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1. Introduction

This report is based on the chemical analysis of the waters 

from 93 springs and 9 wells. Springs, when free from metal plumbing, 

provide an uncontaminated source of the ground water and it was 

desired to obtain water uncontaminated with metals. A few wells 

were added to the list, usually because of their unique location in 

the sampling grid.

An uncontaminated ground water sample is of interest for its 

quality (purity), its subsurface temperature and its aid in mineral 

exploration. These three interests are covered in the main sections 

of this report which follow the experimental and geological sections.

Study Area I is a 135 x 80 km area which extends west from Hot 

Springs, Arkansas, to the Oklahoma line and it is located north of 

the 34° 42'30" N. latitude line. It encompasses the core area of the 

Ouachita Mountains. Area II is 135 x 23km and abuts Area I on the 

south. It is known as the Athens Plateau and includes some of the 

Gulf Coastal Plains. Figure 1-1 shows the location of the study area 

and the springs. Springs were located from notations on USGS topo­

graphic maps, from the literature on warm springs in Arkansas 

(Billingsley and Hubble; Miser and Purdue, 1929; Bryan, 1922) and 

from discussions with local inhabitants.

For convenience tables and figures are collected together in the 

rear of the report and titles with page location are summarized in the 

Table of Contents.
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2. Experimental

In the collection, storage, and analysis of the water samples, 

the recommendations and procedures of the Environmental Protection 

Agency were followed. These procedures are outlined in EPA (1974) 

and APHA (1971). All samples were collected and stored in poly­

ethylene containers. Some polyethylene caps for the 1 gallon con­

tainers are compounded with a filler. These types of caps were 

avoided and only clear polyethylene caps were used. All polyethylene 

containers were rinsed with concentrated nitric acid and allowed to 

stand capped from one to several hours, then rinsed several times 

with dionized distilled water before use.

At each site the routine was to collect 5 liters of raw water, 

4 liters of which were immediately filtered through a 0.4pm (142mm) 

Nuclearpore filter and stored in a 1 gallon polyethylene container to 

which 12 ml of 1:1 HNOg were added. An additional 500 ml of 0.4 pm 

filtered water was stored in a polyethylene container at 4°C for 

SiO2, SO4, Cl, PO4, NO3, and NH3 analyses. Anion analyses were made 

within 3 days after collection. Alkalinity, pH, and conductivity 

were measured at the site on unfiltered samples.

A special filter devised by the Savannah River Laboratory was used 

for the filtrations. This filter was pressurizable to 40 psi with 

freon, used a 142 mm filter, and filtered one liter of water per 

filling. New filters were prewashed with at least 100 ml of raw water, 

via filtration to remove any soluble contaminants.
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All cation analyses were by either atomic absorption (AA), 

spectrophotometry or flame emission. Both a Perkin Elmer Model 303 AA 

unit and a Jarrel Ash modernized Solid State Model 82-500 unit were 

used. The particular flames and other adaptations of these units 

are summarized in Table 1-1 along with the anion analytical schemes. 

Heavy metals (Fe, Co, Ni, Co, Zn, Pb) were first chelated and extracted 

by methyl isobutyl ketone after Nix and Goodwin (1970), before being 

determined by AA.

Temperature was measured by a mercury thermometer which was cali­

brated against an A.S.T.M. certified thermometer. The pH was measured 

with a Markson Model 80 pH meter. Conductivity was measured with a 

KC1 (soln.) calibrated YSI Model 33 S-C-T conductivity meter. Total 

alkalinity was measured by titration to the methyl red end point using 

a methyl red- bromocrescol green mixed indicator and 0.02 N H2SO4. 

All measurements were made on the acidified raw water except for barium. 

For this element the acidified raw water was first concentrated 10-25 

times by evaporation from a teflon beaker on a hot plate in order to 

improve the sensitivity. No loss in this evaporation technique was 

found for Na, K, and Mg. Therefore, no loss of Ba is expected.* However, 

Sb could not be retained by an evaporative concentration process and 

was always determined on the raw water.

Mercury was determined by atomic absorption using the flameless 

method (EPA, 1974, pp. 118). The samples of raw water were first 

treated with strong oxidizing agents to convert any organic mercury 

compounds to inorganic forms. The method thus measures organic and

3
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inorganic mercury. The oxidizing procedure was as follows: 1) add 

5 ml of 5.6 NHNO3 to 100 ml of the raw water sample (from 1 gallon 

polyethylene storage container which has been acidified with 1:1 

HNO3); 2) wait 15 seconds and add 5 ml of 18N H2SO4; 3) wait 45 

seconds and add 15 ml of 5% potassium permanganate and 8 ml of a 5% 

aqueous solution of potassium persulfate; 4) heat 2 hours at 95°C; 

5) cool to room temperature, add 5 ml of hydroxyl amine hydrochioride- 

NaCl solution (15 g/100 ml of each); 6) add 5 ml of stannous chloride 

solution (10%) and analyze immediately. A Perkin Elmer aerator and 

analyzer cell fitted to a Perkin Elmer Model 303 spectrophotomer were 

used.

Antimony was analyzed by the volatile hydride method after 

Fernandez (1973). A Perkin Elmer (PE) Hydride Generation Sampling 

System (303-0849) was adapted to a Jarrel Ash Solid State modernized 

Model 82-500 atomic absorption spectrophotometer. A 20 ml sample of 

spring water (from acidified storage sample) was added to the PE 

generator along with 8 ml of cone. HCl. A pellet (10/32 inch) of solid 

sodium borohydride (from Alfa Inorganic Division of Ventron Corp., 

Beverly, Mass. 01915) was added to the generator to form hydrogen and 

antimony hydrides which were fed to a hydrogen-nitrogen flame. Peak 

heights on a recorder were calibrated against antimony standards.

The following table gives a comparison of Si0£ analysis by atomic 

absorption (DeVine and Suhr, 1977) and by the colorimetric method 

adopted for this work.
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Spring Colorimetric Method (ppm) Atomic Absorption
No. Analysis 1 Analysis 2 Method (ppm)

501
502
503
504
505
506
507
508
509
510
511
512

7.7
3.2

18.3
12.1
7.7

12.1
13.7
7.7

10.3
6.6

10.2
8.9

8.7
4.4

19.1
13.5
9.1

13.9
9.5

10.0
8.8
3.7
8.1
9.3

7.7
7.2

23.0
15.6
12.2
15.6
11.6
11.6
11.2
6.1
8.9
8.9

Analytical data are summarized in Tables 1-2 to 1-4. Precision 

for most cation analyses in Table 1-2 to 1-4 is estimated at ±10%. 

This is generally true when the concentration being analyzed is several 

times the detection limit — the "less than" values in the various 

columns. These detection limits may vary in a given column because 

of change in sample size, instrument noise at the time, or size of the 

blanks. Where the concentrations are low the per cent error is much 

larger and is given by (detection limit)/(concentration) x 100. The 

reproducibility of the various anion analyses in the hands of various 

investigators has been studied in part by EPA and APHA. Reproducibility 

for our median concentration ranges are given in the concluding lines of 

Table 1-2 using the precision data of EPA (1974) and APHA (1971) for this 

range when available.

3. Geology

The following two study areas were selected based on contrasting 

lithologies and mineralizations.
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a. Area I: (Mn, Fe, Ba mineralization with minor Cu, Zn, Pb 

mineralization) As shown in Figure 1-1 this area includes parts of 

Montgomery, Polk, Pike, Howard, and Garland counties in west-central 

Arkansas. This is the core area of the Ouachita Mountains with 

relief of 152 to 304 m. and ridges 450 to 701 m above sea level. 

The region has some small farms, but is mostly forested and in the 

Ouachita National Forest.

A stratigraphic column for Area I is shown in Figure 1-2. 

Formations range in age from Cambrian to Carboniferous. Shales, 

Arkansas Novaculite (chert), and sandstone predominate with only 

minor limestone (in the Crystal Mountain and Womble Shale Formation). 

The upper member of the Arkansas Novaculite can be highly calcareous. 

Folding is intense and the east-to-west ridges have a corrogated 

surface due to the steeply dipping strata.

Manganese mineralization is widespread. Manganese oxide min­

erals lithiophorite (Li2Al8Mn12035.14 H20), cryptomelane (K Mn8O16), 

psilomelane, (Ba, H2O)4 Mn10O20, and pyrolusite (Mn02) are scattered 

among over 100 manganese ore prospects and mines. These minerals 

particularly lithiophorite, may contain of the order of 1 wt. % each 

of the base metals Co, Ni, Cu, and Zn (Wagner, et. al., 1979). These 

minerals and iron oxides are found in the bedding planes and cracks of 

the lower and upper division of the Arkansas Novaculite. Native copper 

has also been found in the novaculite.

Two barite districts are known. In each case the barite is in 

the first few meters of the lower Stanley Shale Formation. The barite

6



is formed as a result of replacement or fracture filling. Quartz 

veins in shale are associated with silver-containing sphalerite and 

galena in the eastern extremity of Area I.

b. Area II: (Hg, Sb, Sr, Ba mineralization with minor Zn, Pb min­

eralization) This area consists mainly of the Athens Plateau in the 

Gulf Coastal Region of Arkansas. Ages of the rocks vary from 

Mississippian (Stanley Shale), Pennsylvanian (Jackfork sandstone and 

Atoka sandstone, shale, and siltstone), Cretacous (Trinity limestone, 

gravel, siltstone, sandstone and some barite), and Quarternary 

(Terrace deposits and alluvium of gravel, sand, and silt). Along the 

northern edge there is a gradation from Area I to Area II type rocks. 

In the central part of the area there are kimberlite necks at 

Murfreesboro.

Three mineral districts exist. A mercury district with several 

mines covers essentially the central and eastern half of Area II 

(Clardy and Bush, 1976). An antimony district covers the western half 

of Area II with the antimony and mercury districts overlapping in the 

central part of Area I (Stroud et. al., 1969). Strontium ores have 

been mined in Howard county from the DeQueen Limestone member of the 

Trinity Formation. Similar deposits occur intermittantly across the 

area. Ore minerals for the three districts are mainly cinnabar (HgS), 

stibnite (Sb2S3), celestite (SrSO4) and strontionite (SrCO3). Some 

barite (BaSO4) is found with the strontium area. In Howard and Pike 

counties barite occurs as a cementing material in gravels and sandstone.

7



Gypsum deposits occur in the central part of Area II.

Quartz veins in sandstone adjacent to Stanley Shale were mined 

for lead, zinc, and silver in two deposits in Sevier county, in the 

western part of Area II.

8



I. WATER QUALITY AND CHEMISTRY

1. Water Quality

a. Springs: The groundwater of the Ouachita Mountains of Arkansas 

is classed as a calcium bicarbonate type and generally is soft to moder­

ately hard (Hem, 1970). The median hardness for all samples is about 

60 ppm as CaCO3. The total dissolved content is generally low, less than 

100 ppm as CaCO3 with Ca++ and HCO3 the major ions.

Samples included in this study occasionally exceed drinking water 

standards (Table 1-1). Fifty-six of the samples have pH values below 

that recommended (WHO, 1971). In fact, the median value for all samples 

is 6.2 which is below the recommended value of 6.5. This recommended pH 

value is based on taste and corrosion properties of the water rather than 

health effects.
3-High values for NO3, NH3, and/or PO 3/4 are indicative of contamina­

tion and suggest that bacteria counts may also be high. Four samples 

(904, 922, 927, and 948) exceed the recommended NO3 value of 10 ppm as N 

(EPA, 1976). However, only one sample 948 (19.7 ppm) exceeds the limit by 

more than 4.5 ppm. Seven samples (Table I-1) exceed the recommended NH3 

value of 0.5 ppm as N (PHS, 1962) with the highest value at 1.52 ppm. Only 

one sample, 927, exceeds the recommended limits for both NO3 and NH3. This 

site is an artesian well that may have its water affected by local surface 

contamination. Phosphate values are relatively low (Table I-1) with only

three samples having PO 3/4 in excess of 0.3 ppm, yet just one sample, 927,
3-exhibits either high N03 or NH3 in addition to the high PO 3/4 value.

9



Thirty samples and thirty-five samples exceed the limits (EPA, 1976) 

for Fe (300 ppb) and Mn (50 ppb) respectively (Table 1-1). Twenty-six 

samples exceed both of these limits. However, these limits are not set 

because of health reasons, instead they are set because of taste and 

staining problems. One sample, 932 (59 ppb) exceeds the Pb limit of 

50 ppb, and the Hg limit of 2 ppb is exceeded by another sample 908 

(2.27 ppb)(EPA, 1976). The concentration values of other elements are 

well below the limits set for other parameters with the exception of two 

samples, 929 and 944, which have Ba concentrations of 0.9 ppm which are 

close to the limit of 1.0 ppm (EPA, 1976). These samples are actually 

from the same spring at different times. Thus, the spring water of the 

Ouachita Mountains is potable, and the major problems are those associated 

with taste, corrosion and staining.

b. Comparison of Springs and Wells: The wells in the Ouachita 

Mountains of Arkansas have been analyzed previously in another project for 

major parameters (Albin and Stephens, 1963) and the analytical results of 

this study are compared with those of the present study in Table I-1. 

Values reported by Albin and Stephens for Fe and Mn have not been included 

as their water samples were not filtered prior to analysis (R. Sniegocki, 

personal communication, 1978). Therefore, their Fe and Mn values are con­

siderably greater than those of the present study due to the presence of 

suspended material containing Fe and Mn. Although the waters from the 

springs and wells are generally similar, the high and low ranges and median 

values from well water are greater than spring water with the following 

exceptions. The warm springs samples (e.g. 915) have higher temperatures

10
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than the wells. The springs also have a higher median Ca++ concentration 

which may be due to the more alkaline nature of the well water. The 

higher pH values for well water may be related to chemical and physical 

reactions in storage tanks, e.g. the loss of carbon dioxide could raise 

the pH of the water causing precipitation. The springs median and upper 

range values for SiO2 exceed those for the wells probably due to the 

high density of samples in the Caddo Gap area where some warm springs 

are located, and also the few wells samples were deep ones which could 

intersect thermal waters.

The higher values exhibited by the wells may be the result of more 

intimate contact of water with rocks or other factors. However, because 

the well water was not filtered, it is likely that the presence of sus­

pended material has increased concentration values for many parameters. 

Thus, most of the differences between the well and spring waters in 

Table I-1 may simply reflect the differences between unfiltered and fil­

tered groundwater.

2. Water Chemistry

The large number of analyses for a variety of elements and anions 

provides an opportunity to: 1) seek correlations among the various elements 

and 2) examine the saturation of the waters with respect to some of the 

more common minerals. These two facets are examined in the following sub- 

sections.

a. Base Metals : The manganese concentrations of the waters were 

found to correlate with their concentrations of Fe, Co, Ni and Zn. Correla­

tion coefficients calculated after Lepeltier (1969) from Figures I-1 to I-11



are summarized below. The correlations are for Areas I and II as a whole.

Metal

Correlation Coefficient
With Mn With Fe

Fe 0.652 -

Co 0.454 0.228

Ni 0.778 0.500

Cu -0.050 0.034

Zn 0.430 0.391

Correlation of the base metals with Fe is somewhat poorer than with Mn 

as noted by the smaller correlation coefficients in the above table. 

Copper did not correlate with either Mn or Fe. These correlations with 

Mn are particularly interesting because base metal contents of stream 

sediments in this area were found in previous studies (Wagner, et al., 

1978) to correlate with their Mn contents. Similar chemistries and 

perhaps similar source rocks account for the correlation between elements.

b. Alkaline Earth Metals (Ca, Mg, Sr and Ba): Calcium is by far 

the major element, in general, in the various spring waters. This is due 

to the widespread distribution of limestone and calcareous cements, both 

of which are mainly CaCO3, in sedimentary rocks and the ready solubility 

of CaCO3 in waters containing C02 via the equation:

CaC03(c) + H20 + C02 = Ca(HCO3)2 (soln)

The carbon dioxide (C02) is available from the air (0.03%) and soil 

(respiration and decay of plants).

The concentrations of other alkali metals correlate with the concen­

trations of calcium. The following table shows correlation coefficients

12



calculated after Lepeltier (1969) from the plots in Figures I-12,

III-12, III-13 and III-16.

Element
Correlation

Coefficient with Ca

Mg 0.797 (Areas I and II)
Sr 0.925 (Areas I and II)
Ba 0.123 (Area I), 0.329 (Area II)

The chemistries of the four elements are similar and they have common 

sources, except for Ba. The barium ion does not fit into the CaCO3 

lettice, being too large. Mg++ and Sr++ are common impurities in lime­

stone. Ba is more likely to come from barite, igneous rocks, or feldspar 

fragments in sedimentary rocks. These differences of Ba are reflected in 

the lower correlation coefficient.

Barium occurs widely in our study Area I as the manganese mineral 

psilomelane, (Ba, H2O )4Mn10O20 . In stream sediments correlation coeffi­

cients for Mn-Ba were about 0.9 (Wagner, et al., 1978). No significant 

correlation has been found for Mn-Ba based on their concentrations in the 

waters of Areas I and II (p = 0.164). This contrasts to the Mn-base 

metals correlation which persists in sediments and groundwater, as noted 

in the previous subsection.

Skougstad and Horr (1963) have summarized a large number of Sr 

analyses for surface and groundwaters of the United States. The sulfates 

and carbonates of Ca, Sr, and Ba are relatively insoluble. It is of 

interest to determine the relative saturation of the spring waters with
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respect to the six minerals corresponding to these compositions. 

Table I-2 lists the minerals, their solubility products, the activity 

ratios for ions with minerals in equilibrium, and the median values 

for these quantities for Areas I and II. Equilibrium values of 

activity ratios when drawn on correlation log - log plots for the 

two ions show which springs are saturated with which mineral.

General statements can be made by comparing median values and 

equilibrium values of activity ratios. For the celestite (SrSO4) = 

gypsum (CaSO4, 2H2O) equilibrium the mean value of aSr++/aCa++ is 

greater than the equilibrium value in both Area I and II and indicates 

that celestite is generally the stable mineral, not gypsum. Barite 

(BaSO4) is even more favored than gypsum and is thus the favored sulfate 

mineral. Calcite is the most favored carbonate mineral.

In Figure I-13 the solubility products of strontianite (SrCO3) and 

calcite (CaCO3) are plotted versus temperature. Figure III-11 has similar 

data for barite (BaSO4) and celestite (SrSO4). We have calculated for 

each spring using its surface temperature, the percent saturation with 

respect to the four minerals: barite, celestite, calcite, and strontia­

nite. Median values and the ranges are shown in the following table. 

Activity coefficients were determined from ionic strength and the graph 

of Hem (1970), p. 21. Carbonate ion concentrations were determined 

from the CHCO3- (from alkalinity), pH, and the equilibrium constant for

KHCO2- which is plotted versus temperature in Figure I-13A.
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% Saturation of the Spring Waters with BaSO4, SrSO4, CaCO3 and SrCO3 
At Surface Water Temperature

Median Range

% of Springs

Mineral Area
Above 10% 
Saturation

Above 50% 
Saturation

barite, BaSO4 

celestite, SrSO4 

calcite, CaCO3 

strontianite,
SrCO3

I
II

I
II

I 
II

I
II

1.3*
8.5*

0.0075
0.0047

0.065
0.022

0.033
0.002

0.16-96
0.40-97

<0.0001-0.50
0.0011-1.97

0.000013-154
0.00019-79

0.04 x 10-4
0.002 x 10 -

15
45

0
0

25
19

8 0
31 8

7
16

0
0

7
4

0
0

*Using all values and counting < values at 1/2 their < value. 
Area I had a median of 2% using finite values only.
Area II had a median of 8% using finite values only.

Only barite and calcite show any appreciable saturation in the spring 

waters. In Area II there were 8% of the springs with over 10% saturation 

with strontianite but none were over 50%. Both barite and calcite have 

some springs over 50% saturated.

c. Alkali Metals (Li, Na, K): Figures 1-14 to 18 show plots of Na 

versus Mg, K, Sr, Ca, and Li. Only Li shows a reasonably good correlation 

coefficient (p = 0.509) with Na. However, the Mg-Na, Sr-Na, and Ca-Na 

plots have a minimum envelope to the data. The reason for this is unknown 

at the moment but it is interesting that the minimum parallels more or 

less the concentration ratios for the ions in rain water. Curves A, B, and 

C depict in Figure 1-14 the course of the ionic ratio of Mg/Na based 

respectively on A (absorption of Mg from rain water solution and replace­

ment with Na), B (either addition of Mg or absorption of Na with no
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replacement by Mg) and C (addition of Na to the rain water with no 

change in Mg). Mere loss of water proceeds along the rain-ratio line. 

Since most of the points of Figure I-14 are above the rain-ratio line 

the combined process of water loss (by evaporation and transpiration) 

and Mg addition predominate. In Figure I-15 for K-Na, the process of 

water loss and K absorption predominate. Figure I-16 for Sr-Na is pre­

dominantly water loss and Sr addition. Figure I-17 indicates both Ca 

addition and Ca removal processes at work along with water loss.

A manganese mineral containing lithium, lithiophorite, with the 

formula Li2Al8Mn12O35. 14H2O is widespread in our study area (Wagner et 

al, 1979). This mineral might provide both Li and Mn to groundwater. 

Figure I-5 shows a correlation plot for Mn-Li with p = 0.289, a rather 

poor correlation.

Vatin-Perignon et al.(1979) has listed the Li/Na ratio of a large 

number of different kinds of waters .
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II. GEOTHERMOMETRY

1. Introduction

A survey of spring water temperatures in Areas I and II has been 

carried out utilizing two methods: 1) the quartz geothermometer and 

2) the surface temperature of the water. By this means areas of geo­

thermal activity should be located. A third method, the Na-Ca-K geo­

thermometer, was evaluated for the study area but it yielded erroneous 

results because it is designed for areas where feldspars are abundant. 

Feldspars are rare to absent in the rocks of the study area.

The approach taken was to construct histograms for the total study 

area (Areas I & II) of the temperature obtained from the SiO2 and sur­

face methods, calculation of the mean and standard deviation, assuming 

a normal distribution, and defining values greater than one standard 

deviation unit above the mean as being anomalous (Swanberg and Morgan, 

1978). The details of the method are discussed below.

a. Quartz Geothermometer: Many papers have been published regard­

ing the solubility of silica as an empirical function of temperature in 

an aqueous environment (Fournier, et al., 1974); (Fournier and Truesdell, 

1973); (Mahon, 1966) and (Mariner and Willey, 1976). The relationship is 

expressed quantitatively according to the equation of Truesdell (Swanberg 

and Morgan , 1978):

TSiO2 = [1315/(5.205-Log10 SiO2)] -273.15

where TSiO2 is the silica geotemperature in degrees centigrade and SiO2 is 

expressed in parts per million. The method is useful in estimating reser­

voir base temperatures of geothermal systems. However, three principle
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assumptions must be made in order for the method to be utilized quan­

titatively (Swanberg and Morgan, 1978): 1) there is no mixing of non­

thermal waters with the waters migrating from the geothermal reservoir 

to the surface, 2) equilibrium in the geothermal system must be 

established between the waters and the surrounding rocks, and 3) there 

is no silica precipitation. The general reluctance of quartz to pre­

cipitate from supersaturated solutions (Truesdell, 1976) and slow water­

rock reactions at low temperatures (Rimstidt, 1977) aid in supporting 

these assumptions. It must be kept in mind that temperatures calculated 

from the SiO2 concentrations are a minimum temperature due to the possib­

ility of dilution taking place by waters encountered near the surface.

b. Surface Temperature: The surface temperature method involved 

establishing a mean surface temperature of the waters sampled in the study 

area. We assume after Swanberg and Alexander (1979) that waters at the 

surface having a temperature of one standard deviation above the mean may 

be of geothermal origin. Figure 11-3 is a histogram of the surface temp­

eratures of the study area. The modal value is 17°C and compares with a 

mean value of 16.8°C and standard deviation of 4.3°C.

c. Heat Flow: Heat flow is defined as the product of the thermal 

conductivity of a substance and the thermal gradient in the direction of 

the flow of the heat (AGI Glossary, 1972, p. 326). Swanberg and Morgan 

(1978) showed that regional heat flow can be predicted from the silica con­

centration of groundwater by using the following empirical equation:

TSiO2 =m'q + B, (1)
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where TSiO2 is the silica geotemperature in degrees centigrade (°C), q 

is heat flow in milliwatts (w) per square meter (m) and m' and b are 

constants of 0.67°Cm2/w and 13.2°C, respectively. The physical signifi­

cance of the intercept b is that this value should represent the national 

mean annual air temperature because the absence of heat flow implies that 

all thermal energy be solar in nature (Swanberg and Morgan, 1978).

d. Geothermal Gradient: The geothermal gradient represents the 

increase in the rock temperature per unit of distance as one proceeds 

from the surface of the earth downwards. It is expressed in the follow­

ing equation:

Geothermal Gradient = Heat Flow/Thermal Conductivity of the Rocks (2) 

where the geothermal gradient is in °C per kilometer, heat flow is in 

milliwatts per square meter and the thermal conductivity is in milliwatts 

per kilometer per °C.

The stratigraphic column of the study area (Figure 1-2) includes 

numerous strata of variable thicknesses. The dominant rock types in the 

area are sandstones, shale, and chert. The thermal conductivities of 

sandstone and shale are quite similar (Handbook of Chemistry and Physics, 

1972-1973). The thermal conductivity value of chert could not be located 

and was estimated at 1.2w/km°C. Due to the relatively small difference 

in the thermal conductivities of the three rock units and also due to the 

actual thicknesses of the rock units in the Quachitas being unknown, an 

approximate thermal conductivity value of 1.3w/km°C was assigned to the 

Ouachita sediments.
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e. Ci rculation Depth: It is not known to what depth the waters 

from the springs are circulating, or to which formations they are con­

fined. However, based on the mean SiO2 temperature and the mean geo­

thermal gradient, a mean depth of circulation can be calculated by the 

following equation:

Depth = - A)/(Geothermal Gradient) (3)

where depth is in kilometers, TSiO2 is in °C, the geothermal gradient 

is in °C/km, and A is the mean surface temperature. The surface tempera­

ture of the rock is assumed to be the same as the surface temperature of 

the spring water.

2. Results and Discussion

The frequency distribution of the silica concentrations found in

the Ouachita spring samples is shown in Figure II-l. It can be seen that 

the bulk of the samples can be accounted for in the 5-15 ppm range. The 

calculated mean was 11.5 ppm and the modal value was 10 ppm. Geotempera­

tures calculated from silica concentrations are shown in Table II-l and 

represented in a frequency plot in Figure 11-2. The mean silica geotemp­

eratures in the study are was 44.3°C with a modal value of 37.5°C.

Because the mean and the modal values are approximately equal and the 

14.1°C standard deviation less than the 25°C suggested by Swanberg and 

Morgan (1978), the value of 44.3°C is taken to be representative of the 

entire Ouachita Province (Areas I & II). The provinces that most closely 

resemble the Ouachita Province in Swanberg and Morgan's (1978) paper are 

the Eastern United States (North), Eastern United States (Central), and 

Middle Rocky Mountains (Wyoming). In the North and Central Eastern United
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States, the silica concentrations are slightly less than the Ouachita 

Province, which indicates a slightly lower calculated subsurface temp­

erature. In contrast, the Rocky Mountain region yielded slightly higher 

silica values than the study area corresponding to higher subsurface 

temperatures.

According to Swanberg and Morgan (1978), geotemperatures of greater 

than one standard deviation unit above the mean (i.e. greater than 58.4°C 

in this case) is an effective cut-off temperature in searching for geo­

thermal areas. Using this criteria, there are approximately 14 springs 

out of the 102 water sites sampled that are possibly of "thermal origin 

or have a component of thermal water". Table II-2 lists these springs and 

their associated silica geotemperatures.

Using the surface temperature method, 7 springs (Table II-2) have 

temperatures of one standard deviation above the mean (i.e. greater than 

21.1°C in this study). Only two springs, 923W and 924 in the Caddo Gap 

area, have both anomalous surface and geotemperatures. The two hottest 

springs, based on surface temperatures, 915(35°C) and 921(30°C) also in 

the Caddo Gap area do not have anomalous geotemperatures.

The data show that low temperatures at the surface need not be indi­

cative of low temperatures calculated from the SiO2 concentrations. This 

observation can be explained by considering the path taken by the waters 

on their way to the surface. Once silica is in solution it is reluctant 

to precipitate out even though the temperature of the water drops as would 

be the case for a long distance of travel. If only a short distance of 

travel is involved, the silica concentration should remain constant;
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however, the water temperature should be higher. Such a case then 

should be indicative of a heat source near the surface. However, it 

must be kept in mind that the silica geotemperature values represent 

a minimum temperature due to the possiblity of the waters being diluted 

on their way to the surface.

Due to faulting being so intense in the study are, it is believed 

that the anomalous silica values are associated with faults which pene­

trate, stratigraphically, deeper than their surrounding counterparts.

Minimum heat flow was calculated using the method of Swanberg and 

Morgan (1978), as stated above. Table II-1 shows the results of these 

calculations. Sample 502 gave an unrealistic negative value. This sam­

ple is extremely low in silica and is interpreted as containing primary 

meteoric water.

Figure II-4 shows a contour map of the heat flow in the study area. 

Areas of highest heat flow are located in the vicinity of Caddo Gap, the 

Cossatot Mountains, Lake Greeson, Mena and east of Dierks Lake in Sevier 

County. In the Lake Greeson area, the high heat flow is believed to be 

associated with the epithermal Hg deposits.

Table II-1 shows the geothermal gradient values calculated for the 

study area. In general, the geothermal gradient in the study area ranges 

from 20-50 °C/km and has a mean value of 35.7. Due to the lack of wells 

drilled in the study area, the geothermal gradients given by the AAPG are 

only rough extrapolations, yet based on the AAPG values through the middle 

of the study area, their average of 30.08 °C/km corresponds quite well 

with our mean of 35.7 °C/km.
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Parameter Symbol
Mean for 

Area I & II Units

Subsurface Spring Water T

Heat Flow

Geothermal Gradient

Surface Spring Water T

Depth of Circulation of Spring 
Water

TSiO2

q

A

44.3

46.4

35.7

16.8

0.77

°C
2 

milliwatts/m

°C/km

°C

km

The mean circulation depth of 0.77 km seems reasonable for our study 

area.

3. Comparison of Historical Data and Present Work

Miser and Purdue (1929) and Bryan (1922) have previously recorded 

data on warm springs in Area I. Although Miser's data were published in 

1929, the temperature measurements were made in 1910 and 1916. As will 

be noted in the comparison on the next page of these previous measurements 

with ours, there has been no significant temperature changes in the 

springs. Our spring 921 is possibly not the same as Barton's spring and 

may be mile to the south of it. We locate 921 at SW1/4, NW1/4, sec. 26,

T4S, R25W. The references list it as "along sec. 23-26 line.

23

Equation (1) was developed for regional use where TSiO2 and q 

have mean values for the region being studied. In Table II-1 we have 

applied the equation to the calculation of heat flow, q, for individual 

springs. Using the mean value for our study area (Area I & II) for

TSiO2 we now calculate the mean value of q using equation (1), and 

from equation (2) and (3) the mean heat flow, geothermal gradient and 

depth of circulation for our study area. These values are summarized 

below:



(1) Miser and Purdue, 1929; Bryan, 1922

(2) Billingsley, et al .

Miser and Purdue (1929) list some chemical data on two of the

springs which are compared below to our data. All data are in ppm.

Caddo River Springs Barton's Spring
Analysis

SiO2

Ca

Mg

Na

K

so4
Cl

Li

N. Spring

18.7

41.7

4.2

3.4

0.000

2.32

7.1

S. Spring

15.0

38.9

2.2

7.5

0.000

1.42

4.8

Our Data

17.2

42.0

2.45

5.4

1.00

0.70

3.5

Miser and P.

15.4

39.8

2.3

9.1

1.3

8.3

8.0

0.6

Our Data

10.5

50.4

2.38

3.83

1.10

3.2

2.5

0.0046
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Present
No. Spring Past Name

(1)
T°C(year)

(2)
T°C(year)

Present
Work,

945

915

921

924

(Little Missouri River Bank)

(Bed of Caddo River, North Spring)

(Bed of Caddo River, South Spring)

W. B. Barton

Redland Mountain

23.3(1916)

35.0(1910)

34.4(1916)

35.4(1910)

36.0(1916) 

listed, no T

25.0(1916)

31.7(?)

23.0

35.0

30.0

25.0



The data on the Caddo River Spring are in close agreement, except 

for K and SO^. Only Mg and K are in close agreement for Barton's Spring. 

The literature data acknowledged some contamination with other waters 

during the Barton Spring sampling. Also, as pointed out earlier, our 

spring 921 while in the same area as Barton's Spring may be 1/4-1/2mile 

south of it.

It is of interest to compare our data in a very general way with 

that of the hot and warm springs near Hot Springs, Arkansas. The hot 

springs have a uniform SiO£ concentration of about 42 ppm which corres­

ponds to a subsurface temperature of 94°C (Bedinger, et al., 1974). 

The average concentration of SiC^ for the warm springs (i.e. greater than 

20°C) near Hot Springs was 23.6 ppm, corresponding to an average source 

temperature of 70.6°C. These warm springs have a fairly uniform elemental 

concentration which indicates a common source. The warm springs in our 

study areas varied substantially in chemical composition which indicate a 

variety of sources.

4. S umma ry

The area around Caddo Gap has the springs with the higher surface 

temperatures (30 and 35°C). Other warm springs, Redland Mt. (25°C) and a 

"warm" spring (23°C) are the next hottest. Miser first measured the temp­

eratures of these springs in 1910 and 1916. The temperatures are the same 

today (1979).

Subsurface temperatures of the various spring waters based on the
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silica geotemperature were highest in the Fancy Hill barite district

(911W with 91.2°C Tc.n ), next highest in the Lake Greeson mercury district
□ 1 Ug

(907W with 89.2°C Tc.„ ) next highest in the Caddo Gap area (923W with
□ 1 Ug



82.9°C TSi0 ) and next highest in the antimony area of Sevier County

(951W with T_.n of 78.3°C). The preponderance of wells in this list 
j  1 u 2

is to be noted.

These data are of geologic interest and are discussed further in 

the Exploration Section III. In economic terms the hottest springs 

might be of balneological or direct heating use. They cannot be used 

for power generation which requires about 180°C for turbine power gen­

eration (Muffler, 1973).
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III. EXPLORATION

1. Introduction

Stream sediments and soils have received much attention in 

geochemical exploration for mineral deposits. In general, mineral 

deposits have indicators in nearby sediments and soils either 

through clasts or chemical solutioning and reprecipitation. Chemi­

cal analyses of sediments and soils detect the element of interest 

and the vector of the amount of the element points, in theory, 

toward the deposit.

Analyses of surface and ground waters have likewise been used 

for exploration (see p. 271 of Hawkes and Webb, 1962). Water samples 

are generally very dilute in mineral content compared to solid sam­

ples and analytical schemes are strained. Surface waters have an 

advantage of traveling far and with strategic sampling can be used to 

broadly survey a large drainage basin. Surface waters have a dis­

advantage of being in contact with air and converting some metallic
2+ 2+

ions, Fe and Mn for example, into the less soluble "ic" forms. 

It is not unusual to see this process in operation via the precipi­

tation of iron and manganese oxides where a seep or spring flows into 

air or a stream. Precipitation of Fe20g or MnC^ coprecipitates 

many trace metals and removes them from solution.

For geochemical exploration, ground water has certain advantages 

over surface waters: 1) lower Eh and greater solubility for certain 

metallic ions in the "us" form; 2) longer contact with rocks and 

soils with greater chance of equilibrium and higher metallic content;
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3) higher C0£ content due to organic decay processes which give 

it a lower pH and more dissolving potential; 4) more concentrated 

in mineral content due to no dilution by direct rainfall or sur­

face runoff and, in forested areas, a 2X to 3X concentration due 

to evaporation and transportation; 5) in a faulted or steeply 

dipping strata, spring waters may have a deeply buried conduit and 

in the process "sample" buried rock structures and minerals which 

have no surface exposure. This last advantage is also a disadvan­

tage for springs in that all the rock units to which spring waters 

have been exposed are unknown.

In the present work about 100 springs were sampled in west­

central Arkansas (see Figure 1-1). This is a highly mineralized area 

as described above in the "Geology" section and consists of two areas 

of distinct mineralization. Thus, an opportunity is provided for 

testing the potential of spring waters in these areas as an explora­

tion tool. Chemical analyses of the waters are summarized in Tables 

1-2 through 1-4.

Analyses were made for the following elements:

1) Base metals (Fe, Mn, Zn, Cu, Co, Ni, Pb, Hg, and Sb)

2) Alkaline earth metals (Ca, Mg, Sr, and Ba)

3) Alkali metals (Na, K, and Li)

4) Anions (NO3, NH^, P0^, S04, Cl, and SiOg)

In addition, the following measurements were made: water temperature, 

pH, specific conductivity, and alkalinity.
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The scheme for testing spring water analyses as an exploration 

tool is to compare the location of springs of anomalously high con­

centrations of metal content with the location of known mineral 

deposits of the same metal. This will be done on a district (Areas 

I and II), as well as on a fractional section basis using Stroud et. 

al. (1969) for the location of mineral deposits.

We are using section, township, and range for locating springs 

and mineral deposits. Spring locations are based on the latest 

U.S.G.S. topographic maps and field observations. Stroud, et. al. 

(1969) also uses section, township, and range for locating mineral 

deposits. Any other system would be awkward as would any distance 

unit other than mile, due to sections being 1 mile square. All dis­

tances given in the discussion of individual springs are in miles.

To determine anomalous values, the concentration of each metal 

for the various springs was plotted graphically as cumulative fre­

quency curves after Lepeltier (1969). Anomalous values were those 

exceeding threshold, the 95% value on the high side. Figures III-l 

through Figure III-5 compare several of these cumulative frequency 

curves for Areas I and II. Figures III-6 through Figure III-10 show 

several additional cumulative frequency curves for the areas. These 

curves shown are illustrative of the types of curves exhibited by Areas 

I and II and are not meant to be complete.

Most of the cumulative frequency curves for Areas I and II show 

two segments of similar slopes which are slightly offset. This indicates 

that there are two types of aquifers in the areas with slightly different
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chemistries. Several reasons such as different lithologies, depths, 

and temperature could explain the different chemistries. Although 

the slopes and intercepts are different for Areas I and II, the 

general shape of the curves for a given element are remarkably simi­

lar for the two areas. An exception is the PO^ curve for the Area 

II which is quite linear with a single branch. Area I curves are 

based on 71 data sets whereas Area II curves are based on only 31. 

It is of interest to note that in both areas the data follow a log­

normal distribution which is a requirement for linearity in this 

type of plot. To our knowledge, the lognormal distribution of chemi­

cal data on a natural water system has not been previously reported.

Threshold values and anomalous values determined from the above 

plots are summarized by analysis or measurement in Table III-l. Med­

ian, threshold, and anomalous values are compared for Area I and 

Area II, element by element in this tabl'e.

Before examining Table III-l, the different mineralizations of 

the two areas are worth repeating. Area I has Mn, Fe, Ba mineraliza­

tion with minor Cu, Pb, and Zn mineralization. Area II has Hg, Sb, 

Sr, and Ba mineralization with minor Zn and Pb mineralization.

2. Background Values of Non-Mineralizing Elements

Median values which reflect the backgrounds for Areas I and II are 

compared below for temperature, pH, specific conductivity, and alkalin­

ity with the ranges of the values given in parenthesis.
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Water Temperature(°c)
Surface Subsurface*

pH 
Units

Sp. Cond.
p mhos/cm(25°C)

Total Alkalinity 
mg/L CaCOo

calculated from Si02 content.

Area I 17(5-35) 40.0(7.1-91.2) 6.4(3.8-7.9) 107(14-385) 50(0-291)

Area II 16(8-25) 45.9(11.2-89.2) 5.8(4.1-8.7) 61(<5-563) 15(0-265)

II/I (%) 94 115 91 57 25

The median subsurface water temperature is slightly higher for Area II, 

but the hotter individual springs were in the eastern part of Area I.

Other parameters in the above table are comparable or lower for Area II. 

The lower median pH for Area II should favor higher concentrations of 

most elements. This is countered by the higher electrolyte content (and 

thus lower activity coefficients) of Area I as indicated by its higher 

median specific conductivity. Higher electrolyte content would favor 

the solubility of barite, which was found in several cases to be near 

its saturation value.

Anion concentrations for the two areas are compared in the follow­

ing table which gives median values and ranges in parenthesis.

Anion Median (Range) Concentrations (ppm)

NOg as N NH3 as N P04 as P

Area I 0.66(<0.01-5.5) 0.1(<0.01-1.52) 0.07(<0.01-0.54)

Area II 1.0(0.06-14.3) 0.2(0.02-1.52) 0.10(0.02-0.41)

II/I (%) 151 200 143

so4 Cl Si02

Area I 2.3(<0.3-32) 2.3(0.25-87) 10.3(3.2-34.9)

Area II 3.2(0.3-55) 3.5(0.5-9.5) 12.1(5.4-37.1)

II/I (%) 139 152 117
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In all cases, Area II has the greater median anion concentration but 

the ranges are comparable, except for chloride. For NO^, NH^, and 

PO4 this is most likely due to the greater agricultural and silvi­

culture activities of Area II.

Other ions to be considered for background purposes for the

present study are shown below. Median values, with ranges in paren-

thesis, are shown for Areas I and II.

Alkali and Alkaline Earth Ions, Median (Range) Concentrations

Na K Ca H

Area I 1.8(0.95-152) 0.56(0.04-2.9) 13.5(0.03-70) 1.9(0.1

Area II 3.9(0.85-162) 1.10(0.21-8.5) 2.7(0.6-78) 1.4(0.]

II/I (%) 217 196 20 3

Ranges for these four ions are comparable for the two areas but median 

values for Na and K for Area II are about twice those for Area II and 

for Mg and Ca much less for Area II.

In summary, for the non-mineralizing ions in the spring waters of

the two areas, no order of magnitude differences are found. The greatest

difference is in the median value of Ca ion which for Area I is five

times the value in Area II. It is generally the most abundant ion in 

Area I, controls alkalinity (through HCO3), specific conductance, and 

ionic strength. In Area II, Na competes more strongly with Ca and Mg 

ions for control of these parameters.

3. Mineralizing Elements

a. Base Metals: Median values, with ranges in parenthesis, are 

given below for nine base metals found in the spring waters for Areas 

I and II. Seven of these, Fe, Mn, Zn, Cu, Hg, Sb, and Pb, have primary
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mineral deposits in at least one of the areas. All, except Pb, Hg, 

and Sb, may be associated with Mn oxide minerals in Area I. Median

values are given with

Base Metal

Fe

ranges in parenthesis.

Median (Range)

Mri

Concentrati ons

Zn

(ppb)

Cu Co

Area I 56(2-5220) 19(1-1220) 18(2-144) 4(1-85) 5(<2-31)

Area II 49(7-10082) 14(4-370) 9.5(2-48) 3(4-14) 11(2-39)

II/I (%) 87 74 53 75 220

Ni Hg Sb* Pb

Area I 9(2-39) <0.1(<0.1-2.1) <0.2(<0.2-0.3) 10(1-37)

Area II 20(2-54) 0.2(<0.1-1.2) <0.5(<0.2-0.5) 30(<10-59)

II/I (%) 222 >200 -- 300

*Based on a limited number of only 8 samples for Area II

For Fe, Mn, Zn and Cu , Area II Has a lower median and a lower range

(except for Fe). For the other five metal s the ranges are comparable

for the two areas but with Area II having a higher median. Consi deri ng

the differences in sample densities, 71 samples for Area I and 31 for

Area II, and the analytical difficulty in these low ppb ranges, these

differences are judged to be small. Manganese which is decidedly more 

abundant as manganese oxide minerals in Area I does have a much higher 

range in Area I, but only about a 25% greater median. Hg which has a 

definite mineralized area in Area II, but none in Area I has a higher 

median but lower range in Area II. Threshold values are decidedly 

greater for Fe, Mn, Zn, and Cu in Area I as shown in the following table.
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Base Metals, Threshold Concentrations*(ppb)

Fe Mn Zn Cu Co Ni Pb

Area I 5000 900 100 11 20 28 31

Area II 580 220 33 7 32 37 42

II/I (%) 12 24 33 64 160 132 135

*95% values on the high side of cumulative frequency curve, except Hg=l ppb.

Hg and Sb are not included in the above table. They have too few 

finite analytical values for each area for a cumulative frequency 

treatment. Arbitrarily, we define the threshold value for Hg as 1 

ppb. Sb will not be treated further in this discussion except to 

say that in spite of good definite Sb mineralization in Area II we 

have been unable by our chemical methods to detect any significant 

finite amounts of Sb in the spring waters of Area II.

The number of anomalous springs and their average anomalous 

concentrations are summarized in the following table for Area I and 

II.
Base Metals Average Anomalous Concentration (ppb)

(Number of Anomalous Springs in Parenthesis)

when using median, threshold and average anomalous concentrations

Fe Mn Zn Cu Co Ni Hg Pb

Area I 5222(2) 1220(1) 134(4) 34(4) 27(4) 36(4) 2.0(2) 35(2)

Area II 6399(4) 353(3) 46(2) 12(3) 38(2) 54(1) 1.1(3) 59(1)

II/I (%) 122 29 34 35 141 150 55 169

Area I has the higher anomalous values for Mn, Zn, and Cu. In summary,

a higher metal content for Area I is indicated for Fe, Mn, Zn, and Cu
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(except Fe) as criteria. Manganese which is well documented to have 

more mineralization in Area I gives the best indication of this in 

the threshold and average anomalous values, not the median value. 

Area II has a higher median for Hg but lower anomalous average.

We now examine specific springs for the correlation of their 

water chemistry with the local mineralization. Table III-l lists 

by analysis the springs in Area I and II which are anomalous for 

that analysis. Table III-2 for Area I and III-3 for Area II lists 

the springs in order of sample number which have anomalous analyses. 

Those springs having anomalous base metal values are summarized in 

the following table along with any other anomalous measurements or 

analyses for that spring. The anomalous elements and their concen­

trations are listed.

ng No.

LAW).

1

3

7

OW

3

8

6

Springs with Anomalous Base Metal Concentrations

Area I

Rel ated 
Minerali zation 
in Local Area 

of Spring* Measurement (Value) for Which Spring Is Anomalous

A

D

B

A (Ba)

B

D

A

Cu (85 ppb)

Cu (15 ppb), SiC^ and subsurface temperature (63.2°C)

Mn (1220 ppb), Cu (21 ppb), Ni (29 ppb), P04 (0.54 ppm), 
S04 (12 ppm)

Pb (33 ppb), NH3 (0.64 ppm), Li (23 ppb), Ba (420 ppb)

Cu (14 ppb), surface temperature (22°C)

Hg (21 ppb)

Zn (143 ppb)
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Spring No. 
or

Well No.

Re.l ated 
Minerali zation 
in Local Area 

of Spring* Measurement (Value) for Which Spring Is Anomalous

537

544

900

911

916W

938

939

943

904

908

909

910

919

920

924

928

932

936

937

948

B

D

A

C

A

A

A

B

D

A

A

B

D

A

A

A

D

Zn (110 ppb)

Hg (1.9 ppb)

Zn (137 ppb)

Zn (144 ppb), P04 (0.28 ppm), Sn (500 ppb)

Fe (522 ppb), Co (23 ppb), Ni (39 ppb), Pb (£7 ppb), 
SO4 (13.1 ppm), subsurface temperature (91.2°C)

Co (22 ppb), Ni (36 ppb)

Co (30 ppb), NOg (4.8 ppm)

Co (31 ppb), Ni (39 ppb)

Area II

Cu (14 ppb), Zn (48 ppb), pH (4.1 units), NO-, (14.3 pg 
Cl (9.5 ppm)

Fe (10082 ppb), Co (39 ppb)

Hg (1.1 ppb)

Hg (1.2 ppb), SiOg and subsurface temperature (62.9°C

Cu (13 ppb), surface temperature (21°C)

Cu (9 ppb), subsurface temperature (68.8°c)

Mn (345 ppb), surface temperature (25°C), SiOg and 
subsurface temperature(60.4°C)

Fe (4218 ppb), Mn (345 ppb), SiO? and subsurface tempe 
(75.8°C)

Fe (1375 ppb), Pb (59 ppb), SiO9 and subsurface temper 
(73.4°c )

D Mn (370 ppb), Co (38 ppb), Ni (54 ppb), SiO9 and subsu
temperature (70.0°C)

D Fe (9930 ppb), Li (86 ppb), pH (8.7 units), sp. cond.
(563 p mhos), alkalinity (265 mg/L CaCOg)

D Zn (45 ppb), pH (4.1 units), Cl (8.0 ppm)
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Stroud, et al. (1969) has a comprehensive listing of the known 

mineral prospects and mines for Areas I and II and their locations 

by 1/16 sections. Table III-4 lists the 1/16 section locations for 

the springs sampled in this study. Using Table III-4 and Stroud, et. 

al. (1969) the anomalous springs in the above table will be checked 

for known mineralization in their local area.

For spring 511 located NE 1/4 SW 1/4 Sec. 14, T3S, R29W we quote 

from Stroud p. 329, "Fractures in Arkansas Novaculite in T3SRs28-30W, 

and T4S, R31W, contain stains and thin seams of malachite, azurite, 

chrysocolla, chai copyrite, and native copper".

Although there is no known mineralization in spring 517's section, 

there is a phosphatic manganese deposit 3 1/2 miles due south.

520W is in a barite district. Pb mineralization in unknown locally, 

but is represented by several small mines 10 miles due north at Silver, 

Arkansas.

Spring 523 is not in an area of known Cu mineralization, However, 

a small galena mine, now abandoned, is 2 1/2 miles due west. Spring 

528 is in a Mn district and within 1 mile of a hematite deposit 

(Pointed Rock Tunnel) and at least one Mn prospect (E. S. White) con­

taining psilomelane. No Hg minerals are known in this area.

Spring 536 is in the same 1/16 section as an abandoned Mn mine 

(manganite and psilomelane minerals). No Zn mineralization is known in 

the local area, but manganese oxide minerals, particularly cryptomelane, 

can have 1 wt. % of Zn (Wagner, et al., 1979).
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Spring 537 is not in an area of known Zn mineralization, but is 

only 1 1/2 miles northwest of spring 536. The comments on 536 would 

apply here as to a source of Zn in cryptomelane.

Spring 544 is within 1 1/2 miles of two known Mn oxide mineral 

deposits. One 1 1/2 miles to the west has produced several tons of 

ore. The deposit to the southwest is associated with limonite. No 

Hg minerals are known in the area.

Spring 900 is within a mile of an abandoned Pb, Zn, and copper 

mine and mill.

Spring 911 is not in an area with local Zn mineralization. However, 

manganese deposits with possible Zn are located 4 miles to the south.

Artisian well 916W is in a barite district. Manganese minerals 

occur with the barite at the Mcknight Claim, 1 mile away. The Mn 

minerals contain appreciable Fe, Co, and Ni.

Spring 938 is located 1 mile southeast of the abandoned Featherstone 

Mn Mine (psilomelane and limonite). Co and Ni are known trace metals; 

up to 1 wt. % in many Mn minerals of the area (Wagner, et al., 1979).

Spring 939 is 1 mile northeast of a Mn prospect (U.S. prospect) 

which might contain Co. A similar Mn prospect is 1 1/2 miles to the 

southeast.

Spring 943 is in a barite district with no locally known Co or 

Ni mineralization. Mn ores which might contain Co and Ni are known 3 

miles northeast and 3 miles northwest.

Spring 904 has no known minerals adjacent, but it is 2 1/2 miles 

north of the kimberlite at Murfreesboro. This deposit of peridotite
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has some barite veins associated with it, but no known Cu or Zn 

mi neral s.

Spring 908 is in a mercury district with ore minerals being 

cinnabar and associated minerals of Fe (pyrite and marcasite), Cu 

(sulfides) and As (arsenides). Co due to a similar chemistry to 

Fe would probably come from the Fe minerals.

Spring 909 is within 1/2 mile of a Hg mine (section 32 mine) 

which has produced over 600 flasks of Hg from cinnabar.

Spring 910 is 4 miles south and down dip of a Hg district.

Spring 920 is in a barite and mercury district. Copper sul­

fides are found with cinnabar ores.

Spring 924 is less than 1/4 mile from two Mn prospects 

(psilomelane, manganite and iron oxides).

Spring 928 is on the southeast edge of a titanium sands and 

clay district with ilmenite (FeTiO^) the main ore minerals. The 

sands have a ferrogenous cement.

Springs 936 and 937 on the northern edge of a Hg district with 

cinnabar the main ore mineral and small amounts of Cu (sulfides), Fe 

(pyrite and marcasite) and As (arsenides). Mn minerals which could 

account for the Mn, Co, and Ni are 10 miles north. Sb minerals 

(stibnite) are included in some of the Hg deposits.

Spring 948 has no known mineral deposits nearby. Pb and Zn min­

erals (sphalerite) are known in a prospect 9 miles to the northwest. 

Sb minerals are known 7 miles to the northwest in an antimony district. 

Barite minerals are known 3 miles to the south as a cement in sand and 

gravel.
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In summary, 41% of the springs with anomalous base metal concen­

trations were within 1 mile, 18% were within 2 miles, and 7% within 

4 miles of known mineralization containing the anomalous elements. 

The remainder of the springs, 31%, had no known related mineralization 

within 10 miles.

b. Bari urn: Barite (BaSO^) is prevalent in both Area I and Area 

II. The deposits differ in type. In Area I the barite ore is either 

replacement or open space fillings in Stanley Shales. Area II has this 

type plus two other types: 1) barite veinlets penetrate peridotite and 

intrusive breccia of Cretaceous igneous rocks, 2) barite veins, concre­

tions, and cement in gravels and sandstone as a princiDal mineral. 

Area I contains several Mn oxide mineral deposits with psilomelane 

(Ba, H20)4Mn1Q020.

In the following table, medians, ranges, thresholds, and the 

average of the anomalous concentrations are summarized for Areas I and 

II.

Ba Concentrations (ppb) in Spring Waters of Areas I and II

No. of Average
Anomalous Anomalous

Median (Range) Threshold Vaiues Concentrations

Area I <15(1-420) 320 1 420

Area II 40(10-920) 320 2 915

II/I (%) >267 100 218
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Area II has a higher median, range, and average anomalous value 

than Area I. Both areas have few springs with anomalous concentra­

tions considering the widespread mineralization of barite in each 

area. Both areas have similarly shaped cumulative frequency curves 

(Figure III-4) and the same threshold (95% value on the high side).

Barite is only very slightly soluble in pure water (2.6 ppm of 

BaSO4 which is equivalent to 1.5 ppm of Ba++ and 1.1 ppm of SO4 at 25°C). 

The solubility product, defined as follows, is a constant.

where MBa++ and MSO4= are gram moles/kg

A consequence of this relationship is that when SO4= concentrations 

increase the saturation concentration of Ba++ decreases. For example, 

in a solution containing 11 ppm of SO4= at 25°C, the maximum or satura­

tion concentration of Ba++ becomes 0.15 ppm.

In water containing other ions the solubility product becomes an 

activity product, defined as follows:

(1)
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YBa++ and YS04= are the activity coefficients respectively of 

barium ion and sulfate ion. The solubility of barite increases in 

the presence of other ions due to a decrease in the activity coeffi­

cient. The amount of other ions is measured by ionic strength. See 

Hem (1970) for a more complete discussion of the relationship.

In view of the dependence of Ba++ concentration on sulfate 

concentration, presence of other ions (ionic strength) and, of course 

temperature, high concentrations of Ba++ alone may not be a good rela­

tive indicator for barite among various localities. This would be 

particularly true if the solutions are near saturation and equilibrium 

is a limiting factor on solubility.

For the above reasons the % saturation of the various spring 

waters with BaSO4 were calculated using the following relationship 

which considers the factors of sulfate concentration, ionic strength, 

and temperature.
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where the subscript T indicates that activities and solubility 

products are for the same temperature. Activity coefficients were 

read graphically from page 21 of Hem (1970) using ionic strengths cal­

culated from our analyses for the various ions. Substituting activity 

coefficients and the measured concentrations of Ba++ and S04= into equation 

(1) above gave the corresponding activities. The solubility products 

used as a function of temperature were taken from the literature and are 

shown geographically in Figure III-11.



The % BaSO^ saturation at the water temperature at the surface 

and at the subsurface were calculated. Subsurface temperatures of 

the spring waters were calculated from silica solubilities as 

described in section II of this report. In the following table, 

the medians, ranges, thresholds, and average anomalous values for 

% BaSO^ saturation for Areas I and II are summarized.

% BaSO^ Saturation of Spring Waters for Area I and II

Average 
Anomalous %Median (Ranqe) Threshold

No. Springs 
Anomalous

Surface T Subsurface T Surface T Surface T Surface T

I 2(0.16-96) 1.1(0.09-39) 70 2 91

II 8(0.40-97) 6.5(0.24-38) 84 2 94

(%) 400 591 120 100 103

Only finite val ues ("less than" values not used) were used in deri ving

the above table. This gave 31 data sets (out of 71 possible) for Area 

I and 27 sets (out of 31 possible) for Area II. The above analysis may 

be considered a cumulative frequency curve analysis of the highest

population for Area I.

Area II has the greater % saturation median and threshold. This is 

possibly a consequence of the highly disseminated nature (BaSO^ cement) 

of some of the Area II barite deposits whereas those in Area I are vein- 

lets and less exposed to groundwater. The ranges, number of anomalous 

values and average anomalous values are about the same for the two areas.

43



It is interesting to note that many of the spring waters have

X% or more of BaSO^ saturation. Note in Table III-5 that springs 

are saturated with SrSO^ to median saturation of only 0.00X%.

Figures III-12 and II1-13 show a broadly defined correlation

between the concentration of Ba and Ca in Areas I and II. Due to 

the similar chemistry of Ba and Ca and perhaps similar source rocks, 

this might be expected. Those few points which lie outside the 

envelopes of these data are considered to represent anomalous springs. 

The same goes for springs whose data plot outside the envelope of 

the Ba++-Sr++ concentration data (Figure III-14) and Ba++ concentra­

tion vs specific conductivity data in Figure III-15.

Five definitions of anomalous springs have been given above.

Using these five definitions, the anomalous springs are summarized below:

Sample No. of Springs with Anomalous Ba

Definition of Anomalous Area I Area II

1. Ba++ concentration exceeds threshold 520W 929, 944

2. % BaSO^ saturation exceeds threshold 916W, 943 927W , 932

3. Ba++-Ca++ concentration outside area norm 930 908, 929, 944

4. Ba++-Sr++ concentration outside area norm 902 908, 929, 944

5. Ba++-specific conductivity outside area norm 930 929, 944

520W is an artisian well in a barite district (Pigeon Roast Moun­

tain). It is interesting to note that spring 519 in the same 1/16 

section is not anomalous in Ba but has 110 ppb which is well above the 

mean of <15 for Area I.

44



916W is in the barite district of Fancy Hill. Although the % 

BaSO^ saturation is anomalous the concentration is not. However, the 

200 ppb concentration is well above the <15 ppb mean for the area.

Spring 943 is in the Pigeon Roost Mountain barite district and 

in the same 1/16 section as 520W. The Ba++ concentration of spring 

943 while not anomalous is high, 190 ppb.

Spring 930 is in an area of no local mineralization. However, 

the Pike Gravels are present which 5 miles to the southwest have a 

barite cement in appreciable quantities. Three miles to the southeast 

of 930 there are barite veins in periodotite, the Murfreesboro kimber­

lite. Spring 930 has 60 ppb of Ba.

Spring 902 is in the same 1/16 section an an abandoned mine for 

Pb, Zn, and Cu. Galena, sphalerite, pyrite, chaicopyrite, silver and 

gold are the minerals in quartz veins along a fault. The nearest barite 

deposits are 7 miles east in the Pigeon Roost District.

Springs 929 and 944 are the same spring, sampled at different times, 

3-4-79 (929) and 5-16-79 (944). This spring abuts an abandoned mine 

based on barite cement in Pike Gravels. Interestingly, the spring is 

anomalous based on 3 of the 4 definitions. Only the % saturations of 

45.1 and 63.1 are not anomalous. Perhaps the threshold value (84%) is 

too high a criterion.

Artesian well 927W is not in an area of known Ba mineralization.

The nearest barite deposits are 15 miles to the north. Titaniferous
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sands (ilmenite) are located 4 miles to the west of 927W. The Ba++ 

concentration of 927W is 80 ppb.

Spring 932 has no known barite deposits nearby. The nearest 

deposit is 8 miles east. The Ba++ concentration of this spring is 

high, 260 ppb, and almost to threshold (320 ppb).

Spring 908 is in a mercury district with no known barite deposits 

nearby. The nearest known deposits of barite are 10 miles northeast. 

Spring 907 which is 2 miles southwest of 908 (60 ppb Ba) had a reason­

ably high barium concentration of 270 ppb.

In summary, only definition (1) identified solely springs near or 

in barite deposits. Each of the other definitions selected springs in 

barite areas which were missed by definition (1). However, definitions 

(2), (3), and (4) also selected some springs not in known barite mineral­

ization. All springs selected by each criteria had rather high concen­

trations of Ba and would have been selected by definition (1) with a 

smaller threshold value.

c. Strontiurn: Strontium mines and prospects are in the central 

part of Area II. Celestite (SrSO^) is the main ore mineral with minor 

amounts of strontionite (SrCOg). No strontium ores are known in Area I.

Median values, ranges, thresholds, and anomalous concentrations 

for springs of the two areas are summarized below.
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Sr Concentrations (ppb) in Spring Waters of Areas I and II

Median (Range) Threshold

No. of
Anomalous

Vaiues

Average 
Anomalous 

Concentration

Area I 55(2-2200) 380 5 987

Area II 30(<10-1400) 150 2 857

II/I (%) 55 39 40 87



All values are greater in Area I. This is not believed to be 

due to the small number of spring water samples from the strontium 

district in Area II. Four of the springs (933, 934, 935, 948) are 

within 2 miles of known Sr mineral deposits but four of the springs 

(904, 920, 929, 930) are only a few miles from the Sr district.

Strontium concentration in the spring waters increases as the 

calcium concentration increases as shown in Figure III—15. These 

two alkaline earths have similar chemistries and usually common source 

rocks. Thus, those concentrations outside the envelope of the data on 

the high side in Figure III-16 may be defined as anomalously high in 

Sr. Using this definition and the usual one of above threshold concen­

tration gives the following springs which are anomalously high in Sr. 

We have not used % saturation of the waters with SrSO^ as a criterion 

of anomalous springs because the waters are very unsaturated with SrSO^ 

(see Table III-5), so much so that equilibrium saturation is not a 

barrier to dissolving. There is essentially no CO^ in the spring waters.

Springs with Anomalously High Concentrations (ppb) of Sr

Sample No. of Springs
Anomalous Definition Area I Area II

1. Sr++ concentration 
exceeds threshold

501W, 526, 527, 911, 913 927W, 951W

2. Sr++-Ca++ concentration 526, 527, 913 
outside area norm

920, 927W, 929, 944
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Definition (1) includes two springs in Area I not selected by defini­

tion (2). The opposite is true in Area II.

Well 501W is not in an area of known Sr mineralization. Quartz 

crystal mines are within 1 mile.

Springs 526 and 527 are not in an area of Sr mineralization. A 

barite prospect in which Sr may be in secondary minerals, is about 1 

mile away.

Spring 911 is not in an area of known Sr mineralization. About

4 miles south of spring 911 is a barite district.

Spring 913 is not in an area of known Sr mineralization. A barite 

district lies 6 miles south.

Spring 920 is not in an area of known Sr mineralization. A known 

barite deposit is less than 1 mile away. Known Sr deposits (celestite) 

are 6 miles to the southwest and gypsum deposits, in which Sr minerals 

occur to a minor extent, are 6 miles to the southeast.

Well 927 is not in an area of known Sr mineralization.

Spring 929 and 944 are the same spring sampled at different times. 

This spring is adjacent to a barite deposit.

The following are springs which did not have anomalous Sr concen­

tration but are within 2 miles of known Sr mineralization: 933 (6 ppb). 

934 (23 ppb), 935 (13 ppb), and 948 (92 ppb).

In summary, no spring with anomalously high Sr concentration was 

near known Sr mineralization. Rather, Sr acted as an indicator for 

barite in which Sr minerals occur. Figure III-14 notes a correlation 

of Ba with Sr.



d. Lithium and Potassium: Each of these metals exists in Area I

as essential elements of two frequently encountered manganese oxide 

minerals — lithiophorite (Li2A1 gMn^Ogg. 14HgO) and cryptomelane 

(Kx^ngOig) (see Wagner, et al., 1979). Other sources for these two 

elements are clays and igneous rocks.

Listed below are the median values, ranges, thresholds, and 

anomalous concentrations for Li in springs of Areas I and II.

Li Concentrations (ppb) in Spring Waters of Areas I and II

Median (Range) Th res ho 1d

No. of
Anomalous

Vaiues

Average 
Anomalous 

Concentration

Area I 2.5(<1-70) 18 4 46

Area II 2.3(<l-86) 54 2 72

II/I (%) 92 300 50 156

The median values and ranges are essentially the same for Areas

I and II. Threshold and average anomalous concentrations are higher 

for Area II. There is no indication of higher Li concentrations in 

Area I resulting from or favoring the formation of lithiophorite.

Springs which have anomalously high Li concentrations are listed 

below.

Springs With Anomalously High Li Content

Ing No.

Concentration (ppb)

Concentration (ppm)

Ila Weight Ratio (X103)

Na Weight Ratio (X103)

501W 520W 526

21 23 70

48.4 6.5 131

0.43 3.5 0.53

(Medi an for Area) 1.4
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0.59

527 927W 937

70 58 86

152 80 162

0.46 0.72 0.53



520W, 526, and 527 of the above waters are near (1-2 miles) Mn 

mineralization and barite. The others are not near Mn mineralization.

A common denominator of the above waters is a high Na content. When

Li waters are not so abnormal.judged as a Li/Na ratio these high

Listed below are the medians, ranges, thresholds, and average

anomalous values for the K content of springs in Areas I and II.

K Concentration (ppm) in Spring Waters of Areas I and II

No. of Average
Anomalous Anomal ous

Median (Range) Threshol d Vai ues Concentration

Area I 0.56(0.04-2.9) 1.35 3 2.0

Area II 1.10(0.21-8.5) 6.0 1 8.5

II/I (%) 196 444 33 425

Area II has greater values in all categories, except number of

indications of higher Area I values dueanomal ous values. There are no

to the occurences of cryptomelane in Area I.

The individual springs with anomalous K content are given below.

Springs With Anomalously High K Concentration

Area I Area II

Spring No. 506 520W 922 948 904

K Concentration (ppm) 1.70 1.40 2.90 8.5 3.8

Spring 506 is within 1 mile of abandoned Mn mines. The Mn mineral­

ization of this area contains cryptomelane. Slate deposits are also

nearby. None of the other springs are in areas of Mn mineralization or 

have anomalous manganese concentrations.
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4. Springs with Anomalous Temperatures

In Section II of this report the springs with anomalously high

surface and subsurface temperatures were determined. Subsurface

temperatures were determined based on the concentration of SiC^.

These springs are summarized below along with their anomalous con­

if any, and local mineralization, if any.centrations of metal ions

ng No.

503

513

523

548

9O7W

910

914

915

916W

920

921

923W

924

927W

928

Anomalous 
Temperature

Subsurface (60.4°C)

Subsurface (63.2°C)

Surface (22°C)

Surface (22°C)

Subsurface (89.2°C)

Subsurface (62.9°C)

Subsurface (60.7°C) 

Surface (35°C)

Subsurface (91.2°C)

Subsurface (68.8°C)

Surface (30°C)

Surface (22°C)

Subsurface (82.9°C)

Surface (25°C)

Subsurface (60.4°C)

Subsurface (65.7°C)

Subsurface (75.8°C)

Metals With 
Anomalous 

Concentrations 

none

Cu

Cu

none

none

Hg

none

none

Fe,Co,Ni,Pb

Cu

none

none

none

Mn

Mn

S r, L i

Fe ,Mn

Known Local Mineralization

none

none

Pb, Zn mineralization in 2 miles

Mn mineralization in 1-2 miles

Hg and Sb mineralization in 1-2 miles

Hg mineralization in 1-2 miles

none

Mn mineralization in 1 mile

Mn, Fe, Co, Ni, Bi mineralization 
in 1 mile

Ba, Hg with minor Cu in 1 mile

none

none

none

Mn mineralization in 2 miles

Mn mi neralization in 2 miles

none

ilmi nite sands in 1-2 miles
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Sprinq No.
Anomalous

Temperature

Metals With 
Anomalous 

Concentrati ons

932 Subsurface (73.4°C) Fe,Pb

936 Subsurface (70.0°C) Mn,Co,Ni

945 Surface (23°C) none

951W Subsurface (78.3°C) Sr

952 Surface (24°C) none

Known Local Mineralization 

none, Hg district 5 miles aw 

Hg mineralization in 1-2 mil 

Mn, Cu mi neralization in 1-2 

Sb mineralization in 1 mile 

Pb, Zn, Sb mineralization in

From the above table we find the following:

% With 
Anomalous 

Concentration 
Of Some Metals

Surface T Anomalous 25

Subsurface T Anomalous 71

All Other Springs, 31

% With
Local

Mi nerali zation

% With Anomalou 
Concentration Wi 

Local Mineralizat

75 100

57 60

■1 _ 54

52

Areas I & II

*relevant minerals within 2 miles

Springs with anomalously high subsurface temperatures are:

1) more likely (71% frequency) to have an anomalous concentration of 

some metal than springs generally (31%) or springs with an anomalously 

high surface temperature (25%), 2) as likely (60% vs 54%) as other 

springs to indicate known, local mineralization by these anomalies. 

Thus overall springs with anomalously high silica content are more 

likely than other springs to indicate local mineralization.

5. Summary:

a. A number of parameters and elemental concentra­

tions for spring waters gave a lognormal dis­

tribution which were amenable to cumulative 

frequency curve analysis for median (50%), 

threshold (95% and anomalous (>95%) concentrations.
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b. Threshold and anomalous concentrations of Mn, Zn, 

and Cu in the spring waters of Area I were greater 

than in Area II and reflected better than median 

or concentration ranges the more frequent min­

eralization of these metals in Area I. Hg concen­

trations in spring waters of the Hg-mineral ized 

Area II had a higher median value and springs with 

anomalously high concentrations were near Hg min­

eralizations. However, in non-Hg-mineralized 

Area I the two springs with anomalously high Hg 

concentrations had no known Hg mineralization nearby.

c. Individual springs with an anomalous concentration 

of a base metal were in 41% of the cases within 1 

mile, and 18% of the cases within 2 miles, of known 

mineralization of the anomalous element.

d. Spring waters of both Area I and Area II were com­

monly saturated to X% and above with BaSO^ (barite) 

whereas the median SrSO^ saturation was only 0.00X%.

e. Ba and Sr concentrations in the spring waters cor­

related with Ca concentration.

f. High Ba concentrations in spring waters were more 

reliable for detecting nearby barite mineralization 

than criteria based on: 1) % BaSO^ saturation,

2) Ba/Ca concentration ratio above area norm,

3) Ba/Sr concentration ratio above area norm.



g. More Sr mineralization in Area II was not reflected 

in greater median or threshold concentrations of 

the area's spring waters. Springs within 2 miles 

of known Sr mineralization (celestite) did not have 

anomalously high concentrations of Sr. Anomalous 

Sr concentrations were an index of nearby barite 

mineralization, in which Sr minerals occur as minor 

consti tuents.

h. Concentrations of Li and K in Area I spring waters 

were not high and gave no indications of the fre­

quently uncountered lithiophorite and cryptomelane 

of this area. Li tended to increase with Na in both 

Areas I and II.

i. Springs with anomalously high silica content have a 

high incidence of anomalous high metal concentra­

tions and are more likely than other springs to 

indicate local mineralization.
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Table 1-1
Summary of Analytical Methods

Measurement

no 3

nh 3

P0^(ortho, 
ai ssolved)

S04

Si Og

Cl

Alkali ni ty(total)

Anions

Method

Cd reduction

Nessler

Ascorbic acid

Turbi di metric

Colorimetri c

Mercuric nitrate

Titration to methy red 
end pt.

APHA (1971) Page

226

532

334

303,336

97

52
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Table 1-1
Summary of Analytical Methods 

(continued)

El ement Instrument*

Cations

Mode Fl a me Additive

Na JA emission h 2 - n 2 none

K II II II II

Li II 11 II II

Ca 11 absorption C2H2 - N20 NaCl

Mg II II It II

Sr II emi ssion 11 II

Ba II concentrati on 11 KC1

Fe II absorpti on C2H2 - Air via chelation

Co II II 11 II II

Ni II II II II II

Cu II II II II II

Zn PE II 11 II II

Pb PE ■■ II II II

Hg PE II flameless ★★

Sb JA hydride generation 
absorpti on

h 2 - n 2 ***

PE = Perkin Elmer Model 303 Atomic Absorption Spectrophotometer
★

JA = Jarrel Ash modernized Model 82-500 Atomic Absorption Spectrophotometer

** method of EPA(1974), p. 118

*** method of Fernandez (1973)
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Table 1-2
Chemical Analyses of Ouachita Spring Waters

Anion Analyses and Miscellaneous Measurements

Name of Spring or Well(W) Lab Water pH Sp, Cond, Total Al- NO. NH. P04 so4 Cl SiO2
No. T uni ts pmhos kalini ty asN as^N as T ppm ppm ppm

°C per cm mg/1 as ppm ppm ppm
25°C CaCO^

Iron (W)
Iron
Black
Collier
Caddo Valley
Crystal A
Goat Brown
Bogg
Queen Wilhelmina S. Park 
Queen Wilhelmina S. Park 
Silver World
Abernathy
Three Sisters
(No Name) 
(No Name) 
(No Name) 
Wyatt
(No Name) 
(No Name) 
Pigeon Roost*(W) 
Dripping 
Strawn
(No Name)
(No Name)
(No Name)
Gill ham A 
Gill ham B 
Bard 
(No Name) 
(No Name)

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

15.0
5.0 

15.0
16.5 
15.0 
18.0 
13.0 
13.0 
10.0
9.0 

16.0 
16.0 
16.0 
18.0 
17.0 
21.0 
17.0 
15.0 
18.0 
17.0 
17.0 
18.0 
22.0
15.5 
15.0 
17.0
17.5
15.5
17.5 
15.0

7.4
6.5’
7-5
6.7
7.3
7.6
6.7
7.2
5.8
6.4
6.9 
7.0
6.9
5.6 
6.0
6.3
5.7
5.8
6.6
7.2
5.6
7.3
3.8
5.1
6.1
7.5
7.6
6.8
6.4 
6.8

252
14

324
61

168
197
89

372
29
66

109
144
244

21
21

103
64
18

135
208

26
228

37
30
48

383
385
184

35
42

291
2

10
44

225
162
60

130
5
2

90
70

150
5
5

66
12

5
84

160
10

125
0
30
25

170
230
14o
50
12

2.28 
<0.01 
<0.01 
<0.01 
<0.01 
<0.01
0.06
0.06
2.02
2.68 

<0.03
0.37
0.76
1.07 

<0.02
0.02 

<0.02
0.65
0.08
0.02
0.54
0.05

<0.02
0.15
0.37
0.04
0.03
2.30

0.11
0.02
0.05 

<0.02 
<0.02
0.42
0.04
0.02
0.09
0.13
0.06
0.09
0.05
0.04 

<0.02
0.11
0.25
0.12
0.33
0.64
0.29
0.38
0.09
0.44
0.05
0.54
0.47
0.22
0.08
0.08

0.03
0.04
0.04
0.06
0.13
0.08
0.04
0.05
0.02
0.05
0.03
0.12
0.12
0.03
0.09
0.13
0.54 

<0.01
0.01
0.03
0.03
0.03
0.04 

<0.01
0.05
0.06
0.11
0.07
0.08
0.05

0.3
0.3 

32.0
1.1
1.4
1.1
1.1
2.3
2.6
0.6
4.7
2.0
6.9
0.9
1.3
4.0 

12.0
0.6
2.9
2.6
1.9
4.0 

<0.3 
<0.3
3.0
0.3 

<0.3
7.6

<0.3
3.0

0.3
1.8
0.3
2.3
0.3
0.3
3.5
0.5
1.8
3.8
1.5
1.0
3.5
1.5
2.0
2.0
2.5
2.0
2.0
1.8
2.0
2.3
2.0
3.0
2.0

86
87

1.3
1.5
1.5

7.7
3.2

18.3
12.1
7-7

12.1
13.7
7-7

10.3
6.6

10.2
8.9

19.4
10.2
9.6

12.0
12.0
10.6
9.4

13.5
9.6
9.5 

12.0
15.5
9-7

16.8
16.8
16.2
9.2
9.2
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Table 1-2 Con't

McClaine A 
McClaine B 
McClaine C 
McClaine 0 
W. Jones 
Jones Valley 
Buttermilk A 
Buttermilk B 
(No Name) 
Mcellhanon 
(No Name) 
(No Name) 
Crystal B 
Brogdams A 
Brogdams B 
Brogdams C 
Brogdams D 
Brogdams E 
Burrous
Lead Mine Road A 
Lead Mine Road B 
(No Name) 
(No Name) 
(No Name) 
Womack, W 
Womack
Lol la Bell, W
(No Name) 
(No Name) 
(No Name) 
(No Name) 
(No Name) 
Sulfur
Elliott
Caddo River 
Artesian-' Wei 1 (W) 
Artesian* Wei 1(W) 
(No Name) 
(No Name)

No.

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

T°C

17.5 
18.0 
17-5
15.5
16.0
18.0
15.0
19.0
17-0
18.0
16.0 
16.0 
20.0 
18.0 
20.0 
21.0 
20.0 
22.0
17-0 
18.0 
18.0 
20.0 
18.0
18.0
20.0
20.0
19.0
18.0
19.0 
18.0 
16.0
16.5
17-0 
20.0 
35.0 
18.0 
18.0 
20.0 
21.0

PH

6.9
6.4
7.3
5.5
6.4
7.0
4.4
6.5
4.4
4.6,
4.7
5.1
7.1
7.3
7.6
7.3
7.5
7.0
7.9
6.2
6.9
6.4
6.3
4.1
6.2
4.3
6.2
7.1
7.2
5.8
5.4
5.8
4.1
5.5
5.7
5.8
7.2
5.7
5.9

Sp. 
Cond.

175
80

230
27
41

274
24

118
23
23
24
17

259
274
279
234
266
263
104

34
131
28

108
108
303

55
196

57
17
57

183
135
267

46
200

97
57
55
81

Alkalinity

90
50
90
10
20
90
40
80

0
20
20
10

180
160
230
130
180
60

150
100
112
50
70

0
125

10
67
25

5
2

175
70

135
22

122
40
17
37
12

N03

2.30
0.05

2.50
2.30
2.50
1.10
0.92
0.75
0.79
0.55

0.79
0.92

1.70
0.63
0.87
0.19
0.67
0.76

14.3
1.35
1.62
0.31
1.20
0.68
0.83
1.19
1.07
0.68
0.42
0.17
0.11
0.67
0.97
3.77

NH3

0.09
0,08
0.09
0.15
0.11
0.04
0.08
0.11
0.07
0.07
0.05
0.04
0.11
0.06
0.07
0.04
0.09
0.17
0.10
0.13
0.21
0.16
0.14
0.10
0.13
0.05
0.19
1.39
0.21
0.47
0.47
0.38
1,08
0.10
0.16
0.20
0.10
0.02
0.20

P°4

0.14
0.08
0.05
0.05
0.03
0.12
0.07
0.18
0.06
0.03
0.07
0.05
0.10
0.07
0.10
0.13
0.08
0.02
0.06
0.06
0.04
0.08
0.10
0.13
0.20
0.30
0.11
0.04
0.08
0.20
0.28
0.21
0.25
0.09
0.08
0.24
0.14
0.08
0.08

S04

4.8
3.4
4.8
2.0
0.3
5.6
3.0
6.0
3.4
0.3
1.3
1.0
4.5
2.3
1.3
5.6
3.4
4.1 

<0.3
0.3
1.4
0.7
1.0
3.6
2.8
1.7
5.9
2.1
2.8

12.6
5.1
4.0
1.4
0.3
0.7
7.6

10.2
2.5
0.7

Cl

2.0
2.3
2-5
1.8
1.3
1.8
1.5 
2.0 
2.0
2.3
2.5
2.3 
4.0
3.0
1.3
2.5
2.5
2.0
2.7
1.8
1.8
3.8
2.5
9.5
4.5
4.5
2.8
2.3
3.0 
5.0
2.3
1.5
3.5
3.0
3.5
3.0
3.0
2.5
6.5

S i O2

10.1
9-7

10.1
7-0
7-6
9.2
8.3
8.6
7.6
7.2
8.8
8.5
9.7

10.1
9.7

10.1
10.4
10.4
10.8
9.3
9.1

10.5
11.6
8.7
9-9
5.4

37.1
11.9
13.2
19.3
11.6
9.3

14.0
18.2
17.2
34.9
11.6
8.7

17.2
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Table 1-2 Con't

No. T°C pH
Sp. 

Cond. Alkalini ty no 3 nh 3 po<, S0^ Cl Si O2

(No Name)
(No Name) 
Chalybeate 
Caddo Gap (W) 
Redland Mt. 
Lol la Bell A 
Lol la Bell B 
Artesian Wei 1 (W) 
Mineral 
Barite Pit 
Murfreesboro Area 
Murfreesboro Area 
Lake Greeson Area 

f\) Dierks Area
Cox Residence
Dierks Area
L. Greeson, Sulfur
L. Greeson, Possum 
Salem Area 
Bethesda
Mine Creek Area
Rock
West
Pigeon Roost
Barite Pit
"Warm"
Athens Area
Umpi re Area 
S. Cox 
Cossatot 
Church 
Defore (W) 
(No Name) 
Mena Park 
Med i an
EPA or APHA precision data

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

20.0 
30.0 
10.0 
22.0 
25.0 
12.0 
12.0
18.5 
16.0 
10.0 
11.0 
11.0 
13-0 
10.0 
12.0 
10.0 
11.0
8.0 

12.0 
19-0 
16.0 
17.0 
15.0 
15.0
18.5 
23.0 
16.0 
18.0 
16.0 
13.0 
18.0 
16.0 
14.0 
16.0
16.5

4.8
6.4
6.2
7.4
7.2
7.2
7.0
7.6 .
6.9
5.0
5.1
5.0
6.8
4.8
4.7
5.1
6.8
8.7
6.9
7-1
5.9
6.5
5.3
5.5
4.6
7.1
5.8
5.6
4.1
4.7
4.7
7.4
4.7
4.5
6.2
0.15

<5
227
107
138
210

19
19

373
65
20
19
15

112
39
63
13

109
563
107
224
248
299

36
218

23
116

18
23

177
37

205
484

61
71
85

4

5
130

6
100
144

11
9

186
21

1
1
2

58
0
0
0

56
265

50
121
170
176
24
42
12
73
24
18
0

24
18

200
12
12
37
3.2

0.77
3.26

12.0
0.98
3.86
0.53
0.53

10.50
0.13
0.53
1.02
0.83
0.38
1.06
1.36
5.23

0.55
0.80
4.80
0.20
1.24
1.24
0.30
0.08
5.50
1.91
2.70

19.7
0.89
4.70
0.09
5.00
2.41
0.9

0.21
0.10
0.28
0.23
0.22
1.52
1.52
1.02
0.52
1.31
1.52
0.36
0.23
0.30
0.29
0.15
0.50
0.42
0.25
0.10
0.00
0.05
0.10
0.02
0.06
0,00
0.04
0.09
0.07
0.20
0.14
0.02
0.05
0.00
0.15
0.06

0.03
0.12
0.05
0.15
0.08
0.04
0.04
0.34
0.08
0.02
0.03
0.09
0.14
0.08
0.06
0.05
0.18
0.10
0.05
0.09
0.13
0.09
0.06
0.12
0.10
0.15
0.23
0.13
0.05
0.12
0.10
0.41
0.13
0.12
0.08 

<0.01

0.3
3.2
4.6
5.0
9.7
5.5
6.8

29.5
5.9
0.51
4.1
8.7
5.5
5.9
5.5
2.8
4.1
3-7
8.2
2.4
2.9
4.3
1.3
7.1
1.0
2.6
2.6
0.5
1.0
1.5
2.6 

55.0
1.0
8.5
3
0.3

5.0
2.5 

13.0
2.5
1.5
3.0
1.5
3.5
3-0
2.5
3.0
0.8
4.8
5.0
4.0
1.5
3.5
1.5
2.5
2.0
2.5
3.0
1.5
2.0
3.0
2.5
2.8
1.8
8.0
2.5
5.0
3.5
5.5
6.0
2.9

22.9
10.5
7.7

31-9
18.5
10.5
10.0
21.3
27.3
10.5
7.2
4.8

25.6
7.6
7-4
6.6

23.5
12.1
9.9

13.2
9.2

13.2
7.9

11.4
10.8
11.1
13.6
12.4
8.0 

16.0 
12.4 
29.0
12.9 
12.9
11
-2

* Cored, plastic piping
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Table 1-3

Chemical Analyses of Ouachita Spring Waters 
Alkali and Alkaline Earth Metals

63

Lab Na K Li Ca Mg Sr Ba
Name of Spring or Well(W) No. ppm PPm ppb Ppm PPm Ppm ppm

Iron (W)
Iron
Black
Collier
Caddo Valley
Crystal A
Goat Brown
Bogg
Queen Wilhelmina
Queen Wilhelmina 
Silver World
Abernathy
Three Sisters
(No Name)
(No Name)
(No Name)
Wyatt
(No Name)
(No Name)
Pigeon Roost* (W)
Dripping
Strawn
(No Name)
(No Name)
(No Name)
Gillham A
Gillham B
Bard
(No Name)
(No Name)
McClaine A
McClaine B
McClaine C
McClaine D
W. Jones
Jones Valley 
Buttermilk A
Buttermilk B
(No Name)
Mcellehanon
(No Name)
(No Name)
Crystal g
Brogdams A
Brogdams B
Brogdams C

Park 
Park

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

48.40
0.95

10.00
2.00
1.10
1.50
2.20
2.80
2.00
2.40
1 .30
1.10
3.10
1.10
1.10
1 .60
1 .20
1.50
6.00
6.50
0.95
1 .80
2.60
4.30
1.50

131
152

6.20
1 .50
1 .50
2.10
1 .80
2.10
1 .20
1.10
1 .40
1 .30
1 .50
1 .30
1 .80
1 .60
1 .20
1 .70
1.90
1.80
2.10

0.50 
0.12 
0.30 
1 .25 
0.21 
1 .70 
0.30 
0.34 
0.42 
0.48 
0. 12 
0.31 
0.80 
0.42 
0.38 
1 .05 
0.78 
0.23 
1 .30 
1 .40 
0.30 
0.49 
0.45 
1.05 
0.37 
1 .20 
1.10 
0.72 
0.44 
0.46 
0.80 
0.58 
0.75 
0.56 
0.37 
0.48 
0.29 
0.40 
0.29 
0.57 
0.31 
0.04 
0.48 
0.36 
0.46 
0.51

21.0
2.0
8.0
3.0
2.0
8.0
4.0
3.0
1 .0
1.0
1 .0
2.0
7.0
1 .9
2.2
4.0
3.7
1.0
3.7

23.0
1.9
4.2
1.9
1 .9
2.2

70.0
70.0
3.0
1.6
1 .6
4.6
2.6
4.6 

<1.0 
<1 .0
2.4 

<1.0
1 .9

<1.0
<1.0
<1.0
<1.0
2.6
2.6
3.1
3.3

43.20
0.60

60.80
8.30

40.00
40.20
17-70
41 .50

1.52
1 .47

24.50
32.70
41.20

1.47
1.47

14.70
4.25
0.73 

25.00
37.70

1 -91
54'. 40

1.06
4.64
9.53
9-99
9-77

31.00
4.05
4.52

44.20
17.30
50.80
3-13
6.24

39-70
1.91

35.60
1.46
2.37
1.09
0.033

66.5
60.1
61.3
56.4

12.60
0.81

14.30
1.95
1.31
6.21
1.47
1 .89
0.93
1.11
0.97
1.12
6.33
0.84
0.79
3.02
1.08
0.62
2.92
3.18
0.95
2.86
0.83
1 .50
1 .04
3.06
3.18

12.40
1 .22
1.96
2.73
1 .56
2.95
0.76
0.68
2.16
0.35
1 .22
0.32
0.46
0.46
0.15
2.04
2.54
2.14
2. 16

0.597
0.003
0.356
0.020
0.140
0.062
0.031
0.063
0.014
0.01 1
0.1 17
0.138
0.089 

<0.002 
<0.002

0.027 
<0.002

0.004
0.105
0.317
0.008
0.234
0.012
0.015
0.033
0.838
0.802
0.140
0.012
0.016
0.131
0.072
0.160
0.018
0.035
0.197
0.013
0.168
0.010
0.014
0.003
0.002
0.161
0.150
0. 167
0.143

0.04 
<0.01 
<0.01
0.02

<0.01
<0.01

0.02 
<0.01 
<0.01

0.02 
<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
<0,01 
<0.01

0. 1 1
0.42 

<0.01 
<0.01

0.02
0.01

<0.01
0.22
0.23 

<0.01 
<0 01 
<0.01

0.01
0.01

<0.01
0.02

<0.01
<0.01
<0.01
<0.01 
<0.01 
<0.01 
<0.01 
<0.01 
<0.02 
<0.01 
<0.02 
<0.02



Table 1-3 Con 11
Lab. Na K Li Ca Mg Sr Ba

Name of Spring or Well(W) No. ppm ppm ppb ppm Ppm ppm ppm

Brogdams D
Brogdams E
Burrows
Lead Mine Road
Lead Mine Road
(No Name)
(No Name)
(No Name)
Womack Wei 1 (W)
Womack
Lol la Bell (W)
(No Name)
(No Name)
(No Name)
(No Name)
(No Name)
Sulfur
El 1iott
Caddo River
Artesian*We11 (W) 
Artesian* Well (W) 
(No Name)
(No Name)
(No Name)
(No Name)
Cha 1ybeate
Caddo Gap (W)
Red 1 and Mt.
Lol la Bell A
Lol 1 a Bell B
Artes i an We 11 (W)
Mineral
Bari te Pit
Murfreesboro Area 
Murfreesboro Area 
Lake Greeson Area 
Dierks Area
Cox Residence
Dierks Area
Lake Greeson, Sulfur 
Lake Greeson Possum 
Salem Area
Bathesda
Mine Creek Area
Rock
West
Pigeon Roost
Ba r i te Pit
l!Wa rm"
Athens Area

5^7
548
899
900
901
902
903
904
905
906
907
908
909
910
91 1
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

2.20
2.30
3.25
1.31
1 .75
1.80
1.70

10.00
82.5
5.15

20.00
2.10
1.00
0.85
1 .50
1.23

16.50
1.55
5.40
2.00
1.13
1.65
7.60
1 -23
3.83

10.00
13.00
2.50
2.00
2.50

80.00
4.60
2.40
1.60
0.90

10.50
3.20
2.60
1 .25

11.00
162.5

1 .90
2.85
1.24
3.15
0.93
2.00
1 .40
1 .70
2.85

0.48
0.55
0.50
0.24
0.37
0.24
0.24
3.80
1.15
4.30
1.00
0.62
1.40
0.67
0.20
0.27
0.90
0.24
1 .00
0.95
1 .05
0.27
2.80
0.46
1.10
2.90
0.65
0.95
0.70
0.38
5.20
3-90 
0.21 
0.38 
0.49 
1 .41 
2.11
1.75
0.45
2.60
0.48
0.80
0.80
0.46
0.42
0.49
0.70
0.30
0.73
0.78

3.1
2.9
3.8 

<1 .0
1 .9
2.2
2.2
1.9

28.5 
<1.0
16.5
7-5
1.8

14.0
2.5
1.0

17.3
4.0

11.5
10.0
8.2
2.1
4.3
2.1
4.6
2.1

12.5
7.0
2.0
2.0

58.0
20.0

2.1
1.0
1.6

26.0
1 .0
1 .0
1 .6

17-5 
86.0
2. 1
4.0
2.6
3-3 

<1 .0
8.2
2.0
2.2
2.0

58.9
61.3
53.3
5.60

35-90
2.36

25.40
4.97
8.56
2.36

13- 10
1 .30
0.75
4.47

70.10
25-20
27-54

1.37
42.05
7-30
4.18
6.83
4.18
0.60

50.41
6.68

18.30
53-35

1.54
0.91

26.68
2.66
0.91
1 .22
0.91
8.60
1.07
4.51
0.91
5.57
1 .22

20.74
46.36
53.90
65.66
5.66

12.64
0.39

19.52
0.78

2.33
2.41
2.17
0.89
6.16
1 .08
1 .21
3-05
2.67
1.15

19-60
3.48
0.88
1.00
2.83
1 .13

14.92
1 .91
2.45
2.52
1.91
1 .61
2.90
0.74
2.38
7-75
2.80

23.70
0.96
1 .15
4.31
1 .40
0.30
0.61
0.64
4.55
0.77
1.86
0.58
3.92
0.19
1.40
6.44
1.70
5.68
0.76
2.35
0.34
2.66
0.47

0.141
0.149
0.119
0.010
0.089
0.003
0.045
0.057
0.148
0.018
0.101
0.004
0.002
0.01 1
0.500
0.160
2.200
0.015
0.051
0.044
0.035
0.032
0.048
0.070
0.100
0.080
0.088
0.071
0.016
0.011
1.44
0.049
0.032
0.013
0.007
0.042
0.006
0.023
0.013
0.041
0.030
0.018
0.080
0.320
0.105
0.020
0.068
0.020
0.033
0.010

<0.02
<0.02
0.03 
0 06
0.01
0.04
0.01 
0 18
0.02
0.07
0.27
0.06
0.02 

. 0.08
0.06
0.02
0.07
0.02
0.03
0.20
0.08
0.08
0.08
0.02

<0.01
0.15
0.10
0.02
0.02
0.03
0.08
0.01
0,91
0.06
0.02
0.26
0.03
0.03
0.0'3
0.15
0.03
0.04

<0.02
<0.02
<0.02
0.02
0.19
0.93

<0.02
0.02
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Table 1-3 Con't

Lab Na K Li Ca Mg Sr Ba
Name of Spring or Wei 1(W) No. ppm ppm ppb ppm ppm ppm ppm

IJmp i re Area 947 2.70 0.62 1 .6 1.37 0.64 0.010 <0.02
S. Cox 948 6.80 8.50 4.6 9.45 3.45 0.092 0.26
Cossatot 949 5.00 0.95 2.0 2.73 0.64 0.033 <0.02
Church 950 6.25 1 .20 2.0 2.82 1.47 0.026 <0.02
Defore Well (W) 951 21.50 1 .25 45.0 73.39 9-37 0.275 0.02
(No Name 952 6.50 1.30 2.6 2.62 1.93 0.020 0.03
Mena Park 953 6.70 0.78 2.6 3.68 1.88 0.020 <0.02

* Cored, plastic piping
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Table 1-4

Chemical Analyses of Ouachita Spring Waters for 
Heavy Metals (all data in parts per billion)

Lab
e of Spring or Well(W) No. Fe Mn Zn Cu Co Ni Pb Hg Sb

p (w)
h

h ier
do Valley 
ista 1 A 
t B rown

■9
sen Wilhelmina 
fen Wilhelmina 
?ve r Wo r 1 d 
irnathy 
•ee Sisters
> Name)
> Name)
9 Name) 
itt
3 Name)
3 Name) 
geon Roost*(W) 
ii pp i ng
rawn
is Name) 
is Name)
3 Name)
11 ham A
11 ham B
ifd
0 Name) 
P Name) 
Elaine A 
Elaine B 
Cl a i ne C 
Elaine D
* Jones 
fees Valley 
lit term i 1 k A 
ttermi1k B 
Ip Name) 
;01 1 hanon 
Ip Name) 
fo Name) 
tystal B 
Ppgdams A 
FOgdams B 
rogdams C

S. Park
S. Park

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

4
275

36
<2
97
<2

7
22
29
85

472
165
210

6
3

663 
3620

43
3

323
7

880
15 

4632
47
11

6
3151

27
1 1 

1974
135 

1495
198

51
739
496
804

68
17
19
19

699
503
643
760

20
12

195
<5
25
<5
<5
10

6
8

35
30
18
17
29

316 
1220

25
5

272
14

206
4

664
24
15
15

469
20

2
448

9
405

62
6

278
9

65
7
3
9
6

210
189
205
210

1 ,480
17
18

6
31
<2
25

2
9

17
26
26
24
17
17
32
69
16

5
10
20

9
10
15
14

2
3
5

1 1
20
28
26
22
23
10

143
110
43
66
46
49
37
39
45
28
27

14
5
1
1
1
1
7
3
7
6

85
5

15
8
8
5

21
9
5
3
7
7

14
4
3
1
3
2
6
2
7
8
9
5
6
2
4
1
8
4
6
6
6
4
4
4

<3 
<3

8 
<3 
<3 
<3 
<3 
<3 
<3 
<3

8
8 

<3 
<3 
<3 
13 
20 
<3 
<3 
13 
<3 
11 
<3 
19

3
2
2

12
7
2
7
2
7
8
4
7
6
4 

<2 
<2 
<2 
<2

2 
<2 
<2

5

<3
<3
<3
<3
<3
<3
<3
<3
<3
<3

8
<3

3
<3 
<3 
12
29 
<3 
<3

8
<3

8
2

17
7
4
4
9
4
4

18
9

18
10
10
21
21
18
12

9
11

9
17
15
15
17

<10
<10
<10
<10
<10
<10
<10
<10
<10
<10

18 
<10 
<10 
<10

18
18
29
13
10
33
13
18
<5

8
<5
<5
<5
<5
<5
<5
15
<5
18
<5
<5
<5
<5
<5
<5
11
<5
<5
<5

5
10

7

<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1

0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1
0.72

<0.1
<0.1
<0.1
0.2

<0.1
0.47
0.30
2.10

<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1 
<0.1
<0.1
0.16

<0.1
0.18
0.1
1 .86

<0.1
0.29

<0.2 
<0.2 
<0.2

0.2
0.2
0.2
0.3
0.25
0.12
0.12 

<0.2
0.2 

<0.2 
<0.2 
<0.2 
<0.2

0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2 
<0.2
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Lab
Table 1-4 Con't

Name of Spring or Well(W) No. Fe Mn Zn Cu Co Ni Pb Hg Sb

Brogdams D 547 699 221 32 2 4 17 < 5 <0.1 <0.2
Brogdams E 
Burrows 
Lead Mine Road 
Lead Mine Road 
(No Name) 
(No Name) 
(No Name) 
Womack (W) 
Womack
Lol la Bell (W)
(No Name)
(No Name) 
(No Name) 
(No Name) 
(No Name) 
Sulfur 
El 1i ott 
Caddo River 
Artesian* Wei 1(W) 
Artesian* Well(W) 
(No Name) 
(No Name) 
(No Name) 
(No Name) 
Chalybeate 
Caddo Gap (W) 
Redland Mt.
Lol la Bell A
Lol la Bel 1 B
Artes i an We 11 (W) 
Mineral
Bari te Pi t
Murfreesboro Area 
Murfreesboro Area 
Lake Greeson Area 
Dierks Area 
Cox Residence 
Dierks Area
L. Greeson, Sulfur 
L. Greeson, Possum 
Salem Area 
Bethesda
Mine Creek
Rock
West
Pigeon Roost 
Barite Pit 
"Warm"
Athens Area

548
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

661
10
33

2236
39
41
25

7
23 

2062 
10082

146
1 49
195

5
31

1347
80

5222
1642

49
49
15
10
43

580
226

15
43
85

4218
129

15
29

1375
175

43
29

9930
57

287
301

60
2

10
3306

100
5

13

296
5
5

701
19
10
89

6
25

344
6

23
83
31

1
7

32
7

631
351

10
42
22

4
77

436
345

5
10
86

345
13
16

5
70
14
16
10

370
8

24
743

22
2
3

800
12

8
6

13
92

137
27
21
12
48
<5

6
21

7
6

20
144
<5
<5

5
<5
65
21
<5
<5
<5
<5
19
38

9
4

16
29
16
10

9
5
5

16
24
10
1 1

8
16
1 1
12

4
6

28
10

6
4

2
9
4
2
2
1

14
1
2
2
2
4
4
1
2
1
4
4
2
2
2

13
9
3 

10 
<1 
<1

3
5
3
3
5
5

<1
<1

5 
<1

3 
<1

5
3
2
2
5
2
3
2
2
2

6
<3

2
15

7
10 
20 
10 
18 
15 
39

4
18
10

5
5

13
8

23
18

6
10

8
5
7

11
22

4
15
15
11

7
7
7

15
11 
11 
1 1 
38 
15 
22
30

6
2
2

31
6
6
2

16
8
4

17
12
15
25
15
30
32
80

7
21
19

8
10
17
12
39
28

8
17
12
10
20
17
24

2
32 
24 
21

9
13

9 
28 
17 
24 
24 
54 
20 
36 
28

7
3
3

39
7
7
7

10
11
<7
30
11
15
34
23
33
37
42
17
21
13
17
10
14
18
37
25

7
17
1 2
12
21
21
30
30
42
46
30
30
17
34
59
34
25
25
34
25
30
24

9 
<5 
20 
29 
13

9
18

<0.1
0.72 

<0.1 
<0.1 
<0.1 
<0.1
0.59
0.51 

<0. 1
0.63
2.27
1.48 

<0.1
0.68
0.75
0.29
0.76
0.28
0.78
0.26
0.32
0.20
0.32
1 .02
0.65
0.75

<0.2
0.22
0.44
0.87
0.65
0.65
0.90
0.65

<0.2
<0.2
0.22
0.65
0.65
1.10
0.65
0.22
0.22

<0.2
<0.2
0.30
0.45

<0.2
<0.2

<0.2
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.2
<0.2
<0.2
0.2 

<0.2 
<0.2 
<0.5
0.5

<0.5
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Lab
Table 1-4 Con't

Name of Spring or Wei 1(W) No. Fe Mn Zn Cu Co Ni Pb Hg Sb

Ump i re Area 947 27 5 6 4 8 7 11 0.2 —
S. Cox 948 20 1 10 45 7 25 33 31 <0.2 -
Cossatot 949 17 4 6 2 1 L 7 13 <0.2 <0.5
Church 950 43 1 1 7 4 1 1 2 31 <0.2 <0-5
before (W) 951 48 283 111 3 34 33 33 <0.2 <0.5
(No Name) 952 18 14 13 2 11 5 22 <0.2 <0.5
Mena Park 953 10 11 8 2 9 7 13 <0.2 -

* Cored, plastic piping
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Table 1-5

Median Values (and Ranges) of Various Measurements 
And Analyses for Areas I and II

Miscellaneous Measurements

Water Tj°C
Surface

Water T°C 
Subsurface*

PH 
Units

Specific Cond. 
pmhos ger cm 

25 C
Total Alkalinity 

mg/1 as CaC0o

Area I 17(5-35) 40.0(7.1-91.2) 6.4(3.8-7.9) 107(14-385)

----- *2-----------;----- 3—

60(0-291)

Area II 16(8-25) 45.9(11.2-89.2) 5.8(4.1-8.7) 61(<5-563) 15(0-265)

(11/1)100 (%) 94 115 91 57 25
Ch 
to

Anion Concentrations (ppm)

N03 as N NH3 as N PO^ as P so4 Cl Si02

Area I 0.66(<0.01-5.5) 0.1(<0.01-1.52) 0.07(<0.01-0.54) 2.3(<0.3-32) 2.3(0.25-87) 10.3(3.2-34.9)

Area II 1.0(0.06-14.3) 0.20(0.02-152) 0.10(0.02-0.41) 3.2(0.3-55) 3.5(0.5-9.5) 12.1(3.8-37.1)

(11/1)100 (%) 152 200 143 139 152 117

Calculated from SiC^ ranges



Table 1-5 (con't)

Alkali Metals Concentrations

Na(ppm) K(ppm) Li(ppb)

Area I 1.8(0.95-152) 0.56(0.04-2.9) 2.5(<l-70)

Area II 3.9(0.85-162) 1.10(0.21-8.5) 2.3(<l-86)

(11/1)100 (%) 217 196 92

70 Alkaline Earth Metals Concentrations

Ca(ppm) Mg(ppm) Sr(ppm) Ba(ppm)

Area I

Area II

(11/1)100 (%)

13.5(0.03-70)

2.7(0.6-78)

20

1.9(0.15-14.9)

1.40(0.19-23.7)

74

0.055(0.002-2.2)

0.03(<0.01-l.4)

55

<0.015(0.001-0.42)

0.04(0.01-0.92)

>267

Fe

Base Metal Concentrations (ppb)

Co Ni PbMn Zn Cu

Area I 56(2-5220) 19(1-1220) 18(2-144) 4.0(1-85) 5(<2-31) 9(2-39) 10(1-37)

Area II 49(7-10082) 14(4-370) 9.5(2-48) 3.0(<l-14) 11(2-39) 20(2-54) 30(<10-59)

(11/1)100 (%) 87 74 53 75 220 222 300



Table 1-5 (con't)

Mercury and Antimony Concentrations (ppb)

Area I
Area II
(II/I)100 (%)

<0.1(<0.1-2.1)
0.2(<0.1-1.2)
>200

Sb*

<0.2(<0.2-0.3)
<0.5(<0.2-0.5)

*limited number of samples

71

% Saturation

% BaS04 Saturation % SrS04 Saturation

Surface Temp. Subsurface Temp. Surface Temp. Subsurface Temp.

Area I 2.0(0.16-96) 1.1(0.09-39) 0.0065(<0.0001-0.504) 0.01(0.0001-0.867)

Area II 8.0(0.46-97) 6.5(0.24-38) 0.0048(0.0004-1.97) 0.007(0.0005-3.38)
(II/I)100 (%) 400 591 44 70

Hq



Table 1-1
Comparison of Ouachita Mountain Spring Water Ranges
And Median Values with Limits for Drinking Water

And with Ranges and Median Values for Wells from the Ouachita Mountains 
(Well Data from Albin and Stephens (1963))

Li mi ts
Springs 

Range
Springs 
Median

Wel 1 s 
Range

Temperature, °C 5-35 16.5 13.8-22.2
PH b*6.5-9.2° 3.8-7.9 6.2 5.0-8.6
Specific cond.
U mhos/cm 25°C

- <5-563 85 34-1080

Total Alkalinity 
mg/1 as CaCO^

0-291 37 2-378

N03 as N ppm 10 <0.01-14.3 0.9 0-68

NHg as N ppm 0.5a <0.01-1.52 0.15 -

P04 as P ppm
b

<0.01-0.54 0.08 -
S04 ppm 400

b*
<0.3-32 3 0-221

Cl ppm 600 0.25-87 2.9 2-288

Si02 ppm - 3.2-31.9 11 5.1-25.0

Na ppm - 0.85-162 2.85 1.6-167.0
K ppm - 0.04-8.5 0.83 0.3-22.0

Li ppb
b*

<1-86 2.4 -
Ca ppm 200 0.03-78 16.2 1-131

Mg ppm 150b 0.15-23.7 1.65 0.5-40.0
Sr ppm - <0.01-2.2 0.04 -
Ba ppm I3 0.001-0.92 0.024 -
Fe ppb 300a* 2-10,082 53 -
Mn ppb 50a*

b*
1-1220 17 -

Zn ppb 15,000 2-144 14 -
Cu ppb i,oooa* <1-85 4 -
Co ppb - <2-39 8

Ni ppb - 2-54 15 -
Pb ppb 50a 1-59 20 -
Hg ppb 2a <0.1-2.1 0.1 -

Sb ppb - <0.2-0.5 <0.3 -

* limit based 
** EPA, 1976

sol el y on wel fare aPHS,
bWH0,

1962
1971
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Table 1-2
Data on Sulfate and Carbonate Minerals of Ca, Sr and Ba

Mineral
Chemi cal 
Formula

Solubility Product 
(mo6)2/!2 at 25°C Reference

gypsum CaS04-2H20 1.49x 10”4=K1 Posnjak (1938)

celesti te
bari te

SrS04

BaS04

1.37x 10”7=K9
-101.25x10 =K3

Figure 111-11

Figure III-ll

cal ci te CaCOg 4.57x 10”9=K4 Garrels & Christ (1965)

stronti ani te SrCOg 4.8x10 =K5 Helz & Hol 1 and (1965)

wi theri te BaCOg 2.0x 10"9=K6 Garrels et al. (1960)

Equilibrium Activity
Ratio (Moles/Mole)Sol i dsEquilibrium Equation for Two

SrS04(C)

BaS04(C)

BaS04(C)

SrC03(C)

BaCO3(C)

BaC03(C)

+

+ 

+ 

+ 

+ 

+

Ca++

Ca++

Sr++

Ca++ 
„ ++Ca 
e ++Sr

+

+
2H20 = CaSO

2H20 = CaSO

4.2H20(c )
4.2H20(c )
Ba++

Sr++

Ba++

Ba++

+ Sr++

+ Ba++
aSr++/aCa++ * 

aBa++/aCa++ ’ 

aBa++/aSr++ * 

aSr++/aCa++ ' 

aBa++/aCa++ ’ 

aBa++/aSr++ '

k2/k x

K3/Kl
K?/K?

k 5/k 4
k 6/k 4
k 6/k 5

=

0.92

0.84

0.91

0.10

0.44

4.2

X

X

XSrS04(c)

CaC03(c)
CaCO3(c)

SrCO3(c)

+

+ 

+

+

io-3

io-6

10'3

Minerals in
Equi1i bri urn

Ioni c
Activity Ratio

celesti te=gypsum

bari te=gypsum

bari te=celesti te 
strontiani te=calci te 

wi theri te=calci te 

wi theri te=strontiani te

Median Values Found
For Activity Ratios*
Area I Area II

4.1x10” 3 -30 11x10 J

1100x10 ”® 15000x10*®

<0.27 1.3

0.0041 0.011

<0.0011 0.015

<0.27 1.3

Equilibrium Values*
Activity Ratios

2.0xl0*3

2.9x10”®

1.4x10”®

0.22

1.5

6.6

*units are ppm/ppm
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Table II-l

Surface Temperature, Subsurface Temperature, 
Heat Flow and Geothermal Gradient

Sample #

Surface
Temperature Si 0-

PPm

Subsurface
Temperature 

c

Heat 
Flow 
w/nr

Geothermal 
Gradi ent 
°C/km

501 15.0 7.7 31.7 27.6 17.5

502 5.0 3.2 7.1 -9.1 -5.8

503 15.0 18.3 60.9 70.6 44.9

504 16.5 12.2 46.1 49.2 31.3

505 15.0 7.7 31.7 27.6 17.5

506 18.0 12.2 46.1 49.2 31.3

507 13.0 13.7 50.2 55.2 35.1

508 13.0 7.7 31.7 27.6 17.5

509 10.0 10.3 40.6 40.8 26.0

510 9.0 6.6 26.7 20.2 12.8

511 16.0 10.2 40.3 40.4 25.7

512 16.0 8.9 36.0 34.1 21.7

513 16.0 19.4 63.2 74.0 47.1

514 18.0 10.2 40.3 40.4 25.7

515 17.0 9.6 38.5 37.8 24.0

516 21.0 12.0 45.6 48.4 30.8

517 17.0 . 12.0 45.6 48.4 30.8

518 15.0 10.6 41.7 42.5 27.0

519 18.0 9.5 37.9 36.9 23.5

520 17.0 13.5 49.7 54.5 34.7

521 17.0 9.6 38.5 37.8 24.0

522 18.0 9.5 37.9 36.9 23.5

523 22.0 12.0 45.6 48.4 30.8

524 15.5 15.5 54.5 61.6 39.2

525 15.0 9.7 38.8 38.2 24.3

526 17.0 16.8 57.5 66.1 42.1
527 17.5 16.8 57.5 66.1 42.1

528 15.5 16.2 56.1 64.1 40.7

529 17.5 9.2 37.0 35.5 22.6
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Table II-l (con't)

Surface Subsurface Heat Geothermal
Temperature Si 02 Temperature Fl°« Gradi ent0 >pample # °C ppm °C w/md C/km

530 15.0 9.2 37.0 35.5 22.6

531 17.5 10.1 40.0 40.0 25.4

532 18.0 9.7 38.8 38.2 24.3

533 17.5 10.1 40.0 40.0 25.4

534 15.5 7.0 28.7 23.1 14.7

535 16.0 7.5 30.8 26.3 16.7

536 18.0 9.2 37.0 35.5 22.6

537 15.0 8.3 33.8 30.7 19.5

538 19.0 8.5 34.5 32.0 20.4

539 17.0 7.5 30.8 26.3 16.7

540 18.0 7.2 29.6 24.5 15.6

541 16.0 8.8 35.8 33.7 21.4

542 16.0 8.5 34.6 32.0 20.4

543 20.0 9.7 38.8 38.2 24.3

544 18.0 10.1 40.0 40.0 25.4

545 20.0 9.7 38.8 38.2 24.3

546 21.0 10.1 40.0 40.0 25.4

547 20.0 10.4 41.1 41.7 26.5

548 22.0 10.4 41.1 41.7 26.5

899 17.0 10.8 42.2 43. 3 27.6

900 18.0 9.3 37.3 36.0 22.9

901 18.0 9.1 36.7 35.0 22.3

902 20.0 10.5 41.4 42.1 26.8

903 18.0 11.6 44.6 46.9 29.8

904 18.0 8.7 35.4 33.1 21.1

905 20.0 9.9 39.4 39.1 24.9

906 20.0 5.4 21.0 11.7 7.4

90 7W 19.0 37.1 89.2 112.6 71.7

908 18.0 11.9 45.3 47.9 36.8

909 19.0 13.2 49.0 53.5 34.0

910 18.0 19.3 62.9 73.5 46.7
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Hable II-l (con't)

Sampl e #

Surface
Temperature0C Si02

PPm

Subsurface
Temperature 

°C

Heat 
Flow 
w/m^

Geothermal 
Gradi ent 
°C/km

911 16.0 11.6 44.6 46.9 29.8

912 16.5 9.3 37.3 36.0 22.9

913 17.0 14.0 50.9 56.2 35.8

914 20.0 18.2 60.7 70.3 44.7

915 35.0 17.2 58.3 67.3 42.8

916W 18.0 34.9 91.2 116.4 89.5

917 18.0 11.6 44.6 46.9 29.8

918 20.0 8.7 35.4 33.1 21.1

919 21.0 17.3 58.4 67.5 43.0

920 20.0 22.9 68.8 83.0 63.8

921 30.0 10.5 41.4 42.1 26.8

922 10.0 7.8 31.8 27.8 17.7

923W 22.0 32.0 82.9 103.3 65.7

924 25.0 18.5 60.4 71.3 45.3

925 • 12.0 10.5 41.3 41.9 26.7

926 12.0 9.9 39.5 39.3 31.1

927W 18.5 21.0 65.7 78.3 49.8

928 16.0 27.2 75.8 93.4 59.4

929 10.0 10.5 41.3 41.9 26.7

930 11.0 7.2 29.3 24.0 15.3

931 11.0 4.8 17.4 6.3 4.0

932 13.0 25.7 73.4 89.9 57.2

933 10.0 7.6 31.0 26.5 16.9

934 12.0 7.4 30.1 25.2 16.0

935 10.0 6.6 26.8 20.3 12.9

936 11.0 23.5 70.0 84.8 53.9

937 8.0 12.1 46.0 48.9 31.1

938 12.0 9.9 39.5 39.3 25.0

939 19.0 13.2 49.0 53.4 34.0

940 16.0 9.2 37.0 35.4 22.5

941 17.0 13.2 49.0 53.4 34.0

942 15.0 7.8 31.8 27.8 17.7
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fable II-l (con't)

Surface Subsurface Heat Geothermal

Sampl e #
Temperature 

c
Si02 
ppm

Temperature
c

Flow 
w/nr

Gradi ent 
°C/km

943 15.0 11.4 44.1 46.1 29.3
944 18.5 10.8 42.2 43.3 27.6
945 23.0 11.1 43.1 44.7 28.4

946 16.0 13.6 50.0 55.0 35.0
947 18.0 12.5 47.0 50.4 32.1
948 16.0 8.0 32.7 29.1 18.5

949 13.0 16.0 55.6 63.3 40.3

950 18.0 12.5 47.0 50.4 32.1

951W 16.0 29.0 78.3 97.2 61.8
952 14.0 12.8 48.0 51.9 33.0
953 12.8 12.8 48.0 51.9 33.0

Mean 16.8 11.5 44.3 46.4 35.7

77



Table II-2

Anomalous Springs Based on Surface and SIO2 Geotemperatures

’mp 1 e No . Anomalous Surface Temperature 
°C

Anomalous Si02 geotemperature

503 - 60.4

513 - 63.2

523 22.0 -

548 22.0 -

907W - 89.2

910 - 62.9

914 - 60.7

915 35.0 -

916W - 91.2

920 - 68.8

921 30.0 -

923W 22.0 82.9

924 25.0 60.4

927W - 65.7

928 - 75.8

932 - 73.4

936 - 70.0

945 23.0 -

951W — 78.3
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Summary of Anomalous Measurements

Table III-l

rement Area Uni ts Median Threshold*

Average
Anomalous
Vaiue**

Sample Numbers 
of 

Anomalous Springs

I pH units 6.4 7.5 7.67 506,527,545,899
I pH units - 4.4 4.10 913

II pH units 5.8 7.5 8.15 927,937
II pH units - 4.4 4.16 904,906,948

fic conduc- I umhos/cm 107 320 364 503,526,527
at 25°C

fic conduc- II pmhos/cm 61 500 563 937
at 25°C

alkali nity I Mg CaC03/L 60 290 291 501
II Mg CaCOg/L 15 200 265 937

s N I ppm 0.66 3.1 7.4 922,939,945
II ppm 1.00 12.0 14.3 904

s N I ppm 0.10 0.51 0.95 520,526,913,930
II ppm 0.20 1.40 1.52 925,926

s P I ppm 0.07 0.24 0.36 517,911,913
II ppm 0.10 0.35 0.41 951

te I ppm 2.3 9.0 16.8 503,517,916,917
II PPm 3.2 20.0 42.2 927,951

ide I PPm 2.3 4.4 48 526,527,922,953

i de II PPm 3.5 6.8 8.7 904,948

I PPb 56 5000 5222 916
II ppb 49 580 6399 908,928,932,937
I ppb 19 900 1220 517

II PPb 14 220 353 924,928,936,
I PPb 18 100 134 536,537,900,911

II PPb 9.5 33 46 904,948
I PPb 4.0 11 34 511,513,517,523

II PPb 3.0 7 12 904,919,920
I PPb 5 20 27 916,938,939,943

II PPb 11 32 38 908,936
I ppb 9 28 36 517,916,938,943

II PPb 20 37 54 936
I PPb <0.1 <0.3 2.0 528,544

II PPb 0.2 0.6 1.1 909,910,937
I PPb 10 31 35 520,916

II PPb 30 42 59 932
I PPb <15 320 420 520

II PPb 40 320 915 929,944
I PPb 55 380 987 501W,526,527,911,91

II PPb 30 150 85 7 927W.951W
I PPb 2.5 18 46 501,520,526,527

II PPb 2.3 54 72 927,937
I PPm 0.56 1.35 2.0 506,520W,922

II PPm 1.10 6.0 8.5 948

95% frequency value from cumulative frequency curve (Lepeltier, 1969), except Hg=l ppb 
Anomalous values are those exceeding threshold
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Spring No.

501W
503
506
511
513
517
520W
523
526

527
528
536
537
544
545
899
900 
911 
913 
916W
917 
922
930
938
939 
943
945 
953

Anomalous Springs

AREA I

Table III-2

Measurement (Value) for Which Spring is Anomalous

Alkalinity(291), Sr(501 ppb), Li(21 ppb)
Specific conductance(324), S04(32 ppm), SiO2> subsurface T(60.4°C) 
pH(7.6), K(1.7 ppm)
Cu(85 ppb)
Cu(15 ppb), SiOgj subsurface T(62.2°C)
P04(0.54 ppm), S0a(12 ppm), Mn(1220 ppb), Cu(21 ppb), Ni(29 ppb)
NH?(0.64 ppm), Pb(33 ppb), Li(23 ppb), Ba(420 ppb), K(1.4 ppm)
Cu(14 ppb), surface T(22°C)
Specific conductance(353), NH3(0.54 ppm), Cl(86 ppm), Sr(838 ppb),
Li(70 ppb)
pH(7.6), specific conductance(385), Cl(87 ppm), Sr(802 ppb), Li(70 ppb)
Hg(2.1 ppb)
Zn(143 ppb)
Zn(110 ppb)
Hg(l-9 ppb)
pH(7.6)
pH(7.9)
Zn (137 ppb)
P04(0.28 ppm), Zn(144 ppb), Sr(500 ppb)
NH3(1.08 ppm), P04(0.25 ppm), Sr(2200 ppb), pH(4.1)
SO4U3.I ppm), Fe(5222 ppb), Co(23 ppb), Ni(39 ppb), Pb(37 ppb), Si02>
S04(10.2 ppm) subsurface T(91.2°C)
NO3U2 ppm), Cl (13 ppm), K(2.9 ppm)
NH3(1.52 ppm)
Co(22 ppb), Ni(36 ppb)
N03(4.8 ppm), Co(30 ppb)
Co(31 ppb), Ni(39 ppb)
N03(5.5 ppm), surface T(23°C)
Cl (6 ppm)

28(anomalous springs) = 28, % anomalous = (yy)100 = 39

(springs) = 71
2 1

(anomalous springs), cations only = 21, % " = (yy)lOO = 30
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Anomalous Springs
AREA II

Table III-3

Spring No. Measurement (Value) for Which Spring is Anomalous

904
906
908
909
910
919
920
924
925
926
927W

pH(4.1 units), N0^(14.3 ppm), Cl(9.5 ppm), Zn(48 ppb), Cu(14 ppb) 
pH(4.3 units)
Fe(10082 ppb), Co(39 ppb)
Hg(l.l ppb)
Hg(1.2 ppb), Si0?, subsurface T(62.9 C)
Cu(13 ppb), ‘
Cu(9 ppb), SiO?, subsurface T(68.8°C)
Mn(345 ppb), Si02> surface T(25°C) , subsurface T(60.4°C)
NH3(1.52 ppm)
NH;s(1.52 ppm)
pH(7.6 units), 50^(29.5 ppm), Sr(1440 ppb), Li(58 ppb), Si02» 
subsurface T(65.7°C)

928
929
932
936
937

Fe(4218 ppb), Mn(345 ppb), SiOg, subsurface T(75.8°C)
Ba(910 ppb)
Fe(1375 ppb), Pb(59 ppb), SiOp, subsurface T(73.4°C)
Mn(370 ppb), Co(38 ppb), Ni(54 ppb), Si02, subsurface T(70.0°C) 
pH(8.7 units), specific conductance^563 pmhos), alkalinity
(265 mg/L CaCOg) Fe(9930 ppb), Li(86 ppb), Hg(l.l ppb)

944
948
951W

Ba(920 ppb)
pH(4.1 units), Cl(8.0 ppm), Zn(45 ppb), K(8.5 ppm)
P04(0.41 ppm), SO4.(55 ppm), Sr(275 ppb), Si02> subsurface T(78.3°C)

(anomalous springs) = 19, % anomalous = (yy)100 = 61

(anomalous springs), cations only = 16, % anomalous = (-jy)lOO = 52
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Table III-4

Location and Date of Collection of Spring Samples

Sample No. Name Location Area County Topo Quad Date

501** Iron NE^, SWJs, sec. 6, TIN, R9W I Garland Nimrod 3/2/78

502 Iron NEU, SW%, sec. 6, TIN, R19W I Garland Nimrod II II

503 Black SW%, SEJa, sec. 19, T3S, R25W I Montgomery G1enwood 3/3/78

504 Col 1ier SEls, NWU, sec. 17, T3S, R24W I Montgomery Glenwood* II II

505 Caddo Valley SWU, SW%, sec. 25, T3S, R27W I Montgomery Athens* II II

506 Crystal A SE%, SW^,_sec. 28, T2S, R22W I Garland Crystal 
Spring

II II

507 Goat Brown NW%, NW^, sec. 22, T3S, R31W I Polk Cove 3/6/78

508 Bogg NWU, NW%, sec. 16, T5S, R32W II Pol k Cove* II II

o 509 Queen Wilhelmina SE^, NEJ«, sec. 11, T1S, R32W I Pol k Rich Mtn. 3/7/78

510 Queen Wilhelmina SE%, SE^» sec. 11, T1S, R32W I Pol k Rich Mtn. II II

511 Silver World NEU, SW>4, sec. 14, T3S, R29W I Pol k Umpire II II

512 Abernathy NW%, SWU, sec. 24, T3S, R28W I Pol k Athens* II II

513 Three Sisters NW^, NW>$, sec. 29, T1S, R20W I Garland Mtn. Pine 4/8/78

514 (No Name) NE^, SW%, sec. 16, T3S, R22W I Garland Percy II II

515 (No Name) NEU, SWls, sec. 16, T3S, R22W I Garland Percy II II

516 (No Name) NEU, SW^, sec. 16, T3S, R22W I Garland Percy II II

517 Wyatt swu, NEla, sec. 22, T3S, R23W I Montgomery Bonnerdale* II II

518 (No Name) NEU, NWU, sec. 24, T4S, R24W I Montgomery Glenwood 4/9/78

519 (No Name) SWls, SWU, sec. 20, T4S, R23W I Montgomery Amity It II

520*** **** Pigeon Roost (W) SW^, SWlj, sec. 20, T4S, R23W I Montgomery Ami ty II II

521 Dripping SEU, NW^, sec. 11, T5S, R25W I Pike Glenwood* II II

522 Strawn SEU, NWlj, sec. 18, T4S, R24W I Montgomery G1enwood* II II

523 (No Name) SEU, NEU, sec. 16, T1S, R28W I Polk Oden 5/16/78

524 (No Name) SEU, SEU, sec. 26, T4S, R32W I Polk Cove II II
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Location and Date of Collection of Spring Samples (con't)

Sample No. Name Location

525 (No Name) SWlj, SWls, sec. 3, T2S, R32W

526 Gil ham A SWJs, NW%, sec. 22, T4S, R30W

527 Gil ham B SVAj, NWi4, sec. 22, T4S, R30W

528 Bard SW%, NEJs, sec. 20, T4S, R28W

529 (No Name) NW%, NWlj, sec. 27, T4S, R27W

530 (No Name) MW^, SWVsec. 22, T4S, R27W

531 McClaine A SWJ4, NEJ4, sec. 18, T4S, R24W

532 McClaine B SWJ4, NEI4, sec. 18, T4S, R24W

533 McClaine C SWI4, NEJs, sec. 18, T4S, R24W

534 McClaine D SW^, NEj 4, sec. 18, T4S, R24W

J 535 W. Jones NE^, SEij, sec. 18, T4S, R24W

536 Jones Valley NE%, SE%, sec. 18, T4S, R24W

537 Buttermilk A NW%, NE%, sec. 6, T4S, R24W

538 Buttermilk B NW^, NE%, sec. 6, T4S, R24W

539 (No Name) NVAj, NE%, sec. 6, T4S, R24W

540 McEllhanan SW^, SWJ4, sec. 7, T4S, R24W

541 (No Name) NVftj, NW%, sec. 18, T4S, R24W

542 (No Name) NW%, NW%, sec. 18, T4S, R24W

543 Crystal B SE^, NElj, sec. 34, T2S, R22W

544 Brogdams A SW>4, NE%, sec. 34, T2S, R22W

545 Brogdams B SW%, NEJ4, sec. 34, T2S, R22W

546 Brogdams C SWJ$, NEij, sec. 34, T2S, R22W

Area County Topo Quad Date

I Pol k Cove* 5/17/78

I Pol k Umpire* II II

I Pol k Umpire* II II

I Pol k Umpire II II

I Montgomery Athens II II

I Montgomery Athens II II

I Montgomery G1enwood 5/18/78

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery Glenwood II II

I Montgomery G1enwood II II

I Montgomery Glenwood II II

I Garland Crystal
Spring

5/19/78

I Garl and Crystal
Spring

II II

I Garland Crystal 
Spring

II II

I Garland Crystal 
Spring

II H
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Location and Date of Collection of Spring Samples (con't)

Sample No. Name Location

547 Brogdams D sw%, NE!*, sec. 34, T2S, R22W

548 Brogdams E sw>*, NE!*, sec. 34, T2S, R22W

899 Burrows SE!*, SE!*, sec. 6, 15S, R22W

900 Lead Mine Road sw>*, SWJ*, sec. 30, T4S, R21W

901 Lead Mine Road SWJ*, SW!*, sec. 30, T4S, R21W

902 (No Name) SE1*, NW’*, sec. 31, T4S, R21W

903 II II swj *» NW!*, sec. 36, T4S, R21W

904 II II SEJ*, NE1*, sec. 35, T7S, R25W
1

905** Womack NW!*, SW!*, sec. 25, T7S, R25W

906 Womack SE^» SW!*, sec. 25, T7S, R25W

907** Lol la Bell NW!*, NE!*, sec. 3, T7S, R25W

908 (No Name) NW!*, SE!*, sec. 26, T6S, R24W

909 II II SEJ*, swj *, sec. 32, T6S, R24W

910 II II SEA*, SEJ*, sec. 31, T7S, R25W

911 II II SEI*, SE!*, sec. 20, T3S, R26W

912 II II SW!*, NE!*, sec. 33, T3S, R26W

913 Sul fur SW!*, SW!*, sec. 10, T3S, R27W

914 Elliott NEJ*, SE!*, sec. 21, T2S, R29W

915 Caddo River NW!*, NE!*, sec. 19, T4S, R24W

916*** **** Artesian Well SE!*, SW!*, sec. 19, T4S, R26W
'917***,**** Artesian Well SW!*, NEJ*, sec. 19, T4S, R26W

918 (No Name) NE!*, NE!*, sec. 28, T4S, R26W

919 (No Name) SWJ*, NWJ*, sec. 16, T6S, R27W

Area County Topo Quad Date

I Garland Crystal 
Spring

5/19/78

I Garland Crystal
Spring

II II

I Clark Ami ty 7/13/78

I Hot Spring Point Cedar II II

I Hot Spring Point Cedar II II

I Hot Spring Point Cedar* II II

I Hot Spring Point Cedar II II

II Pike Murfreesboro*'7/14/78

II Pike Delight 11 II

II Pike Delight II II

II Pike Narrows Dam II II

II Pike Murfreesboro
NE

II II

II Pike Murfreesboro
NE

II II

I Pike Murfreesboro 7/15/78

I Montgomery Athens II II

I Montgomery Athens II II

I Montgomery Athens II II

I Pol k Board Camp 7/18/78

I Montgomery Glenwood II II

I Montgomery Athens II II

I Montgomery Athens II II

I Montgomery Athens II II

II Pike Newhope II II
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Location and Date of Collection of spring samples vcorrt;

920 (No Name) SEU, NEU, sec. 20, T7S, R27W

921 (No Name) SWU, NWJg, sec. 26, T4S, R25W

922 Chalybeate NEU, SEU, sec. 20, T4N, R24W

923 Caddo Gap Well SEU, NWU, sec. 26, T4S, R25W

924 Redland Mtn. SWU, NWU, sec. 12, T5S, R26W

925 Lol la Bell A NWU, NEU, sec. 3, T7S, R25W

926 11 " B SW%, NEU, sec. 3, T7S, R25W
927** **** Artesian Well SEU, NEU, sec. 3, T10S, R27W

928 Mineral SW%, NEU, sec. 19, T10S, R27W

929 Barite Pit NEU, NEU, sec. 24, T7S, R28W

930 Murfreesboro Area NEU, NEU, sec. 4, T8S, R25W

931 Murfreesboro Area NEU, SEU, sec. 10, T7S, R25W

932 Lake Greeson Area NEU, NWU, sec. 24, T6S, R27W

933 Dierks Area NEU, NWU, sec. 4, T8S, R29W

934 Cox Residence SEU, SWU, sec. 33, T7S, R29W

935 Dierks Area SWU, NEU, sec. 34, T7S, R29W

936 L. Greeson, Sulfur SWU, NWU, sec. 34, T6S, R26W

937 L. Greeson, Possum NWU, NWU, sec. 34, T6S, R26W

938 Salem Area NEU, NEU, sec. 7, T5S, R24W

939 Bethesda NWU, SEU, sec. 31, T2S, R30W

940 Mine Creek SWU, NWU, sec. 14, T3S, R28W

941 Rock SWU, SEU, sec. 25, T2S, R27W

942 West SEU, NEU, sec. 2, T2S, R25W

943 Pigeon Roost SWU, SWU, sec. 20, T4S, R23W

944 Barite Pit NEU, NEU, sec. 24, T7S, R28W

County Topo Quad Date

Howard Newhope 7/18/78

Montgomery Glenwood II II

Yell Gravelly 3/3/79

Montgomery Glenwood II II

Pike Glenwood 3/4/79

Pike Narrows Dam II II

Pike Narrows Dam II II

Howard Nashville II II

Howa rd Mi neral
Springs S

II 11

Howard Newhope II II

Pike Murfreesboro II II

Pi ke Narrows Dam 3/5/79

Pike Center Pt. NE II II

Sevier Dierks II II

Sevier Dierks II II

Howard Dierks II II

Pike Center Pt.
NE

3/6/79

Pi ke Center Pt. NE II II

Pi ke Glenwood II II

Polk Mena 5/15/79

Polk Athens II II

Montgomery Oden* II II

Montgomery Mt. Ida* II II

Montgomery Amity 5/16/79

Howard Newhope II II

85

Area

II

I

I

I

I

II

II

II

II

II

II

II

II

II

II

II

II

II

I

I

I

I

I

I

II

Sample No. Name Location



Location and Date of Collection of Spring Samples (con't)

Sample No.

945

Name Location

R27W"Warm" SW’4, SEJ4, sec. 8, T4S,

946 Athens Area Sl^, SE?4, sec. 16, T5S, R28W

947 Umpire Area SW>4, sw^» sec. 13, T5S, R30W

948 S. Cox SWJ4, SWI4, sec. 33, T7S, R29W

949 Cossatot NW^, NE^» sec. 19, T7S, R30W

950 Church NW14j SWJ4, sec. 16, T7S, R31W

951 Defore Well NEI4, sw^, sec. 20, T7S, R31W

952 (No Name) SEI4, NEJ4, sec. 6, T7S, R31W

953 Mena Park NEI4, NW14, sec. 18, T2S, R30W

Area County Topo Quad Date

I Montgomery Athens 5/17/79

II Howard Athens II II

II Howard Umpire II II

II Sevier Dierks II II

II Sevier Gillham Dam II II

II Sevier Gill ham* II II

II Sevier Gill ham 5/18/79

II Sevier Gillham* II II

I Polk Mena II II
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* spring is shown on map 

** well with metal pipe

*** well with plastic pipe

**** artesian wel1

NOTE: 944 and 929 are duplicate collections 

of the same site.



Spring Water Surface and Subsurface Temperatures
And Corresponding % Saturations of the Waters with BaS04 and SrS04

Tabl e 111-5

Water Temperature (°C) % BaS04
c 

Saturation % SrS04 Saturation^

Area Surface3 (Tj) Subsurfaceb (T£) Surface Subsurface Surface Subsurface

I 15.0 31.7 0.51 0.30 0.0077 0.0089

I 5.0 7.1 <0.47 <0.38 0.0001 0.0001

I 15.0 60.9 <14.4 <5.38 0.504 0.867

I 16.5 46.1 1.37 0.67 0.0014 0.0022

I 15.0 31.7 <0.80 <0.47 0.0097 0.0113

I 18.0 46.1 <0.50 <0.25 0.0035 0.0052

I 13.0 50.2 <0.76 <0.28 0.0020 0.0032

II 13.0 31.7 <1.4 <0.73 0.0072 0.0086

I 10.0 40.6 <2.5 <0.93 0.0024 0.0034

I 9.0 26.7 1.33 0.59 0.0004 0.0005

I 16.0 40.3 <2.60 <1.31 0.0311 0.0401

I 16.0 36.0 <1.10 <0.61 0.0152 0.0185

I 16.0 63.2 <3.40 <1.31 0.0303 0.0531

I 18.0 40.3 <0.62 <0.34 <0.0001 <0.0002

I 17.0 38.. 5 <0.92 <0.50 <0.0001 <0.0001

I 21.0 45.6 <1.95 <1.11 0.0069 0.0097

I 17.0 45.6 <8.0 <3.90 <0.0016 <0.0024

I 15.0 '41.7 <0.46 <0.22 0.0002 0.0003

I 18.0 37.9 16.5 9.41 0.0733 0.0210

I 17.0 49.7 52.8 24.3 0.0424 0.0652

I 17.0 38.5 <1.3 <0.71 0.0011 0.0014

I 18.0 37.9 <1.8 <0.97 0.0469 0.0565

I 22.0 45.6 <0.32 <0.19 <0.0002 <0.0004

I 15.5 54.5 <0.21 <0.08 <0.0002 <0.0004

I 15.0 38.8 <2.0 <0.99 0.0063 0.0081

I 17.0 57.5 2.71 1.14 0.0111 0.0180
I 17.5 57.5 <2.60 <1.12 <0.0102 <0.0166

I 15.5 56.1 <3.8 <1.5 0.0517 0.0857

I 17.5 37.0 <0.19 <0.11 <0.0002 <0.0004
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III-5 (con't)

Water Temperature (°C) % BaS04 Saturati onc % SrS04 Saturation*"*

Area Surface3 (Tj) Subsurface^ (T£) Surface Subsurface Surface Subsurface

I 15.0 37.0 <1.83 <0.95 0.0032 0.0040

I 17.5 40.0 2.16 1.18 0.0327 0.0409

I 18.0 38.8 1.90 1.07 0.0150 0.0185

I 17.5 40.0 <2.20 <1.21 0.0390 0.0487

I 15.5 28.7 2.96 1.87 0.0025 0.0028

I 16.0 30.8 <0.20 <0.12 0.0007 0.0008

I 18.0 37.0 <2.76 <1.61 0.0592 0.0706

I 15.0 33.8 1.57 0.87 0.0026 0.0032

I 19.0 34.6 <3.17 <2.05 0.0563 0.0644

I 17.0 30.8 1.65 1.06 0.0025 0.0028

I 18.0 29.6 <0.20 <0.14 0.0003 0.0003

I 16.0 35.8 0.86 0.48 0.0003 0.0003

I 16.0 34.6 0.16 0.09 0.0001 0.0003

I 20.0 38.8 <3.47 <2.16 0.0354 0.0419

I 18.0 40.0 <0.99 <0.55 0.0169 0.0209

I 20.0 38.8 <0.98 <0.61 0.0107 0.0126

I 21.0 40.0 <4.40 <2.75 0.0417 0.0493

I 20.0 41.1 <2.65 <1.58 0.0240 0.0293

I 22.0 41.1 <2.94 <1.86 0.0325 0.0385

I 17.0 42.2 <0.41 <0.21 <0.0015 <0.0022

I 18.0 37.3 1.29 0.74 0.0002 0.0003
I 18.0 36.7 0.66 0.39 0.0066 0.0078

I 20.0 41.4 1.70 1.01 0.0002 0.0002

I 18.0 44.6 0.49 0.25 0.0026 0.0039

II 18.0 35.4 35.0 21.0 0.0131 0.0155

II 20.0 39.4 2.27 1.39 0.0222 0.0266

II 20.0 21.0 6.66 6.48 0.0019 0.0019

II 19.0 89.2 68.7 25.2 0.0314 0.0647

II 18.0 45.3 8.00 3.80 0.0005 0.0008

II 19.0 49.0 3.67 1.85 0.0004 0.0006

II 18.0 62.9 63.8 26.2 0.0094 0.0164

I 16.0 44.6 13.4 6.35 0.1170 0.1730
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Ill —5 (con't)

Area

Water
Surface3

Temperature (°C)
(T|) Subsurface^ (T2)

% BaS04

Surface

Saturati onc

Subsurface

% SrS04

. Surface

Saturationd

Subsurface

I 16.5 37.3 4.09 2.23 0.0367 0.0451

I 17.0 50.9 4.52 2.05 0.1520 0.2360
I 20.0 60.7 0.36 0.17 0.0003 0.0005

I 35.0 58.3 0.60 0.42 0.0021 0.0031

I 18.0 91.2 96.0 34.7 0.0207 0.0480

I 18.0 44.6 51.6 26.3 0.0237 0.0349

I 20.0 35.4 11.3 7.46 0.0055 0.0063

II 21.0 58.4 1.10 0.54 0.0022 0.0036

II 20.0 68.8 0.37 0.20 0.0016 0.0024

I 30.0 41.4 <0.96 <0.77 0.0171 0.0205
I 10.0 31.8 54.2 23.8 0.0196 0.0245

I 22.0 82.9 22.4 9.46 0.0264 0.0529
II 25.0 60.4 5.90 3. 17 0.0343 0.0511
II 12.0 41.3 9.29 3.77 0.0057 0.0080

II 12.0 39.5 17.8 7.34 0.0049 0.0067

II 18.5 65.7 92.0 37.8 1.97 3.38

II 16.0 75.8 3.93 1.36 0.0186 0.0456

II 10.0 41.3 45.1 16.5 0.0011 0.0015

I 11.0 29.3 23.3 11.3 0.0036 0.0043

II 11.0 17.4 16.4 11.6 0.0036 0.0043
II 13.0 ' 73.4 96.7 28. 7 0.0128 0.0261
II 10.0 31.0 16.8 7.54 0.0023 0.0028

II 12.0 30.1 13.1 6.64 0.0079 0.0094
II 10.0 26.8 8.41 4.20 0.0025 0.0029

II 11.0 70.0 50.8 13.8 0.0092 0.0187
II 8.0 46.0 7.50 2.09 0.0045 0.0075

I 12.0 39.5 23.6 9.73 0.0081 0.0110

I 19.0 48.8 <1.96 <1.00 0.0096 0.0141
I 16.0 36.9 <2.73 <1.48 0.0444 0.0532
I 17.0 49.0 <3.60 <1.69 0.0211 0.0318
I 15.0 31.8 1.91 1.10 0.0017 0.0020
I 15.0 44. 1 86.0 39.3 0.0280 0.0424
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III-5 Con't

Area
Water

Surfacea
Temperature (°C)

(T1) Subsurfaceb (T2)
% BaS04 
Surface

Saturationc
Subsurface

% SrS04
Surface

Saturationd

Subsurface

II 18.5 42.2 63.10 34.3 0.0015 0.0022
I 23.0 43.1 <2.30 <1.46 0.0056 0.0073

II 16.0 50.0 3.71 1.63 <0.0018 <0.0030
II 18.0 47.0 <0.68 <0.34 0.0004 0.0006
II 16.0 32.7 15.20 9.00 0.0057 0.0065
II 13.0 55.6 <2.50 <0.86 0.0033 0.0059
II 18.0 47.0 <3.20 <1.59 0.0047 0.0070
II 16.0 78.3 43.5 14.8 0.606 1.22
II 14.0 48.0 2.22 0.90 0.0016 0.0018

I 16.0 48.0 <11.1 <5.00 0.0110 0.0171

asured in flowing spring
o

at surface
Iculated from T °C = 1315/[5.25

& • aSO4 /(solubility product)T1 x

.205 - log10(ppm

100

SiO2] 273.15

r SO4/ (solubility product)-]- x 100 where a = activity = activity 
efficient x concentrations (morality)
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Figure 1-1

Location Map of Study Area and Spring Sites
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SYSTEM SERIES FORMATION MEMBER THICKNESS 
(METERS)

LITHOLOGY

QUATERNARY
ALLUVIUM SILT, SAHO. AMO GRAVEL ALONS STREAM CHANNELS.

TERRACE
DEPOSITS GRAVEL. SAND. ANO SILT OCCUR!NG ALONG MAJOR STREAMS.

CRETACEOUS
TRINITY 

FORMATION
GRAVEL. SILT. CLAY. SILTSTONE. ANO SANOSTONE WITH SOME 
BARITE IK WESTERN PART OF ITS OUTCROP

PE
N

N
SY

LV
AN

IA
N

ATOKAN ATOKA

UPPER

MIDDLE
LOVER

•ooo*

SMALE, LIGHT GRAY. SILTY, MICACEOUS. ANO FLAXY WITH 
INTERBEOOGO FINE TO COARSE -GRAINED. MICACEOUS SAND — 
STOKE WITH VERY ABUNDANT SOLE MARKINGS. THIN SILI­
CEOUS SHALES NEAR BASE ANO IN LOWER PART OF FORMATION.

MORROWAN

JOHNS VALLEY 
SHALE 500

SHALE. LIGHT GRAY TO TAN. DARK GRAY NEAR BASE. AND 
THIN BEOS OF SANDSTONE AND LIMESTONE. LARGE ERRATIC 
MASSES OF LIMESTONE OR SHALE ARE FOUND NEAR THE 
BASE OF THE FORMATION. ANO EXOTIC BOULDERS, PEBBLES, 
AMO GRANULES OCCUR AT NUMEROUS HORIZONS.

JACK FORK
SANDSTONE

2300

SANDSTONE, MEDIUM TO COARSE GRAINED, HARO, WITH IN- 
TERBEDOED SHALE. SOLE MARKINGS ARE ABUNDANT IN THE 
SANOSTONES. FOUR BEOS OF SILICEOUS SHALE ANO ONE 
BED OF MAROON TO GREEN SHALE ARE IDENTIFIABLE OVER 
LONG DISTANCES ANO FORM MARKER BEDS.

M
IS

SI
SS

IP
PI

AN

CHESTERIAN 

NCAARCQAN

STANLEY
• ROUP

CHICKASAW
CREEK

SHALE, DARK COLORED. MOSTLY GRAY, INTEROEDED WITH 
DARK GRAY ARGILLACEOUS SILTSTONE ANO VERY POORLY 
SORTED FINE- TO VERY FINE-GRAINED ARGILLACEOUS CHLOR— 
ITIC SANDSTONE. BEOS OF SILICEOUS SHALE ARE IDENTI­
FIABLE OVER LONG DISTANCES IN SEVERAL HORIZONS. CONE- 
IN—COME CONCRETIONS ARE ABUNDANT AT PLACES.

HATTON TUFF 0-30 4000 FELSIC VITRIC TUFF

NOT SPRINGS 
SANDSTONE 0-20

SANDSTONE. HARD QUARTZOSE, FINE TO VERY FINE GRAINED, 
SMALL AMOUNTS OF INTERBEDDED SHALE AMO LOCALLY CON­
GLOMERATIC NEAR BASE. CROPS OUT ONLY IN RELATIVELY 
SMALL AREA MEAN MOT SPRINGS.

OSAGEAN

KINOERh OCKIAN

ARKANSAS
NOVACULITE

UPPER GREEN. BROWN. AMO GRAY RAOIOLARIAN CHERT ANO RAOIO- 
LARIAN SHALE.

UPPER MIDDLE

310

RED AMO GREEN RAOIOLARIAN SHALE SILICEOUS SHALE 
RAOIOLARIAN CHERT ANO BITUMINOUS CHERT.

D
EV

O
N

IA
N

UPPER AMO
MIDDLE

LOWER MIDDLE LIGHT GRAY TO BLACK BITUMINOUS SPORE-BEARING CHERT 
AMO BLACK PAPERY BITUMINOUS SMALE.

LOVER
WHITE TO GREEN MASSIVE SPlCULlTIC CHERT AMO GREEN 
LAMINATED SILICEOUS SHALE-

SI
LU

R
IA

N

NIAGARAN
MISSOURI
MOUNTAIN

SHALE
100

SMALE. NANO. GREEN SILICEOUS. SAMOY IN PART. THIN 
BEOS OF FINELY LAMINATED CHERT ANO QUARTZOSE SANO­
STONC AMO LOCAL LENSES OF SANOY CHERT CONGLOMERATE.

ALfiXANORIAN SLAYLOCK 
SANOSTdK 500

SANDSTONE, GRAY TO GREEN. THIN BEOOED. FINE GRAINEO. 
WITH INTERBEDOED SMALEY MICACEOUS SILTSTONE ANO OARK 
FISSILE SMALES. VEINS OF QUARTZ ANO SMOKY QUARTZ 
ARE ABUNDANT. FORMATION PRESENT ONLY IN PART OP 
BROKEN BOW-BENTON UPLIFT.

M
ID

D
LE

 AN
D

 UP
PE

R
LO

W
ER

 ORD
O

VI
C

IA
N

 
O

R
D

O
VC

AN

CINCINNATIAN

TRENTONIAN

POLK CREEK

s ha le
so

SMALE. SOFT, BROWN. PLATY IN MOST OF FORMATION ; HARO. 
• LACK. BITUMINOUS , ANO SILICEOUS NEAR BASE. ABUNOANT 
GRAPTOLITE3. THIN STREAKS OF QUARTZITIC SANDSTONE 
ANO OOLITIC LIMESTONE.

Bt« FORK

CHERT

UPPER
BLACK. NONCALCAREOUS, BITUMINOUS CHERT ANO BLACK 
BITUMINOUS PAPERY SHALE.

LOWER
GRAY TO BROWN CALCAREOUS CHERT. SILICEOUS LIMESTONE. 
CLASTIC LIMESTONE ANO CMERTY SHALE.

BLACXRIVER1AN

CXAZYAN

WOMBLE
SHALE IIOO

SMALE. BLACK TO GREEN, WITH TMIN INTERBEDS OF QUARTZ— 
OZE SANDSTONE ANO LIMESTONE. SOME SILICEOUS BITUMI­
NOUS SHALE NEAR CONTACT WITH BIGFORK CHERT.

CANADIAN

bl ax el y  
SANDSTONE >30

SMALE. BLACK TO GREEN, INTERBEOOEO WITH FINE TO MED­
IUM • RAINEO QUARTZOSE SANDSTONE. SOME VEINS OF SMOKY 
QUARTZ.

MAZARN

SHALE
>ooo

SHALE. BLACK TQ GREEN, BANOEO. CLAVEY, 'FT331LE . WITH 
TMIN LAYERS OF GREEN SANDSTONE ANO BLUISH-BLACK LIME­
STONE VEINS OP QUARTZ ANO CALCITE.

CRYSTAL MOUN­
TAIN SANOSTCME

2 BO SANDSTONE, MASSIVE, LIGHT • RAY, CALCAREOUS TO QUARTZ­
ITIC. MANY QUARTZ VEINS »N0 CRYSTALS.

COLLIER
SHALE 330 SMALE. BLACK, GRAPHITIC . ANO DARK—COLOREO SILICEOUS 

LIMESTONE. SOME OENSE BLACK CHERT.

Figure 1-2. Stratigraphic. column for study Area I. After Vogelpohl 
(1977).
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Figure 1-2

Stratigraphic Column for Study Area
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Figure I-1

Correlation Plot for Co vs Mn, Areas I and II
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Figure 1-2

Correlation Plot for Ni vs Mn, Areas I and II
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Figure I-3

Correlation Plot for Cu vs Mn, Areas I and II
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Figure I-4

Correlation Plot for Zn vs Mn, Areas I and II
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Figure I-5

Correlation Plot for Li vs Mn, Areas I and II

97



Mn,ppb

AREA I 
AREA II

Ba
,p

pb98



Figure I-6

Correlation Plot for Ba vs Mn, Areas I and II
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Figure I-7

Correlation Plot for Mn vs Fe, Areas I and II
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Figure I-8

Correlation Plot for Co vs Fe, Areas I and II
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Figure I-9

Correlation Plot for Ni vs Fe, Areas I and II

101



102



Figure I—10

Correlation Plot for Cu vs Fe, Areas I and II
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Figure I-11

Correlation Plot for Zn vs Fe, Areas I and II
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Figure I-12

Correlation Plot for Mg vs Ca, Areas I and II
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Figure I-13A

Equilibrium Constant for HCO3- vs T

Figure I-13B

Solubility Product of Calcite (CaC03) and Strontianite (SrCOg) vs T
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Figure I-14

Concentration of Mg vs Concentration of Na for Areas I and II
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Figure I-15

Concentration of K vs Concentration of Na for Areas I and II
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Figure I-16

Concentration of Sr vs Concentration of Na for Areas I and II

108



109



Figure I-17

Concentration of Ca vs Concentration of Na for Areas I and II
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Figure I-18

Concentration of Li vs Concentration of Na for Areas I and II
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Figure II—I

Histogram of Silica Concentration in Spring Waters 
of Areas I and II Combined
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Figure II-2

Histogram of Silica Geotemperatures of Spring Waters 
for Areas I and II Combined
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Figure II-3

Histogram of Surface Temperatures of Spring 
Waters for Areas I and II Combined
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Figure II-4

Contour Map of Heat Flow
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Figure III-1

Cumulative Frequency Curve for Fe, Areas I and II
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Figure III-2

Cumulative Frequency Curve for Mn, Areas I and II
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Figure III-3

Cumulative Frequency Curve for Zn, Areas I and II
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Figure III-4

Cumulative Frequency Curve for Ba, Areas I and II
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Figure III-5

Cumulative Frequency Curve for Sr, Areas I and II
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Figure III-6

Cumulative Frequency Curve for Ni, Area I
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Figure III-7

Cumulative Frequency Curve for Co, Area I
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Figure III-8

Cumulative Frequency Curve for Cu, Area I
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Figure III-9

Cumulative Frequency Curve for pH, Area I
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Figure III-10

Cumulative Frequency Curve for P04, Area II
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Figure III-11

Solubility Product of Barite (BaS04) 
Celestite (SrS04) vs Temperature

and
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Figure III-12

Ba Concentration vs Ca Concentration 
For Ouachita Spring Waters of Area I
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Figure III-13
++

Ba Concentration vs Ca Concentration 
For Ouachita Spring Waters of Area II
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Figure III-14

Ba++ Concentration vs Sr++ Concentration 
For Ouachita Spring Waters of Areas I and II
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Figure III-15

Ba Concentration vs Specific Conductivity 
For Ouachita Spring Waters in Areas I and II
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Figure III-16

Sr Concentration vs Ca Concentration 
For Ouachita Spring Waters in Areas I and II
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