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INTRODUCT ION

Our primary intecrest in this thesis is in open maps. e begin
by examining open simple (at most two to one) maps and consider when
a mop may be factored into open sirple ones. It is determined that
the orbit map of a periodic hameauorphisn of reriod Zk has this
property. Similar results are obtained for homeomorphisms of other
periods. In addition, we snow that a periodic honeomnorphism of
period 2k on an n-manifold which is the identity on a donain rmst
be the identity on the whole ianifold, thus extending a result of
H. H. A. Newman (10).

In Chapter 2 we also obtzin an cxt.emion. of a theorem of whyoburn
(19: X; 7.3), cetting a forrmla relating the degree (order) of a
map, the size of the singuiar set and ils inverse, and the Luler
characteristics of the douizin and range. wWe consider the case where
the domain is a union of 2-nanifolds without boundary, intersecting
only in arcs, and the range is also a 2-manifold without boundary.

Chapter 3 is concerned with the question, “If f/N is the re-
striction of an opecn nap to a campact nodal set (subset having only
one boundary point), is there necessarily a campact subset of N
mapping onto £(H) so that the restriction of £ to this set is open?®
A negative answer is provided as are conditions under which such a
set will exist.

In Chapter li, a finite to one open map of Bing's house with two
roons onto a 2-sphere is exhibited. Additional theorems slightly gen-

eralize the techniques used to insure that we get an open map.
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Chapter 5 contains a collection of examples and countcrexamples

which are related to work done in the first four chapters.
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CHAPTER I

OPEN SIMPLFE MAPS AND PERIODIC HOMEONORPHISMUS

In (1) K. Rorsuk and 2, Molski studied a class of maopings,
called the mappings of finite order. A maoping defined on a space
X is said to be of order ¥ k if for any y in f£(X), f'l(y) contains
at most k points. Thev take particular interest in the manpings of
order < 2, which are called simple m2os. In this »naver we will also
require that a simple man have at least one noint inverse with car-
dinalitr two. Porsuk and ''olski nrovide a number of examnles o!
simple mans and pose several nroblenms concerning them., Among these
is the question of whether or not there exists a continuous manning
of finite order which is not a sunernosition (comosition) of a
finite number of sirple mampings., In (11', X, Sieklucki shows
that every such map on a comact, finite dimensional space is such
a suoervosition and gives an examole of a map of Tinite order on an
infinite dimensional commact snace which cannot be so reduced., J. '.
Jaworowski ooints out in (8) t-at an open sirpmle man on a compact
space induces a continuous involution (and hence a honeonorphism)
on the space and vice versa. Thus there is a direct connection
between the study of onen simple mans and that of homeomorohisns
of veriod two, P, A. Smith has made an extensive study of homeo=-
morphisms of finite period (12,13) which should nrove useful to
an exhaustive study of open simnle mans,

Py the sinpular set :f of a map f from a svace X onto Y we will

mean the set of all points in X where f is not locally one to one,




we will show that in the case of an opnen sirmle man between manifolds,
the singular set is exactly the set of points that have {x ]-
t.lf(x). ''e first obtain a few preliminary results. Let L denote
{x: 1=} -0}
Lerrna 1.1t Let f be an onen simple map of a compact space X
onto Y. If x is in L, then either there exists a neighborhood U
of x which is contained in L or x is in :'4:.
Proof: If such a U does not exist, then there exists a sequence
{xn} converging to x such trat {xr} b f"lz'(xn). Cince t is
continuous, {l‘(xn) } converges to f(x); and since £ is ooen
and X is compact, {f‘lr(%)} converges to f'lf(x) = {x} 2
Thus any neirhborhood of x has points X, and yn in it with
f(xn) = !'(yn) and so £ is not locally one to one at x, indicating
that x is in Ff. //
Lem'na 1.,2: If f is an onen simle map of a cormpact s»ace X

onto Y, then x is in P, if and only if x is a boundary point of L,

f
Proof: If x is a boundary point of L, then there exists a
sequence of points {’5\} contained in the complement of L
which converges to x. As in Lerma 1, {(-lf(xn) }conver:_es to
f-lf(x) - {x} and so f is not a local homeomorphism at x
since the cardinality of f-lf(x.n) is two for each n. Conse=
quently, x is in Pr.

If we assune x is in Pe, there will exist sequences {yn}
and {zn} converging to x with f(:'n) - f(zn). Thus anv neigh-

borhood 7 of x has points in the cormplement of L; but 7 also




contains a point of L, namely x. Thus x is a boundary
point of L. //
Lema L is a slight extension of a thecrem by I, 3., A. Newman (10)
Theoren 1.3: (Newnman) Tf a uniform coatinuous transformation
of period 2 on a locally Fuclidean metricized connected n-dimensional

-

space ', leaves the noints of a donain U fixed, it leaves all points
of !, fixed.

Lerma 1,1z If a homeonorohism T of neriod 2 on an n-manifold M
with or without boundary leaves all noints of a donain D fixed, then
it leaves all points o” " fixed.

Proof: The case of a manifold without boundar~ is covered by

Newman's theorem., lLet © be t-e boundarr o® ‘e =anifold M,

Consider T restricted to =7, Tt is also of neriod 2, and

moreover,!!-? is connected and locall-—- *=clidean. Since D is

a domain, and hence open, D=2 will be ooen and non-empt” since

the interior of B is epty. Let "' be a comonent of 3-3,

Thus D' is a domain on which T/i-_5 is fixed, which means that

T is fixed on all points of !'-® from Theoren 3. If x is in 3,

then there is a seaquence of pnoints {xn} ccntained in -3

converging to x. Py continuitr, {T(LJ)} will converge to T(x);

however, T(x,) = x, ind so T(x) must be x. Thus T leaves all

points of !t fixed. //

Corollary 1.,5: If a homeomornhism of period 2‘( on an n-manifold M
with or without boundary leaves all pcints of a domain ) fixed, then

it leaves all points of M fixed.




Proof: By Lerma L, the theorem is true if k = 1. Assume

4t is true up to k-1. If f is a homeomorphism of period 2k
which leaves a domain D fixed, then fz is a homeomorphism of
period ol leaving D fixed, and hence £2 leaves all of M
fixed by our induction assumption. If this is the case then
£ is a homeomorphism of period 2 and consequently leaves all
of M fixed, by Lema L., //

Ye are nov ready to show that the sinpgular set is exactly the

points which are singleton noint inverses.

with

Lemma 1.,6: If f is an open simple man of a comnact n-manifold M
or without boundary onto Y then Pf = L.
Proof: '‘e first show that L has empty interior by assuming this
is not the case and arriving at a contradiction. Swmpose D
is a domain in L. J. '". Jaworowski (8) has shown that the in-
volution T on X induced by the open simple man f will be contin-
uous and hence a homeomoronism of period 2. The fixed points
of T will be the points of L. Since D is a domain on which T
is fixed, Lerma L implies that T is fixed on all of !, Put this
would mean that f is one to one on :! and hence a homeonorohisn,
violating our requirement that a simmle map have at least one
voint inverse of cardinality two. This contradiction shows that
L must have empty interior. Since this is the case, Lerma 1
indicates that L is contained in “f.

If x is in ’r, then x is a boundary point of L by Lerma 2,
Thus there is a sequence { xn} of noints contained in L con-

verging to x. Therefore, by continuity and openness,
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{ f‘lf(xn)} converges to f-lf(x) which consequently must be

Just one noint, { x} « Thus x is in L and we have shown con-

taimment both ways, so L = 2., //

Remark: Since Church and Hermingsen (3) have shown that a
strongly open map f defined on a locally cormact, separable metric
soace and having the point inverses being sets of isolated voints
has the pronerty that it is dimension preserving on closed subsets,
it follows that the inage Y above must be n-dinmensional,

In (1), Borsuk and “olski defined a map to be elementarr if its
domain is metric and if there exists a positive number w so that for
every two different noints'x and x', if f(x) = f£(x'), then d(x,x') > w.
They then show that every elementary man over a compactum is a super-
position of a finite number of simple maps. Ther also raise the
question: "Does there exist a continuous maoping of finite order
which is not a suwerposition of a finite number of simple mapoings?"
Sieklucki (11) has answered this in part with the following:

Theorem 1,7: (Sieklucki) “very continuous maoping f of order < k
(k 2 2) defined on a compact n-dimensional snace ¥ is a finite suner-
position of simple mappings.

It thus seems natural to ask:

Ouestion 1,1t Is everv open manning £ of order <k (k = 2)
defined on 2 compact n-dimensional snace a finite supernosition of
ooen simple mapnings?

That this is not the case is demonstrated bv

Theorem 1.8: If the open map f between 2-manifolds without bound-

aries is the superposition of n open simnle maps. ten f is of order 2".

S T S S =




Proof: Suppose f = fro fp_jo...o f) where ri is an open simple

map from A onto A withAO:Aa.ndAnzB(fmapsAontoB).

i-1 i
From a result of Whyburn (19: £; L.L), the Ai will all be
2-manifolds. Since a 2-manifold with boundary will not map
openly onto one without boundary, and since B has no boundary,
the Ay rust also have no boundary. Whyburn has also shown (19:
X; 6.3) that the set f:l(Li) - fi(Bfi) is finite since the f, are
light open maps on 2-manifolds. Thus for any open simcle map
between 2-manifolds without boundary, all but a finite mmber
of point inverses contain exactly two points. we proceed by
induction, assuming that amy map between 2-manifolds without
boundary which is the surerposition of n~l open simple maps has
the property that all but a finite nwiber of its roint inverses
contain exactly 2™ points. The map £ will then have its point
inverses containing exactly 2" points c:cept for the (finite
mumber of) points in 5 vhere fn has singleton point inverses, or
the points (finite in muber by the induction asswition) which
are images of points where i‘n_lo...o fl has point inverses which
Bave Tess than I polnks. Thus Lie cardinality of £~if(y) is
2" except at a finite mumber of y in 3, and so £ is 2" to ore.//
Since a three to one nap such as w = :.3 on the unit sphere could

consequently not be a finite surerposition of open simple maps, we

have obtained a negative answer to wuestion 1.1.
In a map where such a factoring i:c possible, we have
Lama 1.9: If a k to one map between compact 2-ianifolds without

boundary, A and 3, can be factored into open sirmple maps fl,..., s o
s

[¥__




where fi naps Ai—l onto Ai with Aw A and As' B, thenkr = n =

iz:l 24-Ir, where r, is the mmber of singular points of f,, r is the
cardinality of B, (i.e., the mumber of singular points of f£), and n
is the cardinality of f'lf(Bf).
Proof: As in Thecrem 8, the A; will all be 2-nanifolds without
boundary. Applying a result of Whyburn {see Theorem 2.1) to the
naps f:l.’ we get 2x(Ai) - (A\i_l) = 2r; - n; Waere n is the
cardirality of f;lfi(Bfi). But for open simple maps n =T,
because Sfi= ix : f;lti(;:) = {z}} by Lemwa 6. ience
“ "(‘\i) -y (Ai_l) = r. Theorenm 2.1 also gives us kr = n =
kx (3) - x(4) = 25y (Ag) = v (A;)s Thus we can prove our luma

T
by showing that X(A) = 2% (4.) - 223 r . If s =1, this
aing that ¥ (4 X (Ag {5 .o =1,
is true fron our earlier re.ark on fi. :roceeding incuctively,

s=1 .
we assune that ¥ (4)) = 2%y (o) - =221 . since
s=-1 is) - S
27(‘8) = Y(As_l) =T, ve have Y (Ao) = 25-1(2*( (4g) - rs) -

= 2 = 2%v(a) - Zs e . //
i=1 i=l

As we nentioned earlier, Jaworowsiidi has shown that an open simple
map on a coapact space induces an involution and vice versa. Thus
there is a direct connection between the study of open simrle maus
and that of hameomorphisns of jeriod 2. In view of Lema 6, the sing-
ular set of an open sirmle map on a compact space corresponds to the
fixed point set of tie induced involution. rhe next theorem indicates
that there is also a relationship between honeamorphisms of reriod 2"
and maps which can be factored into open sinple ones, “e first prove

4 necessary lermma.

Ek—_




Lerma 1,10: Let h bc a hameamorphism of finite period p defined
on a conpact space L. Then the orbit map £ induced by h is open.

Proof: We will use the following characterization of open mans

on cau-act spaces: "If f is a map on a com:act svace, then it

is open if and only if given any o.en set U, the set f'lf(U)

is also open."” Let U be oren in L. Then f"lf(U) = lx : £(x)

is in f(U)] = {x : hi(x) is in U for same i } s since h nas

finite period. 3ut this is exactly the set U Uh(U) Ueee!!
hp-l(U) which is clearly open since h is a honeomorphism.

Therefore £ is an o-en map. //

Theorem 1,11: Let h be a periodic hancororpnism of ; eriod 2k
defined on a campact space L. Then the orbit map f associated iith
h can be written as the superposition of k open simple maps.

Proof: (By induction) If k = 1, then Jaworowsiki's result shows

the orbit map is itself open and simple. We assu.e the result

is true for hoicamorphisns of ;eriod 25-1. Let h be of period Zk.

Then h° is a hozeonorphisn of period 25~F and so the orbit map
f2 of it can be uritten as thc superposition of k-1 open sirple
maps; f2 ® ) 10020 Ey- Define ﬁlc by ;,k(y) = f(f;l(;.')) which
maps the orbit space of h? onto that of h.
Claim: gk is an ooen simple map. :
() g, is well cefined since for any %, the h -orbit of x is
contained in thie h-orbit of x.
(2) g 1s open since f, is continuous and f, being an orbit
map of a honeociorphisn of finite period, is open by

Lama 10.




(3) gy is continuous since ;;1(0) = fz(f'l(U)) will be open
if U is open because f is continuous and r2 is open.

(L) gy 1s simple since if y is in the heorbit of x, g;l(y) =
fz(t-l(y)) is the set consisting of the h2-orbit of x
urdoned with the set consisting of the hz-orbit of h{x),

Consequently, g, is open and simple and so f = GO £, ;0.+0 gl.//
Note that at amy stage, the map gio...o Bl is the orbit map

w2t

of « To illustrate what is happening, consider tie following

schenatic diagraz for the case of k = 3:

(=} b} () (P

h ()]

[n8} {ncx)

{x, hh(x)} {h(x), hs(x)} h:(z), hé(x)] {hB(x), h7(x)}

{x 2@, 50, 1%} {atx, B, P, 1]
{x, h(x), n(x), n>(x), h (), b (x), 15), vlm]
From top to bottom the rows represent tlie hs(idcntity)-oxbits,
hh-orbits, hz-orbits, and h-orbvits of x respectively.
If we turn our attention fron open siizle naps to oren uaprs of
other order, the following generalization of Theorem 1l occurs:
Theoren 1.12: Let h be a periodic honeaorphisz of period p*
defined on a compact space L. C“hen the orbit map f associated with
h can be written as the surerposition of k open maps of order p.
Proof: (3y induction) If k = 1, then tie orbit map is an open
map by Lerwia 10 and obviously has order p. Asswie the tlicorem

is true up to k-1. If h is a honeomorphism of period pk, then 1




is one of reriod pk-l and so its orbit map can be factored,by
the induction assumption, into k-1 open maps of order p. ihus
fp = g 10-440 By Define Ck by gk(y) = f(f;l(y)) which maps
the orbit space of nP onto that of h.
Claim: gkiaanopennap of order p.

(1) g_1s well defined since for any x, the i -orbit of x is
contained in the h-orbit of x.

(2) 8 is open since fp is continuous and f is open by Lema 10
and so gk(U) = f(i;l(U)) will be open whenever U is.

(3) &y is continuous since f is continuous and fp, being the
orbit map of hp, is open by Lema 10 and so L;;l(U) =
fp(f-l(U)) will be open whenever U is.

(L) &y has order p, since if y is the h-orbit of x, tien
g;]‘(y) is the set consisting of tae hP-orbits of x, h(x),
eesy and hp-l(x).

Thus g 1s open and ol order p and f = g0 B 10°++0 &+ /7
An even better result along the same lines as Theorens 11 and 12:
Theoren 1.13: Let h be a periodic horicamorphism of period p =
pIPZ"'pk defined on a cormact space X. Then the orbit map f associ-
ated with h can be written as the superposition of k open maps
of orders P, Pyseses pk'
Froof: (By induction) The case k = 1 is true since the orbit
map £ will be open by Lama 10 and has order pl. Assune the
theoren is true up to k-1 and let h be as specified in the
hypothesis. Then h'kK is a honeororphisn of ;eriod p.p ...p

L2 k-1
and so its orbit map tpk = 01040 £y is the superrositdion

i+_




of of orde eee .
open waps OF QXEXS P,y Doy cwss Py,

%(7) = f(f;i(y)). By arguments identical to those in Theoreans

Define E‘k by

11 and 12, we can showt.hatgkisopen.mdoforderpkaMSo

L= O B 10 -0 O & satisfies our conclusion. //

We will say that a map f of £ onto itsclf is equivalent to an

action by a group G if G is a group (under camposition) of ho:eo-

morphisms of X onto itself such that for any x in X, the orbit of x,
denoted o(x), is cqual to r'lf(x). A general question to be asked is

Question 1.2: Uncer what conditions is a function equivalent
to an action by a finite group?

The following theorem indicates a necessary condition for this:

Theorem 1.,1;: If f is a map of a compact space X onto itself
which is equivalent to an action by a finite group G, then £ is a
finite to one open map.

Froof: Let G = {g B'n . Then for each x, f'lf(x) = {g {x);

17 i=]1 1

gz(x),..., gn(")} and so f is n to one. e will show f is open

by showing that for any opcn set U in X, £ f£(U) is also open.

This is so because £™1£(U) = UfP e(x) = °°(‘) = { yeX 3

¥ = g;(x) for some 1<i=<n :md some X in UT i-Ulg ;(U) which

is open since gi(b) is open for each i because the Ci are

homeamorphisns., Thus f is an o en map, //

Theorem 1.15: let f be a nmap of a compact space £ onto itsclf
which is equivalent to an action by a cyclic group of order p =

P Then f can be factored into k open maps of orders pl,

lpzo o-pk.
pzpo eey and pk-

Proof: The proof will follow those of Theorems 11, 12, and 13,

l¥—_




and will be by induction. If k = 1, then by Theorem 1, f

is itself an oocn ma; of order Py in which case the conclusion
is satisfied. We assume the result to be true up to k-l. Since
the group is cyclic, there is a homeocorpiism h in it which is
the generator of the group. Let fpk be the orbit map of hpk.
Then it is equivalent to the cyclic group G/('up k) of order
plpz...pk. « Thus f_ can be factored into naps of orders pl,

Pg
p2,..., P by the induction assumption, so £ = 8k,-1°'"° gl.

k-1 Py
We define gk(y) to be f(f;;‘(y)). By the sane arpiments used in
Theorems 11 and 12, gkm'.llbe anopenmapoforderpkandhence
fa 8o B 100+ El satisfies the conditions of our conclusion.//
Corollary 1.16: Let f be a map of a compact space X onto itself
which is equivalent to an action by a cyclic zroup of order 2". Then

£ can be factored into k open simple naps.




CHAFTER II
EXTENSIONS OF A T=ZEO.R. CF WHYBURN

S. Stoilow (1, 15) began the study of light open maps on
manifolds by analyzing thea for the case where the domain and range
were both regions on a 2-sphere or plane. wWhyburn continued this with
an extensive study of light open maps on 2-manifoids (19: £), showing,
among other things, that they zre finite to one and that the image is
necessarily a 2-nanifold. e also showed that a lignt open iap
between 2-nanifolds without bo.ndary is locally W = zk for some k and
that one between corpact 2-nanifoids is siiplicial. The result with
which we shall be interested establishes a relationship between the
degree (order) of the rap, the tuler characteristics of the spaces
involved, and the cardinalities of the singular set and its inverse.
E. E. Floyd (5) has proven a sidlar aprearing formula for periodic
homeonorphisms of prime period on certain spaces. whyburn's result
when restricted to the case of a map between compact manifolds without
boundary says the following (19: £; 7.3):

Theoren 2,1: (Whyburn) If A and o are campact :-dimensional
manifolds without boundary and f(A) = B is a light open map of degree
k (i.e., is k to one), tiicn kx (3) - X (&) = kr - n, where r and n
are thc mmbers of points in ¥ and 1'-1(1'), respectively, w.cn Y is
the set of all y in 3 such that f-l(;r) contains a point of A at which
£ is not locally topological (i.e., Y is the i.age of the singular
set of £) and ¥ (Z) represents the -uler characteristic of Z.

R S L W Rt
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We can easily obtain an extension of this theorem to n-tianifolds
without boundary if we limit ourselves to the special case of f beding
an open simple siiplicial map.

Theorem 2.,2: If f is an open simuple simplicial map between
n-manifolds without boundary, A and B, then 2y (B) - ¥ (&) = > ().

froof: By Lemma 1.6, Y will be the sct of points in 3 whose

inverses consist of exactly one :oint. lNow let K and H be
triangulations of A and B making f sinplicial. If a relative
interior point of a k-siiplex is in Y, then this sim:lex has
aonly one k-sirplex napping onto it and hence the whole x-siimlex
is in Y. DBecause of openness all subsimplices of it rust also

be in Y and hence Y is a subconplex of H. Let ai, bi, and 75
be the mmber of i-sisplices in n, H, and Y, respectively. For
each i-sirplex in H, there are cither one or two i-simplices in
K which map onto it. If there is only one, then the sirplex is

in Y. Thus a, = .Zb1 - yi or 2bi -a; =y;. Wwe then get

n n
E Dby - a) = F DY or 2%05) - x() = x (0. /

Corollary 2.3: There is no open simple map of a 2-torus with

n handles (n 2 2) onto itsclf.
Proof: The zuler characteristic for such a space is negative,
being -2(n - 1), which would force the Euler characteristic of
Y, which is just the number of singular points of f, to be neg-
ative. Clearly this is im-ossible. //
Our main effort in this chapter will be to get a forrmla sinijlar

to Whyburn's (altiough :ore involved) when f is a light open nap onto

B - R IR T}
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an oriented 2-manifold from a space consisting of a finite mmber of
oriented 2-manifolds intersecting each other only in a finite number
of disjoint arcs. We will show that f will be I to one for soume k.
For notation, let Y denote the set of all _oints in B whose inverses
contain a point where f/ Ay is not locally topological for saue i.
iet r be the number of [oints in ¥ and n iie nwier in f-l(‘[).
Furthertore, let Q dcnote f-l(I)-(iyj(Ai'Ad)), where Vew represents
the intersection of the sets V and 4. We give the state.ent of our

main theorem now, but defer the proof until the end of the chapter.

n
Theorem 2.l;: Let £ be a light open map of ! onto 3, where
i B 1=l %
the A4, and B are oriented 2-inanifolds without boundary ard i‘) (Ai-Lj)
-l

i3

is a finite union of disjoint arcs. Then

kx (B) -ély_(Ai) RN
xey

where d(x) = -1 % 7 lAi: x is in Ai} (i.e., thc nuaber of duplica-
tions we get by counting x in each of the nmanifolds containing it.)

We bezin woridng toward this result by considering a rather
restricted case of it.

Theorem 2,5: Suppose £ is a k to onc open siilicial map of
11U ‘2 onto B where Al’ AZ’ and 3 are 2-nanifolds without boundary,
and ‘1"2 is the urdon of a finite muber of disjoint arcs. Then
kx (B) = X (&) = % (&) = k& = 1 = 4(£7(D)ea od)).

We will prove this by showing f restricted to each of the ‘i rars
it openly onto 3 and then aprlying ahyburn's result, Theoreaz 1.

Theoren 2.6: Let Il and K be 2-couplexes with underlying spaces

X and Y which are 2-manifolds without boundary. Let f be a sirplicial

N A e e R el = I ¥
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nmap of X into Y taking each simnlex of H homeomorohically to one of K.
Then the set S of all l-simplices in 4 where f is not locally one to
one (where folding occurs) has the property that S” has no endpoints,
where S" denotes the set of all points belonging to a member of S.
Proof: Suppose p were an endpoint of s* and let t‘o be the
l-simplex containing p at which f is not locally one to one,
Since X is a 2-nanifold without boundary, the 2-simplices con-
taining p form a 2-ball. Label the 2-sirmlices containing o
31, 32, ceey sn in clockwise order starting and ending with ones

containing to. Let t, denote the l-simplex that is the common

.
face of s, and si’ « OSince f is not locally one to one at to,

i
8 and sn get maooed to the same 2-simnlex in X. Cince t.i
(1= 1, 2, ..., n-1) is not in S, s; and s;,, alvays get mapped
to different 2-simnlices. 3ecause each l-simlex in ¥ has
exactly two 2-sirmlices containing it and f(sl) - f(sn), the
simplices s, and Sn-1 must both ret manped to the other 2-simplex
which contains r(t.l) ° f(tn_l); . !’(32) = f(’n-l)' Tre same
argunent will show that f(s3) - r(sn_z),..., fsg) = £(s,_44,)
for i £n/2, If n is even we zet f(sn/z) - f(sn/2 +1)s contrary
to our earlier assertion about consecutive simnlices. If n is
Tre 2-simmlices s

odd then f(s = f(s

(n-1 )/2’ (n+3 )/2) ‘ (n=1)/2

and '(n03)/2 each abut on s(n*l)/? and so bv our construction

the faces t(n—l)/z and "(n*l)/z of ‘(n‘l)/z
to the same l-simplex in X, which contradicts f being a si-opli-

will both be maoped

cial man. Thus whether n is even or odd we are led to a contra-

diction and hence S has no endnoints. //

IR e B
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Corollary 2.7: Let f be a k to one open simplicial map of X
onto Y where X is the union of a finite number of 2-manifolds without
boundary, Ai’ so that the union of their pairwise intersections is
at most a finite number of pairwise disjoint arcs and Y is also a
2-manifold without boundary. Then f/Ai mans each .\i openly onto Y,

Proof: Since Y has no boundary and f is open on ¥, the only

l-simnlices vhere f might not be locally one to one would

have to be contained in the intersecting arcs. Restricting

our attention to f, = f/Ai, the set S of Theorem 6 must be a

finite union of arcs and hence must be empty since it has no

endpoints, If p is in the interior of a 2-si-plex in ”i’ then

f being simplicial insures that f(o) is an interior noint of

the image of any Ai-nei;'.hbox‘.tood of p. If p is an interior ooint

of a l-simplex in ‘Ti, then 5 being empty guarantees that fi is

open there, If p were a vertex and fi were not ooen there, t-en
the image of the star neighborhood of p in .".1 would have to niss

a 2-simplex in the star neighborhood of f(n). >ence the inage

would have a free edge. PFut the star neighborhzod of p in '\i
has no free edges and so S would have to be non-empty which we
have shown is not the case, Therefore f‘i is open. “hyburn has
shown that the light open image of a 2-manifold is itself a
2-manifold (19: ¥ ; L.L); so !‘(.\i) is a 2-manifold, Since 5 is
empty, it must be one without boundary and consequently r(Ai) -Y

since otherwise, being open and commact, it would produce a

separation of the connected space Y. //

|
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Proof of Theorem 5: Let Yi be the set of noints in & whose

inverses contain a point of A  where ri is not locally one to

i

one, Let ri be the number of noints in Yi and ni be the number
-1 H 3

in 1’1 (Yi). Clearly, Y = !1L 'r? = Y]'. v 5" (Yl Yz) where Y{ -

21- Yz and Yé = Y2- H and the last union is a disjoint one.

Let ri and n{ be the cardinalities of Y! and f;l(‘{i) and let

B
ki be the degree of 1'1. Yh-burn has shown that if fi is
locally one to one at each noint of f;l(p) then ’f;l(p) = ki

(19: X3 6.3). If y is in Yi, then it has k, oreimages in A,
and a certain number of preinaces in 5.1, with anyr oreimages
that are in ﬂ.l'Az having been counted twice. “'ence, in f'l(\'i)
-1
! > 5 n, - # *V,_ ) oA oimage
there are k2r1 preimages in A?_’ N (£ (Y1 2) 1) preinages

in %1 (since n is the nimber of preinages of Yl in ‘..1 and

"(f"l(Yl'Yz) 0)\1) is the number of nreirages of "1".'2 in 1)),

B
and #(f-l(‘:'i) .AI.A2) preirares vhich are in both. Thus

-] -1 -1

] = 1 - BT Vv eV Ve - ¥ 1Yer o
# (Yl) k2r1 *n - (£ (j -2) 1) #(f (Yl) A ,‘2) and
#71(1g) = kg ¢ ny = H(ETHG ) - A(ETH(T)eA A by
- I P - *Liv ov Von

a similar arrfument. .Ao;ecver, > 4 (‘.1 Y2) #(£ (Yl .2) "1) +

-1 . . o H(FTT(V oY )or o2 Q v
#(f (Yl YZ) Az) (f (77,0 ‘2). Since Y is the disjoint
union of ‘:’i, Y'2, and Y1°Y2, the cardinality of 1"'1(‘1') is the
sun of these three cardinalities; hence n = s (V) = k2ri . n, -

2 =
A(r (Y]'_)‘Al"\z) *kyry ¢ n, = 3L (‘.'5)"‘~1'§-2) -
5(('1(21"{2)-}\1'#.2). Arain because of the disjoint union we have

-1

ne= kzri + l&ré - nl + n2 - %(f (Y).Algp‘?). “ut ri - #(\[1_‘_’2)
will be the number, T of ooints in Vl minus the number in ‘:'1".’2

' 2V o
and sirdlarly for o Therefore n = kzrl - k2( -(Yl YQ)) +

LN PR L B




b1r2 - k‘l(‘(!l'Y?)) +n) +n, - 0(f'1(Y)0A1-A2) = k2r1 - )glrz
K(#(4+T,)) +n, +n, - ﬂ(f‘l(Y)'AloAz), snce k =k, + k.

For this reason,too, we now ;',ctn - lvcx-1 - klrl Okr2 - k2r2 -
k,‘YoY))On +n_ - #¢° (Y)-A-A e« Butr=sr +r =
*# 1 2 1 ) 8 2

J(Y-Y),andaon-kr \&r-kzr?*nl*n?-‘("‘l(") oA e

Rearranging terms, we have kr - n = k_lr -n o+ k2r2 2 +

#(£~ (Y) Lluz). Since fi is an onen map onto R, Theorem 1 is
apolicable and we get kr = n = klv("’) - y“l) + k x(?) -
v(Az) * METHDAA 1) or kx(2) - x () - x (2, ) =kr-n
#(£~ (Y)'tI °A ), which is what we set out to prove. //

Our method of oroof requires us to have fi be open on each .\i

in order to apply Theorem 1. That we need the image F to be a

2-manifold without boundary is evidenced by the following examnle

of an oven map from a union of two 2-snheres joined on an arc onto

a disc which is not open when restricted to each of the 2-soheres.
Exarmle 2,1: Let X be the union of two S1 n
2-spheres S1 and Sz joined on an arc ‘(nes).

Y'e first describe f on 51. Let 31 have six

19

').

2 c
points on its ecuator snecified in orer, =~ i

a,b,c,d,e,f, These points together with the \

north and south noles, n and s, induce a

sirmlicial subdivision of S1 into twelve b

2-sirmlices, To describe f on Sl, we “irst - c

reflect the lower hemisphere onto the uoper
so that sab goes to nab, sbe to nbe, and so

on., ‘low fold first along bne so that ¢ goes e




to a and d goes to f, and then fold again

along A(nf) so that e goes to a. The simnli-

cial map this induces is not open at points

on the open arc A(nes) since the 2-simplices 5

containing faces ne and es all get manped to

o

the same 2-simplex naf and the image of ne b
and se, narmely the l-simmlex na, is not a ‘ree a
edge of abnf.

Let 52 be labelled in the same way let f !
on S, be the nmap described above followed b
a reflection throush na so that a simplex in
Sl that went to naf will have its countervart in S? foinz to
nab, and one that went to nab will have its countervart roing
to naf. Let S, and 52 have tre arc A(nes) in comon. Since
the 2-simplices in 31 containing ne and es fo to naf, wvhile
those in S2 containing then zo to nab, the map f will be oven
along the arc A(nes), and hence everywhere, even though the
restriction of it to S or S, is not open. 4
Generalizing Theorem 5, we get

Theoren 2.8: Let f be a k to one open simplicial nap of Y =

n
'l Ay onto B where ? and the Ai are 2-manifolds without boundarr and
i=1
n (.\1-A ) 45 a finite number of disjoint arcs. Then k ¥(2) -
J
143
m
2 X(4,) = kr - n - & d(x) vhere d(x) = -1 + -‘{A : x€A l and
1= i x i i
Q= £1(v)( U3 oA,)).

143

Proof: (By induction) <rom Corollary 7, fi = f/Ai will man N

,
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ovenly onto B, If m =2, 3_d(x) is simply AQ = 4(£71(Y)eAy°A,)

xeQ
and so our conclusion holds from Theorem 5. Now suppose the
Mel
theorem is true up to m=1 and let Y' denote Yon U 1\ = X!
i=1

with k', r', n', d', and O' playing corresponding roles. Then
Y=Y UY, = (Y'-%)U (Ym-‘!') U(Y'-Ym) vwhere this last is a
disjoint union. Hence (1#) n = "‘f'l('I) = #(f’l(Y'-Ym)) +
P(f'l(Ym-Y')) + #(r‘l(y'-ym)). To count the points in r‘l(Y'-‘fm)
we can count those in Am, add those in EiAi, and subtract those
in both. Since fn is locally one to one at all vpoints of

1 o -
f; (Y'-Ym), there will be km( (Y'-.’m)) such points in e Since

m-1
there are n' points in t“l(‘!'). Uy Ay, there will be n' -
i=1
1 m-1 21 m-1
#(t (Y'-Im)o UA,) points fron £ (Y'=¥Y ) in y A,. Conse-
1 1 m' g 1

quently (2) A(£7H(¥1-%)) =k (#(Y'-1 ) + n' -

Me=

1 m-1 =1
#(L~ (Y“Ym)'iLiAi) - #(f (Y’-Ym)'(iyl(um-.ki))), the last term

representing those points in both Am and X', Considering

f'l(Ym-Y'), it has through similar reasoning, n; -

m-1
1 -1 A e
(g7 (Y,*¥')*A,) points in A, and #(£ (Ym.Y').il'l(""‘ Ai)) points
m-1
in both Am and U Ai' As for the number of noints it has in
i=1

m-1
i.;]lki’ since points in Y -Y' are not in Y', they have ki
preimages in each of tre Ai (L = 1,2,00e,m=1)., Taking into ace

count the duplications we get from preimages that are in more

than one A,, and the fact that k' = kl + oot km-l’ we {ind that

1!
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m=-1
I (H_Il) has “l(”{»(Y -Y1)) - Zd'(x) point" in UlA where
m-1l im

R= Ny -xr)oi";‘ (&;°4,). Thus QQ Ay - -11)) =

K1 (L,-11)) - z )y = AN -

n-l
Fi¢a (Im-Y')- u (Ai A;)). Similarly, if we write ,f(f (Y °Y1))
m-
as the mmbcr of points in 4 plus the nuiber in 'J A, minus the
iz 1

muber in both, 8, we get gu_i #(£™ ’!m”'/) M1 ) o
3(f-1(1n Y')' l;'ln RET It (1m°Y')' U (nm 44)). Combining (1x),
(2#), (3%), and (i), we £ind that o = k (/(11-L)) + nt »
m-1
k'(#(Y -Z{')) +n - zad'(x) - #(L (Y/ iu (a,-a )), the 1ast
xe€
tem caiing from the fact tiat I is the dis: Joint union of .L =1V
!'_E! and :Y-' *Y!'!, Thenn = lsn(r' - f\L ’I')) +n! + k’(!‘ -
2=-1
FeX") sy - Edr(x) - 45 Y2) u(A *A;)). Since
x el iay # <
k, + k' =k, we have n = kr' - k'r! - k(L X))« k'(4(L,0X"))
o Bt o lTy gy = KAGT) + K (A(I01) +n, - o, V)=

i(f‘l(I)o u (An 4;)). lloreover, since r = r' - #(X'X;), we get
i
naekr- k'r' +nl -+ - X d'(x) - J(f-l(z)‘z(ﬁn‘Ai))-
¢

xead
Using Theorea 1 on % and the induction assw. tion, this becanes
m-l
() n=ix -k (3)+ Evly) - X 4@ -Xy(m) »
X n-1

v (Ag) - i d'(I) - (£ (I)'i:l(‘im'ii))- Since ' =

1 n—l x m-1
.y (A ) and R = £7(¥_-Y')s U (A *A,), they are dis-

i3 T R
3,i=1 J,i=d

joint and their union is ‘-1“”:51‘1('\1"3 )« We make the following
,iml
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e m-1 ]
Clain: = a%x) , = d'(x) + #(f (Y).i'il“n ) =x§d(x)o

xeld xeQ!
Proof: Let x be a roint of 4. Since d(x) is one less than
the mxber cf iy (i<m) contzining x and d'(x) is one less

than the mmder for 1<m-1, if x is in G-4_ tien d'{x) = d(x)
and if x is in J*A, then d(x) = d'(x) +1. Thus & d(x) =

xe Q
x d(x) » i\"'lm). But Q! and R together give all points

of § exce-t those which are inA and exactly one other Ai.
For these —ci=ts, d'(x) = O and so Zd(x)- zu (z) +

xr

zd'(x)- Consequently, b d\‘() - z d'(x) + z dr'(x) +
xeR xe Q xrQ!

- - 2 e 1] . ))e - 1+ . e
#(Q ‘n)- Zat ¢ *; =(f (Y) ifjj\“i Aj)) ‘m = £7(¥) i‘i](.Ai An)s

J,i=1
proving cur clzin, /

Cocbining cur cku.mnth (5%) and the fact that k = k' + L
we get n = k= - kv(.i)"z_v(Ai) E_d(‘c) learranging the
terms we pet tie canclusion of our txo;rm //
In order to cet a rore general result than Theoren € by dropping
the k to one and the sinmplicial conditions, we first show taat a light

open map between s-aces of the type we are considering is necessarily

finite to one.
n
Theoren 2.9: Zet f be a light open map of L = I'Ai onto 3
isl " nn
where 3 and the i, a2re 2-ionifolds without boundary and Uf (A,-a.)
14y 13
J,1=1

is a finite nrder of disjoint arcs. Then f is finite to one.
Proof: Let p be 2 oint of 3 and suppose that r'l(p) is infinite.
Since B is a 2-zanifold and f is 1ight we can find 2m+ 1 discs,
‘1’ intersecting pairwise exactly at p, forming a 2n + 1 peta.led




2n 1
flower, K =« U K, and such that each component of i"l(&i)-A.
im1 1 J
is contained in a cuclidezn neigiborhood in A,. Then

J
ZJ(K) is locally connected (i9: XL; 3.1) and hence has just

a finite number of caranents, each mapping onto K (19:VIII;7.L1).
Therefore, there is a coTonent C of r'l(l:) containing infinitecly
many points of f-l(p). 3eing; a2 comonent of a locally connected
set, C is open and so f restricted to it is a light open nap on-
to K. liow f7z(l;i-p) has just a finite number of components,
each mapping onto Ki-p and so there is a component of it, .{i,
having infinitely many points of r‘l(p) in its boundary. we
claim that the .ii can be ciosen so that the intersection of
their boundorics I contains Infinitely iany points of f_l(p).
If we take 2ll possible intersections camposed of the boundaries
of one of the components of f;z(l&-p) for each i, then f‘l(p)

is in the union of these i-lersections. But there are only
finitely many such intersections -ossible since there are only
finitely many such coaponents for each of the i (1 = 132,444,
2m +1). Thus one of the intersections contains infinitely nany
~oints of f'l(p), justifying our claim. sach point of I is
accessible from eacn of tle rezions .ti (i.e., can be joined by
an arc to any point in ;ii). Sut in each of the 2-nanifolds, we
cammot have thrce regions —eeting in nore than two points.
Consequently, there are - —axi-zm of 2m such regions in X,
contradicting our having co-siructed 2n + 1, Thus f.l(p) nust
be finite for each p ard £ is finite to one. //
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We wish to show that even if f is not necessarily a simplicial

map, f/‘i is still open. .
Theorem 2,10: Let £ be a light orenmap of X = U A, onto B
Nl i i g

where A, and B are oriented 2-nanifolds without boundary mdiL‘JJ(Ai.‘j)

is a finite munber of disjoint arcs., Then r/‘iis open. Jj,iwl
Proof: We will noke use of the following thcorem of Titus and
Young (16):

Theorem 2.11: (Zitus and Young) Let & = { £ =N : L and i
are fixed orientable manifolds satisfying (i), (ii), and (iii) below)
(i) For each function £ in N therc is a closed set Ct such that

f is sense precserving at each point of i‘-Cf.
(i1) Each function f in 0 is constant on each couponent of the
interior of C,.

£
(111) For each function f in 0, the set f(Cf) is closed and nowiiere

dense in N.
Then every function in 0 is quasi-open.
Since light quasi-open maps are open, showing f/‘i is in 0
- .
will prove our theorex. se let i = 4., L =3, and Cp -&j(.\iu\j)

i,j=1
which is a2 finite collection of arcs and hence closed. Since

the interior of Cf is expty, (ii) is sotisfied vacuously. Since
Cf is corpact, I(Cf) is clearly closed. Ciurch and Hemidngsen
(3) have shown that an open map defined on a locally compact
space and having point inverses consisting of isclated points
has the prorerty that it preserves tiie diension of closed sub-
‘ sets. Since Theorem 9 shows our point inverses are finite,

‘ t(Ct) must be one dimensional and hence is nowhere dense in 3B,




s

26

thus satisfying (iii). To demonstrate that f satisfies (i), we
make use of the following theorem of Whyburn (19: X; 5.1):
Theorem 2.12: (Whyburn) Let f be a light opcn nap of A onto B
vhere A is any 2-dimensional nanifold. For any point q of A there
exists a closed 2-cell neighborhood £ of q in A and a positive integer
k such that if £(q) is a reguiar (non-boundary) roint of B, thcn
on E, £ is topologically equivalent to the transformation w = zk on
l; l <1.
We will use this with A = Ai- Cr which is an open set, so that
f restricted to it is an open (and lizht) map. Since A is an
open subset of a 2-manifold, it is itself one (although non-
compact). Beca:se f(A) is an open subset of a manifold without
boundary, all its points will be regular points. ilence at each
point q of A there is a closed 2-cell neightorhood D of q on
which £ is topologically eq ivalent to zk on Iz l <1 for sone k.
Clain: f is either sense preserving at each point of A or it
is sense reversing at each point.
Proof: We will show that the sets of points where f are sense
preserving and sense reversing are oren, and since A is
comnected, one or the other is 211 of A. Let q be a point
of A and D be the closed 2-cell described above. Since f is
topologically equivalent to zk on D, there exist hoieomor-
phisis h and h' mapping resvectively D ard f(D) onto the unit

ball 3° in the plane so that the following diagram coimutes:
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o
v
[al
—~
L=
~

2K

If £ is sense preserving at q, we may take h and h' both
to be orientation preserving. Ilence the degree of f at q is
k. The diagram indicates then that any other poimt in the
interior of D will have decree 1. If f is sense reversing
at q, one of h and h' is orientation reversing. The degree
of £ at q is then -k and any other point in the interior of
D has degree -1. In either case, wec have that the sense of
£ is the sane on a neighborhood of q and so F = {q: f is
sense preserving at q} and i = {q: f is sense reversing
at q ] are both open. Since f is locally g® (k # 0) for
each point of A, these sets cover A. Thus since A is con-
nected, it rust equal either P or 2, establisiing our clain, /

If £ is sense preserving on A, then (i) is satisfied and f

is in &. If f is sense reversing on A, consider f' = h*f

where h" is an orientation reversing honeomorpnism of 32 onto D°.
This will have the same propcrties we have found for f, except
that it will be sense preserving on A. In this case we would
conclude that f£' is in (. and therefore is open; but then f w
h*=1f£' will also be open. //

Before getting our major result, we will show that f must map

f A onto B.

[
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Lemma 2.13: If f is a finite to one open map of a space X onto
8 2-manifold without boundary, B, and A is a campact 2-ianifold with-
out boundary contained in £ having its boundary relative to £ con-
taining no simple closed curve, then f(A) = B.

Proof: Froa Whyburn's results (19: X; L.l), £(4) is a 2-man-

ifold. If it has no boundary then it clearly rust equal B.

Suppose C is a boundary curve of f(A). Since A4 - de(L) is

open in X, its i:age is open in B and thus nisses C. Therefore

£71(C) 1s contained in B (A). But because of Lifting propertics

of light open naps, the fact that f is finite to one and C is

a sizple closed curve, we -ust have r’l(c) cantaining a simple

closed curve, contradicting our hypothesis regarding the boundary

of A in X, Thus no such boundary curve C exdsts and consequently

£(A) has no boundary and rust therefore be ecual to 3. //

We are finally ready to give a

Proof of Theorem 2.!;: Fron Theorem 10 and Lerma 13, we know that

2/‘1 is open and omto B. lHence Whyburn has showm (19: X; 7.2)
that we can get subdivisions of Ai and B so that £/, is a

Ay

simplicial :ap., Taldng a cormon subdivision of 2 and the

induced subdivisions of the A,'s, we get f is a siplicial map

%

m

fram U ‘i onto B, Our result then follows fron Theoren 8. //
il
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CHAPTER III
HODAL SETS

In (16) “hyburn introduces the idea of a nodal set and shows
that an open mapping restricted to a nodal set has the property
that its induced homomorphism maps the first rational bettl group
n;‘(n) onto the first rational Betti group of £{Ii) provided the
first Betti nuwiber of the imaze is finite. A closed subset of a
metric space X will be called a nodal set of X if its boundary in
X contains at riost one point. Such a point will be called a
nodal -oint.

Example 3.1: Let £ = {(::,y): Y =X or y « -x and Og?sl} and
NeX-{():ysxand}<y<1}. Thenli is a nodal set of X
with nodal ;oint (3,%).

Exammle 3.2: Let £ be two disjoint circles and N be one of the
circles plus a point from the other. <Then !l is a nodal set with nodal
point being the isolated point.

while it is always true that the closure of the co.plement of
a nodal set is itsclf a nodal sct, this exarple shows that it need
not have a nodal point, since N is the whole second circle. low-
ever, if X is comnected and li is nondegcncrate (has at least two
points), then a nodal point of li will also be one of X-ll. =

Examole 3.3: Let X be two "tin cans with tails*
as indicated and il be just one can and tail. Iote

<

that we can get an open map of this onto a circle by

projecting onto the base of the can. liovever, the




map restricted to the nodal set is not open.

In studying Whyburn's result during the course of a topology
seminar at the State University of llew York at 3inghanton, the
question was raised:

Question 3.1: If f/H is thc restriction of an ozen map to a
canpact nodal set, is there necessarily a caxact subset of N mapping
onto f() so that f restricted to this set is ozen?

This is the case in all our exaples so far. A negative answer
will be provided later in this chapter, as well a2s sone conditions
that will assure a pesitive answer. First we consider a few suf-
ficient conditions for the restriction of an o en ap to a nodal set
to be open. Corollary 2 and Lemwias L and 5§ will give such conditions.

Lemma 3.1: Let f be a mapping defined cn a cayact metric space
I, It t'lt(p) = { p} , then £ is open at p.

Proof: Let U be an open neighborhood of p and suppose f£(U) is

not a neighborhood of f(2). Then there is a sequence { yn}

converging to f(p) such that f.l(yn) misses U. let x be an
element of f-l(yn) for each n. Then the sequence [xn} has

a convergent subsecuence which we can take without loss of

generality to be (xn} . Let x be the linit of this sequence.

By continuity, lf(%)} converzes to £(x). But { f(xn)j =

Iyn} widch converges to £(;), so that f(x) = £(p). Since

rl2(z) = {p} » we must have x = p. iowever, since the x 's

all niss U whmich is an open neighvorhood of p, = camnot equal p.

This contradiction corpletcs cur proof. //

As an immediate consequence of this we have
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Corollary 3.2: Let f be an open map of a camract space X onto
Y and H be a nodal set of X with nodal point p. lff;;f(p) = { r}
then f/n is open.
Proof: Since Nl is a nocal set, N-p is open and hence f/}l is
open at all roints of il with the possible exception of p. By
our last lema, f/“ is open at p also and hence f/N is open. //
Lemna 3.3: Let f be an orcn map of a co:pact space X onto ¥
and X be a nodal set of X with nodal point p, If f};’i‘(r) contains
more than one point, then (i) has no boundary rel.:t;lve to Y.
froof: Since Il is a nodol set, li-p is oren in £ and hence £(l=3)
is open in Y. But N-p contains a point of £71f(:) by hyvothesis,
%0 f(li-p) = £(l) vhich is thus open in Y. Since N is carpact,
£(N) is also closed in Y and hence has no boundary there.//
Lerma 3.L: Let f be an open map of a carpact space X onto Y
and K be 2 nodal set of X with nodal noint p. If p is not an
isolated point of f};f(p), then £/, is ocn.
rroaf: A4s in corollary 2, p is the only point where there is
any question about opcrmess. Let U be an open neignborhood
of p relative to 1. Since } is nodal, U-p is open relative to
X and hence f(U-p) is open in Y. 3But since p is not an isolated
point of f;;f(_r:), f(U-p) = £(U) which is conseq.ently open.,
Therefore, f/)l is ogen. //
Combining the contrapositive of Lezna 3 swith Corollory 2 yields
Lerma 3.5: Let f be an oren map of a campact space £ onto Y
and N be a nodal set of £ with nodal point p. If the boundary of

. 2(¥) in Y is non-e oty, then 1.'/H is open.




Proof: Since the boundary of f£(II) in Y is non-empty, Lerma 3
implies that f;:;f(p) contains only one toint p and hence by
Corollary 2, t/u is oven. //

Having established these sufficient conditions for f/li to be
open and hence for an affimative anzwer to our question, we now
turn our attention to the situation when .11'/H is not open. In an
unsuccessful effort to show that we could chop open sets away fron
points where f was not open and eventually get back to a compact
set which mapped openly onto f(ii), we showed

Lerma 3.6: Let £ be an open map of a cormact space £ onto Y
and I be a nodal set of £ with nodal point p. If f/N is not open
at p, then there cxists an open neizhborhood U of p such that
£(B-0) = £(x).

Proof: Since f/H is not open, Corolicry 2 indicates thot there

is a q in f;;f(p) which is diffcrent fran n. 1f for all

peighborhoods U of p, £{i=U) £ £(II), e could take 1/n neigh-
borhoods of » and get a sequence of poimts {yn} in £(l!) such
that f;;(:’n) is contained in the 1/n neighborhood of p. By
pickdng k so that 1/k is less than half the distance between

p and q, we have, for all n greater than k, that f;;(yn)

misses the 1/k neishborhood of q. 3But {yn} converges to
£(p) = £(q), so £(q) is not an interior point of the inage
of the 1/k neighborhood of q. This contradicts the fact that

f/u is open at q. Thus there is a neighborhood U of p so

that £(N-U) = £(1). //
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We recognize that l-U, while camract is not necessarily a
nodal set. To continue the process started above, we riight hope
to consider the set B of points where f/u-U is not open, throw away
a neighborhood of it, and still map onto £(1). That this is not
the case is illustrated by the following
Exaple 3.4: Let X be as in kxample 1 and let Y
be the closed unit interval with f being projection
onto the second coordinate. Let C be the curpact
subset of X consisting of the part of y = =x having -
y>+ and the part of y = x having y <i. £/. 1is open
except at B = l (<22)s (-{-,i‘-)} . Dut clearly if U is any neighborhood
of B then 2 is not in f(C-U) although it is in £(C). So £(C-U) ¥ £(C).
Lerma 3.7: Let f be an open map of a canpact space X onto Y
and N be a nodal set with nodal point p. If r/“ is not oven at p,
then either{ p} is open in Il or £(p) is a local separating point
of £(N).
Froof: Surposec { p} is not an open sct in li. Since f/N is
not open at p, there is a neighborhood (relative to X) of p, U,
s0 that £(Ueli) is not open, and hence (f;?}i‘(p))'U = {p} by
an argument like that in Lema 3.
Clain: U can be chosen so that (a) £(U) is contained in £(i!); and
(b) £(3d U) nisscs £(U).
Froof: (a) is truc because u-r'lr(::) is an open neighborhood
of p since £(!) is oren by Lama 3.
(b) Let U' denote U - £~1f(3d U). Since £~ f(y) is com;act

and totally disconnected, it is also zero disiensional and so
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we can choose U so that the boundary of U rdsses £ -£(p). (7)

Thus U' is still 2 ncighvorhood of p. Iiow for any sets, if

R = S-T, then 3d R is contained in (Bd S) J T. Thus 3d U!

is contained in (3d U) U £~1f(5d U), so £{3d U') is contained

in £(Bd U). By our choice of U', f(U') nisses f(Bd U) and

hence f(Bd U'). /

We will show that f(p) sejarates £(U) by showing £{U*X) - £(p)
is open and closed in f(U) - f(p). Since f/Hia open at all points
of N except p, £{U-li) - £f(p) is clearly open in £(U) - £{p).

To see that f(U-N) - £(r) is closed in £(U) - £(p), let y be

a lidt point of the former set relative to the latter. lhere
exists a sequence { yn} conver;ing to y and corresponding { xn}
in UeN - p. 3y compactness of li, we can assume the secuence

{xn} canverges, say to x. Since f{x) = y £ £(p), we know x £ p.
Thus x is in Ueli - p. However, x is not in 3d U by (b) since

y is in £(U). Thus x is in U<l and hence y is in {(U*N) - £(p).
This proves that £{Usli) - £(p) is closed in £(U) - £(p).

Since we are asswiing that { p} is not ojen in X, Ueli is non-
degenerate and hence f{U<li) - £(2) is non-e pty. .oreover, the
complement of it in f£{U) -f(p) is also non-crpty since f£(U-NL)
being not ozen irplies f(Usli) £ £(U). <hus £(p) separates tie
neighborhood f(U) of it and consecuently locally separates
£(X), provided [p] is not open in li. //

We note tnat if { p} is open in K, then l-p is closed in I and
hence cormpact. Since i is a nodal set, N-p is also an open set in X

and so I/H—p is open. Thus in this case we have an affimative
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agnswer to our original question. This is also true if we require
that f(Ii) be either an arc or a siiple closed curve and that f have
certain rroperties. We let an arc fram x to y be denoted A(xy).
Theoren 3.6: Let f be a2 lignt open map defined on a conpact
gpace and N be a nodal set of X with nodal .oinmt p. If f{l) is an
arc A(ab) then there is a compact subset li' of i such that I/N, is
an open map onto f(Ii).
iroof: If f;;f(p) = { p} » then f/N is open by Corollary 2
and the conclusion of our theorem is true. Otherwise, let p!
be in f;;‘f(p) - p. If £{p) is an cndpoint of £(ii), tien there
is an arc A(r'r) mapping ncncomorphically onto f(li) since f is
light and open on X. 3ecause p is not in A(p'r) and p' is in
Nand Bdll = {p} , Wwe must have A(p'r) entirely ccntained
in N. Letting li' = A(p'r), the conclusion of our theorem is net.
If £(p) is not an end-oint of £(Ii), we can get arcs A(sp') and
A(p'r) mapping honeouorphically onto A(a £{n)) and A(£(p) b),
respectively. As above, both these arcs are in li. Consequently,
N' w A(sp') UA(p'r) maps homeomorphically onto £(ii), proving
our theorem. //
Theoren 3.9: Let f be an oren, finite to one map defined on a
capact space X and ll be a nodal set of £ with nodal point p. If
£(N) is a sizple closed curve, then there is a campact subset N' of I
such that t/}i' is an open map onto f(ll).
Proof: As in the previous theorem we can choose py in r/.:,f(p) -p.

Let q = £(p) and pick points a, b, and ¢ in positive rotation

from q on f(N). Since f is light and open, there exist arcs
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A(plhl) and A(blpz) mapping homeomorphically onto A(qab) and
A(beq) respectively. If p, = p,, then A(p;b;) UA(byp,) is a
simple closed curve mappinz honecamorphically onto £(1i),
satisfying our conclusion., If not, then it is an arc A(plblpa)
which we will denote by ﬂ. As in Theorem 8, this will be con-
tained in N. If P, is different fram both p and Py, we repeat
the construction to find A(pzbz) UA(bzpB) which is contained
in N. If a point of this other than p2 hits Il,
first such point in the order fm:np‘a to p_. Then letting it

let x be the
o

3

be the arc A(xop‘_) in ﬁ unioned with the are A(pzxo) in

A(pzbz) v A(b2p3), we have a simple closed curve which maps

openly onto f(ll). If Py =P,
> &

hita&, a:xlpB;‘p,welet

y the same is true. If only p2

> be the arc le A(p2b2p3) and

continue as before, getting A(pBbB) UA(beh). If this hits

lz in a point other thon Pys we get 1! as above. Continuing
this process, because f is finite to one, after a finite muiber
1 n‘nn.l)

in a point other than P, in which case we deal with it as before,

of steps we get either an X, which hits A(pnbn)U A(b
or a p, which is equal to p. In this case we let L' be the arc
from Py to p which we have constructed. we then repeat the
construction using the opposite orientation for £(l). That is,
we get arcs A(plbi) ard A(b;p;.d) mapping honeonorphically
onto A(qeb) and A(bag), respectively. As before, we either get

x:,_l hitting "‘(P,;b;,) L'A(b;p:”l) in a point other than px;’ or we

get a px'x which is equal to p. In the former case, we are done
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as before. In the latter case, let X? be the arc from pi =p
to p which we have constructed. X' and X' intersect at least
inplandp. Let x, be the first point on X! a.i‘r.erplxdxich is
also in X', Letting Iil be the arc A(plxo) in X' unioned with
the arc A(x,p,) in X", we have a simple closed curve which maps
openly onto £(Ii), coampleting our proof. //

Remark: We do not actually need f to be finite to one in
Theorem 93 the exdistence of one point m in f(X) so that f;;(m) is
finite will suffice. This will guorantee that e can stop our arc
lifting after a finite muiber of steus.

Although we have seen that under certain conditions a nodal set
must have a compact set in it which maps openly onto the inage of
the nodal set, this is not always the case as is evidenced by

Examle 3.5: There exists an open sisple nap defined on a
campact space X with a nodal set N such that no compact subset of I
maps openly onto £(ii).

Let X consist of two disjoint figure
eights with a simple closed curve hitting thea
only at their cross points. Let ¥ be a figure
eight plus a sizvle closed curve hitting it
only at its crosg point. r[he map f takes
each of the figure eights homcamorphically
onto the figure eizht in ¥ and the other
simple closed curve onto the simple closed

mein!byampoquivalenttovazz. de
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let N be all of X excert the top loop of one of the figure eights.
The nodal point p is then the cross point of this figure eight.

For a corpact subset N' of I to map openly onto £(ii), it must onit
this point. However, to map onto f£(il), Ii' must contain at least part
of the joining curve in X and for the map to be open on this campact
set of points where it acts like w = 32, it nust include all of the
curve including p. Thus no such ' could exist. /

In this counterexample and several otiers, we noted that not
only was f(p) a local sevarating point as Lemma 7 indicated, but it
was also a separating point of f(l:). Speculation that adding the
hycothesis that f(p) does not scoarate f£(Ii) might lead to an affim-
ative answer to our cucstion was ended by

Example 3.6: There exdists an open, linite to one map f defined
on a compact space X with a nodal set i having nodal point p such
that £(p) does not separate £(ii) and no campact subset of I maps
openly onto f£(li).

Y and £(1i) will consist of four si:mle closed curves, Syrenes Qh,
with and Q, hitt in int, 4, and hitti in a point

Y Y3 ing a point, Q, S, ing in a point, &,
Y, and Q, hitting in a comzon point, and v, and %, hitting in anothcr

point. X consists of ten simple closed curves, Cl,..., ClO' Cl’ C2’
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03, and Gh form a figure haneonorphic to ¥; C5 neets Cl and 03 in

their common point as well as hitting C6 in a point; C6 also inter-
sects C7 and 08 in a comzon point; C9 hits each of C7 and CG
point; finally CI.O runs from C7°C9 to another point in 07, then to

in a
cs-c6, to another point in C,, and back to C7-C9. To describe f:
cl, cs, and C9 get mapped hameomorphically to 41; Cz, 6 and C7 go
honeanorphically to Vs C3 and Ca go honeomorphically to Q; h goes
honeomorphically to ;h; and CJ.O gets mapped to Qh by a mapping
equivalent to w = z°. We let il = CgU ees LCype By the saue type of
reasoning as in E:ample 5, no li' exists. Y contains no separating
points, so f(p) does not separate it. Thus this is the exariple we
claimed,

We have shown in this chapter both that the general answer to
Question 1 is negative and thot there are conditions under which we
get an affimative answer. Swming these latter u, we get

Theoren 3.10: Let f be an open mapping defined on a campact
space X having a nodal sei } with nodal point p. Any of the following
conditions irplies that there exists a conpact subset li' of Ii such
that t/ll' is an open map onto f£(ii): .

() £ie) = { p]

(2) Bar(n) 4 ¢

(3) p is not an isolated point of f7]l,'f(p)

(L) {p} is open in N

(5) fis light and £(1I) is an arc

(6) £(N) is a simple closed curve, f is light, and for some m

in £(X), f7§(”‘) has finite cardinality.




CHAPTER IV
HAPPINGS ONTO TWO-SFizRES

In 1935, Eilenberg (L) raised the question of whether or not
an open map between compact spaces X and Y necessarily has the
property that it induces a map of the honology groups of X onto those
of Y. Whyburn (17) pointed out that the nap w = z° on the unit
circle does not induce such a riap if the hanology grours are taken
over the integers. le then asked wiiether the rational honology grouns
of X would have to nap onto those of 7. In 1936 (16) he showed that
the first rational horiology group of X would indeed map onto that of Y,
provided one of the groups is finitely generated.
The iopf map (6) from s> omto S2 showed that the hoiology maps
are not necessarily epinorplisas, since the second harology of 83 is
trivial while that of 52 is not. Additional examwles of this type
* of map were not noted for about 3C years. 3redon (2) was able to
exhibit an open at :ost three to one nmap of a contractible 2-camplex
anto 52. 3eing contractible, its second howlogy was trivial and so
could not map onto that of SZ. rollowing this, loy obtained a soue-
what simpler nap (see, for exaple,(9)) of the dunce's hat onto 82
which thus has the same properties. We will give an example in this
chapter of a finite to one ocen map of zZing's house with two roons
onto Sz. Since Bin;'s house is contractible, the second hamology map
will again not be an epinorphisn. To illustrate the type of con-
struction we use to get the nap on 3ing's house, e consider the

following exam:-le of a map from an n-handled torus onto the two-schere:




Example Li.1: Consider the n-handled torus T

laid out sumaetrically in 1~.‘3 along the y-axis.

The Xy-plane hits T in n siiple closed curves,
each around one of the holes of T. The yz-plane

hits T in n+ 1 simple closed curves, one between

ﬂ\
J
each successive pair of holes and one from each \O_/
)
1

of the end holes to the outside. This divides
T into two parts, 7* e T- { x20} and T- =

Te {st} . We first deform T  to a 2-snhere ber

pinching each of these simple closed curves in
to the y-axis (i.e., identify points on then
which are syrmetric with respect to the y-axis). Let " ve the map
from T* to 52 induced by this deforaation. Notice taat it is a homeo-
morphism on 7% ninus the union of the si ple closed curves and is at
most two to one on this set. ae define the map f fron 1 onto 52 by
{ t* (x,7,2) if x20
£(x,y,2) = =
£ (-x,7,-2) if x <0
so that points symietric with respect to the y-axdis get icapoed to
the sane point. Geametrically, we think of the map as being corposed
of two parts, the first a pinching of thc torus (the identification)
to form tio 2-srheres joined on an arc, and the second a rotation
of one of the spheres around the arc and onto the second sphere.
This rotation is what guarantees that dorains hitting both T’ and
T" will get mapped to open sets.
Example Li.2: We now comtruct the mao of 3ing's house onto s2,

Consider Bing's house with "chimney' in the upper roon and "laundry
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chute" in the lower room, each connected to the
outside by a wall (a). Reflect the lower room
through its ceiling to get a map onto one roon
with two "chimneys", each having a 1id (b).
This is easily scen to be homecmorphic to a

double torus containing four discs, onc across
each of the holes and one inside each of the
rings (c). Consider the discs as lieing in the

xy and yz planes respectively. As in the

previous exarple, we pinch the double torus to
give us two 2-spheres joined on an arc. Since
the identification occurs only on the sirple
closed curves which are the boundaries of the
discs, the discs will each get "popned” into a
2-sphere. This gives us four more spheres hit-
ting the previous two in part of their caizion d
arc (d). low rotate as in the first exarple,

at the sane tine rotating tiie smaller spheres

so that they go inside the larjer one (e).

Finally, blow out (project) each of the smaller

spheres onto the outer one. This “ives us our m
light open map of Bing's house onto 52, thus

demonstrating again that the second hoiology £

map induced by a light o.en iap need not be
L]
onto, since the sccond homology group of s2 is m

nontrivial, while that of Ding's house is




trivial since the space is contractible.
In both of these exanples, we first perform a map (pirching)
onto a space which is a unicn of 2-spheres joined along arcs and fol-
low this with another map (rotation) so that the carmosite is open.
The remaining results of this chapter show situations waere the second
map will exist, Essentially the hypotheses describe a possible result
of the rinchings and the conclusion gives the exdistence of the rota-
tion nap which will nake the corposition open. Clearly the pinching
is not in general an oren nap. The first theoren describes the case
where the pinching yields an "arc" of 2-spheres intersecting in arcs:
Theoren L.1: Let f be a map from a space X onto a space ¥
contained in E3 cuch that
1. Y is a finite union of 2-sphcres, Sy,..., S, where 5; is the union
of 2-balls Dy, and Dy, with S:L‘L contained in {(x,y,z): x> o} and
312 contained in { (x,7,3)s 2 < 0} and Dil.DiZ is a simple closed
curve C;. lloreover, S;+S; # # if and only if[1-3| <1 and if
[1-3] = 1, then S;+55 is an arc contained in C;*Cy; and
2. If V is a neighborhood of 2 roint p in X then there edsts a
nedghborhood U of p contained in V so that either
(a) £(U) is a neighborhood of f(p) in Si for sone i < n, or
(b) there exist i and j such that f(p) is in 51'53 and £(U)+D;, and
f(U)-DJk are neighborhoods in Dik‘md D;)k vhere ¥ =« 1 or 2.
Thmthemmstaamapcfm‘fontosz so that g o £ is an oren

Ilpo.thnt.osz.

b & ; C o)
CES- £8




Proof: (By induction on n) If Y is a single 2-sphere, then
condition (2b) is not possible and so (2a) will guarantee that
£ is an open map. lience we nay take g to be the identity map
on Y. Now suppose the theorem is true up to n-1 and Y consists
of n 2-gpheres. Define f' from Y onto I!' = SlU SZU el sn-l
by leaving f! fixed on ¥' and mapping Sn onto sn—l so that the
intersecting arc is fixed, Dnl goes honconorphically onto

and D o £oes honieanorphically onto Dn.- tssentially

Dn-l,z 1,1°
we have rotated Sn around the intecrsecting arc and onto Sn-l'
Clain: f'o f satisfies the conditions of tie tieorem for n-l.
Proof: Y!' satisfies part 1 by construction. %o show part 2,
let p be in X and V be a neishborhood of p. Let U be the
neighborhood of p from the hypothesis. If f(p) is not in
Sps let U = U - r‘l(sn) vhich A1l be a neichborhood of p
contained in V. Since f' is fixed on Y', £'f(U') = £(U') =
£(U) - Sn. Thus if (2a) was satisfied originally, f{U) was
a ncighborhood of f{p) in Si for i<n-l and then £(U) - Sn
is also, so that f'o f satisfies (2a). On the olher hand,
if (2b) was satisfied originally, then there exist i and j
(both less than n since f(p) is not in Sn) so that £(p) is
in Si'SJ, and !.’(U)'Dik and f(u).DJk are neighborhoods in
Dik and Djk' As above, f'f(C')-Dmk
1s a neighborhood of £(p) in D (a = 4,j) since ve are

= £(U)eD = S which

assuning f(p) is not in S,- Consequently (2b) will hold

for Y' if it did for Y, provided f(») is not in Sn.
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If £(p) is in S ‘Sn and f satisfies (2a), then £(U) is

n-1
a neighborhood of f£(p) in either Sn—l or Sn. If the former,
then £'£(U) contains £'(£(U)*S, ;) = £(U)*S__; and consequent-
1y is a neighborhood of f'f(p) in Sp-1° thus satisfying (2a)
for f'o £. If f(U) is a neighborhood of f£(p) in Sn, then
f(l])'Sn is, and so f'(f(U)°Sn) which is contained in f£'f(U)
is a neighborhood of f£'f(p) in Sn—l since f' maps Sn haneo-
morphically onto Sn_l; again (2a) is satisfied for f'o f.

Eow suppose f(p, is in 5,'S,.1 and f satisfies (2b). +hus
£(0)*D, 5 ; and £(U)°D | (x = 1 or 2) are neighbornoods of
£(p) in Dn-l,k and Dn,k respectiv;b'. Since f£1(f(U)e- n-l,k) =
I(U)'Dn-l,k’ it is a neighborhood of f£'f(p) in Dn—l,k’

Because f' naps Dy k homeororphically onto Dn-l,k' (k' £ k
and k' = 1 or 2), f'(f(U)'Dn’k) is a neighborhood of £'I(p)
in Dn-l,k' . Thus f'(f(U)-Dn_l,k) y £1(£(u)e n,k) is a

neighborhood of f£'f(p) in Sn-l and since it is contained in
££(U), the latter will be a neighborhood of f£'f{p) in Sn—l’
thus satisfying condition (2a).

Finally, if f(p) is in Sn- sn—l’ then condition (2b) is
impossivle and so £(U) is a neighborhood of f(p) in Sn.
Because f' macs Sy hameamorphically onto sn-l’ £1£(U) is a
neighborhood of f£'f(p) in sn-l and so (2a) is satisfied., Thus
f'% f satisfies the hypotheses of the theoream for n-l. /
Since Y' consists of just n-l 2-spheres, the induction as-

swption is applicable and so there exists a map g' froa I' onto

82 so that g'o (f'o £) is oven. Letting g = g'o f', we have
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proven the theorem for the case where Y consists of n 2-spheres.//
we next congider the possibility of Y being a "circle" of

2-spheres:

1. Y is a finite union of Z-spheres, Sl,..., Sn, where Si is the union
of 2-balls D, and D, , with Bﬁ contained in { (x,7,2): x >0 }
and 312 contained in { (x,7,2): X~ 0} and b,°D,, is a simple
closed curve C;. loreover, Si.sj # # if and only if either {i,j}
- {l,n} or |1-3l <1, and in case of the equalities, Si.sj is
an arc contained in Ci‘c:j; and

2. 1f V is a neighborhood of a :oint p in X then there exists a
neighborhood U of p contained in V so that either
(a) £(U) is a neighborhood of £(p) in §; for same i <m, or
(b) there exist i and j so that f(p) is in Si'sj and I(U)-Dik and

£(U)+Dy, are neichborhoods of f(p) in Djy. and Dy where
k=1lor2,

Mtheivezlstsamgﬁvn!ontoszsothatgofisanopen

map of X onto S°.

Froof: We will first show that we nay assune that n is even,
Ifitisnot,wewilldo.tineamaptlnmfoxrtoaunionot
n+1l spheres so that flo f has all the desired provertics.

Bsaent.iallyauwedotogetthismpispinchsntofomm
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- - ' -
2-spheres, Let Y! Sll' ...usn_lusx; Usml have all the prop

erties of part 1 of the hypothesis and define fl on S1 Ueeal Sn-l

to be the identity. The set C,- ((Sn°Sl) v (Sn‘Sn_l)) consists
of two arcs. Let Py and P, be points in each arc and consider
o
and A ing X =
arcs Al(plpz) 2(plpz) spanning D and 8 p Tesvectively

s wo di 1 pel J
Then 4, (pyp,) separates D, into two discs D, and D .~ where D'

cantains Sn-S Define £ on S, as an extension of the previous

¥ 1

i " i ™ 2 i - '. '
definition by mapping Ai(plpz) homeomorphically onto Sn snol’
maintaining the orientation established by the map as already

defined on Sn°SJ; extend this to take Dll honeomorphically onto
Dn-l
1 r ]
D “a.nd { haneonorphically onto D ;°

Claim: flo f satisfies the conditions of the hypothesis.

Proof: Let V be a neighborhood of a point p in X and U be
the associated neijhborhiood fram the hypothesis. Suppose U
originally satisfied (2a). If f£{U) is a neighborhood of £(p)

with respect to some S, for i £ n, then so is flf('u‘) since

i

fl is the identity on these Si. Suppose f{U) is a neighbor-

hood of f{p) in S, and f(p) is not in cither of the Ai(plpz)
0

(where the pinching occurs). If £{p) is in Dni then it is

in B), for 5 =1 or n-1 and s £ 7(U)+D; 1s a neighborhood

of flf(p) in Dl'd. for k¥ = nel or n respectively, since fl naps

the DJ, 's homeozorphically. 1If,on the other hand, £(p) is

. c 5 in both D
:I.nDnl Du‘2 then £(U) is a neighborhood of f(p) a

D J ®
and ma.xxiconsequentlyini)ilm.dbmtorj-lorn-l.

But fl maps Dxaxi honeonorphically so fli'(U) is a neighborhood
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of flf(p) in nl'd. for k = n+l or n respectively. As a result

flf(L') is a neighborhood of flf(p) in SI;' Now consider the

case where f(p) is in one of the Ai(plpz). Thus £(U) is a

neighborhood of £(p) in both Diiand ';::'11 and consequently
£,£(U) 1s a neighborhood of flf(p) in both Dx'wl,i and Dr'xi’

thus satisfying (2b).
Suppose U originally satisfied (2b). If neither i nor j

is equal to n, then i‘lf('l) also satisfies (2b), since £, vill

be the identity there. If i =nand j =1 or n-1, then £(U)

is a neighborhocd of f(p) in an and Djk for k = 1 or 2, and

' o
so flf(L) is a neighborhood of l‘lf(p) in both T)r"k and de,

thus satisfving (2b). /

We have now shown that we may limit our attention to the case
where the number of 2-spheres in Y is even, say 2m. ''e again
construct an intermediate map, this time from Y to Y' = SlU —
USm vwhich will be the identity on 7', Essentially, we just
U...USs

rotate the "arc" of 2-snheres 5 onto the "arc" Y',

2m
Let £' map each of the discs jik (k=1 or 2; m+*1=1i =2n) homeo-

n+l

morphically onto the disc D where k' = 2 if k = 1 and

2n+l-i, k'
vice versa and where thie joining arcs get manped to corresponding
Joining arcs. 1'e wish to show that f'o f satis®ies the hypoth-
eses of Theorem 1. Clearly Y' satisfies the requirements on 7,
Let a neighborhood of a noint » in X be given and let U be the
corresponding neighborhood from the himothesis of this theorem,

If £(U) is a neighborhood o f£(n) in some 51, then since f' maos

each of the 31 homeomorphically to same SJ’ we will have £'f(U)




is a neighborhood of f'f(p) in S,, thus satisfyinz (2a) of

J’
Theorem 1. lNow suppose U satisfies (2b) of this theorem and

li,j} I {1,2.1} or {m,ml} (the places where the rotation
occurs). If i and j are both less than m+l, then £'£f(U) = £(U)
and so f'o f satisfies (2b). If both are greater than m, then

£1£(p) 1s in S where t* = 2n+l-t. Thus £'£(U)D,x, =

42 Sy
f'(f(")-!)ik) and ."f(U)-DJuk, = f"(f(ll)-DJk) since f' maps Dik

and Djk honeonorphically onto Dy, and D ‘s a result, (2b)

et
of Theorem 1 is satisfied. inally, consider what hapnens if
U satisfies (2b) of this theoren and §:,3) = {1,20] or
{n,md}. In the first case, £'(£(U)eD,) = £(U)eD), 1s a
neighborhood of £(p) in Dk

» " ES o LI n M M
a neirhborhood of £1'£(p) in 2y Since f' naps Do,k homeomorp!

N.e TB £rf(U)eS £(U)e:
ically onto e us £re(U) S, contains f£(U) ')lk and

v(e(0)e = £18(U)e]
and £1(£(0)eD, ) = £1E(V)eD, 1

£1£(U)*Dyyr, and so is a neighborhood of £'f(p) in S , thus sat-

1'
isfyinc (2a) of Theoren 1. In the sane way, {'S(U)-Dmk and

f'(f(U)'%l.k) = !'f(’])-an, are neighborhoods of f£'f£(p) in “:xk
and D, ,, respectively, and so £'f(U)eS 1is a neighborhood of
£'2(p) 4in Sns again satisfiring (2a) of Theorenm 1.

Caonsequently, f'o £ satisfies the conditions of Theorem 1 and
80 there exists a man g' from Y' onto 32 so that g'o f'o f is
an open map fron Y onto 32. Thus the map g'o f' is the one we

need for the conclusion of Theorem 2. //

Our final theoren considers the case where f maps onto a snace ¥

is a "tree" of 2-spheres embedded nicely in EJ.
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Theorem L4.3: Let f be a ma» of a space X onto a subset Y of 23
o that

(1) Y is a finite union of 2-spreres, &, ,..., S,» where Si is the

~ wnion of 2-balls D,y and D, with gu contained in

i(x,y,z): x>0 } and giz contained in { (x,7,2): x<o} and

Dyq°Dy, is a sirple closed curve © Yoreover, if Si°S.1 F @ and

50
i £ 3, then Si-SJ wvill be an a=c contained in Ci‘CJ. In addition,
for each 1 ¥ 1, there is a unicue j less than i so that 31°SJ id
(this is to prevent a "circle™ of 2-spheres from occurring); and

) if V is a neighborhood of a point » in ¥, then there is a neigh-
borhcod U contained in V so that either
(a) £(U) is a neighborhood of £(p) in S; for some i, or
(b) there exist i and j so that £(o) is in S{S.1 and i'('.')-D:Lk and

t(U)-DJk are neighborhoods of f(p) in Dy, and ij, respective-
ly, where k = 1 or 2.
there exists a mao ¢ froa Y onto 52 so that g o £ is an open map

X onto 52.

Proof: (27 induction) If n = 1, we are done since (2b) will be
impossible and so (22) will nake f itself open. lNow sunnose
the theorem is true up to n-1 and define a map f' from Y onto ¥'

- SIU...U Sn by making f' be the identity on Y' and map S

-1




51

onto S where S-S, A P by taking Dnl honeomorphically onto D -

and D, honeamorphically onto D:zl keeping Sn'Sm fixed (i.e.,
by rotating Sn onto S around their cormon arc).
Claim: f'o f satisfies the hypotheses of the theoren.
Froof: Y'! satisfies (1) from its construction, since Y
satisfied it. Let V be a neighborhood of a point p in X
and let U be the corresvonding neichborhood from (2). We
wish to show that £'f(U) must satisfy either (2a) or (2b).
If £(U) originally sctisfied (22), tacn £(U) was a neigh-
borhood of f(p) in saze S; and since f' naps each S; homeo-
morphically onto an Sj, £'£{U) is a neizhborhood of f'f{p)
in Sj, satisfving (2a). If £(U) satisfied (2b) whcre
£(p) is in S4*S; and both i and j are different from n,
then since £' is the identity on I', r'(r(u).Dik) =
£1£(U)+Dy, = £(U)+Dyy is 2 neighborhood of £'f(p) in D,
and similarly r'r(u)d)Jk is a neignborhood of £'f(p) in
Djk’ thus satisfying (2b). Finally, suppose f(U) satisfied
(2b) with £(p) being in 5. °S_. Then £(U)*D , and £{U)*Dy
are neighbornoods of f(p) in D, ad Dak respectively, and
so £'(£(U)*Dpy) = £'£{U)e it and f‘(f(U)-sz) = f'f(U)ODmk
are neighborhoods of £'f{p) in 0, and L respectively

gince f' maps D_, hoceanorphically onto Dmk' and is the

nk

identity on an. Therefore £'£(U) will contain these two

sets and consequently f'i‘(U)-Sa is a neighborhood of £'f(p)

in S, satisfying (2a). This proves our clain., /




As a result of the induction assumption, there is a map
g' fran Y!' onto s? so that g'o (£f'o f) is an open map from
X onto Sz. To camplete the proof of our theoren, we let

gmglof'. //
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CHAPTER V

EXAMPLES AID CCUNTZIEXAIFLES

In the course of the preparation of this thesis, a mumber of
aborted rroofs and false conjectures occurred. This chapter con-
tains a collection of the examples and counterexamples which resul-
ted. The first two came about in trying to prove in Chapter 2 that
f restricted to one of the 2-uanifolds was open. It was hoped that
this would be the case because the map was oven except on a finite
mumber of arcs.

Example 5.1: The extension of a hcnecuorphism (and hence an
open map) to the closure of its dcmain is not necessarily open.

Let f map the open interval (0,21 ) into the unit circle by
f£(x) = (1,x) where the range is described in polar coordinates.
This is a honeonorphism onto the unit circle mimus the point (1,0).
This map can be extended to the clcsed interval by malking £(0) =
f(2m) = (1,0). The extcnsion is not an open nap at endpoints of
the interval.

Example 5.2: If f is an open map on a corpact space £ and U is
a subset of X on which f/U is open, thc extension to T is not
necessarily open.

Let f be the map w = z- of the wnit circle onto itself and let
U be the lower open seni-circle{l s l =1 and y< 0}. Then r/u
maps U onto the unit circle mimus (1,0) honeomorphically by a
map that is essentially the same as that in .xample 1, and in the
identical way its extension to the closed lower semi-circle is

not an open map, since it is not oven at the endpoints.




Example 5.3: A map may be open relative to both an inverse
set and its complement and still not be open on the whole space.
Let X be the closed interval 0= x <l
and describe f by

x if 0 x< 2
£(x) = L-x if 28 xx3 el 2 2 &
x-2 if 3<s x< | l

Thus f maps X onto the closed interval fronm O
to 2 by being the identity on thot set, taldng __S
the interval from 2 to 3 onto the one fram 1 to 1
2 by reversing its orientation and mapping the ' I TR
interval from 3 to i anto the one fron 1 to 2
preserving its orientation., If we let A be the closed interval
from 1 to 2 in Y, then £1(A) is the closed interval from 1 to L
in X, 7Then f/f.]_(‘) is an open map relative to its image A and
f/x,-f‘l( A) is also an open map {in fact a homeonorohisn) of the
half open interval fron O to 1 onto itseclf. nowever, the map f
itself is not open at the point x = 3 since the open interval (2%,33)
gets mapped to the half open interval fram 2 to 3. which includes 2,
Remark: Of course, if a :ap is strongly open on both an
inverse set and the camplement of it, then the map is necessarily
open on the whole space.
In deriving the forrmla in Chapter 2 sinilar to that of wWhyburn,
we showed that f restricted to each of the 2-anifolds was an open

map and then used whyburn's result. The following example shows that

this method would not work if we had assumed that our nanifolds
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intersected in sirple closed curves rather than in arcs.

Exarple 5.Li: A space X consisting of two 2-spheres joined
on a simple closed curve may be sent by an open map f onto a
2-sphere in such a way that f restricted to one of the 2-spheres
is not an open map and yet both map onto the inage sphere.

Consider X as being caposed of the 2-spheres Al and Aa Jjoined
at their equators, with Al lieing inside A2. Project each of the
bhecdispheres of the immer sphere A1 onto the top hemisphere of Lz,
Bote that this satisfies all the conditions we desire except that
of having the image of AH be a 2-sphere., To add this, we pinch the
sphere A2 along its equator to form two 2-spheres joined on an arc
and now rotate the bottom 2-sphere around the arc and onto the top
sphere. Since the top hemisphere is thus napped to a 2-sphere and
‘1 had been mapped onto this top hemisphere, the image of ‘1 is
now a sthere also. Clearly the ..apping restricted to ‘\.L is not open
at most points of its equator since open discs set mapped to half
open discs due to the folding occurring there. Iowever, because
these are the only points where it is not open and because f re-
stricted to A2 is open everywhere including these points, the map f
on X will be open.




~—-CD

In order to use Titus' and Young's theorem (16) to show f was
open on each of the 2-manifolds, it was necessary to know that the
image of the joining arcs was novhere dense in f(X). Before taking
note of the result of Church and liamingsen (3), an attempt was made
to show this by showing that for any mzp betircen compact spaces, if
we took an arc in the image starting at a point G, one of its
components containing a point q' of f'l(q) must contain an arc
starting at q'. If this had been the case, we could have looked
at the map restricted to the joining arcs, talken a nany spoked
wheel with center q (if the incge of the joining arcs had becn
2-dimensional) and shown that these "seni-liftcd” back to too nany
arcs in the domain because the nap was finite to one. This would
have shown that the image of the joining arcs could not be 2-diren-
sional. However, the following examplec shows that the lerma
suggested above is not tru-.

le 5.5: There is a map f from a

campact space £ onto an arc A having a point g

so that each cauponent of £ containing a point —_—

of f'l(q) is contained in f"l(q) and thus will >
-—

not map onto an arc. 0 $ %

Let the space X be the set in the plane
(- -4
{(0,0)} U Ula\.n where 4 = [ (x,1/2™): l/Zn’l L2 J./zn] . Let Y
D=




be the closed interval on the x-axis from O to % and f be the
vertical projection of £ onto Y. Let q = (0,0) in Y. Then r’l(q)
= {(0,0)} in X and the component of X containing (0,0) is the
singleton {(0,0)} . Thus we do not even have the partial lifting
property for arcs which we were seeldng.
Another counterexarple to a proof attempt along similar lines is
Example 5.6: There is a map from an arc 3 onto a campact space
Y containing an arc C so that no component of £~1(C) maps onto C.

Let £ map the arc B omto the space ¥

which is a "reclining P" according to the adbdaebec

schema shown at the right. The inverse of
e

the horizontal arc C = A(adbe) will consist
of the two cormponents A(adbda) and A(bc), @_
neither of which maps onto C. . ¢

In trying to show that the mzp in Chapter 2 was k to one for
some k, it was thought for a while that the fact that it was finite
to one and X was compact should give us the result. The next
exanple shows this is not the case.

Exarple 5.7: A finite to one open map on a caspact space X
need not be k to one.

[

Let X = { (0,00} U U1 Ag where A, i3 the
set of all lines in the plane from points of
the form (1/2", k/L®) to points of the form

/2™, 2™ or (1272 51y i

o i

where k runs between 1 and 2°. Let f be 3 3 1
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Vtheprojectionmapoflonto the unit interval Y on the x-axis., If a
point in Y is in the half open interval fram 1/2" to, but not includ-
ing 1/2%°1, then it has 2™ preinages in L. ience f is clearly finite
to one but not k to one since 2u grows without bound.

While working on the nodal set problem, an attempt was made
| to use intersections of seis to produced the desired campact set on

which the map was open. During the course of this work, the fol-

lowing example was noted.

Example 5.6: 7There exists a map f of a campact svace X onto
a space Y and a nested sequence tci) of subsets of £ so that f/ci
is an open map of ci oxto I, but f restricted to the intersection
of the Cy's is not 2n oren map.

Let X = Gy where C; a{(l/n, 2):nisa
positive irrter,er} v {(I/n, 1): n= i} u
{(0,1), (0,2)} . In adiition let Y be the set
[(l/n, 0)},,: L0,0] ax tompontor - ..., .
by the projection f(x,j) = (x,0). This map Ci

\lﬂlbeopenoneachofﬁleci,butifcn

i

the intersection of the C,'s, then C = Y.-
0
((l/n,Z): n is a positive integer ] 11

e

{ (0,1, (0,2)} and £ is ot open on C since
it is not open at the point (0,1).

The map f/‘l of Zxarple l; is a simple map between two 2-nan-
ifolds without boundary which is not open., «e next show the
e of such a nap between 2-manifolds with boundary.




oy

59

Example 5.9: There exists a siiple map between 2-manifolds
with boundary which is not open.

Let X be the parallelograam in the plane with vertices (1,1),
(o,1), (-1,0), and (0,0) and let Y be the pentagon with vertices
(-1,1), (0,1), (-1,0), (0,0), aad (-3,2). Let
the map f be described by

(x,¥) ifx <0
£(x,y) =
(=x,¥) if x> 0 . 1
so that the map is the identity on the triangle

with vertices (-1,0), (0,0), and (0,1) and

maps the triangle with vertices (0,0), (0,1), % " 1

and (1,1) linearly onto the one with vertices
(0,0), (0,1), and (~1,1). <rhe map is clearly
a simple one, but it is not oper at points on

the half open line seguents from (-Z,1) to

but not including (0,1) and from (%,%) to but
not including (0,0).

In Chapter 1, our work with orbit maps produced some false spec-
ulations about the nature of point inverses. The first was that if
the map was one to one on the invercse of the image of the singular
set then this in some scnse divided the space up nicely so that amy
other point inverses would have the sane nusber of points.

Example 5.10: There is a three to one nap from a space £ onto
a 2-sphere which is one to one on the singular set, but is not

exactly three to one off it.

Let the svace X be that of Example L, the two 2-spheres joined




along their equators, and let the map f be the one that projects
the inside sphere up onto the top hemisphere of the outer onc and
leaves the outer sphcre fixed. The map is one to one on the
singular set, which is the common equator. liowever, point inverses
of points in the upper heuisphere of Y consist of thrce points,
while those of points in thc lower hemisphere have just one voint.
A second false speculation on point inverses cane about from
the fact that the order of a subgroup will divide the order of the
group containing it and the question of whether every map which
factors into open simple mass is equivalent to an action by a finite
group. The thought was that it might be the case that the order
of any point inverse of such a map night have to divide the order
of the map, However,
Example 5,1.: There is a four to one map petween 2-spheres
which factors into open sisple naps and yet has N
a point inverse consisting of thrce points. Nt im
Consider the sphere with taree longitud-
inal circles as indicatcd. Let the map f be
the camposition of two open s:ln.ple maps, the
first of which we get by pinching on the nid-
dle circle and then rotating one of the re-
sulting sohere onto the other so that the two
outside circles have the sane image. The 20
second map will be the same type with the
pinching being done on the inage of these

outer circles. A point f(n) which is the
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camposite image of the north pole of the middle circle will have its
inverse image consisting of three points, one on each of the
longitudinal circles.
Finally, we give an example of a map of one of the types we were
considering in Chapter 1.
Example 5.12: A nop which factors into open simple maps may
be equivalent to an action by a finite group.
Let f be the nap obtained by first pinch-
; ing and rotating the 2-sphere about a great
| circle and then doing the sane about the 4‘
equator of the result. :hus f is the commpo-
sition of two open sisple maps. 4As indicated, "
f-lf(x,y,z) will be { (x,752)y (=2,=¥,2),
(=x,¥7,~2), (x,-y,-z)] . Consider the group
of homeonorphisns of the sphere onto itself,
{e, a, b, ab} where e is the identity, a is h
rotation 160° in the xy-plane, b is rotation '
160° in the xz-plane, and hence ab is rotation
160° in the yz-plane. Thus e(x,y,z) = (X,¥,2);
a(x,y,3) = (-x,-7,2); b(x,7,2) = (=%,¥,-2);
and ab(x,y,z) = a(=x,y,-z) = (%,-y,-2z); ad so
the orbit of (x,7,z) is t-lf(x,y,z), showing

that £ is equivalent to an action by this group.
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