitative 

formation of [P(BIMEt3)][OTf]3, which has been separated from the AgCl by filtration, 

and crystallized by layering the reaction mixture with diethyl ether. As TMSOTf is a 

relatively weak halide abstracting agent, reactions of AsCl3 with BIMEt3 and excess 

TMSOTf formed primarily [AsCl(BIMEt3)][OTf]2, which has been isolated in small 

quantities. The heavier analogue [SbF(BIMEt3)][OTf]2 can be formed quantitatively 

by reaction with SbF3 and two equivalents of TMSOTf. The dications in derivatives of 
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[MX(BIMEt3)][OTf]2 exhibit one set of signals for the benzoimidazole groups in the 

1H-NMR spectrum consistent with a labile ligand in solution, as observed for 

analogous germanium complexes.8 Salts of the trications [As(BIMEt3)][OTf]3 and 

[Sb(BIMEt3)][OTf]3 were isolated in a similar fashion to the phosphorus analogue 

using three equivalents of AgOTf as the halide abstractor.  

 

Figure 5.2. (a) Solid state structure of one of two independent molecules of P(BIM). (b) Solid 
state structure of the cation in [P(BIMEt3)][OTf]3•(MeCN)2. (c) Solid state structure of the 

cation in [PF2(BIMEt3)][OTf]3•MeCN. Thermal ellipsoids are shown at a 50% probability level. 
Hydrogen atoms, solvent molecules and triflate anions are omitted for clarity. Inter-atomic 

distances and angles are summarized in Table 5.2. 

[P(BIMEt3)][OTf]3• (MeCN)2 crystallizes in the space group P–1 (See Figure 

5.2b). The three triflate anions are remote from the phosphorus centre (3.58 - 3.92 

Å). The unique apex nitrogen atom (°ΣN1 = 350.5) is significantly bent out of plane 
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towards the phosphorus centre consistent with a cross ring bonding interaction. 

Nevertheless, N1---P(2.866(2) Å) is only slightly shorter than those in P(BIM) 

(2.912(2) and 2.938(2) Å). In the solid state, [As(BIMEt3)][OTf]3 and 

[Sb(BIMEt3)][OTf]3  (Figure 5.3c,d) exhibit a significantly different geometry around 

the pnictogen centre. The polygon described by the ligands is best described as a 

pentagonal bipyramid with three nitrogen atoms (N1, N2 and N3), one triflate oxygen 

atom and the lone pair in the plane. A second triflate oxygen atom and one nitrogen 

(N4) atom occupy the axial positions. This geometry enables significantly shorter Pn-

N1 bond (As-N1 2.104(4) and Sb-N1 2.389(2) and 2.370(2) Å, respectively) compared 

to that in [P(BIMEt3)][OTf]3  (P-N1 2.879 Å). Two of the three triflate anions have a 

weak interaction with the pnictogen centre (Table 5.3). The mono-halide derivatives 

[SbF(BIMEt3)][OTf]2 and [AsCl(BIMEt3)][OTf]2 crystallise as dimeric structures. The 

antimony fluoride is linked by two triflate anions and the arsenic chloride is linked by 

chlorine substituents (As-Cl 2.3342(7) and 3.913(2) Å)). The antimony centre adopts 

a tetragonal pyramidal geometry with two oxygen atoms from the triflate anions (Sb 

--- OTf 2.551(2) and 2.793(2) Å) and two nitrogen atoms (Sb-N 2.214(2) and 2.165(2) 

Å) with the antimony 0.486 Å above this plane. 
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Figure 5.3. Solid state structure of  (a) [AsCl(BIMEt3)]2+, (b) [SbF(BIMEt3)]2+ , (c) 
[As(BIMEt3)]3+ and (d) [Sb(BIMEt3)]3+. Thermal ellipsoids are shown at a 50% probability level. 
Oxygen atoms of the triflate anions that interact with the pnictogen centres are shown, but the 

other atoms of the anions are omitted for clarity as well as the hydrogen atoms and solvent 
molecules. Interatomic distances and angles are summarized in Table 5.3. 

Equimolar mixtures of PCl5 and BIMEt3 with three equivalents of AgOTf give a 

mixture of products as evidenced by the 31P NMR spectrum of the reaction mixture. 

Isolation of [P(BIMEt3)][OTf]3 from this mixture implicates formation of 

[PCl2(BIMEt3)][OTf]3, which is subsequently reduced. In this context, we have studied 

the oxidation of [P(BIMEt3)][OTf]3 with the expectation to form cationic compounds 

analogous to [PPh3I][I3]18 or [Ph3P-I-I]19 However, reaction of addition of 

[P(BIMEt3)][OTf]3 with a large excess of I2 caused only a small chemical shift in the 
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31P NMR spectrum and a product could not be isolated. Nevertheless, Stephan’s 

approach for oxidation of phosphenium cations4 was applied using equimolar 

mixtures of [P(BIMEt3)][OTf]3 and XeF2 in acetonitrile to yield a mixture of products 

with a prominent doublet of doublets resonance in the 31P-NMR spectrum  (31P δ = –

127.8 ppm; 1JPF = 899.3 and 849.7 Hz) and consistently, two doublet of doublet 

resonances in the 19F NMR spectrum (δ = –65.5 and –33.9 ppm; 2JFF = 52.0 Hz). 

Attempts to scale up the reaction yielded several different fluorinated phosphorus 

species. Rapid crystallization from a saturated acetonitrile solution at –35 °C layered 

with diethyl ether yielded small amounts of fragile crystals, that have been 

characterized as [PF2(BIMEt3)][OTf]3. Consistent with the solution NMR spectra 

(Figure 5.4), the solid state structure reveals, inequivalent fluorine substituents at 

phosphorus (Figure 5.2c) and two different benzoimidazole environments. 
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Figure 5.4. NMR spectra for [PF2(BIMEt3)][OTf]3 in CD3CN. 

The N1-P distance (1.893(13) Å) is significantly shorter than that in 

[P(BIMEt3)][OTf]3 . The P-F1 bond trans to the tertiary amine is longer [1.577(9) Å] 

than P-F2 [1.604(9) Å]. Consequently, the pseudo C3V-geometry of the cation in 

[P(BIMEt3)][OTf]3 adjusts to Cs symmetry in the octahedral frame in 

[PF2(BIMEt3)][OTf]3. Moreover, P-N1 in [PF2(BIMEt3)][OTf]3 is shorter than that in 

[P(BIMEt3)][OTf]3 and the other P – N bonds are longer (Table 5.2). This substantive 

change in geometry is also evidenced by 31P NMR spectroscopy ([PF2(BIMEt3)]3+ δ = 

–127.8 ppm) with a chemical shift difference of 184 ppm upon oxidation. There are 

no close interactions of the phosphorus centre with any of the triflate anions, so that 

the cation in [PF2(BIMEt3)][OTf]3 represents the first fully characterized tricationic 

P(V)3+ species.  



CHAPTER 5 
Tris(benzoimidazol)amine (L) complexes of pnictogen(III) and  pnictogen(V) cations and the 

[LP]3+/[LPF2]3+ redox couple 

136 

 P(BIM) [P(BIMEt3)]3+ [PF2(BIMEt3)]3+ 

P N2 1.7281(11) 
1.7159(11) 
1.7201(11) 
1.7246(12) 
1.7137(11) 
1.7242(12) 

1.7279(16) 
1.7352(16) 
1.7364(16) 

1.791(13) 
1.798(13) 
1.773(13) 

 

P N1 2.912(2)  
2.938(2) 

2.866(2)  1.893(13) 

P OTf --- 3.591(2) 
3.922(2) 
3.584(2) 

--- 

P F --- --- 1.604(9) 
1.577(9) 

31P δ 44.7 (s) 56.1 (s) –127.8 (dd) 
°ΣP 319.48 

317.75 
320.2 --- 

°ΣN1 353.77 
355.85 

350.5 328.0 

Table 5.2. Selected bond distances in Å, angles in ° and 31P NMR chemical shifts in ppm for 
P(BIM), [P(BIMEt3)][OTf]3  and [PF2(BIMEt3)][OTf]3 

 [AsCl(BIMEt3)]3+ [As(BIMEt3)]3+ [SbF(BIMEt3)]2+ [Sb(BIMEt3)]3+ 

Pn N2 1.964(2) 
2.078(2) 
2.251(2) 

1.918(4) 
2.085(4) 
2.195(4) 

2.214(2) 
2.165(3) 

2.193(2) 
2.233(2) 
2.335(2) 

2.168(2) 
2.246(2) 
2.346(2) 

Pn N1 2.268(2) 2.104(4) 2.635(3) 2.389(2) 2.370(2) 

Pn OTf --- 2.646(4) 
2.796(4) 

2.551(2) 
2.793(2) 

2.421(2) 
3.181(2) 
2.833(2) 
3.258(2) 

2.485(2) 
3.171(2)  
2.820(2) 
3.313(2) 

Pn X 2.3342(7) 
3.913(2) X = Cl 

 1.9344(19) X = F  

Table 5.3. Selected bond distances in Å for [AsCl(BIMEt3)][OTf]2, [SbF(BIMEt3)][OTf]2, 
[As(BIMEt3)][OTf]3 and [Sb(BIMEt3)][OTf]3. 
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5.3  Conclusions 

We have presented a versatile and facile synthetic approach to a number of 

pnictogen(III) cations in the BIMEt3 ligand scaffold. The phosphorus derivative 

[P(BIMEt3)][OTf]3 can be readily oxidized to form the first tricationic phosphorus(V) 

complex, [LPVF2]3+. A fundamental study for general use of such pnictogen salts in 

Lewis acid catalysis, small molecule activation or as catalytic fluorination agents is 

ongoing. 

5.4  Experimental 

5.4.1  General Remarks 

All air- and moisture-sensitive manipulations were carried out using standard 

vacuum line Schlenk techniques or in an MBraun Labmaster inert atmosphere dry-

box containing an atmosphere of purified nitrogen. THF-d8, CD2Cl2 and C6D6 were 

purchased from Sigma Aldrich. CD2Cl2 was dried over CaH2 and distilled, THF-d8 and 

C6D6 were distilled over potassium. All glassware was stored in a 170 °C oven for 

several hours and was degassed prior to use. Solvents were distilled over the 

appropriate drying agent. Anhydrous grade MeCN was obtained from Sigma-Aldrich 

and used without distillation but stored over 3 Å molecular sieves.  Solvents were 

additionally tested using a ketyl test to guarantee oxygen and moisture free 
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conditions. TMSOTf (99%) was distilled before use. BIMH320 and BIMEt321 were 

synthesized following literature procedures. 

NMR tubes fitted with J-Young valves were charged and sealed inside the 

glovebox. 1H NMR spectra were recorded on Bruker spectrometers operating at 300, 

360 MHz, 13C NMR at 76 MHz. 31P NMR at 121.6 MHz, 19F NMR at 282.5 MHz. All 1H 

and 13C NMR chemical shifts are reported relative to SiMe4 using the 1H (residual) and 

13C chemical shifts of the solvent as a secondary standard.  

Infrared spectra were obtained on a Perkin Elmer Frontier instrument. 

Elemental analysis was performed at the University of Windsor Mass Spectrometry 

Service Laboratory using a Perkin Elmer 2400 combustion CHN analyser. All quantum 

chemical calculations were carried out using Gaussian 16. 22  

5.4.2  Synthesis 

 

P(BIM): A 100 mL Schlenk flask was charged with BIMH3 (500 mg, 1.23 mmol) and 

NaH (90 mg, 3.74 mmol) in 30 mL THF at room temperature. After bubbling stops, 

the reaction was left to stir for 30 mins followed by the addition of PCl3 (0.117 mL, 

1.28 mmol) yielding in white precipitate. The reaction mixture was allowed to stir for 

24 hours before solvent was removed under reduced pressure. DCM (30 mL) was 
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added and the resulting suspension was filtered through Celite® and washed with 

DCM (2 x 10 mL). Solvent from the filtrate was removed under reduced pressure to 

result in P(BIM) as a colourless solid, 0.367 g (69 %). Slow evaporation from THF or 

acetonitrile yields colourless crystals suitable for X-ray diffraction C24H18N7P • THF, 

MW = 507.53 g/mol, MP = 185 (dec.), EA [calc.]: C, 66.26; H, 5.16; N, 19.32 EA [found.]: 

C, 66.23; H, 5.04; N,18.87. 1H NMR (300 MHz, CDCl3) δ = 8.00 (d, 3H, 3JHH = 6.6 Hz), 

7.70 (d, 3H, 3JHH = 7.8 Hz), 7.37 (m, 6H), 4.59 (s, 6H). 13C{1H} NMR (75.5 MHz, CDCl3) 

δ = 154.42 (d, JCP = 8.7 Hz), 144.23 (d, JCP = 7.2 Hz), 137.59 (d, JCP = 36.9 Hz), 128.7 (d, 

JCP = 61.2 Hz), 124.36 (d, JCP = 9.2 Hz), 120.31 (s), 111.41 (d, JCP = 24.5 Hz), 51.16 (s). 

31P{1H} NMR (121.5 MHz, CDCl3) δ = 44.74 (s). 

 

 [P(BIMEt3)][OTf]3: To a rapidly stirred suspension of PCl3 (0.2 mmol, 18 μL) and 

BIMEt3 (0.2 mmol, 100 mg) in 3 mL of MeCN, TMSOTf (0.50 mmol, 100 μL) was added 

to yield a blue solution. The solution was left to stir for 10 mins. AgOTf (0.6 mmol, 154 

mg) was added, producing a cloudy blue mixture due to precipitation of AgCl. The 

mixture was then filtered and the clear solution was layered with 6 mL of diethyl 

ether and placed in the freezer at –35 °C. Colourless blocks were isolated from after 

72 hours. Yield: 204 mg (94 %) of the composition C33H33F9N7O9PS3 (MeCN)3 MW = 

1093.0 g/mol, MP = 184 °C (brown) – 241 °C (black) (dec.) EA [calc.] C33H33F9N7O9PS3: 
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C, 40.86; H, 3.43; N, 9.99 EA [found.]: C, 40.10; H, 3.89 ; N, 9.99 1H NMR (300 MHz, 

MeCN-d3) δ = 8.68 (pseudo-d (broad), J = 8.59 Hz, 3H), 7.92 (pseudo-d (broad), J = 8.20 

Hz, 3H), 7.84 (ddd, J = 1.2, 7.2, 8.4 Hz, 3H), 7.75 (ddd, J = 0.9, 7.4, 8.2 Hz, 3H). 5.38 (d, 

JP,H =0.7 Hz, 6H), 4.47 (quart, J = 7.4 Hz, 6H), 1.53 (t, J = 7.4 Hz, 9H). 19F{1H} NMR (283 

MHz, CD3CN): δ = –79.6 (s). 13C{1H} NMR (75.5 MHz CD3CN): δ = 155.18 (d, J = 9.2 Hz, 

1C), 134.67 (d, J = 40.6 Hz, 1C), 132.92 (d, J = 5.8 Hz, 1C), 128.26 (d, J = 1.9 Hz, 1C), 

128.09 (d, J = 1.6 Hz, 1C), 114.39 (d, J = 27.8 Hz, 1C), 113.6 (s), 54.9 (s), 42.3 (s), 12.3 

(s). 31P{1H} NMR (121.4 MHz , CD3CN): δ = 56.1 (s) 

 

[AsCl(BIMEt3)][OTf]2: To a suspension of AsCl3 (1 mmol, 83 μL) and BIMEt3 (1 mmol, 

500 mg) in 6 mL of MeCN, TMSOTf (5 mmol, 470 μL) was slowly added to yield a clear 

yellow solution. The solution was left at room temperature for 30 minutes. The 

mixture was then filtered over a glass filter and the light yellow solution was layered 

with 6 mL of diethyl ether and placed in the freezer at –35 °C. A crystalline colourless 

solid was isolated from the solution within 2 days. Yield: 310 mg (32 %) of the 

composition C32H33ClF6N7O6AsS2•MeCN2, MW = 982.25 g/mol MP = 112 °C (dec.). EA 

[calc.] C32H33ClF6N7O6AsS2: C, 42.70; H, 3.70; N, 10.89. EA [found.]: C, 42.72; H, 3.95; 

N 10.79. 1H NMR (300 MHz, CD3CN) δ = 8.29 (pseudo-d (broad), J = 7.1 Hz, 3H), 7.70 

(pseudo-d (broad), J = 7.1 Hz, 3H), 7.6 – 7.4 (m, 6H), 5.35 (s, 6H), 4.31 (quart, J = 7.21 
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Hz, 6H), 1.38 (t, J = 7.21 Hz, 9H). 19F{1H} NMR (283 MHz, CD3CN): δ = –79.28 (s). 

13C{1H} NMR (75.5 MHz, CD3CN): δ = 150.9 (s), 136.2 (s), 134.2 (s), 125.8 (s), 125.5 

(s), 117.9 (s), 112.2 (s), 55.5 (s), 40.9 (s), 13.5 (s). 

 

[As(BIMEt3)][OTf]3: To a suspension of AsCl3 (0.2 mmol, 16.6 μL) and BIMEt3 (0.2 

mmol, 100 mg) in 3 mL of MeCN, TMSOTf (1 mmol, 200 μL) was slowly added to yield 

a clear yellow solution. The solution was left at room temperature for 30 minutes. 

AgOTf (0.375 mmol, 96 mg) was added, producing a cloudy yellow mixture due to 

precipitation of AgCl. The mixture was then filtered through Celite. The volatiles were 

removed under reduced pressure to yield a yellow oily precipitate, which was 

titurated with 1 mL of DCM and 4 mL of diethyl ether. The leftover colourless solid 

was dried under reduced pressure to isolate 148 mg of a colourless solid. Single 

crystals for X-ray diffraction analysis were grown from MeCN solutions layered with 

diethyl ether at –35 °C. Yield: 148 mg (68 %) of the composition 

C33H33F9N7O9AsS3•MeCN2, MW = 1095.9 g/mol MP = 161 °C (dec.). EA [calc.]: C, 40.55; 

H, 3.59; N, 11.50. EA [found.]: C, 38.80; H, 3.52; N 9.69. 1H NMR (300 MHz, CD3CN) δ = 

8.30 – 8.18 (m, 3H), 7.81 – 7.72 (m, 3H), 7.68 – 7.53 (m, 6H), 5.87 (s, 6H), 4.38 (quart, 

J = 7.32 Hz, 6H), 1.48 (t, J = 7.32 Hz, 9H). 19F{1H} NMR (283 MHz, CD3CN): δ = –79.3. 

13C{1H} NMR (75.5 MHz, CD3CN): δ = 149.5 (s, Carom), 134.7 (s, Carom), 133.4 (s, Carom), 
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126.3 (s, Carom), 126.2 (s, Carom), 116.0 (s, Carom), 112.64 (s, Carom), 61.2 (s, CH2), 41.5 (s, 

CH2), 13.0  (s, CH3). 

 

[SbF(BIMEt3)][OTf]2: To a solution of SbF(OTf)2 (0.2 mmol, 88 mg) in 3 mL of MeCN, 

BIMEt3 (0.2 mmol, 100 mg) was added as a solid. The solution was left to stir for 16 

hours at room temperature, then the mixture was layered with 4 mL of diethyl ether 

and placed in the freezer at –35 °C. Colourless crystals suitable for X-ray 

crystallography were isolated. Yield: 192 mg (92 %), C32H33F7N7O6S2Sb•(MeCN)2, MW 

= 1012.6 g/mol, MP = 183 °C (grey) – 220 °C (black), EA [calc.] for C32H33F7N7O6S2Sb: 

C, 41.30; H, 3.57; N, 10.54; EA [found.]: C, 40.69; H, 3.56; N, 10.18; 1H NMR (300 MHz, 

CD3CN) δ = 8.17 – 8.0 (m, 3H), 7.70 – 7.55 (m, 3H), 7.52 – 7.3 (m, 6H), 5.1 (s, 6H), 4.25 

(quart, J = 7.32 Hz, 6H), 1.35 (t, J = 7.32 Hz, 9H). 19F{1H} NMR (283 MHz, CD3CN): δ = 

–79.25 (s). 13C{1H} NMR (75.5 MHz, CD3CN): δ = 151.0 (s, Carom), 134.6  (s, Carom), 126.0 

(s, Carom), 125.8 (s, Carom), 116.0 (s, Carom), 112.3 (s, Carom), 58.6 (s, CH2), 40.6 (s, CH2), 

13.2  (s, CH3).    
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[Sb(BIMEt3)][OTf]3: To a solution of SbFOTf2 (0.2 mmol, 88 mg) in 4 mL of MeCN, 

BIMEt3 (0.2 mmol, 100 mg) was added. To the light yellow solution an excess TMSOTf 

(0.5 mmol, 100 μL) was added. The solution was left to stir for 30 minutes. 19F NMR 

spectroscopy showed no presence of remaining fluoride bound antimony. The 

mixture was filtered and the clear yellow solution was layered with 2 mL of diethyl 

ether and was placed in the freezer at –25 °C for 16 hours. Colourless blocks suitable 

for X-ray crystallography were isolated by decantation of the solvent. The mother 

liquor was concentrated and layered with 8 mL of ether to isolate another crop of 

microcrystalline product. C33H33F9N7O9S3Sb, Yield: 188 mg (89 %) MW = 1060.6 

g/mol. MP = 204 °C (melt and dec.). EA [calc.]: C, 37.37; H, 3.14; N, 9.24. EA [found.]: 

C, 37.71; H, 3.34; N, 9.23. 1H NMR (300 MHz, CD3CN) δ = 8.27 – 8.17 (m, 3H), 7.75 – 

7.65 (m, 3H), 7.44 – 7.55 (m, 6H), 5.45 (s, 6H), 4.28 (quart, J = 7.34 Hz, 6H), 1.38 (t, J = 

7.34 Hz, 9H). 19F{1H} NMR (283 MHz, CD3CN): δ = –79.25 (s). 13C{1H} NMR (75.5 MHz, 

CD3CN): δ = 151.0 (s, Carom), 134.6  (s, Carom), 126.0 (s, Carom), 125.8 (s, Carom), 116.0 (s, 

Carom), 112.3 (s, Carom), 58.6 (s, CH2), 40.6 (s, CH2), 13.2  (s, CH3). 
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[PF2(BIMEt3)][OTf]3: To a solution of [P(BIMEt3)][OTf]3 (0.1 mmol, 109 mg) in 3 mL 

of MeCN XeF2 (0.1 mmol, 17 mg) was added to yield a light yellow solution. After 

stirring for 30 minutes a colourless precipitate was formed, the reaction mixture was 

filtered and another equivalent of XeF2 (0.1 mmol, 17 mg) was added, the mixture 

was layered with 4 mL of diethyl ether and was placed in the freezer for 16 hours to 

isolate 55 mg of colourless crystals. Total yield: 55 mg (53 %) of the composition 

C33H33F11N7O9PS3 • MeCN. MW = 1048.9 g/mol, MP = 251 °C (dec.) EA [calc.]: C, 39.33; 

H, 3.30; N, 9.73.  EA [found.]: C, 39.38; H, 3.10; N, 9.63. 1H NMR (300 MHz, MeCN-d3) 

δ = 8.88 – 8.76 (m, 1H, CHarom), 8.27 – 8.07 (m, CHarom, 2H), 8.27 – 8.07 (m, 2H, CHarom), 

8.04 – 7.81 (m, 3H, CHarom), 7.81 – 7.58 (m, 6H, CHarom), 6.45 (dd, J = 17.1, 20.2 Hz, 2H, 

, CH2), 6.01 (pseudo-t, J = 8.0 Hz, 4H, , CH2), 4.55 (dq, J = 1.4, 7.4 Hz, 4H, , CH2), 4.17 (q, 

J = 7.4 Hz, 2H, CH2), 1.60 (t, J = 7.4 Hz, 6H, CH3), 1.36 (t, J = 7.4 Hz, 3H, CH3). 19F{1H} 

NMR (283 MHz, CD3CN): δ = –79.3 (s), –65.5 (dd, JPF = 849.7, JFF = 52.0), –33.9 (dd, JPF 

= 899.3, JFF = 52.0). 13C{1H} NMR (75.5 MHz CD3CN): δ = 144.0 (s, Carom), 143.5 (s, 

Carom), 134.7 (d, J = 9.2 Hz, Carom), 134.1 (d, J = 7.0  Hz, Carom) 128.6 (s, Carom), 128.4 (s, 

Carom), 128.1 (s, Carom), 127.9 (s, Carom), 115.0 (d, J = 9.2 Hz, Carom), 114.2 (d, J = 7.6 Hz, 

Carom), 114.1 (s, Carom), 113.9 (s, Carom), 60.5 (s, CH2), 60.13 (s, CH2), 42.7 (s, CH2), 42.38 

(s, CH2), 12.97 (s, CH3), 11.93 (s, CH3). 31P{1H} NMR (121.4 MHz , CD3CN): δ = –127.8 

(dd, JPF = 899.3, 849.7 Hz)  
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Traces of moisture leads to decomposition of the product and the formation of 

[HBIMEt3][PF6] indicated by the formation of a septed-resonance in the 31P-NMR 

spectrum for the PF6-anion (–144.6 ppm, 1JP,F = 706.3 Hz). Scaling up the reaction only 

yielded several side products. Decomposition of the product in solution was observed 

if left in MeCN overnight, crystallization has to be initiated right after addition of XeF2 

to isolate crystalline material of the [PF2(BIMEt3)][OTf]3. 

5.4.3  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a 

goniometer head, and then rapidly cooled under a stream of cold N2 of the low-

temperature apparatus (Oxford Cryostream) attached to the diffractometer. The data 

were then collected using the APEXII (Bruker AXS) software suite on a Bruker Photon 

100 CMOS diffractometer using a graphite monochromator with MoKα (λ = 0.71073 

Å). For each sample, data were collected at low temperature. APEXII software was 

used for data reductions and SADABS (Bruker AXS) was used for absorption 

corrections (multi-scan; semi-empirical from equivalents). XPREP was used to 

determine the space group and the structures were solved and refined using the 

SHELX23 software suite as implemented in the WinGX24 or OLEX225 program suites. 

Validation of the structures was conducted using PLATON and the structures have 

been deposited in the Cambridge Structural Database (CCDC 1578584-1578587).26  

 

 



CHAPTER 5 
Tris(benzoimidazol)amine (L) complexes of pnictogen(III) and  pnictogen(V) cations and the 

[LP]3+/[LPF2]3+ redox couple 

146 

Compound Name [BIMEt3AsCl][OTf]2 [BIMP] [BIMEt3Sb][OTf]3 

Label    
CCDC ID 1578584 1578585 1578586 

Empirical formula C36H36AsClF6N9O6S2  C50H39N15P2  C76H81F18N19O18S6Sb2  
Formula weight 979.23  911.90  2326.49  

Temperature (K) 150.0  140.0  150.01  
Crystal system monoclinic  monoclinic  triclinic  

Space group P21/c  P21/n  P–1  
a (Å) 14.2067(6)  13.0553(5)  12.726(5)  
b (Å) 15.9799(8)  25.1646(12)  18.899(8)  
c (Å) 18.6556(10)  14.6359(6)  20.823(8)  
α (°) 90  90  102.659(14)  
β (°) 94.050(2)  114.6194(15)  97.475(14)  
γ (°) 90  90  99.315(14)  

Volume (Å3) 4224.6(4)  4371.2(3)  4750(3)  
Z 4  4  2  

ρcalc (g·cm−3) 1.540  1.386  1.6264  
μ (mm−1) 1.049  0.157  0.810  

F(000) 1996.0  1896.0  2348.5  
Crystal size 

(mm3) 
0.24 × 0.2 × 0.18  0.29 × 0.23 × 0.2  0.29 × 0.28 × 0.13  

Radiation MoKα (λ = 0.71073)  MoKα (λ = 0.71073)  Mo Kα (λ = 0.71073)  
2Θ range for data 

collection (°) 
5.548 to 63.11  5.742 to 56.646  5.44 to 55  

Index ranges –18 ≤ h ≤ 20 
–23 ≤ k ≤ 23 
–27 ≤ l ≤ 27  

–17 ≤ h ≤ 17 
–33 ≤ k ≤ 33 
–19 ≤ l ≤ 19  

–17 ≤ h ≤ 18 
–26 ≤ k ≤ 26 
–29 ≤ l ≤ 29  

Reflections 
collected 

210673  206509  133890  

Independent 
reflections 

13753 
Rint = 0.0748 

Rsigma = 0.0464 

10847 
Rint = 0.0485 

Rsigma = 0.0152 

21371 
Rint = 0.0637 

Rsigma = 0.0576  
Data/restraints 

/parameters 
13753/0/527  10847/0/605  21371/6/1263  

Goodness-of-fit 
on F2 

1.090  1.094  1.063  

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0512 
wR2 = 0.1096  

R1 = 0.0385 
wR2 = 0.0899  

R1 = 0.0368 
wR2 = 0.0846  

Final R indexes 
[all data] 

R1 = 0.1031 
wR2 = 0.1381  

R1 = 0.0495 
wR2 = 0.0988  

R1 = 0.0582 
wR2 = 0.0993  

Largest diff. 
peak/hole (e·Å−3) 

0.81/–0.68  0.32/–0.40  2.19/–1.25  

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 5.4. Crystallographic data and structure refinement. 
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Compound Name [BIMEt3P][OTf]3 [BIMEt3As][OTf]3 [BIMEt3SbF][OTf]2 

Label    
CCDC ID 1578587  1581022  1581023  

Empirical 
formula 

C39H42F9N10O9PS3  C37H39AsF9N9O9S3  C36H39F7N9O6S2Sb  

Formula weight 1092.99  1095.87  1012.63  
Temperature (K) 150.0  173.15  193.15  

Crystal system triclinic  monoclinic  triclinic  
Space group P–1  P21/c  P–1  

a (Å) 10.8599(7)  14.0065(3)  13.1877(6)  
b (Å) 10.9646(8)  15.9167(3)  13.3482(7)  
c (Å) 20.3805(14)  21.8331(5)  13.4824(7)  
α (°) 81.217(2)  90  79.6653(7)  
β (°) 83.234(2)  107.9657(13)  63.0215(6)  
γ (°) 89.295(2)  90  84.7868(7)  

Volume (Å3) 2381.6(3)  4630.08(17)  2080.63(18)  
Z 2  4  2  

ρcalc (g·cm−3) 1.5240  1.572  1.616  
μ (mm−1) 0.288  3.138  0.851  

F(000) 1125.7  2232.0  1024.0  
Crystal size 

(mm3) 
0.26 × 0.2 × 0.06  0.57 × 0.259 × 0.223  0.227 × 0.183 × 0.133  

Radiation Mo Kα (λ = 0.71073)  CuKα (λ = 1.54178)  MoKα (λ = 0.71073)  
2Θ range for data 

collection (°) 
5.64 to 61.22  6.634 to 136.478  3.102 to 55.13  

Index ranges –15 ≤ h ≤ 14 
–15 ≤ k ≤ 15 
–29 ≤ l ≤ 29  

–14 ≤ h ≤ 16 
–19 ≤ k ≤ 19 
–26 ≤ l ≤ 25  

–17 ≤ h ≤ 17 
–17 ≤ k ≤ 17 
–17 ≤ l ≤ 17  

Reflections 
collected 

112259  25884  18546  

Independent 
reflections 

14440 [Rint = 0.0634, 
Rsigma = 0.0474]  

8479 [Rint = 0.0804, 
Rsigma = 0.0654]  

9603 [Rint = 0.0385, 
Rsigma = 0.0608]  

Data/restraints 
/parameters 

14440/0/646  8479/0/615  9603/0/552  

Goodness-of-fit 
on F2 

1.069  1.057  1.039  

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0539 
wR2 = 0.1264  

R1 = 0.0898 
wR2 = 0.2548  

R1 = 0.0434 
wR2 = 0.1033  

Final R indexes 
[all data] 

R1 = 0.0940 
wR2 = 0.1480  

R1 = 0.0989 
wR2 = 0.2635  

R1 = 0.0586 
wR2 = 0.1125  

Largest diff. 
peak/hole (e·Å−3) 

1.21/–1.17  3.21/–2.02  1.21/–0.60  

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 5.5. Crystallographic data and structure refinement. 
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Compound Name [[BIMEt3PF2][OTf]3 

Label 
 

CCDC ID 1819912 
Empirical formula C37H39F11N9O9PS3  

Formula weight 1089.92  
Temperature (K) 170.02  

Crystal system triclinic  
Space group P–1  

a (Å) 13.753(7)  
b (Å) 14.060(7)  
c (Å) 14.321(7)  
α (°) 109.504(13)  
β (°) 98.444(13)  
γ (°) 111.998(9)  

Volume (Å3) 2300.1(19)  
Z 2  

ρcalc (g·cm−3) 1.574  
μ (mm−1) 0.304  

F(000) 1116.0  
Crystal size 

(mm3) 
0.24 × 0.14 × 0.06  

Radiation MoKα (λ = 0.71073)  
2Θ range for data 

collection (°) 
5.802 to 49.424  

Index ranges –16 ≤ h ≤ 16 
–16 ≤ k ≤ 16 
–16 ≤ l ≤ 16  

Reflections 
collected 

55372  

Independent 
reflections 

7797 
Rint = 0.1024 

Rsigma = 0.0674 
Data/restraints 

/parameters 
7797/0/636  

Goodness-of-fit 
on F2 

1.083  

Final R indexes 
[I>=2σ(I)] 

R1 = 0.1889 
wR2 = 0.5278  

Final R indexes 
[all data] 

R1 = 0.2467 
wR2 = 0.5690  

Largest diff. 
peak/hole (e·Å−3) 

1.42/–1.01  

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 5.6. Crystallographic data and structure refinement. 
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CHAPTER 6: 
Towards the Synthesis of an Anionic Carbon(0) 

6.1  Introduction 

Carbon contains four valence electrons and is most stable in the +4 oxidation 

state. Carbon in the +2 oxidation state (carbenes) has played an important role in 

transient intermediates of organic and organometallic chemistry since the 1950s. The 

first stable carbene (Scheme 6.1) was in the form of a stable N-hetercyclic carbene 

(NHC) reported in 1991 by Arduengo and co-workers.1 Carbenes can exist in the 

singlet state with two non-bonding electrons having an opposite spin or in the triplet 

state where the two non-bonding electrons have the same spin. Knowing the 

multiplicity of the ground-state is important in determining the reactivity of the 

carbene.2 

 

Scheme 6.1. Synthesis of the first stable N-heterocyclic carbene. 

After their discovery, carbenes and alkylidenes (a carbon(II) without a 

heteroatom substituent on the alpha carbon) have played a significant role in metal 

catalysts. Among these notable examples is the second-generation Grubbs’ catalyst 

(Figure 6.1) that is used for olefin metathesis.3 Robert H. Grubbs was a co-recipient 

of the 2005 Nobel Prize in Chemistry for his work on olefin metathesis. N-heterocyclic 
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carbenes were necessary for recent developments in the field of main group 

chemistry; some notable examples include some of the first examples of low valent 

group 13-15 complexes (Figure 6.1).3–6 

 

 

Figure 6.1. Grubbs’ second-generation catalyst (top), and some notable examples of the use of 
N-heterocyclic carbenes in the stabilization of low-valent group 13-15 elements. 

Carbon in the zero-oxidation state contains four non-bonding electrons (i.e. all 

of the carbon’s four valence electrons). Figure 6.2 illustrates the difference in 

electron configuration between a C(IV), C(II) and C(0); this method of oxidation state 

assignment has been introduced in section 1.2 of Chapter 1.  

 

Figure 6.2. Depiction of carbon centres in the +4 (left), +2 (centre) and 0 (right) oxidation 
states. 

A crucial difference between a carbon(+2) and a carbon(0) is in the degenerate 

p-type orbitals, px and py. In carbenes, one of the two p-orbitals contains a pair of 
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electrons (singlet carbenes) making it a σ-donor, while the orthogonal p-orbital is 

empty and serves as a π-acceptor. A carbon(0) on the other hand, contains a lone pair 

of electrons in each of the two p-orbitals, resulting in both p-orbitals as electron 

donors. 

 

Figure 6.3. Frontier orbital difference between a carbon(+2) (left) and a carbon(0) (right). 
The carbon(+2) shown is assuming a singlet state. 

Having two lone pairs would allow for one lone pair to be a σ-type donor while 

the other can either be σ- or π-donating, depending on the type of complex formed. 

Figure 6.4 demonstrates the two different binding modes of a carbon(0) centre with 

σ- and π-donors and with two σ- donors. 

Alcarazo and co-workers7 reported that the use of a carbodiphosphorane as a 

donor ligand revealed the capability of simultaneous σ- and a π-donation. This was 

evident by the stabilization observed in the reactive dihydrido borenium cation 

shown in Figure 6.4 (left). With the B–C bond distance (1.5030 Å) being closer to a 

B=C double bond (1.35–1.45 Å) than a B–C single bond (1.58–1.62 Å), it can be 

deduced that this is a clear indication of the π-type contribution from the second lone 

pair of electrons into the B–C bond bringing stabilization to the reactive borenium 

centre.7 Additionally, Alcarazo reported the chiral heterobimetallic complex shown in 
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Figure 6.4 (right) that demonstrates the capability of a carbon(0) centre to serve as 

a two σ-donor site.8 

 

Figure 6.4. An example of carbon(0) with a σ and a π-donor (left), with two σ-donor orbitals 
(right). 

The first carbon(0) was reported in 1961, which was a carbodiphosphorane 

(CDP) of the form, Ph3P:→C:PPh3.9 It was not until recently that further studies of 

these compounds gained interest as ligands for transition metals and main group 

elements.10–17 Figure 6.5 highlights a few examples of these carbodiphosphorane 

coordination complexes. 

 

Figure 6.5. Selected examples of carbodiphosphorane complexes of transition metals and 
main group elements. 
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Carbodiphosphoranes are supported by two phosphine donors coordinating 

to the carbon(0) centre. Another form of carbon(0) ligands is those stabilized by 

carbene donors resulting in a carbodicarbene compound. Carbodicarbenes (CDC) 

were theoretically studied by Frenking in 200618,19 and synthesized a year later by 

Bertrand and co-workers as shown in Scheme 6.2.20  

 

Scheme 6.2. Bertrand’s synthesis of the first carbodicarbene. 

Despite the fact that the first stable carbon(0) was reported three decades 

before Arduengo’s work on stable carbenes, carbenes gained larger popularity and 

have been investigated to a much greater extent than carbon(0) ligands.18 

Carbodicarbenes, in particular, were predicted to be better donors than either 

carbenes or phosphines solely based on νCO stretching frequencies of cis-

[RhCl(CO)2(L)] as reported by Bertrand (Table 6.1).20 

L PR3 NHC CDC 

νCO (cm–1) 2070−2090 2036−2058 2014 
Table 6.1. νCO stretching frequencies cis-[RhCl(CO)2(L)] complexes where L = PR3, NHC and 

CDC. 
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In hopes of creating better carbon(0) donors, we propose that an anionic 

carbon(0) ligand would be a better σ- and π- donor than its neutral counterpart 

making it more attractive as a ligand for coordination chemistry. This would be 

feasible by having an anionic bisphosphine ligand bind a carbon(0) centre giving it an 

overall negative charge. To this end, Jonas Peters ligand (Scheme 6.4, JCP-Li, JCP–) 

was predicted to be a good candidate to investigate the isolation of an anionic 

carbon(0) ligand.21 JCP– ligands have been previously employed in the isolation of 

heavier group 14 elements as illustrated in Scheme 6.3.6 JCP– ligand has also been 

used as a new class of ligand for metal catalysts due to its strong σ- donation ability 

demonstrated by carbonyl frequency studies compared to other phosphines.22 In-

addition, metal complexes of JCP– ligand have proven to be useful in co-

polymerization reactions of CO and ethylene (in the case of JCP-Pd)23 and the 

activation of C–H bonds of benzene (using JCP-Pt).22 

 

Scheme 6.3. JCP-Tl ligand reactivity with heavier group 14 elements (Ge and Sn). 
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6.2  Results and Discussion 

6.2.1  Attempted Synthesis of an Anionic Carbodiphosphorane 

The overall synthetic steps to obtain JCP-Li are shown in Scheme 6.4. 

Phosphine reagent, I, is prepared by the deprotonation of methyldiphenylphosphine 

using nBuLi and TMEDA (tetramethylethylenediamine).24 II is prepared by heating 

the neat reaction mixture of tribromoborane with two equivalents of 

trimethyl(phenyl)silane to yield diphenylbromoborane (II).25 The desired 

bis(phosphino)borate is prepared by mixing two equivalents of I with an equivalent 

of II in diethylether at –78 °C, yielding JCP-Li.22 

 

Scheme 6.4. Synthesis of Peters’ ligand, JCP-Li. 

We postulate that the treatment of JCP-Li in neat CH2Br2 should liberate LiBr 

salt and yield the fragment [JCPCH2][Br] (IV) as shown in Scheme 6.5. IV would then 

be treated with two equivalents of a base to doubly deprotonate the methylene bridge 

resulting in an overall anionic carbodiphosphorane, [K][JCP(C)] (V) as shown in the 

scheme below. 
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Scheme 6.5. Proposed synthesis of an anionic carbodicarbene using JCP-Li as the starting 
ligand. 

Experimentally, treatment of JCP-Li with CH2Br2 results in a mixture of 

products in the 31P{1H} NMR and characterization of the resulting products was not 

successful. It is likely that the presence of Li+ or TMEDA results in side reactions with 

the anticipated product and/or resulting intermediates. As a result, finding another 

cation was desirable and can be achieved by salt metathesis reactions. One option is 

to prepare the thallium(I) salt of JCP that was used by Ragogna and co-workers for 

their heavier group 14 complexes introduced earlier (Scheme 6.3).6 While this cation 

might be a good candidate considering its success with heavier group 14 analogues, 

due to the toxicity of thallium, we were inclined to find another counterion to 

experiment with. Among the other variants reported by Peters, one particular 

example is JCP-ASN22 (ASN = 5-Azoniaspiro[4.4]nonane), which can be easily 

prepared by the salt metathesis reaction of JCP-Li with ASNBr in methanol to yield 

JCP-ASN in high yields (>90%). 

Upon preparing the ASN salt of JCP, treatment of JCP-ASN with 

dibromomethane results in clean reactivity with a single product peak observed in 

the 31P{1H} NMR (+25 ppm). The resulting peak decomposes over time, however, and 

thus, subsequent deprotonation of IV was performed in situ. Addition of excess (2.5 
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equivalents) NaNH2 to a THF solution of IV results in immediate bubbling of 

ammonia. Filtration through Celite and removal of solvent from the filtrate under 

reduced pressure results in an off-white solid. Dissolving the resulting crude 

materials in THF and allowing for slow evaporation results in colourless crystals 

suitable for X-ray diffraction. The resulting structure was that of the singly 

deprotonated neutral product, JCP-CH (1, Scheme 6.6). 

 

Scheme 6.6. Synthetic route to isolate neutral compound 1. Base = NaNH2 

Compound 1 (Figure 6.6) is overall neutral with the geometry at the carbon 

being sp2 hybridized. The 31P{1H} NMR shows a single peak at +20 ppm. Scheme 6.6 

illustrates the overall scheme of the reaction and the base used in the deprotonation 

to 1 is sodium amide (NaNH2). Irrespective of the stoichiometry used (1-5 equivalents 

of base), the only product observed and isolated in all cases is 1. Other bases have 

been employed in an attempt to deprotonate the remaining proton to yield an anionic 

carbodiphosphorane but were not successful. Bases liked NaNH2, nBuLi, tBuLi, 

KHMDS, NaH and LiAlH4 have all resulted in no reactivity towards 1. Transition metal 

complexes like Zr(Bn)4, Ag(OAc), Pd(OAc)2 and Cu(OAc) are known to abstract 

protons (internal bases) by activating C-H bonds and yielding organometallic 

complexes.26 Attempts to generate the anionic carbodiphosphorane and coordinating 
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it to a transition metal in-situ did not work in all of these cases; no reactivity was 

observed. 

 

Figure 6.6. Solid state structure of 1 (left). Thermal ellipsoids are shown at 50% probability 
level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond distances 

and angles are given in Table 6.2. 31P{1H} NMR of 1 (right). 

 Deprotonation of 1 has proven to be a challenge and thus, an alternative 

method to arrive at the anionic carbodiphosphorane was desired. A C–Br fragment 

in-place of C–H would, in theory, be easier to break as a C–Br bond (~285 kJ/mol) is 

significantly weaker than a C–H bond (~411 kJ/mol)27 making it a good candidate to 

undergo reduction of the C(II) centre using mild reducing conditions. 

Treating JCP-ASN with CBr4, it was anticipated that ASNBr would be 

eliminated resulting in the product [JCP-CBr2][Br]; this was not observed, and the 

31P{1H} NMR spectrum showed a mixture of at least 10 different phosphorus 

containing fragments. This is likely due to the generation of free bromine molecules 

in solution reacting with the product and intermediates leading to the different side 

products. To avoid this, excess of zinc powder was added to the reaction mixture prior 

to the addition of CBr4 to abstract free bromine molecules as they are generated 
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during the course of the reaction. The reaction mixture was stirred for 2 days in THF, 

followed by filtration through Celite. The filtrate was dried under reduced pressure 

to yield 2 as a colourless solid (Scheme 6.7). 

 

Scheme 6.7. Synthetic route to isolate JCP-CBr (2) with and without the presence of Zn0 
powder. 

Dissolving 2 in THF and allowing it to slowly evaporate yields crystals suitable 

for X-ray diffraction (Figure 6.7). Next, we were interested in reducing 2 to the 

anionic carbodiphosphorane using various reducing agents like Mg0, Zn0, Ni(COD)2 

and nBuLi. All of these reagents did not yield any reactivity towards 2, and the use of 

stronger reducing agents like KC8, Na0 and K0 result in decomposition of 2, 

determined by observing multiple peaks in the 31P NMR spectrum. 
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Figure 6.7. Solid state structure of 2. Thermal ellipsoids are shown at 50% probability level. 
Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond distances and 

angles are given in Table 6.2. 

Both 1 and 2 are similar crystallographically in-terms of the internal bond 

distances within the phosphine ligand. Both structures assume a half-chair 

conformation with the bridging carbon (C1) in plane with the ligand and the boron 

sitting out of plane. This is due to having the carbon’s lone pair delocalized in the P-C 

bonds and not localized on the carbon centre (C1). The sum of angles around C1 in 2 

add-up to °ΣC1: 358.35°; which is very close to 360° (for a planar system). This is very 

different compared to Ragogna’s germanium and tin complexes of JCP where the sum 

of angles around the germanium and tin are °ΣGe: 280.15° and °ΣSn: 272.94° 

respectively. This is a result of the lone pair being delocalized on germanium and tin 

centres resulting in the chloride pointing out of plane as shown in Figure 6.8. This is 

further illustrated by examining the P-C1 bond distances in 1 and 2 (~1.71 Å) being 

significantly shorter than that expected for a P-C single bond (~ 1.80–1.85 Å) and 

more consistent with a P-C double bond (~ 1.6–1.7 Å) supporting the idea of a 

delocalized lone pair making an ylide in 1 and 2.28 



CHAPTER 6 
Towards the Synthesis of an Anionic Carbon(0) 

165 

 
 

[Ph2B(CH2PPh2)2

CH] (1) 
[Ph2B(CH2PPh2)2

CBr] (2)  

[Ph2B(CH2PPh2)2

GeCl] 
[Ph2B(CH2PPh2)2

SnCl] 

C1-X - 1.9211(19) 2.2895(9) 2.460(1) 
P-C1 1.7053(13); 

1.7070(13) 
1.7134(9) P-Ge: 2.4567(9); 

2.4565(9) 
P-Sn: 2.672(1); 

2.7005(9) 
P-C2 1.7899(14); 

1.7747(13) 
1.7891(13) 1.812(3); 

1.809(3) 
1.811(4); 
1.799(3) 

B-C2 1.6664(19); 
1.6732(18) 

1.6710(19) 
1.680(4); 
1.673(5) 

1.687(7); 
1.675(5) 

P-C1-P 125.55(8) 126.67(11) P-Ge-P: 85.50(3) P-Sn-P:81.74(3) 
P-C1-
Br 

- 115.84(6) 
P-Ge-Cl: 99.77(3); 

94.88(3) 
P-Sn-Cl: 97.43(4); 

93.77(4) 
°Σ - °ΣC1: 358.35 °ΣGe: 280.15 °ΣSn: 272.94 

Table 6.2. Selected bond distances (Å) and angles (°) of compounds 1 and 2 along with 
Ragogna’s [Ph2B(CH2PPh2)2MCl] (M = Ge, Sn). 

 

Figure 6.8. Solid state structure of Ragogna’s [Ph2B(CH2PPh2)2GeCl] (left) and Ragogna’s 
[Ph2B(CH2PPh2)2SnCl] (right). Thermal ellipsoids are shown at 50% probability level. 

Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond distances and 
angles are given in Table 6.2. 
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6.2.2  Attempted Synthesis of an Anionic Carbodicarbene 

The resulting decomposition from the reduction attempts raised the question 

of whether or not JCP ligand is a suitable candidate for the isolation of an anionic 

carbodiphosphorane. Our group previously reported the triphosphenium salt 

depicted in Scheme 6.8, which contains a phosphorus(I) centre stabilized by a dppe 

(1,2-Bis(diphenylphosphino)ethane) donor ligand.29 Having phosphine donors to 

stabilize the P(I) centre did not provide enough support and stabilization for the P(I) 

centre to undergo further reactivity without decomposition. Work performed during 

my master’s research (Scheme 6.8) consisted of introducing a carbene donor to 

displace the weaker dppe ligand, resulting in a P(I) centre that is stabilized by two 

carbenes. This change gave rise to a more stable P(I) centre that can undergo further 

chemistry without decomposition.30–33 

 

Scheme 6.8. Reaction scheme showing the synthesis of triphosphenium P(I) cation and the 
subsequent ligand exchange reaction with N-heterocyclic carbenes. 

 Carbodicarbenes have been first reported by Bertrand and co-workers as 

mentioned previously, following the synthetic route shown in Scheme 6.2.20 Carbene 

donors are stronger and more stabilizing than phosphines, therefore, we became 

interested in synthesizing an anionic carbodicarbene (as an alternative to an anionic 

carbodiphosphorane) in hopes of obtaining a stable anionic carbon(0) centre. Using 
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the same starting ligand as Bertrand’s, (VI, Scheme 6.9), we attempted to add a 

negative overall charge by adding a dialkylbromoborane to VI in THF, which resulted 

in the formation of white precipitate that is insoluble in solvents like DCM, THF and 

CH3CN. The precipitate was collected by filtration and washed with ether to yield 3 

and 4 ([(NMeBz)2CH2BR2][Br]) in great yields (82% and 85% respectively). 

 

Scheme 6.9. Synthesis of compounds 3, 4, 6, and 7. G = NR, S or O, for VI, G = NMe. 

Compounds 3 and 4 were treated with 2.5 equivalents of KHMDS (potassium 

hexamethyldisilazide) in THF and were allowed to stir for 16 hours yielding pale- 

yellow solutions and yellow precipitate (Scheme 6.9). The resulting compounds have 

poor solubility, but slow evaporation of the dilute yellow solutions resulted in yellow 

crystals suitable for X-ray diffraction. Structures of 6 and 7 were obtained (Figure 

6.9); both structures show planar geometry throughout the compound with the 

boryl-R groups pointing above and below the plane of the compound. Unlike the half 

chair confirmation adapted by compounds 1 and 2, compounds 6 and 7 have a planar 

core with C1-N1-N2-C2 dihedral angles of 1.01° in 6 and 0.00° in 7. 
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Figure 6.9. Solid state structure of 6 (left) and 7 (right). Thermal ellipsoids are shown at 50% 
probability level. Hydrogen atoms and solvent molecules are omitted for clarity. Selected bond 

distances and angles are given in Table 6.3. 

 

 
 

(NMeBz)2CH2 

(VI) 
(NMeBz)2CH 
BPh2 (6) 

(NMeBz)2CH 
BMe2 (7) 

(SBz)2CH2BMe
2 (8) 

C1-C3 
(C3-C2) 

1.501(2); 
1.489(2) 

1.394(4); 
1.399(4) 

1.389(6); 
1.388(6) 

1.462(11); 
1.492(11) 

C1-N1 
(C2-N2) 

1.318(2); 
1.315(2) 

1.357(4); 
1.356(4) 

1.359(6); 
1.356(7) 

1.318(9); 
1.324(10) 

C1-N3 
(C2-N4) 

1.368(2); 
1.369(2) 

1.370(4); 
1.370(4) 

1.372(6); 
1.372(6) 

C1-S: 1.712(8); 
1.699(8) 

N1-B 
(N2-B) 

- 
1.587(4); 
1.577(4) 

1.584(6); 
1.589(6) 

1.625(11); 
1.601(11) 

C1-C3-
C2 

- 116.1(2) 115.9(5) 114.5(7) 

C1-N1-
N2-C2 

55.12 1.01 0.00 1.72 

N1-B-N2 - 102.8(2) 103.0(4) 104.3(6) 
Table 6.3. Selected bond distances (Å) and angles (°) of compounds VI and 6-8. 
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Other variants of the Ligand have been investigated ([(GBz)2CH2BR2][Br]) 

where G = NR, S and O (Scheme 6.9). In cases where G = NR, compounds 3 and 4 were 

isolated, but as mentioned above, poor solublility did not allow for characterization 

by NMR spectroscopy or X-ray crystallography. Ligands with G = O or S were insoluble 

in common organic solvents; however, counter-ion exchange using TMSOTf resulted 

in increased solubility of the ligand with G = S to yield [(SBz)2CH2BR2][OTf] (5) as 

shown in Scheme 6.10. 

After isolating the neutral compounds 6 and 7, attempts to further 

deprotonate the compounds were not successful. A similar library of bases as used 

with 1 and 2 was employed but no reactivity was observed. Despite the failed attempt 

to obtain an anionic carbodicarbene, compounds 6 and 7 have dye like properties 

(Figure 6.10, right) with a core similar to that of boron-dipyrromethene (BODIPY, 

Figure 6.10, left) that are useful fluorescent dyes.34 

 

Figure 6.10. Core structure of BODIPY (left) and a suspension of compound 6 in dark (middle) 
and under UV-light (right). 
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Scheme 6.10. Reaction scheme showing synthesis of 8. 

Although carbodicarbenes have been predicted to be better donors solely 

based on νCO stretching frequencies of cis-[RhCl(CO)2(L)] as mentioned earlier;20 

recent work by Grubbs and co-workers show that carbodicarbenes are weaker 

donors than carbenes.35 Figure 6.11 displays a series of ruthenium-based olefin 

metathesis catalysts where the catalyst on the left is Grubbs second generation that 

generally has higher activity and stability than Grubbs first generation catalyst. The 

middle catalyst contains a bis(NHC) ruthenium catalyst that is slow to initiate due to 

the strong NHC donors making it harder for ligand dissociation to take place and 

result in an active catalyst. The bis(NHC) ruthenium catalyst only showed modest 

reactivity at elevated temperatures.35 Lastly, a mixed system of NHC−CDC ruthenium 

catalyst was prepared by Grubbs and it was anticipated to be an even slower reaction 

due to the strong donor ability of CDC. To their surprise and mine, the CDC ligand was 

the labile ligand, readily dissociating to yield an active catalyst at room temperature. 

This illustrates that the donor ability of a ligand is not the only factor in play and that 
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νCO stretching frequencies can be used to predict donor strengths of similar systems, 

but cannot be reliable to compare different systems.  

 

Figure 6.11. A series of ruthenium-based catalysts reported by Grubbs. 

6.3  Conclusions 

We successfully synthesized compounds 1 and 2 that represent the first 

examples of six-membered ring systems with this specific arrangement of atoms. 

Although further deprotonation was not successful, these compounds show the 

different behaviour adopted by the carbon in comparison to heavier group-14 

analogues of the same ligand. Compounds 6 and 7 have interesting features and the 

central arrangement resembles that of BODIPY making it a potential fluorescent dye. 

6.4  Experimental 

6.4.1  General Remarks 

All manipulations were carried out using standard inert-atmosphere 

techniques. All reagents and chemicals were obtained from Sigma-Aldrich. All 

reagents were used without further purification. MeCN-d3 was dried over calcium 
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hydride or phosphorus pentoxide, and dichloromethane-d2 was dried over 

phosphorus pentoxide. All other solvents were dried on a series of Grubbs-type 

columns and were degassed prior to use.36 All glassware was stored in a 170 °C oven 

for several hours and was degassed prior to use. I24, II25, JCP-Li22, JCP-ASN22, VI37, and 

[(SBz)2CH2BR2] (VII)38 were all prepared according to the literature procedures. 

NMR spectra were recorded at room temperature on Bruker Avance III 500 

MHz, Bruker Avance Ultrashield 300 MHz, and Bruker Avance DPX 300 MHz 

spectrometers. Chemical shifts are reported in parts per million relative to internal 

standards for 1H and 13C (the given deuterated solvent) and external standards for 

external standards (85% H3PO4 for 31P). Coupling constants |J| are given in hertz. 

Elemental analysis was performed at the University of Windsor Mass Spectrometry 

Service Laboratory using a Perkin-Elmer 2400 combustion CHN analyzer. 

6.4.2  Synthesis 

 

[Ph2B(CH2PPh2)2CH] (1) A 100 mL Schlenk flask was charged with JCP-ASN (600 mg, 

0.87 mmol) in 3 mL CH2Br2. After 5 minutes of stirring, all the precipitate disappeared 

and solvents were removed under reduced pressure. THF (40 mL) was added 

followed by NaNH2 (170 mg, 4.34 mmol) resulting in bubbling of NH3. The mixture 

was refluxed for 4 hours, cooled down to room temperature and filtered through 

Celite. Solvents were removed from the filtrate under reduced pressure to yield 1 as 
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an off-white precipitate (280 mg, 56%). 1H NMR (d8-THF) δ: 7.67 (t, 8H, 3JHH = 9 Hz), 

7.34 (m, 12H), 6.86 (b, 4H), 6.62 (m, 6H), 1.94 (d, 4H, 2JPH = 16 Hz), 1.24 (t, 1H, 2JPH = 

4 Hz). 13C{1H} NMR δ: 136.93 (vt, JPC = 84 Hz), 133.45, 131.92 (vt, JPC = 10 Hz), 131.08, 

128.95 (vt, JPC = 11 Hz), 126.52, 123.33, 16.93 (b), 1.63 (m). 31P{1H} NMR δ: 20.24 (s). 

11B{1H} NMR δ: –13.41 (s). Anal. Calc. for C39H35BP2 (576.47 g/mol): C, 81.26; H, 6.12; 

N, 0.00. Found: C, 80.76; H, 5.85; N, 0.04. 

 

[Ph2B(CH2PPh2)2CBr] (2) A 100 mL Schlenk flask was charged with JCP-ASN (2.0 g, 

2.90 mmol), CBr4 (962 mg, 2.90 mmol) and zinc powder (240 mg, 3.7 mmol) in THF. 

The reaction mixture was refluxed for 2 days before cooling down to room 

temperature and filtering through Celite. Solvents were removed from the filtrate 

under reduced pressure resulting in 2 as an off-white solid. (800 mg, 44%). 31P{1H} 

NMR δ: 22.58 (s). Anal. Calc. for C39H34BBrP2 (655.36 g/mol): C, 71.48; H, 5.23; N, 0.00. 

Found: C, 71.56; H, 5.01; N, 0.10. 

 

General synthesis of [(NMeBz)2CH2BPh2][Br]  (3), [(NMeBz)2CH2BMe2][Br] (4) 

and [(SBz)2CH2BMe2][Br] (5) To a 100 mL Schlenk flask charged with VI (450 mg, 

1.63 mmol) in 40 mL Et2O, (400 mg, 1.63 mmol) of BPh2Br was added resulting in a 
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white suspension. After allowing the reaction mixture to stir for 18 hours, the 

corresponding product was collected by filtration to yield 3 (712 mg, 85%) as a 

colourless solid. Similar procedure was carried out using (230 mg, 0.83 mmol) of VI 

and (0.081 mL, 0.83 mmol) BMe2Br to yield 4 (270 mg, 82%) as a colourless solid; VII 

(247 mg, 0.87 mmol) and BMe2Br (0.085 mL, 0.87 mmol) to yield 5 (338 mg, 99%) as 

a yellow solid. Poor solubility of these compounds did not allow for characterization 

via NMR or the formation of crystals suitable for X-ray diffraction. 

 

General synthesis of [(NMeBz)2CHBPh2] (6) and [(NMeBz)2CHBMe2] (7) A 100 mL 

Schlenk flask charged with 0.27 mmol of 3 or 4 and KHMDS (106 mg, 0.53 mmol) in 

40 mL THF was sonicated for 18 hours to result in yellow precipitate and small yellow 

crystals on the glass walls. These crystals were suitable for X-ray diffraction and 

allowed for the identification of the resulting structures of 6 and 7. These compounds 

are very poorly soluble that no NMR data was collected for either compound.  

 

[(SBz)2CH2BMe2][OTf] (8) 5 (40 mg, 0.10 mmol) was suspended in a in CH3CN in a 

20 mL vial followed by the addition of TMSOTf (0.036 mL, 0.20 mmol). The reaction 

mixture was allowed to stir for 18 hours before decanting the dilute solution to 
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another vial to slowly crystalize yielding yellow crystals of 8 suitable for X-ray 

diffraction. The resulting product is poorly soluble to obtain NMR data. 

6.4.3  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a 

goniometer head, and then rapidly cooled under a stream of cold N2 of the low-

temperature apparatus (Oxford Cryostream) attached to the diffractometer. The data 

were then collected using the APEXII (Bruker AXS) software suite on a Bruker Photon 

100 CMOS diffractometer using a graphite monochromator with MoKα (λ = 0.71073 

Å). For each sample, data were collected at low temperature. APEXII software was 

used for data reductions and SADABS (Bruker AXS) was used for absorption 

corrections (multi-scan; semi-empirical from equivalents). XPREP was used to 

determine the space group and the structures were solved and refined using the 

SHELX39 software suite as implemented in the WinGX40 or OLEX241 program suites. 

Validation of the structures was conducted using PLATON42. 
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Compound Name JCP-CH JCP-CBr [(NMeBz)2CHBPh2] 

Label 1 2 6 
CCDC ID N/A N/A N/A 

Empirical 
formula 

C39H35BP2 C39H34BBrP2 C29H25BN4 

Formula weight 576.42 655.32 448.36 
Temperature (K) 173.2 130.02 104.99 

Crystal system monoclinic monoclinic monoclinic 
Space group C2/c P21/m P21/c 

a (Å) 33.5185(12) 10.9367(6) 11.6667(18) 
b (Å) 11.4085(5) 14.9347(8) 9.9803(14) 
c (Å) 17.5461(6) 10.9789(5) 19.924(3) 
α (°) 90 90 90 
β (°) 112.3982(13) 116.601(2) 105.021(6) 
γ (°) 90 90 90 

Volume (Å3) 6203.4(4) 1603.43(15) 2240.7(6) 
Z 8 2 4 

ρcalc (g·cm−3) 1.234 1.357 1.329 
μ (mm−1) 0.167 1.409 0.26 

F(000) 2432 676 928 
Crystal size 

(mm3) 
0.441 × 0.241 × 0.171 0.435 × 0.13 × 0.04 0.3 × 0.1 × 0.1 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.888 to 61.146 6.856 to 58.382 5.882 to 52.896 

Index ranges –45 ≤ h ≤ 47 
–16 ≤ k ≤ 16 
–25 ≤ l ≤ 23 

–15 ≤ h ≤ 14 
–20 ≤ k ≤ 20 
–15 ≤ l ≤ 13 

–14 ≤ h ≤ 14 
–12 ≤ k ≤ 12 
–24 ≤ l ≤ 24 

Reflections 
collected 

139391 65838 57858 

Independent 
reflections 

9506 
Rint = 0.0534 

Rsigma = 0.0232 

4485 
Rint = 0.0428 

Rsigma = 0.0177 

4594 
Rint = 0.2237 

Rsigma = 0.0834 
Data/restraints 

/parameters 
9506/0/379 4485/0/211 4594/0/309 

Goodness-of-fit 
on F2 

1.05 1.065 1.105 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0441 
wR2 = 0.1013 

R1 = 0.0285 
wR2 = 0.0627 

R1 = 0.0716 
wR2 = 0.1340 

Final R indexes 
[all data] 

R1 = 0.0636 
wR2 = 0.1131 

R1 = 0.0399 
wR2 = 0.0687 

R1 = 0.1193 
wR2 = 0.1538 

Largest diff. 
peak/hole (e·Å−3) 

0.36/–0.35 0.33/–0.40 0.31/–0.34 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 6.4. Crystallographic data and structure refinement. 

 



CHAPTER 6 
Towards the Synthesis of an Anionic Carbon(0) 

177 

Compound Name [NMeBzCHBMe2] [SBzCH2BMe2][OTf] 

Label 7 8 
CCDC ID N/A NA 

Empirical 
formula 

C19H21BN4 C18H16BF3N2O3S3 

Formula weight 314.21 438.16 
Temperature (K) 118.98 130 

Crystal system monoclinic orthorhombic 
Space group P21/m Pna21 

a (Å) 8.4744(13) 7.774 
b (Å) 6.8215(11) 15.237 
c (Å) 14.0742(18) 16.729 
α (°) 90 89.83 
β (°) 91.053(5) 89.97 
γ (°) 90 89.86 

Volume (Å3) 813.5(2) 1981.6 
Z 2 1 

ρcalc (g·cm−3) 1.283 0.367 
μ (mm−1) 0.076 1.235 

F(000) 334 221 
Crystal size 

(mm3) 
0.37 × 0.12 × 0.04 0.45 × 0.269 × 0.2 

Radiation MoKα (λ = 0.71073) CuKα (λ = 1.54184) 
2Θ range for data 

collection (°) 
5.658 to 58.6 7.836 to 150.32 

Index ranges –11 ≤ h ≤ 11 
–9 ≤ k ≤ 9 

–19 ≤ l ≤ 18 

–9 ≤ h ≤ 9 
–19 ≤ k ≤ 19 
–20 ≤ l ≤ 20 

Reflections 
collected 

24742 46828 

Independent 
reflections 

2389 
Rint = 0.0707 

Rsigma = 0.0360 

3998 
Rint = 0.1720 

Rsigma = 0.0792 
Data/restraints 

/parameters 
2389/0/146 3998/1/281 

Goodness-of-fit 
on F2 

1.071 1.121 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0991 
wR2 = 0.2783 

R1 = 0.0660 
wR2 = 0.1037 

Final R indexes 
[all data] 

R1 = 0.1160 
wR2 = 0.2961 

R1 = 0.0968 
wR2 = 0.1143 

Largest diff. 
peak/hole (e·Å−3) 

0.70/–0.46 0.46/–0.50 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
𝟐  

Table 6.5. Crystallographic data and structure refinement. 
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CHAPTER 7: 
Conclusions and Future Work 

7.1  Dissertation Overview 

This dissertation revolves around the idea of using chelating ligands to 

coordinate group 13-15 elements to create new and unique complexes. Three types 

of ligands have been discussed, a bidentate ligand in the attempted synthesis of an 

anionic carbon(0), a tridentate (pincer) ligand in the coordination to group 13-15 

elements1, and a tetradentate (tripod) ligand used for group 15 elements,2 and with 

our collaborators, we have been successful in expanding this ligand system to group 

14 as well.3,4 The outlook for these new complexes is to be able to create new systems 

capable of activating small molecules and carrying out different catalytic 

transformations. 

7.2  Bidentate Ligands 

7.2.1  Bidentate Ligands Toward the synthesis of an Anionic 

Carbon(0) 

As highlighted in Chapter 6, the attempted synthesis of an anionic carbon(0) 

involved two types of bidentate ligands, an anionic bisphosphine (JCP-ASN) and an 

anionic biscarbene. In both cases, the ligands did not yield the anticipated anionic 

carbon(0); however, new interesting materials were created and characterized in the 

process. 
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The JCP ligand has been used by Ragogna’s group for the coordination of group 

14-15 elements as mentioned earlier.5–7 Our group illustrated that using a different 

anionic bisphosphine ligand can result in the zwitterionic triphosphenium compound 

shown in Scheme 7.1.8,9 In cases where R = PPh2, further reactivity at the P(I) centre 

was hindered by the presence of a backbone phosphine that readily reacts before the 

P(I) centre. Introducing a tBu group instead allowed for further chemistry and 

coordination at the P(I) centre. 

 

Scheme 7.1. Synthetic route for zwitterionic triphosphenium compound. 

The presence of a Cp ring in the backbone of the anionic bisphosphine would 

bring further rigidity and stability to the overall donor ligand and would be a more 

suitable choice in comparison to the anionic JCP ligand. Scheme 7.2 depicts the two 

different pathways that can lead to the anionic carbodiphosphorane using this Cp 

based ligand instead. Treatment of [Li][tBuCp(PPh2)2] with CH2Br2 followed by excess 

base (like KHMDS) or treatment with tetrabromomethane followed by a reducing 
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agent like KC8 would have the potential in yielding the anionic carbodiphosphorane 

compound 1 as shown in Scheme 7.2. 

 

Scheme 7.2. A proposed reaction scheme to attain an anionic carbodiphosphorane. 

7.2.2  Bidentate Ligands for Group 13 and 14 Coordination – 

Part 1 

Our group has investigated the coordination of [Li][tBuCp(PPh2)2] to 

phosphorus,8,9 but to the best of our knowledge, there have been no reports of the 

coordination of this ligand (or similar framework) to other main group elements. To 

this end, we propose the use of these ligands as suitable XL-type donor ligands for 

group 13 and 14 elements as shown in Scheme 7.3. 

 

Scheme 7.3. The proposed reaction of [Li][R-Cp(PPh2)2] with group 13 and 14 metal halides. 
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Initial reactivity studies of [Li][R-Cp(PPh2)2] with group 14 metal halides were 

successful. Treatment of [Li][tBuCp(PPh2)2] with either GeCl2 or SnCl2 in THF results 

in an immediate yellow solution yielding tBuCp(PPh2)2GeCl (2) and tBuCp(PPh2)2SnCl 

(3), respectively. The 31P{1H} of [Li][tBuCp(PPh2)2] shows a singlet at –20.7 ppm, and 

upon treatment with an equivalent of GeCl2 or SnCl2, the 31P{1H} shows a new singlet 

at 5.9 ppm for 2 and 4.1 ppm for 3. Recrystallization of these products by means of 

slow evaporation from a THF solution yield yellow crystals of 2 and 3 suitable for X-

ray diffraction (Figure 7.1). 

 

Figure 7.1. Solid state structure of tBuCp(PPh2)2GeCl (2, left) and tBuCp(PPh2)2SnCl (3, right). 
Thermal ellipsoids are shown at 50% probability level. Hydrogen atoms and solvent molecules 

are omitted for clarity. Selected bond distances and angles are listed in Table 7.1. 

Compounds 2 and 3 were a result of using [Li][R-Cp(PPh2)2] with R = tBu. The 

use of a ligand with R = PPh2 with an equivalent of GeCl2.dioxane results in the 

backbone phosphine coordinating to a second GeCl2 (4, Figure 7.2). This is consistent 

with the observations made by our group with P(I) coordination where having a 

backbone phosphine results in the backbone phosphine being readily open to 

reactivity and coordination. Selected bond distances and angles of 4 are in Table 7.1. 
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Figure 7.2. Solid state structure of (GeCl2)PPh2Cp(PPh2)2GeCl (4). Thermal ellipsoids are 
shown at 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 

 
 

tBuCp(PPh2)2

GeCl (2) 
GeCl2PPh2Cp
(PPh2)2GeCl 

(4) 

[Ph2B(CH2PP
h2)2GeCl] 

tBuCp(PPh2)

2SnCl (3) 
[Ph2B(CH2PP
h2)2SnCl] 

M-Cl 2.259(1) 2.2646(9) 2.2895(9) 2.461(2) 2.460(1) 
M-P 2.2467(1); 

2.2480(1) 
2.4840(7); 
2.4851(7) 

2.4567(9); 
2.4565(9) 

2.672(2);  
2.698(2) 

2.672(1); 
2.7005(9) 

P-C1 1.755(5); 
1.757(4) 

1.761(2); 
1.760(2) 

1.812(3); 
1.809(3) 

1.755(9); 
1.755(7) 

1.811(4); 
1.799(3) 

P-M-P 81.99(3) 80.17(2) 85.50(3) 76.97(6) 81.74(3) 
P-M-Cl 92.92(4); 

91.96(4) 
92.36(3); 
97.33(3) 

99.77(3); 
94.88(3) 

88.74(6); 
76.97(6) 

97.43(4); 
93.77(4) 

°ΣM 266.87 269.86 280.15 242.68 272.94 
Table 7.1. Selected bond distances (Å) and angles (°) of compounds 2, 3, and 4 along with 

Ragogna’s [Ph2B(CH2PPh2)2MCl] (M = Ge, Sn). 

The chloride in compounds 2-4 is pointing away from the plane of the ligand, 

similar to structures reported by Ragogna of JCP-GeCl and JCP-SnCl (discussed in 

chapter 6).7 Compounds 2 and 4 have very similar bond distances and angles; 

however, it is noteworthy that in compound 4 the Ge-P bond distance of the P-GeCl2 
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backbone (2.4666(7)) is slightly shorter than the Ge-P bond distance of the GeCl bond 

to the bisphosphine (2.4840(7) and 2.4851(7)). The sum of angles around the Ge and 

Sn centres (266.87 and 242.68° respectively) are smaller than those observed in JCP-

GeCl (280.15°) and JCP-SnCl (272.94°) which is likely due to the R-Cp(PPh2)2-MCl 

ligand forming a 5-membered ring with the main group element compared to the 

cyclohexyl chair confirmation adapted by JCP-MCl. The packing of compounds 2 and 

4 are similar in the sense that both compounds have intermolecular interactions of 

the M-Cl fragments resulting in packing of these compounds as dimers in the solid 

state. These interactions are on the order of 3.3776(9)/3.4235(9) Å in 2, and 

3.236(2)/3.236(2) Å in 4; the germanium and tin centres also interact with the phenyl 

ring of the adjacent compound (Figure 7.1) with an M-η6-Ph distance of 3.851 Å in 2 

and 3.705 Å in 4. These intermolecular interactions are not observed in Ragogna’s 

structures, [Ph2B(CH2PPh2)2MCl] (M = Ge, Sn), which is likely due to the bulky 

phosphine donors that make these group 14 centres sterically inaccessible for 

intermolecular interactions. Compound 3 contains intermolecular interaction 

between a GeCl of one compound and the backbone GeCl2 of the neighbouring 

compound (3.4226(8) Å) as shown in Figure 7.3.  



CHAPTER 7 
Conclusions and Future Work 

188 

 

Figure 7.3. Grown structure of 3 showing the intermolecular interaction present between the 
GeCl fragment and the neighbouring GeCl2 fragment. 

7.2.3  Bidentate Ligands for Group 13 and 14 Coordination – 

Part 2 

Another bidentate ligand we propose for coordination of group 14 elements is 

the ligand used towards the synthesis of anionic carbodicarbenes in chapter 6 

((NMeBz)2CH2). Deprotonation of the ligand yields a [(GBz)2CH]- (G = NMe, O, or S) 

anion that is structurally similar to that of NacNac (Figure 7.4, left). The use of 

NacNac ligands with group 13 and 14 elements have lead to many interesting and 

unique results.10–24 Coordination of [(GBz)2CH]- ligand (Figure 7.4, right) with group 

13 have been recently studied by Stalke and co-workers using different ligand 

varients that include G = NR, S, and O.25–27 To the best of our knowledge there has 

been no reports of the coordination of this ligand to group 14 elements. 
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Figure 7.4. NacNac ligand (left) and [(GBz)2CH]- (right). 

Our proposal is to treat (GBz)2CH2 with an equivalent of base followed by the 

addition of GeCl2.dioxane or SnCl2 to yield (GBz)2CHMCl (M = Ge, or Sn) as shown in 

Scheme 7.4. Initial reactivity studies involved the reaction of (NMeBz)2CH2 with 

KHMDS followed by SnCl2 in THF to result in a deep brown solution. Upon filtration 

of the solution and slow evaporation of the filtrate, orange/brown crystals suitable 

for X-ray diffraction were isolated of (NMeBz)2CH2SnCl (5, Figure 7.5) in low yields 

(<20%). Selected bond distances and angles of 5 are in Table 7.2. 

 

Scheme 7.4. Proposed reaction of (GBz)2CH2 with group 14 metal halides (MX2, M = Ge, or Sn; 
X = F, Cl, Br or I) to yield (GBz)2CHMX. 

When comparing compound 5 to compounds discussed in chapter 6 with BR2 

backbone, [(NMeBz)2CHBPh2] and [(NMeBz)2CHBMe2], the internal bond distances 

within the ligand do not change, regardless if the bound element is boron or tin. This 

ligand is very rigid in nature, yet very accessible, allowing the metal centre to be open 

for further reactivity. Full characterization of this compound, synthesis of the 
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germanium adducts, and studies of the potential reactivity are all part of the future 

work proposal. 

 

Figure 7.5. Left: Packing of 5 showing the intermolecular interactions present in the solid 
state. Right: Solid state structure of (NMeBz)2CH2SnCl (5). Thermal ellipsoids are shown at 

50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 

 
 

(NMeBz)2CH2SnCl 
(5) 

(NMeBz)2CHBPh2 (NMeBz)2CHBMe2 

Sn-Cl 2.5526(7)   
Sn-N 2.168(2); 2.181(2)   

C1-C3 (C3-C2) 1.392(3); 1.398(3) 1.394(4); 1.399(4) 1.389(6); 1.388(6) 
C1-N1 (C2-N2) 1.361(3); 1.360(3) 1.357(4); 1.356(4) 1.359(6); 1.356(7) 
C1-N3 (C2-N4) 1.375(3); 1.370(3) 1.370(4); 1.370(4) 1.372(6); 1.372(6) 

C1-C3-C2 123.1(2) 116.1(2) 115.9(5) 
C1-N1-N2-C2 3.1(2) 1.01 0.00 

N-Sn-N 82.55(6)   
N-Sn-N 96.25(5); 88.61(5)   

°ΣSn 267.41   
Table 7.2. Selected bond distances (Å) and angles (°) of 5 and (NRBz)2CHBPh2 (from Chapter 

6). 
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7.3  Neutral Pincer (Tridentate) Ligand Donor for Groups 
13-15 

In chapter 4, we reported group 15 adducts of the form, [NBn-

BZIMPYMCl][OTf]2 (M = P, As, and Sb). Unfortunately, these compounds are air 

sensitive and decompose when covered in Paratone® on the microscope slide (going 

from yellow crystals to colourless non-crystalline material) over the course of a few 

hours. Stephan’s work with the tripyridine donor28 (Scheme 7.5) yielded an air-

stable Lewis acid useful for catalytic hydrodefluorination (HDF) of unactivated 

fluoroalkanes as mentioned earlier. 

 

Scheme 7.5. Stephan’s dicationic P(III) catalyst. 

In chapter 3, we discussed Evans work on a Sn(II) chiral Lewis acid (Figure 

7.6) that has been used in aldol condensation reactions in good yields with greater 

than 90% ee.29 

 

Figure 7.6. Evans tin(II) chiral Lewis acid catalyst. 
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For this part of chapter 7, we propose combining Stephan’s work discussed in 

chapter 4 with Evans’ ligand discussed in chapter 3 to yield the catalyst shown in 

Scheme 7.6. These ligands are commercially available, bis(oxazoline) ligands (BOX) 

with CH2 (BOX) or Py (PYBOX) linkers. Treatment of R-PYBOX with PCl3 or PhPCl2 and 

excess TMSOTf should yield R-PYBOX-PX (X = Cl, Ph). The resulting complex would 

serve as a chrial catalyst that can be useful in substrate selectivity. 

 

Scheme 7.6. Proposed complex using R-PYBOX with PCl2X (X = Cl, Ph) and excess TMSOTf to 
yield R-PYBOX-PX. 

7.4  Trianionic Pincer (Tridentate) Ligand Donor for 
Phosphorus 

Aside from working with neutral tridentate ligands, we became interested in 

investigating trianionic nitrogen donor ligands similar to those used by Arduengo and 

Radosevich.30–32 Radosevich have shown that such ligands containing phosphorus as 

the central atom are capable of small molecule activation. Thus, to this end, we 

propose the use of the BZIM ligand (Figure 7.7) that contains two benzimidazole 

donors as with the parent NH-BZIMPY ligand, but with the difference here is in the 

central donor nitrogen being NH rather than pyridine. This key difference would 

allow for a more flexible ligand, permitting for the distortion needed to create an 

active phosphorus centre and for an anionic nitrogen to give an overall trianionic 

ligand. 
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Figure 7.7. Structure of BZIMPY (left) and BZIM (right). 

In terms of introducing the phosphorus centre, we first attempted a 

transamination reaction between BZIM and (Et2N)2PCl to promote the release of two 

molecules of Et2NH and the coordination of phosphorus to BZIM creating a cation 

similar to the one shown in Scheme 7.7. In theory, this reaction is similar to the 

transamination work reported by Verkade and co-workers in their synthesis of the 

superbase depicted in Scheme 7.7.33 

 

Scheme 7.7. Synthesis of Verkade’s superbase. 

This transamination process would be equivalent to deprotonation of the 

proton followed by the introduction of the phosphorus centre. The BZIM ligand is 

very poorly soluble, creating a suspension in DCM until the addition of (Et2N)2PCl that 

results in an immediate uptake of the precipitate into the DCM solution. Allowing the 

reaction mixture to stir for an hour at room temperature results in a pale-yellow 

solution. The 31P{1H} NMR shows a singlet at 96 ppm that is believed to correspond 

to the cationic phosphorus shown in Scheme 7.8. 
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Scheme 7.8. Proposed outcome of reacting BZIM with (Et2N)2PCl followed by KHMDS (right) 
vs. actual product isolated (left). 

Dissolving the collected materials in DCM and allowing the solvent to slowly 

evaporate results in colourless crystals suitable for X-ray diffraction. The resulting 

structure, H-BZIMP(Et2N) (6, Figure 7.8), is a result of BZIM reacting with (Et2N)2PCl 

releasing an equivalent of Et2NH and an HCl. The protonated arm of the ligand is 

flexible and should have the ability to freely rotate and interact with the amide to 

form a diethylamine and the pincer phosphine; however, this was not observed at 

room temperature and was not made possible at elevated temperatures. 
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Figure 7.8. Solid state structure of the H-BZIMP(Et2N) (6). Thermal ellipsoids are shown at 
50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. 

The transamination approach showed an interesting result, however, to 

generate the compound of interest (BZIMP) other means of reactivity were 

investigated. In particular, deprotonation of the ligand followed by the introduction 

of PCl3 to yield the desired phosphine was carried out. Treatment of BZIM with 3 

equivalents of NaH in THF results in the immediate evolution of H2 gas. Addition of 

PCl3 to the resulting mixture results in a pale-yellow solution with white precipitate 

that was separated by centrifugation. The solvent of the filtrate (supernatant) was 

removed under reduced pressure to result in colourless precipitate. 31P{1H} of the 

starting material (Et2N)2PCl, consists of a singlet at 155 ppm, compound 6 shows a 

singlet at 96 ppm and the materials resulting from this reaction gave rise to a singlet 

at 126 ppm. The proton-coupled NMR spectrum results in a pentet with a 3JCP of 25 

Hz that is likely due to the phosphorus centre coupling to the two CH2 methylenes of 

the BZIM ligand framework. This shift in the phosphorus NMR spectrum is believed 

to correspond to the compound of interest, BZIMP (7). Attempts to crystallize 7 to 
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obtain crystals suitable for X-ray diffraction were not successful and the 1H and 13C 

NMR spectra show the presence of other non-phosphorus containing fragments. To 

this end, we hope to pursue further chemistry, first by making compound 7 cleanly 

and fully characterizing it, secondly, by testing out its reactivity towards small 

molecules. 

 

Figure 7.9. Stacked NMR spectra of BZIMP (7) showing 31P{1H} in red and 31P in blue. 

7.5  Conclusions 

This dissertation consists of the use of various chelating ligand towards the 

coordination of group 13-15 main group elements. In principle, these coordination 

reactions are successful and create new complexes with unique physical and chemical 

properties. The next step is to use these complexes in applications geared towards 

small molecule activations and other chemical transformations that are of importance 

to organic and inorganic chemists. 
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7.6  Experimental 

7.6.1  General Remarks 

All manipulations were carried out using standard inert-atmosphere 

techniques. All reagents and chemicals were obtained from Sigma-Aldrich. All 

reagents were used without further purification. MeCN-d3 was dried over calcium 

hydride or phosphorus pentoxide, and dichloromethane-d2 was dried over 

phosphorus pentoxide. All other solvents were dried on a series of Grubbs-type 

columns and were degassed prior to use.34 All glassware was stored in a 170 °C oven 

for several hours and was degassed prior to use. [K][PPh2Cp(PPh2)2]35, 

[Li][tBuCp(PPh2)2]8,36, (NMeBz)2CH2,37 and N,N-bis(1H-benzimidazol-2-ylmethyl)- N-

amine (BZIM)38 were all prepared according to the literature procedures.  

NMR spectra were recorded at room temperature on Bruker Avance III 500 

MHz, Bruker Avance Ultrashield 300 MHz, and Bruker Avance DPX 300 MHz 

spectrometers. Chemical shifts are reported in parts per million relative to internal 

standards for 1H and 13C (the given deuterated solvent) and external standards for 19F 

(CFCl3) and 31P (85% H3PO4). Coupling constants |J| are given in hertz. Elemental 

analysis was performed at the University of Windsor Mass Spectrometry Service 

Laboratory using a Perkin-Elmer 2400 combustion CHN analyzer.  
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7.6.2  Synthesis 

 
tBuCp(PPh2)2GeCl (2) A 100 mL Schlenk flask was charged with 

[Li][tBuCp(PPh2)2] (400 mg, 0.73 mmol) and GeCl2.dioxane (169 mg, 0.73 

mmol). 30 mL Toluene was added to result in a yellow solution. The resulting 

mixture was allowed to stir for overnight before filtering through Celite to 

result in a clear pale-yellow solution. Solvents were removed under reduced 

pressure to yield 2 as a yellow solid (350 mg, 81%). Slow evaporation from 

dichloromethane yielded crystals suitable for X-ray Diffraction. 31P{1H} NMR δ: 

5.91. 

 

(GeCl2)PPh2Cp(PPh2)2GeCl (3) A 20 mL vial was charged with [K][PPh2Cp(PPh2)2] 

(31 mg, 0.047 mmol) and GeCl2.dioxane (11 mg, 0.047 mmol). 5 mL of DCM was 

added, resulting in the formation of a yellow solution. The solution was stirred for 1 

hr, filtered through a pipette stuffed with cotton/kimwipes and the filtrate was then 

slowly evaporated to result in 3 as yellow crystals suitable for X-ray Diffraction.  

31P{1H} NMR δ: 6.62 (s, 1P), –14.21 (s, 2P). 
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tBuCp(PPh2)2SnCl (4) A 20 mL vial was charged with [Li][tBuCp(PPh2)2] (40 mg, 

0.073 mmol) and SnCl2 (14 mg, 0.073 mmol). 5 mL of DCM was added, resulting in the 

formation of a yellow solution. The solution was stirred for 1 hr, filtered through a 

pipette stuffed with cotton/kimwipes and the filtrate was then slowly evaporated to 

result in 4 as yellow crystals suitable for X-ray Diffraction.  31P{1H} NMR δ: 4.13. 

 

(NMeBz)2CH2SnCl (5) A 20 mL vial was charged with (NMeBz)2CH2 (40 mg, 0.14 

mmol), SnCl2 (34 mg, 0.15 mmol) and KHMDS (58 mg, 0.29 mmol). 5 mL of THF was 

added, resulting in the formation of an orange solution. The solution was stirred for 

overnight, 5 mL of DCM was added, and the resulting suspension was centrifuged with 

the resulting filtrate/supernatant slowly evaporated to yield 5 as deep orange/brown 

crystals suitable for X-ray Diffraction. 

 

H-BZIMP(Et2N) (6). A 20 mL vial was charged with BZIM (40 mg, 0.14 mmol) in 5 mL 

CH3CN. (Et2N)2PCl (32 µL, 0.15 mmol) was added using a microsyringe resulting in a 

clear solution as the insoluble BZIM ligand goes in solution. The solution was allowed 
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to slowly evaporate to yield 6 as colourless crystals suitable for X-ray diffraction. 

31P{1H} NMR (CDCl3) δ: 93.21 (s). 31P NMR (CDCl3) δ: 93.13 (b). 

 

BZIMP (7) A 20 mL vial was charged with BZIM (40 mg, 0.14 mmol) and NaH (11 mg, 

0.45 mmol). 5 mL of THF was added resulting in the evolution of H2 gas. After allowing 

the reaction mixture to stir for 15 minutes, PCl3 (16 µL, 0.17 mmol) was added via a 

microsyringe resulting in a yellow cloudy solution. The solution was centrifuged, and 

the supernatant was slowly evaporated to yield off-white microcrystalline materials. 

31P{1H} NMR (CDCl3) δ: 125.17. 31P NMR (CDCl3) δ: 125.70 (q, 3JPH = 25 Hz). 

7.6.3  X-ray Crystallography 

Crystals for investigation were covered in Paratone®, mounted onto a 

goniometer head, and then rapidly cooled under a stream of cold N2 of the low-

temperature apparatus (Oxford Cryostream) attached to the diffractometer. The data 

were then collected using the APEXII (Bruker AXS) software suite on a Bruker Photon 

100 CMOS diffractometer using a graphite monochromator with MoKα (λ = 0.71073 

Å). For each sample, data were collected at low temperature. APEXII software was 

used for data reductions and SADABS (Bruker AXS) was used for absorption 

corrections (multi-scan; semi-empirical from equivalents). XPREP was used to 

determine the space group and the structures were solved and refined using the 

SHELX39 software suite as implemented in the WinGX40 or OLEX241 program suites. 

Validation of the structures was conducted using PLATON.42  
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Compound Name tBuCp(PPh2)2GeCl tBuCp(PPh2)2SnCl Ph2Cp(PPh2)2GeCl 

Label 2 3 4 
CCDC ID    

Empirical formula C66H62Cl2Ge2P4 C33H31ClP2Sn C41H32Cl3Ge2P3 
Formula weight 1195.11 643.66 869.1 

Temperature (K) 170 169.99 170 
Crystal system monoclinic monoclinic monoclinic 

Space group P21 P21/c P21/c 
a (Å) 10.134 10.6956(5) 12.1187(5) 
b (Å) 27.961 28.1328(15) 32.5341(14) 
c (Å) 10.739 10.2273(5) 9.4859(4) 
α (°) 90 90 90 
β (°) 111.23 110.953(2) 93.837(2) 
γ (°) 90 90 90 

Volume (Å3) 2836.7 2873.9(3) 3731.6(3) 
Z 2 4 4 

ρcalc (g·cm−3) 1.399 1.488 1.547 
μ (mm−1) 1.308 1.114 1.985 

F(000) 1232 1304 1752 
Crystal size 

(mm3) 
0.25 × 0.23 × 0.18 0.29 × 0.27 × 0.26 0.26 × 0.25 × 0.15 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.828 to 66.548 5.96 to 66.464 5.714 to 65.274 

Index ranges –15 ≤ h ≤ 15 
–43 ≤ k ≤ 43 
–16 ≤ l ≤ 16 

–16 ≤ h ≤ 16 
–43 ≤ k ≤ 43 
–15 ≤ l ≤ 15 

–18 ≤ h ≤ 18 
–49 ≤ k ≤ 49 
–11 ≤ l ≤ 14 

Reflections 
collected 

120387 137724 127338 

Independent 
reflections 

21830 
Rint = 0.0465 

Rsigma = 0.0426 

11014 
Rint = 0.0403 

Rsigma = 0.0210 

13605 
Rint = 0.0425 

Rsigma = 0.0300 
Data/restraints 

/parameters 
21830/1/673 11014/30/337 13605/0/442 

Goodness-of-fit 
on F2 

1.023 1.453 1.148 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0444 
wR2 = 0.1079 

R1 = 0.1100 
wR2 = 0.2787 

R1 = 0.0504 
wR2 = 0.1063 

Final R indexes 
[all data] 

R1 = 0.0530 
wR2 = 0.1117 

R1 = 0.1150 
wR2 = 0.2807 

R1 = 0.0678 
wR2 = 0.1116 

Largest diff. 
peak/hole (e·Å−3) 

4.19/–1.76 3.20/–3.33 1.09/–1.47 

Refinement method Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 7.3. Crystallographic data and structure refinement. 
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Compound Name (NMeBz)2CH2SnCl H-BZIMP(Et2N) 

Label 5 6 
CCDC ID   

Empirical 
formula 

C68H60Cl4N16Sn4 C21H26Cl2N6P 

Formula weight 1717.88 464.35 
Temperature (K) 170 170 

Crystal system orthorhombic orthorhombic 
Space group P212121 Pca21 

a (Å) 8.4405(3) 9.9991(4) 
b (Å) 12.8765(6) 10.3741(4) 
c (Å) 14.7120(7) 21.3526(7) 
α (°) 90 90 
β (°) 90 90 
γ (°) 90 90 

Volume (Å3) 1598.96(12) 2214.94(14) 
Z 1 4 

ρcalc (g·cm−3) 1.784 1.392 
μ (mm−1) 1.769 0.387 

F(000) 848 972 
Crystal size 

(mm3) 
0.33 × 0.175 × 0.125 0.255 × 0.168 × 0.04 

Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073) 
2Θ range for data 

collection (°) 
5.772 to 66.31 5.972 to 54.314 

Index ranges –12 ≤ h ≤ 12 
–19 ≤ k ≤ 19 
–22 ≤ l ≤ 22 

–12 ≤ h ≤ 12 
–13 ≤ k ≤ 13 
–27 ≤ l ≤ 27 

Reflections 
collected 

41380 20256 

Independent 
reflections 

6084 
Rint = 0.0262 

Rsigma = 0.0186 

4887 
Rint = 0.0348 

Rsigma = 0.0322 
Data/restraints 

/parameters 
6084/0/210 4887/1/273 

Goodness-of-fit 
on F2 

1.164 1.037 

Final R indexes 
[I>=2σ(I)] 

R1 = 0.0194 
wR2 = 0.0436 

R1 = 0.0567 
wR2 = 0.1504 

Final R indexes 
[all data] 

R1 = 0.0230 
wR2 = 0.0456 

R1 = 0.0680 
wR2 = 0.1588 

Largest diff. 
peak/hole (e·Å−3) 

0.56/–0.76 0.27/–0.80 

Refinement 
method 

Full-matrix least-squares on F2 

𝑹𝟏 =
∑||𝑭𝒐|−|𝑭𝒄||

∑|𝑭𝒐|
          𝒘𝑹𝟐 = √

∑𝒘(𝑭𝒐
𝟐−𝑭𝒄

𝟐)
𝟐

∑𝒘(𝑭𝒐
𝟐)

𝟐           𝑹𝒊𝒏𝒕 =
∑|𝑭𝒐

𝟐−𝑭𝒐
𝟐(𝒎𝒆𝒂𝒏)|

∑𝑭𝒐
𝟐           𝑹𝒔𝒊𝒈𝒎𝒂 =

∑𝝈(𝑭𝒐
𝟐)

∑𝑭𝒐
 

Table 7.4. Crystallographic data and structure refinement. 

 



CHAPTER 7 
Conclusions and Future Work 

203 

7.7  References 

(1)  a) Swidan, A.; Binder, J. F.; St. Onge, B. J.; Suter, R.; Burford, N.; Macdonald, C. L. 

B. Dalton Trans. 2019, 48 (4), 1284–1291. b) Swidan, A.; St. Onge, P. B.; Binder, 

J. F.; Suter, R.; Burford, N.; Macdonald, C. Dalton Trans. 2019, 48, 7835-7843. 

(2)  Swidan, A.; Suter, R.; Macdonald, C. L. B.; Burford, N. Chem. Sci. 2018, 9 (26), 

5837–5841. 

(3)  Suter, R.; Swidan, A.; Macdonald, C. L. B.; Burford, N. Chem. Commun. 2018, 54 

(33), 4140–4143. 

(4)  Suter, R.; Swidan, A.; Zijlstra, H. S.; Macdonald, C. L. B.; McIndoe, J. S.; Burford, 

N. Dalton Trans. 2018, 47 (46), 16729–16736. 

(5)  Bertrand, G. Chem. Rev. 2010, 110 (7), 3851. 

(6)  Lu, C. C.; Peters, J. C. J. Am. Chem. Soc. 2002, 124 (19), 5272–5273. 

(7)  Weicker, S. A.; Dube, J. W.; Ragogna, P. J. Organometallics 2013, 32 (22), 6681–

6689. 

(8)  Kosnik, S. C.; Nascimento, M. C.; Binder, J. F.; Macdonald, C. L. B. Dalton Trans. 

2017, 46 (48), 17080–17092. 

(9)  Kosnik, S. C.; Macdonald, C. L. B. Dalton Trans. 2016, 45 (14), 6251–6258. 

(10)  Stoelzel, M.; Präsang, C.; Inoue, S.; Enthaler, S.; Driess, M. Angew. Chem. - Int. Ed. 

2012, 51 (2), 399–403. 

(11)  Dove, A. P.; Gibson, V. C.; Marshall, E. L.; Rzepa, H. S.; White, A. J. P.; Williams, D. 

J. J. Am. Chem. Soc. 2006, 128 (30), 9834–9843. 



CHAPTER 7 
Conclusions and Future Work 

204 

(12)  Hill, M. S.; Hitchcock, P. B. Chem. Commun. 2004, No. 16, 1818–1819. 

(13)  Peng, Y.; Fan, H.; Zhu, H.; Roesky, H. W.; Magull, J.; Hughes, C. E. Angew. Chem. - 

Int. Ed. 2004, 43 (26), 3443–3445. 

(14)  Zhao, N.; Zhang, J.; Yang, Y.; Chen, G.; Zhu, H.; Roesky, H. W. Organometallics 

2013, 32 (3), 762–769. 

(15)  Li, X.; Cheng, X.; Song, H.; Cui, C. Organometallics 2007, 26 (4), 1039–1043. 

(16)  Nie, P.; Li, Y.; Yu, Q.; Li, B.; Zhu, H.; Wen, T.-B. Eur. J. Inorg. Chem. 2017, (33), 

3892–3899. 

(17)  Jana, A.; Ghoshal, D.; Roesky, H. W.; Objartel, I.; Schwab, G.; Stalke, D. J. Am. Chem. 

Soc. 2009, 131 (3), 1288–1293. 

(18)  Hardman, N. J.; Power, P. P. Chem. Commun. 2001, (13) 1184–1185. 

(19)  Yang, Z.; Zhong, M.; Ma, X.; De, S.; Anusha, C.; Parameswaran, P.; Roesky, H. W. 

Angew. Chem. - Int. Ed. 2015, 54 (35), 10225–10229. 

(20)  Ganesamoorthy, C.; Krüger, J.; Wölper, C.; Nizovtsev, A. S.; Schulz, S. Chem. Eur. 

J. 2017, 23 (10), 2461–2468. 

(21)  Yang, Z.; Zhong, M.; Ma, X.; Nijesh, K.; De, S.; Parameswaran, P.; Roesky, H. W. J. 

Am. Chem. Soc. 2016, 138 (8), 2548–2551. 

(22)  Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-

G.; Wrackmeyer, B. J. Am. Chem. Soc. 2001, 123 (37), 9091–9098. 

(23)  Ekkert, O.; White, A. J. P.; Toms, H.; Crimmin, M. R. Chem. Sci. 2015, 6 (10), 

5617–5622. 



CHAPTER 7 
Conclusions and Future Work 

205 

(24)  Yang, Y.; Zhao, N.; Wu, Y.; Zhu, H.; Roesky, H. W. Inorg. Chem. 2012, 51 (4), 

2425–2431. 

(25)  Dauer, D.-R.; Koehne, I.; Herbst-Irmer, R.; Stalke, D. Eur. J. Inorg. Chem. 2017, 

(13), 1966–1978. 

(26)  Dauer, D.-R.; Stalke, D. Dalton Trans. 2014, 43 (38), 14432–14439. 

(27)  Dauer, D.-R.; Flügge, M.; Herbst-Irmer, R.; Stalke, D. Dalton Trans. 2016, 45 (14), 

6149–6158. 

(28)  Chitnis, S. S.; Krischer, F.; Stephan, D. W. Chem. Eur. J. 2018, 24, 6543–6546. 

(29)  Evans, D. A.; MacMillan, D. W. C.; Campos, K. R. J. Am. Chem. Soc. 1997, 119 (44), 

10859–10860. 

(30)  Arduengo, A. J.; Stewart, C. A. Chem. Rev. 1994, 94 (5), 1215–1237. 

(31)  McCarthy, S. M.; Lin, Y. C.; Devarajan, D.; Chang, J. W.; Yennawar, H. P.; Rioux, R. 

M.; Ess, D. H.; Radosevich, A. T. J. Am. Chem. Soc. 2014, 136 (12), 4640–4650. 

(32)  Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012, 134 (28), 11330–

11333. 

(33)  Verkade, J. G. Acc. Chem. Res. 1993, 26 (9), 483–489. 

(34)  Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. 

Organometallics 1996, 15 (5), 1518–1520. 

(35)  Smaliy, R. V; Beaupérin, M.; Mielle, A.; Richard, P.; Cattey, H.; Kostyuk, A. N.; 

Hierso, J.-C. Eur. J. Inorg. Chem. 2012, (9), 1347–1352. 



CHAPTER 7 
Conclusions and Future Work 

206 

(36)  Broussier, R.; Bentabet, E.; Mellet, P.; Blacque, O.; Boyer, P.; Kubicki, M. M.; 

Gautheron, B. J. Organomet. Chem. 2000, 598 (2), 365–373. 

(37)  Braussaud, N.; Thomas, R.; Cavell, K. J.; Skelton, B. W.; White, H. Synthesis 2001, 

626–632. 

(38)  Cariou, R.; Chirinos, J. J.; Gibson, V. C.; Jacobsen, G.; Tomov, A. K.; Britovsek, G. J. 

P.; White, A. J. P. Dalton Trans. 2010, 39 (38), 9039–9045. 

(39)  Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64 (1), 112–

122. 

(40)  Farrugia, L. J. J. Appl. Crystallogr. 1999, 32 (4), 837–838. 

(41)  Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. 

Appl. Crystallogr. 2009, 42 (2), 339–341. 

(42)  Spek, A. L. J. Appl. Crystallogr. 2003, 36 (1), 7–13. 

 

 



 

207 

VITA AUCTORIS  

NAME:  Alaaeddeen Swidan 

PLACE OF BIRTH: 

 

Amman, Jordan 

YEAR OF BIRTH: 

 

1989 

EDUCATION: 

 

 

 

J. L. Forster S. S., High School, Windsor, ON, 2007 

 

University of Windsor, B.Sc., Windsor, ON, 2011 

 

University of Windsor, M.Sc., Windsor, ON, 2013 

-Dr. Charles L. B. Macdonald 

 

Cornell University, Grad. Studies, Ithaca, NY, 2015 

-Dr. Peter T. Wolczanski 

 

University of Windsor, Ph.D. Windsor, ON, 2019 

-Dr. Charles L. B. Macdonald 

 

 

  

LIST OF PUBLICATIONS 

1.  “2,6-Bis(benzimidazol-2-yl)pyridine Complexes of Group 14 Elements” 

Swidan, A.; Binder, J. F.; St. Onge, P. B. J.; Suter, R.; Burford, N; Macdonald, C. L. 

B. Dalton Trans., 2019, Published. 

2. “Halogen and sulfur oxidation of germanium and tin dications” Suter, R.; 

Swidan, A.; Macdonald, C. L. B.; Burford, N.; Ferguson, M. Inorg. Chem. 2019, 

58 (9), 6238-6245. 



CHAPTER 0LIST OF PUBLICATIONS 

208 

3. “2,6-Bis(benzimidazol-2-yl)pyridine as More Electron-Rich and Sterically 

Accessible Alternatives to 2,6-bis(imino)pyridine for Group 13 Coordination 

Chemistry” Swidan, A.; Binder, J. F.; St. Onge, P. B. J.; Suter, R.; Burford, N; 

Macdonald, C. L. B. Dalton Trans., 2019, 48, 1284-1291. 

4. “Phosphonium-Templated Iodoplumbates” Omahen, E. H., Binder, J. F., Jacobs, 

B. F.; Swidan, A.; Macdonald, C. L. B., ACS Omega, 2018, 3 (12), 17077-17082. 

5. “Diphosphoniodiphosphene Formation by Transition Metal Insertion into a 

Triphosphenium Zwitterion” Kosnik, S. C.; Binder, J. F.; Nascimento, M. C.; 

Swidan, A.; Macdonald, C. L. B. Chem. Eur. J. 2019, 25, 1208. 

6. “Synthesis, characterization and mass-spectrometric analysis of [LSn(IV)F4-

x]x+ salts [L = tris ((1-ethyl-benzoimidazol-2-yl)methyl)amine, x = 1-4]” Suter, 

R.; Swidan, A.; Zijlstra, H.S.; Macdonald, C.L.B; McIndoe, J. S.; Burford, N., 

Dalton Trans. 2018, 47 (46), 16729–16736. 

7. “Synthesis of Heteroleptic Phosphorus(I) Cations by P+ Transfer” Binder, J. F.; 

Swidan, A.; Macdonald, C. L. B., Inorg. Chem. 2018, 57(18), 11717–11725. 

8. “Tris(benzoimidazol)amine (L) complexes of pnictogen(III) and pnictogen(V) 

cations and assessment of the [LP]3+/[LPF2]3+ redox couple” Swidan, A.; Suter, 

R.; Macdonald, C. L. B.; Burford, N., Chem. Sci., 2018, 9, 5837-5841. 

9. “Oxidation of a germanium(II) dication to access cationic germanium(IV) 

fluorides” Suter, R.; Swidan, A.; Macdonald, C. L. B.; Burford, N., Chem. 

Commun., 2018, 54, 4140. 



CHAPTER 0LIST OF PUBLICATIONS 

209 

10. “Synthesis and structural characterization of new polyether complexes of 

germanium(II) and tin(II)” Secara, A. M.; Binder, J. F.; Swidan, A., Macdonald, 

C. L. B., Can. J. Chem., 2018, 96(6): 570-577. 

11. “Convenient Preparation and Detailed Analysis of a Series of NHC-Stabilized 

Phosphorus(I) Dyes and Their Derivatives” Macdonald, C. L. B., Binder, J. F.; 

Swidan, A., Nguyen, J. H., Kosnik, S. C., Ellis, B. D., Inorg. Chem., 2016, 55 (14), 

7152–7166. 

12. “Polyether complexes of groups 13 and 14” Swidan, A.; Macdonald, C. L. B., 

Chem. Soc. Rev., 2016, 45, 3883-3915. 

13. “Fe(IV) alkylidenes via protonation of Fe(II) vinyl chelates and a comparative 

Mössbauer spectroscopic study” Lindley, B. M.; Swidan, A.; Lobkovsky, E. B.; 

Wolczanski, P. T.; Adelhardt, M.; Jörg Sutter, J.; Meyer, K., Chem. Sci. 2015, 6, 

4730-4736. 

14. “Remarkably stable chelating bis-N-heterocyclic carbene adducts of 

phosphorus(I) cations” Binder, J. F.; Swidan, A.; Tang, M.; Nguyen, J. H.; 

Macdonald, C. L. B., Chem. Commun., 2015, 51, 7741. 

15. “Water and Ammonia Complexes of Germanium(II) Dications” 

Bandyopadhyay, R.; Nguyen, J. H.; Swidan, A.; Macdonald, C. L. B., Angew. 

Chem. - Int. Ed., 2013, 52, 3469-3472. 

16. “Low‐Oxidation‐State Main Group Compounds” Macdonald, C. L. B.; Ellis, B. D.; 

Swidan, A. In the Encyclopedia of Inorganic and Bioinorganic Chemistry; John 

Wiley & Sons, Ltd: 2012. 

 



CHAPTER 0CONFERENCE PRESENTATIONS 

210 

CONFERENCE PRESENTATIONS 

1. CSC2018 (101st Canadian Chemistry Conference and Exhibition), Oral 

Presentation, May 2018, Edmonton, AB, Swidan, A.; St. Ong, B. P., Macdonald, 

C. L. B. “Novel Pincer Complexes of Group 13-15 Main Group Elements” 

2. CSC2017 (100th Canadian Chemistry Conference and Exhibition), poster 

presentation, May 2017, Toronto, ON. Swidan, A.; St. Ong, B. P., "Pincer Ligand 

Complexation to Various Main Group Metals" 

3. CSC2016 (99th Canadian Chemistry Conference and Exhibition), poster 

presentation, June 2016; Halifax, NS. Swidan, A.; Schröder, J.; Macdonald, C. L. 

B.; “Towards The Synthesis of Anionic Carbodiphosphoranes”  

4. IRIS-13 (13th International Symposium on Inorganic Ring Systems), poster 

presentation July 2012; Victoria, BC. Swidan, A.; Nguyen, J.; Ellis, B. D.; 

Macdonald, C. L. B.; “Synthesis and Characterization of N-heterocyclic carbene 

adducts of PI cations.”  

5. CERM2012 (43rd ACS Central Regional Meeting), poster presentation, June 

2012; Dearborn, MI. Swidan, A.; Nguyen, J.; Ellis, B. D.; Macdonald, C. L. B.; 

“Synthesis and Characterization of N-heterocyclic carbene adducts of PI 

cations.” 

 


	Synthesis, Characterization, and Reactivity of Chelating Ligand Complexes of Group 13-15 Elements
	Recommended Citation

	tmp.1562620082.pdf.cFZ13

