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ABSTRACT 

Palmer amaranth has been the most limiting weed in cotton production in the state of Arkansas 

for many years. Recently, resistance of Palmer amaranth to the protoporphyrinogen oxidase 

(PPO)-inhibiting site of action has been discovered at various locations across the cotton-

producing region of the state. Cotton varieties have been developed with resistance to synthetic 

auxin (WSSA Group 4) herbicides. However, research to date has shown PPO-resistant Palmer 

amaranth to be more difficult to control with herbicides that target alternative sites of action. 

Herbicide efficacy is also known to vary with weed size, varying spray parameters, and 

environmental conditions. Preliminary research on control of PPO-resistant Palmer amaranth 

with preemergence cotton herbicides suggests that herbicide mixtures containing fluometuron are 

the most consistent option for longevity of control. Preliminary results of postemergence (POST) 

experiments assessing control of PPO-resistant Palmer amaranth in herbicide-resistant cotton 

were inconclusive. Limited rainfall impacted both POST and residual weed control. When 

attempting to salvage a cotton crop, weed size plays an extremely important factor in whether the 

weeds will be controlled. Two-pass salvage treatments were effective in dicamba-resistant cotton 

containing mixtures of glufosinate or glyphosate and dicamba and showed little variation in 

control of large (taller than 15 cm) Palmer amaranth. Interval between applications in a two-pass 

salvage treatment is influential on control of large weeds, although it does not ultimately affect 

seedcotton yield. Increasing carrier volume from 70 L ha-1 to 140 L ha-1 was a more important 

factor in maximizing efficacy of a dicamba application than switching from TTI to AirMix 

nozzles or increasing the dicamba rate from 560 to 1,120 g ae ha-1. Differences in control 

between PPO-susceptible and PPO-resistant populations were also observed, as densities of 



 
 

surviving PPO-resistant Palmer amaranth were much higher than PPO-susceptible Palmer 

amaranth following dicamba application. 

Nomenclature: Palmer amaranth, Amaranthus palmeri S. Wats.; cotton, Gossypium hirsutum L.; 

synthetic auxin; dicamba; fluometuron; 2,4-D; glufosinate 

Key Words: PPO-resistant Palmer amaranth, herbicide-resistant cotton, dicamba-resistant 

cotton, synthetic auxin 

  



 
 

ACKNOWLEDGMENTS 

Although I could never thank them enough, I would first like to thank my parents for their 

constant love and support, as well as the work ethic and sense of integrity that they instilled in 

me from a young age. I would also like to thank my advisor, Dr. Tom Barber, for all the 

opportunities he gave me as a graduate student, and for providing advice and direction whenever 

it was needed. Thank you, also, to Dr. Barber’s research staff for the support and guidance in 

completing my research. Finally, thank you to my fellow graduate students for their assistance in 

conducting this research and their constant friendship throughout my time in Arkansas.  



 
 

TABLE OF CONTENTS 

CHAPTER 1. General Introduction and Review of Literature ........................................... 1 

 LITERATURE CITED ......................................................................................................... 14 

CHAPTER 2. Control of PPO-resistant Palmer amaranth in Herbicide-

resistant Cotton .......................................................................................................... 20 

INTRODUCTION .................................................................................................................. 22 

MATERIALS AND METHODS .......................................................................................... 24 

RESULTS AND DISCUSSION ............................................................................................ 27 

LITERATURE CITED .......................................................................................................... 34 

TABLES .................................................................................................................................. 38 

CHAPTER 3. Salvage Weed Control Options in Dicamba-resistant Cotton ................... 44 

INTRODUCTION .................................................................................................................. 46 

MATERIALS AND METHODS .......................................................................................... 50 

RESULTS AND DISCUSSION ............................................................................................ 53 

LITERATURE CITED .......................................................................................................... 60 

TABLES .................................................................................................................................. 64 

CHAPTER 4. Affect of Application Parameters and Dicamba Rate on 

Two Palmer amaranth Populations .......................................................................... 71 

INTRODUCTION .................................................................................................................. 73 

MATERIALS AND METHODS .......................................................................................... 76 

RESULTS AND DISCUSSION ............................................................................................ 78 

LITERATURE CITED .......................................................................................................... 83 

TABLES .................................................................................................................................. 86 

  



 
 

LIST OF TABLES 

CHAPTER 2 

Table 1. Rainfall amounts received within 10 days of herbicide38 application for all 

experiments in 2018 ..................................................................................................... 38 

Table 2. Protoporphyrinogen oxidase (PPO)-inhibiting herbicide-resistant Palmer amaranth 

control at Crawfordsville, AR, experimental site using preemergence herbicides in 

2018 .............................................................................................................................. 39 

Table 3. Protoporphyrinogen oxidase (PPO)-inhibiting herbicide-resistant Palmer amaranth 

control and densities at Marion, AR, experimental site using preemergence herbicides 

in 2018 .......................................................................................................................... 40 

Table 4. Significance of contrast statements between standalone herbicides and herbicide 

mixtures, as well as mixtures containing fluometuron and mixtures containing no 

fluometuron .................................................................................................................. 41 

Table 5. Protoporphyrinogen oxidase (PPO)-inhibiting herbicide-resistant Palmer amaranth 

control and densities at Crawfordsville, AR, experimental site using postemergence 

herbicides in 2018 ........................................................................................................ 42 

Table 6. Protoporphyrinogen oxidase (PPO)-inhibiting herbicide-resistant Palmer amaranth 

control and densities at Marion, AR, experimental site using postemergence herbicides 

in 2018 .......................................................................................................................... 43 

CHAPTER 3 

Table 1. Treatments for salvage and crop tolerance experiments at all locations.................... 64 

Table 2. Planting, salvage herbicide application, and harvest dates for trials in 2017 and 2018

 ...................................................................................................................................... 65 

Table 3. Mean control of Palmer amaranth and barnyardgrass salvage treatments 21 DAFT at 

Rohwer Research Station near Rohwer, AR in 2017 ................................................... 66 

Table 4. Mean control of Palmer amaranth and barnyardgrass salvage treatments at Lon Mann 

Cotton Research Station near Marianna, AR and on-farm in Marion, AR .................. 67 

Table 5. Significance of contrast statements between 7-day and 14-day interval salvage 

treatments, glyphosate + dicamba fb glufosinate and glyphosate + glufosinate fb 

dicamba and treatments containing dicamba and treatments containing no dicamba . 68 

Table 6. Cotton height and seedcotton yield at Lon Mann Cotton Research Station near 

Marianna, AR in 2018 .................................................................................................. 69 

Table 7. Significance of contrast statements between salvage treatments with 7-day and 14-

day application intervals and weed-free check against each interval. ......................... 70 

CHAPTER 4 

Table 1. Mean spray characteristics as influenced by dicamba rate, nozzle type, and carrier 

volume .......................................................................................................................... 86 



 
 

Table 2. Significance of P-values for factor main effects and interactions for Palmer amaranth 

control and density averaged over site years................................................................ 87 

Table 3. Palmer amaranth control as influenced by significant interactions of population x 

carrier volume and nozzle type x carrier volume ......................................................... 88 

Table 4. Palmer amaranth relative density 21 days after treatment as influenced by main 

effects of nozzle type and carrier volume, as well as the interaction of population x 

dicamba rate ................................................................................................................. 89 

  



1 

CHAPTER 1 

General Introduction and Review of Literature 

  In 2016, 3,998,294 hectares (ha) of cotton (Gossypium hirsutum L.) were planted in the 

United States. Arkansas accounted for about 3.8% of the total hectares planted to cotton, making 

it the fourth largest upland cotton-producing state in the country (Anonymous 2017). The value 

of the Arkansas cotton crop in 2016 was estimated at $275,386,000 (Anonymous 2017). Weed 

competition is one of the greatest yield-limiting factors of cotton. To combat this issue and more 

easily control weeds, many producers plant herbicide-resistant (HR) varieties. In 2017, 93% of 

cotton planted in Arkansas was HR, making it slightly higher than the national average of 91% 

(Anonymous 2017). The most commonly used HR varieties tolerate applications of glyphosate 

and/or glufosinate. Dicamba-resistant cotton was deregulated and approved to be grown in the 

US in 2015 (Anonymous 2015a) and has become another common HR trait used by growers in 

Arkansas and throughout the US. 

Glyphosate-resistant Cotton 

 The introduction of HR cotton varieties greatly reduced cost and labor associated with 

producing a crop (Dill 2005). Farmers were able to reduce both tillage and herbicide application 

passes across a field. Although bromoxynil-resistant cotton was available as a transgenic HR trait 

before the introduction of glyphosate-resistant (GR) cotton, it wasn’t widely adopted by farmers. 

On the other hand, within eight years of the release of GR cotton, 80% of all cotton grown in the 

United States was GR (Green 2012). An increase in the use of conservation-tillage practices, 

such as strip-till and no-till, in cotton occurred shortly after the release of GR cotton varieties, 

and it appears there is a strong correlation between reduced tillage and the widespread adoption 

of GR technologies (Young 2006). The total estimated cost savings per year of GR cotton, 
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including reduced tillage, fewer herbicide applications, and manual labor associated with weed 

removal is $132 million per year (Gianessi 2005; Gianessi et al. 2002). Total income gains due to 

HR cotton use from 1996 to 2007 added 10.2% to the $27.5 billion value of cotton production 

worldwide (Brookes and Barfoot 2009). HR cotton also significantly reduced the total amount of 

herbicides being used. Culpepper and York (1998) found that two applications of glyphosate 

were as effective as four applications of other commonly used herbicide programs at the time. 

Herbicide use rates were cut by an estimated 2.8 million kg by the year 2000 when compared to 

rates applied before the introduction of GR cotton (Gianessi 2005; Gianessi et al 2002). 

 The widespread, year after year reliance on glyphosate by such a large number of farmers 

nationwide eventually yielded detrimental impacts in the form of various GR weed species. 

Weeds were initially not expected to develop glyphosate resistance because of glyphosate’s 

unique mode of action, metabolism, and chemical structure. Furthermore, it was believed that 

since it was difficult to create GR crops by means of mutagenesis and other artificial 

manipulation techniques, it would be nearly impossible for plants in a wild population to evolve 

resistance (Bradshaw et al. 1997). It is now understood that multiple mechanisms of action 

(MOA) must be used in any weed control program in order to maintain herbicide efficacy and 

decrease the rate of selection of herbicide resistant weeds (Norsworthy et al. 2012). 

 Referred to by Duke and Powles (2008) as “a once-in-a-century herbicide”, N-

(phosphonomethyl) glycine, or glyphosate, is a broad-spectrum, systemic herbicide that can be 

applied for a reasonable price and poses minimal toxicological or environmental impact. The 

first glyphosate product came to market under the brand name Roundup in 1974. Glyphosate 

kills plants by inhibiting the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) of 

the shikimate pathway, causing shikimic acid to accumulate in treated tissues (Duke and Powles 
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2008; Steinrucken and Amrhein 1980). The production of phenylalanine, tyrosine, and 

tryptophan are prevented by glyphosate, which are necessary for the synthesis of proteins, 

hormones, and other metabolites needed for plant growth and survival. The first GR cotton 

variety (trade name Roundup Ready®) was released for public use in 1996. Cotton was modified 

to express a gene that encodes EPSPS tolerance, called CP4 EPSPS, which occurs naturally in 

Agrobacterium sp. CP4. Monsanto Co. originally successfully modified two lines; 1455 and 

1698, to express the CP4 EPSPS gene (Nida et al. 1996). The CP4 EPSPS gene, when expressed 

in plant tissue, contains an altered target site that reduces the binding potential of glyphosate, 

therefore allowing the plant to maintain normal enzyme activity. 

Glufosinate-resistant Cotton 

 Glufosinate was originally limited to use in non-crop areas and burndown applications 

because it is a nonselective contact herbicide and provides effective control across a broad 

spectrum of weeds (Hass and Muller 1987). Once it is absorbed by plant tissue, glufosinate 

inhibits the plant’s ability to transform glutamate and ammonium to the essential amino acid 

glutamine by restricting the activity of glutamine synthetase. The result is a sudden recession in 

the level of glutamine available, as well as a spike in glyoxylate and ammonia levels, ultimately 

causing rapid necrosis of contacted plant tissue (Coetzer and Al-Khatib 2001). In 2004, cotton 

varieties resistant to postemergence (POST) glufosinate applications (trade name LibertyLink®) 

were released for commercial use. However, LibertyLink cotton was not widely adopted by 

cotton producers until more recent years because of the poor yield potential associated with 

original LibertyLink varieties, as well as the need for control of GR weeds (UGA 2007; Dodds et 

al. 2015). Other lines created for tolerance to insects (trade name WideStrike™) used the 

phosphinothricin acetyltransferase (pat) gene as a selectable marker during plant transformation 
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(Anonymous 2015b). The pat gene also confers resistance to glufosinate. When WideStrike 

varieties were crossed with GR cotton, varieties were produced that yielded as much as, or 

greater than original LibertyLink varieties, while also giving growers another option for control 

of a broad spectrum of weeds that have evolved resistance to other herbicides (Culpepper et al. 

2009). 

Dicamba-resistant Cotton 

 Dicamba is a member of the synthetic auxin group of herbicides. It shares a similar 

chemical structure with the naturally occurring plant hormone indole-3-acetic acid (IAA), which 

is a member of the auxin class of hormones (Kirby 1980). In the plant, auxins are responsible for 

regulating cell division and elongation, along with a host of other processes that include floral 

meristem differentiation, root formation, and apical dominance. Synthetic derivatives of IAA are 

more stable in the plant than natural IAA and therefore evoke the same effects, but at a much 

more intense level, over a longer period. These effects cause disruption of growth and 

development processes, and ultimately result in plant death, particularly to dicotyledonous 

species (Grossman 2010).  

Synthetic auxin herbicides have been used to control broadleaf weeds in cereal crops for 

more than 60 years (Green and Owen 2010). Recently, transgenic cotton resistant to glufosinate 

and dicamba (event MON88701) was deregulated in the United States (Brinker et al. 2014). This 

event was created by inserting a stacked combination of genes called dicamba monooxygenase 

(dmo) from Stenotrophomonas maltophilia and the bialaphos resistance (bar) gene from 

Streptomyces hygroscopicus (Brinker et al. 2014). The dmo gene codes for a monooxygenase 

enzyme that demethylates absorbed dicamba into two compounds that have no herbicidal effect 

on the plant (Behrens et al. 2007). Other cultivars that possess traits conferring resistance to 
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dicamba, glyphosate, glufosinate, and insects (MON88701 by MON88913 by MON15985; brand 

name Bollgard II® XtendFlex™) became commercially available in 2015 (Anonymous 2015a). 

This gives growers the ability to apply dicamba POST for control of broadleaf weeds. 

Weed Control 

Weeds are a persistent threat to crop production. In the 20th century, weed control in 

cotton shifted from systems reliant upon hand weeding and tillage to ones that also incorporated 

herbicide use (Dowler and Hauser 1975; Holstun 1963). Herbicides allow growers to remove 

almost every unwanted plant from their fields at a fraction of the cost of physical removal 

systems. Even though herbicides are a highly effective tool for removing weeds from agricultural 

systems, weeds remain because of their ability to adapt to new environments. Throughout 

history, composition of weed communities has been shown to be immensely influenced by 

factors like tillage and herbicide use (Booth and Swanton 2002; Norsworthy et al. 2012; Reddy 

and Norsworthy 2010). Creating selection pressure in an agroecosystem causes a decline in the 

occurrence of certain species or an evolved adaptation to the factors being applied, resulting in 

weed species shifts (Owen 2008). Typically, the introduction of a new weed control method will 

initially decrease weed diversity, but eventually weeds in the system will adapt to the 

management practices, or adapted species will fill the niche left by the eliminated species. An 

example of this is how the rapid adoption and heavy use of GR crops has contributed to weed 

species shifts, most notably, the rise of GR weeds (Owen 2008), which will be discussed in-

depth later. These shifts tend to create a new issue for producers, who must once again alter 

management practices. In order to break the revolving cycle of reactive weed management, more 

comprehensive approaches to weed control must be utilized (Booth and Swanton 2002). 

 



6 

Herbicide-resistant Weeds 

One of the biggest issues facing field crop production systems is the ability of weeds to 

quickly evolve resistance to herbicides. Switzer (1957) documented the first case of herbicide 

resistance in wild carrot (Daucus carota L.) to synthetic auxin herbicides. To date, there have 

been 255 species of weeds worldwide with confirmed resistance to at least one herbicide, with 

more species documented yearly (Heap 2019). 

 There are various mechanisms through which weeds can develop resistance to herbicides, 

including gene amplification, reduced translocation of herbicides, altered target sites, and 

metabolic degradation of the herbicide within the plant (Burke et al. 2007; Délye et al. 2015; 

Gaines et al. 2011; Koger and Reddy 2005; Riar et al. 2011). In order to properly manage HR 

biotypes and develop new, sustainable solutions for control, identifying the specific resistance 

mechanism is imperative (Powles and Yu 2010). Research on herbicide resistance mechanisms is 

crucial in understanding herbicide interactions with target enzymes, determining how resistance 

genes spread throughout populations, the implications of weak resistance, and the effect of 

selection pressure on multiple gene mutations (Shaner et al. 2012).  

Palmer amaranth 

 Palmer amaranth (Amaranthus palmeri S. Wats.), a dioecious, C4, dicotyledonous 

species, is one of the most problematic weeds in the Midsouth, and it continues to spread further 

north through the United States (Sprague 2011). In a 2016 survey of crop consultants in the 

Midsouthern US, Palmer amaranth was listed as the most problematic weed in soybean (Glycine 

max [L.] Merr.) production in each of the five states surveyed (Schwartz-Lazaro et al. 2017). An 

earlier survey of crop consultants in the Midsouth listed Palmer amaranth as the most important 
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and problematic weed in cotton, estimating that 75% of the area scouted by all responding 

consultants contained GR Palmer amaranth (Riar et al. 2013). Consultants rank Palmer amaranth 

with such importance because one Palmer amaranth plant per 9.1 m of row can decrease cotton 

lint yield by 13%, and this decrease in yield follows a linear trend as Palmer amaranth density 

increases (Morgan et al. 2001). Furthermore, an average Palmer amaranth plant that emerges in 

early summer can produce 200,000 to 600,000 seeds, and upwards of 1 million seeds on some 

occasions (Keeley et al. 1987). 

 The first confirmed instance of GR Palmer amaranth was reported in Georgia in 2005 

(Culpepper et al. 2006). Soon thereafter, Norsworthy et al. (2008) confirmed a GR population 

collected from a field in Mississippi County, Arkansas, with researchers in other states 

throughout the southeastern US reporting similar findings around the same time. Today, GR 

Palmer amaranth can be found in 27 states within the US, reaching as far north as Wisconsin and 

Michigan (Heap 2019). 

 The level of glyphosate resistance displayed in the Palmer amaranth population from 

Georgia was found to have a direct correlation with EPSPS gene amplification (Gaines et al. 

2010). EPSPS is an enzyme found in the shikimic acid biosynthetic pathway. Its production is 

inhibited by glyphosate in susceptible plants. EPSPS is crucial in the production of the amino 

acids tryptophan, phenylalanine, and tyrosine (Steinrücken and Amrhein 1980). Plants in the 

Georgia population carried the EPSPS gene at a rate 40- to 100-times higher than a susceptible 

plant. This amplification of the EPSPS gene allows the excess enzyme produced to essentially 

absorb the glyphosate on a molecular level so the plant can survive as if the glyphosate 

application never occurred (Gaines et al. 2011). 
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 The resistance of Palmer amaranth to glyphosate and ALS-inhibiting herbicides has led to 

growers searching for new solutions to control Palmer amaranth. The most common solution that 

has been utilized in soybean is in the form of protoporphyrinogen oxidase (PPO)-inhibiting 

herbicides because of their ability to control a broad spectrum of weeds with rapid effectiveness 

when applied POST. In addition, some herbicides in this group provide sustained residual 

activity when applied to the soil preemergence (PRE) (Hao et al. 2011). PPO-inhibiting 

herbicides affect the plant by preventing the PPO enzyme from catalyzing the conversion of 

protoporphyrinogen IX to protoporphyrin IX, which is the last step in biosynthesizing heme and 

chlorophyll (Deybach et al. 1985). The inhibition of PPO ultimately leads to the generation of 

singlet (highly reactive) oxygen species that decompose lipid and protein membranes, causing 

plant death (Sherman et al. 1991). 

 The first instance of PPO-resistant Palmer amaranth was confirmed by Salas et al. (2016) 

in Arkansas. Progeny of a sample collected from a field in Lawrence County, Arkansas, showed 

resistance to the PPO-inhibiting herbicide fomesafen applied POST in a greenhouse experiment. 

Subsequent samples from resistant progeny showed a mutation in the PPO gene which no longer 

coded for ΔG210, causing a target site resistance. The ΔG210 deletion is the same mutation that 

confers resistance to PPO-inhibiting herbicides in waterhemp (Amaranthus tuberculatus [Moq.] 

Sauer) (Thinglum et al. 2011). Target-site mutations were thought to be the only resistance 

mechanism to PPO-inhibiting herbicides in Palmer amaranth until very recently, when metabolic 

resistance to fomesafen was discovered (Varanasi et al. 2018a) Presently, PPO-resistant Palmer 

amaranth is a widespread issue throughout eastern Arkansas that is becoming increasingly 

prevalent (Varanasi et al. 2018b). To date, little research has been conducted on the control of 

PPO-resistant Palmer amaranth in cotton. 



9 

Barnyardgrass 

 Barnyardgrass (Echinochloa crus-galli [L.] Beauv.) is another problematic C4 weed 

common in a variety of Midsouth crop production systems. Barnyardgrass is originally native to 

Europe and Asia and is currently a problem weed in 36 crops across 61 countries (Holm et al. 

1991). In a recently published survey of Arkansas crop consultants, respondents ranked 

barnyardgrass as the fifth most economically important weed (Riar et al. 2013), in part because it 

can emerge from mid-spring until 7 weeks after cotton emergence (JK Norsworthy, unpublished 

data). When barnyardgrass competes with cotton for 6, 9, 12, and 25 weeks, it can diminish 

cotton yields by 21, 59, 90, and 97%, respectively (Keeley and Thullen 1991). Barnyardgrass 

also has the ability to produce vast amounts of seed. Bagavathiannan et al. (2012) found that 

barnyardgrass allowed to emerge with a cotton crop can produce 35,500 seeds plant-1. 

  Over time, barnyardgrass has evolved resistance to nine herbicide modes of action 

worldwide (Heap 2019). Barnyardgrass was ranked the most problematic weed in rice by 

Arkansas and Mississippi crop consultants in a 2012 survey (Norsworthy et al. 2013). Most 

barnyardgrass resistance issues have developed from the repeated use of certain herbicides in 

rice. In a survey of barnyardgrass accessions from around the state of Arkansas, populations 

resistant to six different herbicides, encompassing five different modes of action were identified, 

with some populations containing multiple resistance to as many as four herbicide modes of 

action (Rouse et al. 2018). None of the herbicides included by Rouse et al. in the herbicide 

resistance screening are commonly recommended in Arkansas cotton, but these findings indicate 

that barnyardgrass has the ability to develop resistance quickly if weed management practices are 

not diversified (Scott et al. 2018). In Tennessee, barnyardgrass has evolved resistance to 

glyphosate. This is perhaps the most concerning instance of herbicide-resistant barnyardgrass to 
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cotton producers because tank mixtures of glyphosate and dicamba, which are commonly applied 

in dicamba-resistant crops, provide little to no control of this GR biotype (Steckel 2018). 

Salvage Situations 

 A variety of factors can hinder a grower’s ability to control weeds at an optimum time. 

Previously discussed herbicide resistance issues can sometimes combine with other factors such 

as unfavorable weather conditions and rapid growth rate of weeds, creating a situation where 

timely weed control is impossible. Throughout the US, Palmer amaranth has been documented as 

resistant to eight different herbicide sites of action (Heap 2019), three of which contain 

herbicides that have traditionally been used as residual herbicides applied PRE in cotton. 

Although new HR traits provide options for effective weed control POST, residual PRE 

herbicide options are becoming more limited, increasing the chances for weeds to emerge with 

the crop. Moreover, label restrictions on herbicides such as dicamba limit POST applications to 

very specific environmental conditions. 

 When weeds grow past heights for consistent control listed on the herbicide label, the 

crop can either be replanted or an attempt can be made to salvage it. Vann et al. (2017a) 

observed 92 to 97% control of large Palmer amaranth (about 20 cm) when dicamba and high 

rates of glufosinate were applied twice, 10 days apart in a dicamba-resistant cotton crop. When 

the first POST application is delayed 28 days after weeds reach heights for consistent control 

listed on the herbicide label, Palmer amaranth can still be controlled 87% using two applications 

of dicamba plus a high rate of glufosinate applied 14 days apart (Vann et al. 2017b). Although 

high levels of control of large Palmer amaranth can be achieved, weed interference with the 

young crop may still result in decreased nodes and bolls per plant, and ultimately decreased lint 

yield (Burke et al. 2005; Vann et al. 2017b). Although not permitted for use, mixtures of 
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dicamba and glufosinate to dicamba-resistant cotton have been shown to cause minor transient 

necrosis, but the crop rapidly recovers (Cahoon et al. 2015; Dixon et al. 2014; Vann et al. 

2017a). 

Spray Parameters 

 A variety of factors can manipulate spray solution droplet sizes including, but not limited 

to, application pressure, orifice size, nozzle design, and solution characteristics. Droplet sizes 

within the spray pattern exist in great variation. Droplet sizes produced by a particular nozzle can 

be classified by the volume median diameter (VMD) of spray droplets, which is the value of the 

median size of spray droplets produced (i.e. 50% of droplets are larger and 50% are smaller than 

this value). Increasing VMD can contribute to decreased particle drift when herbicides are 

applied, but it can also decrease the efficacy of some herbicides (Meyer et al. 2016). The 

herbicide formulation or mixture being applied can also cause variation in droplet size. When 

comparing the VMD of applications of glyphosate, glufosinate, and paraquat, Etheridge et al. 

(1999) determined that a smaller VMD was generated by glufosinate than the other two 

chemicals. Chemical mixes can also play a role in altering the VMD of a spray solution. When 

glufosinate was applied alone with a Turbo TeeJet Induction (TTI) nozzle, a VMD of 617 was 

produced, but when glufosinate was mixed with glyphosate and dicamba and applied with the 

same nozzle type, a VMD of 877 was produced (Meyer et al. 2015). 

 The spray nozzle is an applicator’s last chance to influence the droplet size and spray 

pattern of a herbicide solution before it leaves the closed system of the application equipment. 

Nozzles are designed to control spray angle, spray pattern, droplet size, and solution flow rate as 

precisely as possible. Nozzles are available that produce a variety of spray patterns, and a variety 

of orifice sizes are available for each spray pattern. Increased droplet size can be obtained by 



12 

increasing the orifice size for any given nozzle (Nuyttens et al. 2007). In order to increase droplet 

size without altering orifice size or spray pressure, nozzles with an inlet above the orifice are 

produced. These are typically referred to as air induction (AI) or venturi-type nozzles. These 

nozzles essentially impregnate spray droplets with air, making them larger and less likely to drift 

(Etheridge et al. 1999; Etheridge et al. 2001). 

 Although not as important for the control of horizontally structured broadleaf weeds, 

smaller droplets adhere better to upright grasses and therefore provide better control (Etheridge 

et al. 2001; McKinlay et al. 1974). Droplet size also plays a vital role in control levels provided 

by contact herbicides. When glufosinate and paraquat were applied to broadleaf signalgrass 

(Urochloa platyphylla [Munro ex C. Wright] R.D. Webster) and common cocklebur (Xanthium 

strumarium L.) with AI nozzles (coarser droplets) and flat fan nozzles (finer droplets), decreased 

control was noted in treatments where AI nozzles were used (Etheridge et al. 2001). McKinlay et 

al. (1974) observed decreased paraquat efficacy on common sunflower (Helianthus annuus L.) as 

VMD increased. Meyer et al. (2015) also observed a decrease in control of Palmer amaranth, 

hemp sesbania (Sesbania herbacea [Mill.] McVaugh), velvetleaf (Abutilon theophrasti Medik.), 

and barnyardgrass with glufosinate as droplet size increased. Conflicting conclusions exist on the 

effect of droplet size and synthectic auxin efficacy. 2,4-D efficacy has been shown to decrease 

dramatically with increases in VMD (McKinlay et al. 1972). These are similar findings to Way 

(1969) and Ennis and Williamson (1963), who observed that synthetic auxin efficacy increased 

as droplet size decreased. Meyer et al. (2015), however, noted no difference in efficacy of 

dicamba on Palmer amaranth, hemp sesbania, velvetleaf, and prickly sida (Sida spinosa L.) 

across VMD values ranging from 340 to 756 µm. 
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Another factor that can influence efficacy of a foliar-applied herbicide is the carrier 

volume, or amount of herbicide solution being applied per acre (Knoche 1994). Creech et al. 

(2015) observed no difference in control of Amaranthus spp. when glyphosate was applied at 70, 

94, 140, and 187 L ha-1. However, in the same study, efficacy of 2,4-D on amaranth and soybean 

increased with increases in carrier volume (Creech et al. 2015), which is similar to findings by 

Smith (1946). Butts et al. (2018) observed a negative correlation for weed mortality between 

carrier volume and droplet size at 47 L ha-1, but a positive correlation at 187 L ha-1 when 

dicamba was applied postemergence to actively growing weeds, suggesting that greater carrier 

volume and larger droplets provide better coverage of the leaf surface than a lower carrier 

volume with the same droplet size. 
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CHAPTER 2 

Control of PPO-resistant Palmer amaranth in Herbicide-resistant Cotton 

Palmer amaranth throughout northeastern Arkansas is now resistant to protoporphyrinogen 

oxidase (PPO)-inhibiting herbicides. Although the option to control Palmer amaranth with PPO-

inhibiting herbicides at burndown and preplant has been eliminated, it is the reduced sensitivity 

of PPO-resistant populations to herbicides that target alternative sites of action that is of greater 

concern for cotton production. To assess the efficacy of herbicides commonly used in cotton for 

controlling PPO-resistant Palmer amaranth, field experiments were conducted at two on-farm 

locations in 2018. All experiments were organized as a randomized complete block design and 

included a weed-free check for comparison. Preemergence (PRE) herbicides commonly applied 

in cotton were evaluated to determine efficacy on two PPO-resistant Palmer amaranth 

populations. Another experiment evaluated the efficacy of the postemergence (POST) herbicides 

2,4-D, dicamba, and glufosinate, alone or in combination with one of three chloroacetamide 

herbicides. Environmental differences between locations played a factor in PRE weed control; 

however, similar trends were observed for both locations. Treatments containing herbicide 

mixtures controlled Palmer amaranth at higher levels than treatments of single herbicides 4 

weeks after application (WAA). Furthermore, herbicide mixtures containing fluometuron 

provided superior control over all other herbicide mixtures 4 WAA. POST experiments also 

differed between locations due to rainfall and light intensity, as well as differences in weed size 

at application. At Crawfordsville 4 WAA, treatments containing dicamba had lower Palmer 

amaranth densities than treatments containing 2,4-D or glufosinate. At Marion, however, 

treatments containing glufosinate resulted in the lowest Palmer amaranth densities 4 WAA. 

Herbicide mixtures are recommended for PRE control of PPO-resistant Palmer amaranth, 
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especially those containing fluometuron. For POST control of PPO-resistant Palmer amaranth, it 

is important to make multiple timely applications. 

Nomenclature: 2,4-D; dicamba; glufosinate; Palmer amaranth, Amaranthus palmeri S. Wats.,  

cotton, Gossypium hirsutum L.  

Key Words: Herbicide resistance, herbicide-resistant cotton, chloroacetamide herbicides 
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INTRODUCTION 

Palmer amaranth is one of the most economically important weeds in cotton. The 

interference and competition of Palmer amaranth with the crop can cause a variety of problems 

including slower canopy closure, reduced crop biomass, harvest difficulties, and decreased lint 

yield (Morgan et al. 2001; Rowland et al. 1999; Smith et al. 2000). Palmer amaranth can severely 

impact cotton growth and development because it grows at rates much higher than cotton due to 

its C4 photosynthetic pathway (Ehleringer 1983). Morgan et al. (2001) determined that 10 Palmer 

amaranth plants in 9.1 m of row of cotton can reduce lint yield by 54%. A typical female Palmer 

amaranth plant will produce between 200,000 and 600,000 seeds, but on some occasions seed 

production can total over 1 million from a single female plant (Keeley et al. 1987). Steckel et al. 

(2004) reported a Palmer amaranth germination rate of 83% in a growth chamber that simulated 

a seed burial depth of 2 cm in bare soil, with an average temperature of 30 C. With such 

abundant seed production and germination, it is important to control Palmer amaranth before it 

produces seed. The escape of one Palmer amaranth plant in a growing season can result in 1,020 

Palmer amaranth escapes in two years, even with 99.9% control of germinated seedlings (Barber 

et al. 2015). 

 In Arkansas, Palmer amaranth has been confirmed resistant to multiple herbicide sites of 

action. Currently, Palmer amaranth can be found throughout the state with resistance to WSSA 

Groups 2 (acetolactate synthase [ALS] inhibitors), 9 (glyphosate), and 14 (protoporphyrinogen 

oxidase-inhibitors) (Heap 2018). Following the development of glyphosate and ALS resistance, 

PPO-inhibitors became a leading choice for Palmer amaranth control in soybean [Glycine max 

(L.) Merr.] because of the excellent control they provided of glyphosate-resistant (GR) Palmer 

amaranth (Norsworthy et al. 2008). PPO-inhibiting herbicides affect the plant by preventing the 



23 

PPO enzyme from catalyzing the conversion of protoporphyrinogen IX to protoporphyrin IX, 

which is the last step in biosynthesizing heme and chlorophyll (Deybach et al. 1985). The 

inhibition of PPO ultimately leads to the generation of singlet (highly reactive) oxygen species 

that decompose lipid and protein membranes, resulting in plant death (Sherman et al. 1991). 

The first instance of PPO-resistant Palmer amaranth was confirmed by Salas et al. (2016) 

in Arkansas. Progeny of a seed sample collected from a field in Lawrence County in Arkansas 

showed resistance to the PPO-inhibiting herbicide fomesafen applied POST in a greenhouse 

experiment. Subsequent samples from resistant progeny showed a mutation in the PPO gene that 

no longer coded for ΔG210, causing a target site resistance. This is the same mutation that 

confers resistance to PPO-inhibiting herbicides in waterhemp (Amaranthus tuberculatus [Moq.] 

Sauer) and, at the time of discovery, was thought to be the only mechanism of resistance to this 

site of action (Thinglum et al. 2011). However, non-target site (metabolic) resistance of Palmer 

amaranth to PPO-inhibitors was recently discovered in Arkansas, raising concern that this 

resistance pattern may confer resistance to other herbicide sites of action (Varanasi et al. 2018). 

To date, very little research has been conducted on the control of PPO-resistant Palmer amaranth 

in cotton. 

Growers in the Midsouth currently rely on a combination of preplant burndown, PRE, 

POST, and postemergence-directed (PDIR) herbicide applications to control weeds in cotton, 

utilizing a residual herbicide at each timing (Barber, personal communication). Cotton 

technologies resistant to multiple herbicides are currently on the market. In 2004, cotton varieties 

resistant to POST glufosinate applications (tradename LibertyLink®) were released for 

commercial use (Gardner et al. 2006). However, LibertyLink cotton was not widely adopted by 

cotton producers until later, when growers needed a solution to control GR Palmer amaranth 
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(Dodds et al. 2015). In 2015, two new herbicide-resistant (HR) cotton lines were released: one 

that was resistant to dicamba, glyphosate, glufosinate, and lepidopteran insects (tradename 

Bollgard II® XtendFlex™), and another that was resistant to 2,4-D, glyphosate, glufosinate, and 

lepidopteran insects (tradename Enlist™ Cotton) (Anonymous 2015a; Anonymous 2015b). This 

gives growers in locations outside of Arkansas the ability to apply dicamba POST at any time 

during the growing season for control of broadleaf weeds (Anonymous 2018), and growers in 

any region the option to apply 2,4-D POST for control of broadleaf weeds. Because limited 

research has been conducted on controlling PPO-resistant Palmer amaranth with common cotton 

herbicides, experiments were conducted to determine the efficacy of standalone herbicides and 

herbicide mixtures applied PRE and POST in cotton. It was hypothesized that herbicide mixtures 

would provide greater control of PPO-resistant Palmer amaranth than standalone herbicides. 

MATERIALS AND METHODS 

Two field experiments were conducted in 2018 at two on-farm locations at Marion, AR, 

and near Crawfordsville, AR, to assess the potential control of PPO-resistant Palmer amaranth 

PRE and POST in cotton. At Marion, the experiments were conducted on a Dubbs silt loam (Fine-

silty, mixed, active, thermic Typic Hapludalfs) with 27.1% sand, 62.9% silt, 10% clay, 1.64% 

organic matter (OM), and a pH of 6.1. At Crawfordsville, experiments were conducted on a 

Dundee silt loam (Fine-silty, mixed, active, thermic Typic Endoaqualfs) with 10.7% sand, 76.9% 

silt, 12.4% clay, 1.95% OM, and a pH of 5.5. Each location was a site where naturally occurring 

populations of PPO-resistant Palmer amaranth had previously been identified. Rainfall data (Table 

1) were collected from a weather station in the field at Crawfordsville and from a nearby (8.4 km) 

National Oceanic and Atmospheric Administration (NOAA) weather station for Marion (NOAA 

2018). All experiments were organized in a randomized complete block design with four 
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replications, where the factor of herbicide treatment was examined. Plots for all experiments were 

two rows wide (1.93 m) by 9.1 m long. 

PRE Application Experiments. The first set of experiments evaluated herbicides applied PRE in 

cotton. The herbicides acetochlor (Warrant, Bayer CropScience, St. Louis, MO), dicamba 

(Xtendimax, Bayer CropScience, St. Louis, MO), fluridone (Brake, SePro Corporation, Carmel, 

IN), fluometuron (Cotoran, Syngenta, Greensboro, NC), diuron (Direx 4L, Adama USA, Raleigh, 

NC), and prometryn (Caparol, Syngenta, Greensboro, NC) were evaluated for control of Palmer 

amaranth alone, and in various combinations. A treatment of the PPO-inhibiting herbicide 

fomesafen (Reflex, Syngenta, Greensboro, NC) was included as a comparative baseline for PPO-

resistant Palmer amaranth control. Both sites were weed-free prior to herbicide application. At the 

Crawfordsville location, DP1518B2XF cotton (Bayer Crop Science, St. Louis, MO) was planted 

on May 16 at 118,560 seeds ha-1. No cotton was planted at the Marion location; therefore, 

treatments were applied to freshly tilled soil. At both locations, applications were made with a 

CO2-pressurized backpack sprayer attached to a handheld boom containing four 110015 AirMix® 

nozzles (Greenleaf Technologies, Covingtion, LA) with 48 cm spacing, calibrated to deliver 140 

L ha-1 of spray solution at 276 kPa. Herbicide applications were made on May 16 at Crawfordsville 

and July 25 at Marion. 

Visible weed control ratings were collected weekly from 1 to 4 WAA on a scale of 0 to 

100% control, relative to the nontreated check, with 0% being no control and 100% being death of 

all Palmer amaranth (Frans and Talbert 1977). Palmer amaranth densities (plants m-2) were 

recorded at the 4 WAA rating by counting the number of plants in two 0.5-m2 quadrats in each 

plot. 
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POST Application Experiments. A second set of experiments was conducted to determine 

control levels of PPO-resistant Palmer amaranth with combinations of residual herbicides applied 

POST. Treatments included glufosinate (Liberty, BASF Corporation, Florham Park, NJ), dicamba 

(Xtendimax, Bayer CropScience), and 2,4-D (Enlist One, Corteva AgriScience, Indianapolis, IN) 

alone, and in combination with S-metolachlor (Dual II Magnum, Syngenta, Greensboro, NC), 

acetochlor (Warrant, Bayer CropScience, St. Louis, MO), and dimethenamid-P (Outlook, BASF 

Corporation, Florham Park, NJ). Experiments at both Crawfordsville and Marion were established 

in non-crop areas where Palmer amaranth was already emerged, and applications were made when 

weeds reached 7.5 to 10 cm in height at Marion and 15 to 20 cm in height at Crawfordsville. At 

Crawfordsville, treatments were applied with a CO2-pressurized backpack sprayer attached to a 

handheld boom containing four 110015 AirMix® nozzles (Greenleaf Technologies, Covington, 

LA) with 48-cm spacing, calibrated to deliver 140 L ha-1 of spray solution at 276 kPa. At Marion, 

treatments were applied with a Bowman Mudmaster (Bowman Manufacturing, Newport, AR) 

using the same nozzles, nozzle spacing, carrier volume, and pressure as at Crawfordsville. 

Treatments were applied May 16, at Crawfordsville and May 31, at Marion. 

 Visible control ratings for Palmer amaranth were recorded weekly from 1 to 6 WAT on the 

same scale of 0 to 100% used in the PRE experiments. Additionally, Palmer amaranth densities 

(plants m-2) were recorded at the same time as the 4 WAA rating by counting the number of plants 

in two 0.5-m2 quadrats in each plot. 

Statistical Analysis. All data were subject to analysis of variance using the GLIMMIX procedure 

in SAS 9.4 (SAS Institute Inc. Cary, NC). A beta distribution was assumed for Palmer amaranth 

control and a gamma distribution was assumed for Palmer amaranth density for both experiments 

(Gbur et al. 2012). Because environmental differences affected the behavior of PRE herbicides 
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applied at the two sites, data were analyzed separately by location, with block considered a random 

effect in each model. Contrasts analyses were also conducted for PRE Palmer amaranth control to 

test for differences between herbicide mixtures and herbicides applied alone (fomesafen was 

excluded from analysis) as well as differences between herbicide mixtures containing fluometuron 

and mixtures containing no fluometuron. Means were separated using Fisher’s protected LSD 

(P=0.05). 

RESULTS AND DISCUSSION 

Location Description and Environmental Conditions. Several soil properties influence the 

control provided by soil-applied herbicides, including soil texture, soil chemical properties, and 

soil moisture (Curran 2001; Eberline et al. 1984; Hartzler 2002). Differences in soil texture were 

minimal between locations and therefore had minimal effect on the results of this experiment. 

The availability of some herbicides is affected by soil pH. For example, fluridone is more active 

as pH increases; therefore, fluridone was likely more available for plant uptake at Marion (pH 

6.1) than at Crawfordsville (pH 5.5) (Shea and Weber 1983). Fomesafen and photosystem II-

inhibiting herbicides such as prometryn have also been shown to increase in availability as soil 

pH increases (Cobucci et al. 1998; Ladlie et al. 1976; Weber et al. 1968). 

Rainfall amounts received after application of soil-applied herbicides were the main 

difference between the two experimental locations. At Crawfordsville, PRE applications were 

made to dry soil and a cumulative total of 3.75 cm of rainfall was received over the next 9 days 

(Table 1). For the Marion location, applications were also made to dry soil, but a cumulative 

total of 4.73 cm of rainfall was received over the next 5 days, with no measurable rainfall 

occurring for the remainder of the experiment (Table 1). 
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The efficacy of postemergence herbicides is influenced by several factors including weed 

size, relative humidity, temperature, and light intensity at and shortly after application (Anderson 

et al. 1993; Gerber et al. 1983; Hess 2000; Martinson et al. 2005). As relative humidity, 

temperature, and light intensity increase weed control with glufosinate also increases (Coetzer et 

al. 2001; Petersen and Hurle 2001). Also, if glufosinate is applied shortly before dark, a decrease 

in efficacy is observed (Hess 2000; Sellers et al. 2003). POST treatments were applied at 

Crawfordsville late in the day to 15- to 20-cm Palmer amaranth, which decreased control 

provided by all treatments (Table 5). Furthermore, the high temperature the day following the 

application was 25 C with heavy cloud cover, which severely impacted the efficacy of all 

treatments containing glufosinate for that location. New weed emergence after POST 

applications at Marion was reduced due to dry conditions (Table 1). 

PRE Application Experiments. Overall, lower levels of control of PPO-resistant Palmer 

amaranth were observed at Crawfordsville for both ratings. Control levels ranged from 57 to 

89% 2 WAA (Table 2). For this location, control decreased 27 percentage points, averaged over 

all treatments, between 2 WAA and 4 WAA. At 4 WAA, only one treatment provided greater 

than 75% control of Palmer amaranth. Fomesafen controlled PPO-resistant Palmer amaranth 

79% 2 WAA, but control decreased drastically by 4 WAA to 36% (Table 2). Fluridone + 

fluometuron provided 76% control 4 WAA; however, this was not different from fluometuron + 

prometryn or fluometuron + acetochlor, which both controlled PPO-resistant Palmer amaranth 

68% at Crawfordsville (Table 2). 

For the Marion location, control levels 2 WAA were from 77% to 99% (Table 3). At this 

location, control decreased 17 percentage points, averaged over all treatments, between 2 WAA 

and 4 WAA. Overall control was higher at Marion where nine treatments still controlled PPO-
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resistant Palmer amaranth at least 75% 4 WAA (Table 3). The PPO-inhibiting herbicide 

fomesafen provided 86% control 2 WAA, but only 59% control 4 WAA, which was the lowest 

level of control by any treatment at that timing for the Marion location. Fluridone + dicamba 

controlled PPO-resistant Palmer amaranth 95% 4 WAA, which was the highest level of control 

observed at this location (Table 3). 

Overall differences in control levels and decreases in control levels over time between the 

two experimental sites are likely due to weed population and rainfall differences (Table 1). Weed 

population dynamics affect efficacy of preemergence herbicides, as well as the amount of 

herbicide absorbed by each seed (Hartzler and Roth 1993; Winkle et al. 1981). Because no 

irrigation was available at either location, activation of the herbicides and moisture availability 

for germination of new Palmer amaranth were solely dependent on rainfall occurrences. The 

Crawfordsville location continued to receive rainfall throughout the duration of the trial, 

allowing for new Palmer amaranth to emerge between ratings, whereas the Marion location 

received no more rainfall after the initial rainfall displayed in Table 1 (data not shown). 

 Contrast analysis indicated no differences in control of Palmer amaranth between a single 

herbicide and mixtures 2 WAA at Crawfordsville (P=0.6449) (Table 4). This was not the case, 

however, 4 WAA where mean control of Palmer amaranth was 11 percentage points higher with 

a herbicide mixture than with a single herbicide (P<0.0001) (Table 4). The same analysis at 

Marion revealed a significant difference in Palmer amaranth control with herbicide mixtures 2 

WAA (P=0.02235) (Table 4). The same trend was observed 4 WAA for Marion, where control 

was 7 percentage points higher with herbicide mixtures (P=0.0002) (Table 4). Similar longevity 

of control of PPO-resistant Palmer amaranth with herbicide mixtures was observed by Houston 

et al. (2019). 
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 A trend in PPO-resistant Palmer amaranth control was also observed between herbicide 

mixtures containing fluometuron and mixtures containing no fluometuron at Crawfordsville. 

Palmer amaranth control with treatments containing fluometuron was greater both 2 and 4 WAA 

than with treatments not containing fluometuron (P<0.0001, <0.0001) (Table 4). At 4 WAA, 

control with mixtures containing fluometuron was 22 percentage points higher than with 

mixtures lacking fluometuron. The same trend was not observed at 2 or 4 WAA at Marion 

(P=0.1101, P=0.0542) (Table 4). Although not significant, mixtures containing fluometuron 

provided a 5-percentage point advantage in Palmer amaranth control over treatments containing 

no fluometuron (Table 4). Weed densities and lack of rainfall for germination of new Palmer 

amaranth likely influenced the lack of significance at Marion. 

 Weed densities at Crawfordsville did not correspond with visible control ratings because 

densities were counted several days after the 4 WAA rating; therefore, weed densities for this 

location are not shown. Weed densities were more evenly distributed throughout the experiment 

at Marion and more accurately correlated to weed control. The treatment with the greatest 

control 4 WAA (fluridone + dicamba) also reduced density to only 3 plants m-2, compared to 76 

plants m-2 in the nontreated (Table 3). Whitaker et al. (2011) found fomesafen to be an effective 

PRE herbicide for controlling Palmer amaranth; however, with the current state of PPO-

resistance in Arkansas, fomesafen alone is not a viable option for PPO-resistant populations, 

indicated by a density of 23 Palmer amaranth m-2 (Table 3). 

POST Application Experiments. Overall, PPO-resistant Palmer amaranth control was greater at 

Marion than Crawfordsville due to differences in weed size, weed density, and environment 

shortly after application. Treatments of dicamba, dicamba + S-metolachlor, 2,4-D + S-

metolachlor, and dicamba + acetochlor provided 65% or greater control of PPO-resistant Palmer 
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amaranth 2 WAA at Crawfordsville (Table 5). Glufosinate alone provided comparable control to 

treatments containing 2,4-D alone and 2,4-D + dimethenamid-P 2 WAA, but glufosinate-

containing treatments provided less control than dicamba-containing treatments (Table 5). 

Control averaged over all treatments 2 WAA was only 60% at Crawfordsville (Table 5). At 4 

WAA, only treatments of dicamba + dimethenamid-P and dicamba + acetochlor increased 

control over the 2 WAA rating time and, then, only minimally (Table 5). All treatments 

containing glufosinate provided lower control levels than any treatment containing 2,4-D or 

dicamba 4 WAA (Table 5). Dicamba alone resulted in the lowest density of Palmer amaranth at 

27 m-2, but this was not different from dicamba + S-metolachlor or dicamba + acetochlor (Table 

5). Remaining densities indicate a need for a second application to achieve adequate control of 

Palmer amaranth, regardless of herbicide applied. 

At Marion, all glufosinate-containing treatments provided the highest control of PPO-

resistant Palmer amaranth 2 WAA (Table 6). 2,4-D + dimethenamid-P provided greater control 

than all other treatments containing 2,4-D or dicamba 2 WAA (Table 6). Control averaged over 

all treatments 2 WAA at Marion was 82% (Table 6). At 4 WAA, Palmer amaranth control with 

treatments containing 2,4-D or dicamba was higher than control at the 2 WAA rating (Table 6). 

PPO-resistant Palmer amaranth control at Marion averaged over all treatments 4 WAA was 90% 

(Table 6). Palmer amaranth density 4 WAA was relatively low, and less than 22 plants m-2 for all 

treatments (Table 6). The treatment of 2,4-D + acetochlor had the highest number of Palmer 

amaranth at 21 plants m-2, but this was not different from treatments of dicamba + 

dimethenamid-P, dicamba + S-metolachlor, or 2,4-D + S-metolachlor (Table 6). However, it 

should be noted that soil conditions were dry at the time of application and no rainfall was 

received at Marion after the rainfall event listed in Table 1, resulting in conditions that were too 
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dry for new Palmer amaranth to emerge (data not shown). Residual herbicides, therefore, had 

little to no effect on weed densities 4 WAA. 

Practical Implications. Environmental factors and weed densities influenced each experimental 

site differently, which highlights the need to plan PRE herbicide applications near a predicted 

rainfall event of enough significance to activate the specific herbicide applied if no irrigation is 

available. PPO-resistant Palmer amaranth can be controlled in cotton with PRE herbicides 

available for use today. Using two effective sites of action is needed to control PPO-resistant 

Palmer amaranth PRE. Selecting a mixture containing fluometuron is a good option for 

controlling PPO-resistant Palmer amaranth (Tables 2, 3, 4). Growers should rely on the best 

management practices outlined by Norsworthy et al. (2012) to manage PPO-resistant Palmer 

amaranth, particularly understanding the biology of this weed, planting into weed-free fields, and 

using multiple herbicide sites of action to keep fields weed free.  

It is critical that growers are aware of weed densities and size in order to properly time 

POST applications. Waiting 28 to 35 days after planting to make a POST application is too long 

when weed densities are high, as demonstrated by control levels at Crawfordsville. In herbicide-

resistant cotton, it is important to make applications before weeds reach 10 cm in height, as 

demonstrated by the poor control achieved by all treatments at Crawfordsville, where weeds 

were 15 to 20 cm in height at application. When POST applications are made at the optimum 

time, greater than 85% control can be achieved in 2,4-D-, glufosinate-, and dicamba-resistant 

cotton (Lawrence et al. 2018; Reed et al. 2014; Meyer et al. 2016). These data demonstrate that 

multiple applications of effective POST herbicides will likely be required to control PPO-

resistant Palmer amaranth, similar to findings by Steckel (2018). Although there was not 

sufficient rainfall to activate the residual herbicides applied POST at Marion, overlapping 
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residuals are critical in limiting Palmer amaranth emergence between POST applications 

(Barber, personal communication).  
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TABLES 

Table 1. Rainfall amounts received within 10 days of herbicide  

application for all experiments in 2018.a,b,c 

Location Experiment Date Amount (cm) 

Crawfordsville PRE and POST May 17 0.97 

Crawfordsville PRE and POST May 19 0.81 

Crawfordsville PRE and POST May 20 0.81 

Crawfordsville PRE and POST May 21 0.33 

Crawfordsville PRE and POST May 22 0.28 

Crawfordsville PRE and POST May 24 0.4 

Crawfordsville PRE and POST May 25 0.15 

Total   3.75 

    

Marion PRE July 27 1.78 

Marion PRE July 29 2.87 

Marion PRE July 30 0.08 

Total   4.73 

    

Marion POST June 1 0.03 

Total   0.03 
a Abbreviations: PRE, experiment evaluating  

protoporphyrinogen oxidase-inhibiting herbicide-resistant  

Palmer amaranth control with preemergence herbicides; POST,  

experiment evaluating protoporphyrinogen oxidase-inhibiting  

herbicide-resistant Palmer amaranth control with postemergence  

herbicides 
b PRE experiment application dates: May 16 at Crawfordsville,  

July 25 at Marion. POST experiment application dates: May 16  

at Crawfordsville, May 31 at Marion. 
c Dates not listed are days when no rainfall was received  
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Table 2. Protoporphyrinogen oxidase-inhibiting herbicide- 

resistant Palmer amaranth control at Crawfordsville, AR, experimental  

site using preemergence herbicides in 2018.a,b,c 

  Control 

Herbicide Rate 2 WAA 4 WAA 

 g ai ha-1 —————— % —————— 

Nontreated --- ---  ---  

Fomesafen 280 80 bcd 36 ghi 

Fluridone 170 70 de 26 j 

Prometryn 1120 71 cd 55 cde 

Fluometuron 1120 81 abc 48 def 

Diuron 560 85 ab 61 bc 

Acetochlor 1260 88 ab 49 def 

Dicamba 560 59 ef 43 fgh 

Dicamba 1120 89 a 46 efg 

Fluridone +    

prometryn 
170 + 1120 59 ef 31 ij 

Fluridone + 

fluometuron 
170 + 1120 86 ab 76 a 

Fluridone + 

diuron 
170 + 560 86 ab 58 bcd 

Fluridone + 

acetochlor 
170 + 1260 58 f 34 hij 

Fluridone + 

dicamba 
170 + 560 85 ab 64 bc 

Fluometuron + 

prometryn 
1120 + 1120 88 ab 68 ab 

Fluometuron + 

acetochlor 
1120 + 1260 86 ab 68 ab 

Acetochlor + 

dicamba 
1260 + 560 87 ab 65 bc 

Herbicide treatment <0.0001 <0.0001 
a Rates of dicamba are listed in g ae ha-1 
b Abbreviations: WAA, weeks after application 
c Means within a column followed by the same letter are not different  

based on Fisher’s protected LSD (P=0.05) 
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Table 3. Protoporphyrinogen oxidase-inhibiting herbicide-resistant Palmer amaranth control and 

densities at Marion, AR, experimental site using preemergence herbicides in 2018.a,b.c 

  Control   

Herbicide Rate 2 WAA 4 WAA Density 4 WAA 

 g ai ha-1 —————— % —————— plants m-2 

Nontreated --- ---  ---  76 a 

Fomesafen 280 87 def 60 g 23 bcd 

Fluridone 170 85 ef 70 efg 24 bc 

Prometryn 1120 77 f 66 fg 22 bcde 

Fluometuron 1120 96 abc 75 def 15 cdef 

Diuron 560 91 cde 72 ef 31 b 

Acetochlor 1260 98 ab 88 b 3 i 

Dicamba 560 98 abc 77 cde 12 fg 

Dicamba 1120 99 a 81 bcd 7 gh 

Fluridone + 

prometryn 
170 + 1120 99 a 67 fg 13 def 

Fluridone + 

fluometuron 
170 + 1120 96 abc 85 bc 7 gh 

Fluridone + 

diuron 
170 + 560 92 bcde 70 efg 29 b 

Fluridone + 

acetochlor 
170 + 1260 98 abc 72 ef 20 bcdef 

Fluridone + 

dicamba 
170 + 560 99 a 95 a 6 ghi 

Fluometuron + 

prometryn 
1120 + 1120 94 abcd 82 bcd 12 fg 

Fluometuron + 

acetochlor 
1120 + 1260 99 a 87 b 5 hi 

Acetochlor + 

dicamba 
1260 + 560 98 ab 83 bcd 6 ghi 

Herbicide treatment <0.0001 <0.0001 <0.0001 
a Rates of dicamba are listed in g ae ha-1 
b Abbreviations: WAA, weeks after application 
c Means within a column followed by the same letter are not different based on Fisher’s 

protected LSD (P=0.05) 
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Table 4. Significance of contrast statements between standalone herbicides and herbicide 

mixtures, as well as mixtures containing fluometuron and mixtures containing no 

fluometuron.a,b,c  
Palmer amaranth control 2 WAA 

Contrast Crawfordsville Means Marion Means 

Single herbicide vs herbicide mixture 0.6449 77 vs 78 0.02235* 95 vs 98 

     

Mixtures including fluometuron vs 

mixtures with no fluometuron 
<0.0001* 87 vs 74 0.1101 97 vs 98 

     

 
Palmer amaranth control 4 WAA 

Contrast Crawfordsville Means Marion Means 

Single herbicide vs herbicide mixture <0.0001* 44 vs 55 0.0002* 75 vs 82 

     

Mixtures including fluometuron vs 

mixtures with no fluometuron 
<0.0001* 70 vs 48 0.0542 85 vs 80 

a Abbreviations: WAA, weeks after application; Crawfordsville, on-farm location near 

Crawfordsville, AR; Marion, on-farm location in Marion, AR 
b Significant P-values (P=0.05) are indicated by (*) 
c Fomesafen was not included in contrast for standalone herbicide 
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Table 5. Protoporphyrinogen oxidase-inhibiting herbicide-resistant Palmer amaranth control and densities at  

Crawfordsville, AR, experimental site using postemergence herbicides in 2018.a,b,c 

  Control   

Herbicide Rate 2 WAA 4 WAA Density 4 WAA 

 g ai ha-1 ————— % ————— plants m-2 

Nontreated  ---  ---  93 a 

2,4-D 1060 61 cde 55 de 58 ab 

2,4-D + S-metolachlor 1060 + 1075 66 abc 61 cd 74 a 

2,4-D + dimethenamid-P 1060 + 670 59 def 53 e 87 a 

2,4-D + acetochlor 1060 + 1260 64 bcd 64 bc 66 a 

Dicamba 560 71 a 69 ab 27 c 

Dicamba + S-metolachlor 560 + 1075 69 ab 68 ab 33 c 

Dicamba + dimethenamid-P 560 + 670 64 bcd 65 bc 57 ab 

Dicamba + acetochlor 560 + 1260 65 abcd 71 a 34 bc 

Glufosinate 595 56 efg 28 f 68 a 

Glufosinate + S-metolachlor 595 + 1075 44 h 29 f 84 a 

Glufosinate + dimethenamid-P 595 + 670 57 g 33 f 83 a 

Glufosinate + acetochlor 595 + 1260 54 fg 33 f 73 a 

        

Herbicide treatment  <0.0001 <0.0001 <0.0001 
a Abbreviations: WAA, weeks after application 
b Rates of dicamba and 2,4-D are listed in g ae ha-1 
c Means within a column proceeded by the same letter are not different based on Fisher’s protected LSD (P=0.05) 
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Table 6. Protoporphyrinogen oxidase-inhibiting herbicide-resistant Palmer amaranth control and densities at  

Marion, AR, experimental site using postemergence herbicides in 2018.a,b 

  Control   

Herbicide Rate 2 WAA 4 WAA Density 4 WAA 

 g ai ha-1 ————— % ————— plants m-2 

Nontreated --- ---  ---  74 a 

2,4-D 1060 76 bc 88 ab 9 cd 

2,4-D + S-metolachlor 1060 + 1075 70 c 90 a 10 bcd 

2,4-D + dimethenamid-P 1060 + 670 82 b 91 a 6 de 

2,4-D + acetochlor 1060 + 1260 72 c 80 b 21 b 

Dicamba 560 75 c 94 a 4 e 

Dicamba + S-metolachlor 560 + 1075 74 c 91 a 11 bcd 

Dicamba + dimethenamid-P 560 + 670 74 c 93 a 17 bc 

Dicamba + acetochlor 560 + 1260 71 c 94 a 6 de 

Glufosinate 595 96 a 93 a 6 de 

Glufosinate + S-metolachlor 595 + 1075 96 a 90 a 6 de 

Glufosinate + dimethenamid-P 595 + 670 96 a 92 a 5 de 

Glufosinate + acetochlor 595 + 1260 96 a 89 ab 4 e 

        

Herbicide treatment  <0.0001 <0.0001 <0.0001 
a Abbreviations: WAA, weeks after application 
b Rates of dicamba and 2,4-D are listed in g ae ha-1 
c Means within a column proceeded by the same letter are not different based on Fisher’s protected LSD (P=0.05) 

 

 

4
3
 



44 

CHAPTER 3 

Salvage Weed Control Options in Dicamba-resistant Cotton 

Timely weed control can sometimes be delayed by unforeseen circumstances such as poor 

weather conditions, equipment malfunctions, and label restrictions. When weeds grow past 

optimum size for control, they become harder to kill, and multiple herbicide applications may be 

needed to salvage the crop. Current trait packages in dicamba-resistant cotton give growers 

another site of action to control weeds postemergence. Two field experiments were conducted in 

2017 and 2018 to determine the best treatments for controlling large (≥15 cm) Palmer amaranth 

and barnyardgrass in dicamba-resistant cotton. Studies were organized in a randomized complete 

block and included a non-treated at all locations. The location where seedcotton yield was 

collected included a weed-free check for comparison. Treatments included glyphosate, 

glufosinate, and dicamba alone or in various two-pass combinations. In 2017, when treatments 

were applied to 28- to 35-cm weeds, poor control was observed for all treatments. In 2018, 

treatments were applied to 15- to 23-cm weeds and all but one two-pass treatment controlled 

Palmer amaranth >91%. Contrast analysis between 7-day and 14-day application intervals 

revealed differences in weed control for both 2018 locations. Applying the second application of 

a two-pass treatment 7 days after the first controlled Palmer amaranth 96%, whereas control was 

92% when the second treatment was applied 14 days after the first. An inverse relationship was 

observed for barnyardgrass control in 2018. When two-pass treatments were applied 7 days 

apart, barnyardgrass control was 92%, but when applied 14 days apart, barnyardgrass was 

controlled 98%. No trend in seedcotton yield were observed based on salvage treatments. 

Contrast analysis indicated no difference in Palmer amaranth control between applying dicamba 
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first or second in split applications, indicating that dicamba can possibly be applied before cutoff 

dates as specified by the herbicide label for certain areas. 

Nomenclature: dicamba; glyphosate; glufosinate; barnyardgrass, Echinochloa crus-galli (L.) P. 

Beauv.; Palmer amaranth, Amaranthus palmeri S. Wats.; cotton, Gossypium hirsutum L.  

Key Words: Palmer amaranth, barnyardgrass 
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INTRODUCTION 

Palmer amaranth is a dioecious, C4, dicotyledonous species which is spreading further 

north through the United States (Sprague 2011). Crop consultants in the midsouthern US ranked 

Palmer amaranth as the most problematic weed in soybean (Glycine max [L.] Merr.) production 

in each of the five states surveyed in 2016 (Schwartz-Lazaro et al. 2017). An earlier survey of 

crop consultants in the Midsouth listed Palmer amaranth as the most important and problematic 

weed in cotton (Gossypium hirsutum L.), as well, estimating that 75% of the area scouted by all 

responding consultants contained glyphosate-resistant (GR) Palmer amaranth (Riar et al. 2013). 

One Palmer amaranth plant per 9.1 m of row can decrease cotton lint yield by 13%, and this 

decrease in yield follows a linear trend as Palmer amaranth density increases, which is why 

consultants rank this weed with such importance (Morgan et al. 2001). Furthermore, an average 

Palmer amaranth plant that emerges in early summer can produce 200,000-600,000 seeds, and 

upwards of 1 million seeds on some occasions (Keeley et al. 1987). 

Glyphosate suppresses the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase 

(EPSPS) of the shikimate pathway, causing shikimic acid to accumulate in treated tissues, 

resulting in plant death (Duke and Powles 2008; Steinrucken and Amrhein 1980). The first case 

of GR Palmer amaranth was confirmed in Georgia in 2005 (Culpepper et al. 2006). Norsworthy 

et al. (2008) confirmed a GR population collected from a field in Mississippi County, Arkansas, 

with researchers in other states throughout the southeastern US reporting similar findings soon 

thereafter. Glyphosate-resistant Palmer amaranth is currently found in 28 states within the US, as 

far north as Wisconsin and Michigan (Heap 2019). 

Because of its broad-spectrum efficacy, including GR Palmer amaranth, glufosinate was 

originally limited to use in noncrop areas and burndown applications (Hass and Muller 1987). 
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Glufosinate obstructs the transformation of glutamate and ammonium to the essential amino acid 

glutamine by inhibiting the enzyme glutamine synthetase, resulting in limited glutamine 

availability, and an increase in glyoxylate and ammonia levels, ultimately causing rapid necrosis 

of contacted plant tissue (Coetzer and Al-Khatib 2001). In 2004, cotton varieties resistant to 

postemergence (POST) glufosinate applications (trade-name LibertyLink®) were released for 

commercial use. LibertyLink cotton was not widely adopted by cotton producers until more 

recent years because of the poor yield potential associated with original LibertyLink varieties, as 

well as the need for control of GR weeds (Dodds et al. 2015; UGA 2007). Other cultivars were 

created using the phosphinothricin acetyltransferase (pat) gene as a selectable marker during 

plant transformation to confer tolerance to insects (trade-name WideStrike™), that also 

conferred resistance to glufosinate (Anonymous 2015a). When WideStrike varieties were 

crossed with GR cotton, varieties were produced that yielded as much as, or greater than original 

LibertyLink varieties, while also giving growers another option for broad-spectrum control of 

weeds that had evolved resistance to other herbicides (Culpepper et al. 2009). 

Many factors can affect herbicide application timing, sometimes preventing weed control 

at an optimum time. Unfavorable weather conditions and rapid growth rate of weeds can 

sometimes create a situation where timely weed control is impossible, especially when 

compounded with herbicide resistance issues. Throughout the US, Palmer amaranth has been 

documented as resistant to eight different herbicide sites of action (Heap 2019), including three 

that have traditionally been applied PRE in cotton. Although new herbicide-resistant cotton 

varieties provide options for effective weed control POST, residual PRE herbicide options are 

becoming more limited, increasing the chances for weeds to emerge with the crop. Label 

restrictions on herbicides such as dicamba also limit POST applications to very specific 
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environmental conditions, creating more difficulty in making a legal, timely application 

(Anonymous 2018). 

 A salvage situation occurs when weeds grow past heights for consistent control listed on 

the herbicide label. When dicamba and high rates of glufosinate were applied twice, 10 days 

apart in a dicamba-resistant cotton crop, Vann et al. (2017a) observed 92 to 97% control of large 

Palmer amaranth (about 20 cm). When the first POST application is delayed 28 days after weeds 

reach heights for consistent control listed on the herbicide label, Palmer amaranth can still be 

controlled 87% using two applications of dicamba plus a high rate of glufosinate applied 14 days 

apart (Vann et al. 2017b). Although very high levels of control of large Palmer amaranth can be 

achieved, weed interference with the young crop may still result in decreased nodes and bolls per 

plant, and ultimately decreased lint yield (Burke et al. 2005; Vann et al. 2017b). Applications of 

dicamba and glufosinate to dicamba-resistant cotton have been shown to cause minor transient 

necrosis, but the crop rapidly recovers (Cahoon et al. 2015; Dixon et al. 2014; Vann et al. 

2017a). However, mixtures of dicamba and glufosinate are not approved for use (Anonymous 

2018). 

 Another problematic C4 weed common in a variety of Midsouth crop production systems 

is barnyardgrass. Barnyardgrass is originally native to Europe and Asia and has been recognized 

as a problem weed in 36 crops across 61 countries (Holm et al. 1991). Riar et al. (2013) reported 

from a survey of Arkansas crop consultants that respondents ranked barnyardgrass as the fifth 

most economically important weed, in part because it can emerge from mid-spring until 7 weeks 

after cotton emergence. When barnyardgrass is allowed to compete with cotton for 6, 9, 12, and 

25 weeks, it can diminish cotton yields by 21, 59, 90, and 97%, respectively (Keeley and Thullen 
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1991). Bagavathiannan et al. (2012) reported barnyardgrass seed production of 35,500 seeds 

plant-1 when it was allowed to emerge with a cotton crop. 

 Dicamba shares a similar chemical structure with the naturally occurring plant hormone 

indole-3-acetic acid (IAA), which is a member of the auxin class of hormones (Kirby 1980). 

Auxins are responsible for regulating cell division and elongation, along with a host of other 

processes that include floral meristem differentiation, root formation, and apical dominance 

when naturally occurring in the plant. Synthetic derivatives of IAA evoke the same effects as 

natural IAA, but at a much more intense level, over a longer period because they are more stable 

in the plant than natural IAA. Effects of synthetic IAA are particularly effective in 

dicotyledonous species, causing disruption of growth and development processes, and ultimately 

resulting in plant death (Grossman 2010).  

For more than 60 years, synthetic auxin herbicides have been used to control broadleaf 

weeds in cereal crops (Green and Owen 2011). Transgenic cotton resistant to glufosinate and 

dicamba (event MON88701) was recently deregulated in the United States (Brinker et al. 2014). 

Resistance to glufosinate and dicamba was created by inserting a stacked combination of genes 

called dicamba monooxygenase (dmo) from Stenotrophomonas maltophilia and the bialaphos 

resistance (bar) gene from Streptomyces hygroscopicus (Brinker et al. 2014). The dmo gene 

codes for a monooxygenase enzyme that demethylates absorbed dicamba into two compounds 

that have no herbicidal effect on the plant (Behrens et al. 2007). Bollgard II® XtendFlex™ 

cotton (MON88701 by MON88913 by MON15985) that possesses traits conferring resistance to 

dicamba, glyphosate, glufosinate, and lepidopteran insects became commercially available in 

2015 (Anonymous 2015b). This gives growers the ability to apply dicamba, glufosinate, and 

glyphosate POST for control of broadleaf weeds. 
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Minimal research has been published on salvage options with label-approved herbicide 

mixtures in dicamba-resistant cotton, to date. Therefore, one objective of this research was to 

determine the best timing for a sequential application in order to effectively control larger weeds. 

A second objective was to determine the best combination of glyphosate, glufosinate, and 

dicamba for control of the problematic weeds Palmer amaranth and barnyardgrass in dicamba-

resistant cotton. It was hypothesized that a 7-day interval between applications would provide 

greater control of problematic weeds than a 14-day interval. 

MATERIALS AND METHODS 

 A salvage weed control experiment was conducted in 2017 at the Rohwer Research 

Station (RRS) near Watson, AR, on an Hebert silt loam (Fine-silty, mixed, active, thermic Aeric 

Epiaqualfs). A crop tolerance experiment was also conducted in 2017 at the Lon Mann Cotton 

Research Station (LMCRS) near Marianna, AR, on a Memphis silt loam (Fine-silty, mixed, 

active, thermic Typic Hapludalfs) to assess the tolerance of dicamba-resistant cotton to the 

salvage treatments tested in the weed control experiment. The weed control experiment was 

repeated in 2018 at LMCRS near Marianna, AR, on a Zachary soil (Fine-silty, mixed, active, 

thermic Typic Albaqualfs), as well as on-farm at Marion, AR, on a Dubbs silt loam (Fine-silty, 

mixed, active, thermic Typic Hapludalfs). Cotton was planted at each location in 2018 so weed 

control and crop injury could be assessed simultaneously. 

 For all trials, the experimental design was a single-factor randomized complete block 

with four replications at RRS and LMCRS (2017 and 2018) and three replications at Marion. The 

factor of herbicide treatment was evaluated. Treatments consisted of a single-pass salvage 

application or sequential salvage applications made 7 or 14 days apart. The first application was 

at the same time for all treatments, with the second application 7 or 14 days later, for respective 
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treatments. In all experiments, a nontreated was included for comparison. In the 2018 experiment 

at LMCRS, a weed-free control was included as a comparative baseline for cotton height and 

yield. Treatments included dicamba (Engenia® herbicide, BASF Corporation, Florham Park, NJ), 

glufosinate (Liberty, BASF Corporation, Florham Park, NJ), and glyphosate (Roundup 

PowerMAX® II herbicide, Bayer CropScience, St. Louis, MO) in various combinations in 2017. 

In 2018, single application treatments were added to evaluate control compared to sequential 

application treatments. A list of treatments is displayed in Table 1.  

At RRS, no cotton was planted, but Deltapine® 1518B2XF (Bayer CropScience, St. 

Louis, MO) dicamba-resistant cotton was planted in both years at LMCRS and at Marion at 9.8 

seeds m-1 of row. Plots at RRS and LMCRS were 3.9 by 9.1 m, with the center 1.9 m of each plot 

receiving treatments, creating a weedy check between all plots. Plots at Marion were 1.9 by 9.1 

m and the entire area was treated. At RRS, the first salvage application was made when Palmer 

amaranth was 28 to 33 cm (30 plants m-2) and barnyardgrass was 30 to 35 cm (20 plants m-2). At 

LMCRS 2017, cotton was at the five-leaf growth stage at application. At LMCRS 2018 and 

Marion, the first salvage application was made when Palmer amaranth was 15 to 20 cm (35 and 

40 plants m-2, respectively), and barnyardgrass was 18 to 23 cm (only present at LMCRS, 40 

plants m-2). For 2018 locations, cotton was at the two-leaf growth stage at Marion and the three-

leaf growth stage at LMCRS at the time of the first application. 

The experiment at the Marion location was terminated after weed control and crop injury 

ratings were collected due to drought and no irrigation being available. In 2017 at LMCRS, the 

experiment was terminated after crop injury data collection because late planting would not 

allow for crop maturity. Soil test reports at LMCRS indicated concentrations of 146 kg ha-1 of 

phosphorous and 278 kg ha-1 of potassium were present in the experimental area. Soil fertility 



52 

programs at LMCRS and RRS and crop management practices at LMCRS were followed 

according to recommendations prescribed by University of Arkansas Extension (Robertson et al. 

2018). Following the final application for each treatment at LMCRS 2018, no more weed control 

practices were attempted. For the weed-free check, standard herbicide recommendations for the 

state of Arkansas were followed (Scott et al. 2018). The final POST application of dicamba (560 

g ae ha-1) + acetochlor (Warrant, Bayer CropScience, St. Louis, MO) (1260 g ai ha-1) was made 

to the weed-free check at the same time as the second application to the 14-day-interval salvage 

treatments.  

All herbicide applications were made using a Bowman Mudmaster (Bowman 

Manufacturing, Newport, AR) with 110015 AirMix® nozzles (Greenleaf Technologies, 

Covingtion, LA) for treatments without dicamba and 110015 TTI (TeeJet Technologies, 

Wheaton, IL) nozzles for treatments containing dicamba. Nozzles were spaced at 48 cm and 

calibrated to deliver 140 L ha-1 of spray solution at 276 kPa. Salvage application, planting, and 

harvest dates for each experimental site are displayed in Table 2. 

Crop injury was assessed after each treatment at locations where cotton was planted on a 

scale of 0 to 100, with 0 being no crop injury and 100 being crop death (Frans and Talbert 1977). 

Weed control ratings were collected separately for Palmer amaranth and barnyardgrass 21 days 

after the final treatment (21 DAFT) was applied for each respective treatment. Ratings were on a 

scale of 0 to 100, with 0 being no weed control and 100 being complete death of the species 

being evaluated. At 42 days after the final treatment (42 DAFT), heights of five random cotton 

plants were measured at LMCRS in 2018. Heights of five random cotton plants were measured 

in nontreated and weed-free plots at the same time as treatments where a single application was 
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made (i.e. 42 days after the initial salvage application). Seedcotton yields were collected for 

LMCRS 2018 using a small-plot cotton picker to harvest the treated rows of each plot. 

Statistical Analysis. A single factor analysis of variance was used to evaluate data using the 

GLIMMIX procedure in SAS 9.4 (SAS Institute Inc, Cary, NC). A beta distribution was assumed 

for weed control and a gamma distribution for plant height and seedcotton yield (Gbur et al. 

2012). Data were analyzed jointly for Palmer amaranth control at LMCRS 2018 and Marion, 

with replication nested within experimental location and treated as random effects in the model. 

Weed control at RRS and barnyardgrass control at LMCRS 2018 were analyzed alone, with 

replication considered a random effect due to differences in weed size at the time of application 

between 2017 and 2018 locations. Contrast analyses were conducted to determine differences in 

weed control, cotton height, and seedcotton yield based on interval between salvage applications 

and herbicides used in salvage treatments. Means were separated based on Fisher’s protected 

LSD (P=0.05). 

RESULTS AND DISCUSSION 

 Weed control levels at RRS in 2017 were lower than desirable (Table 3) because of the 

large weed size at application (28- to 35-cm). To create a more realistic salvage situation in 

2018, cotton was planted at both locations, and all plots remained untreated until Palmer 

amaranth reached 15- to 20-cm in height. Since weeds were smaller at application than in 2017, 

single application treatments were added to evaluate the importance of sequential applications, 

even with smaller weeds.  

Palmer amaranth control. Because of differences in weed size, Palmer amaranth control data 

for RRS were analyzed separately from Marion and LMCRS, where data were analyzed jointly.  

As previously mentioned, control levels at RRS in 2017 were low. Only glyphosate + glufosinate 
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followed by (fb) the same herbicides 7 days later and glyphosate + dicamba fb the same 

herbicides 7 days later provided >80% control of Palmer amaranth. Although glyphosate + 

glufosinate fb the same mixture 7 days later showed 88% control 21 DAFT (Table 3), this is not 

an acceptable level as noted by Barber et al. (2015), and further treatments would be needed to 

control escapes.  

 With the exception of glyphosate applied alone and the single application of glufosinate 

at the lower rate (595 g ai ha-1), all treatments in 2018 provided ≥89% Palmer amaranth control 

21 DAFT (Table 4). Glyphosate provided only 10% control because both locations have 

populations of glyphosate-resistant Palmer amaranth, although it appears that about 10% of 

plants are still susceptible to glyphosate at these locations (personal observation). Numerically, 

the greatest control was provided by glyphosate + glufosinate fb dicamba 7 days later (98%). All 

but two, two-pass treatments provided ≥91% control 21 DAFT, and five two-pass treatments 

resulted in ≥95% control. No single application provided equal control to sequential applications 

of glufosinate, glyphosate + dicamba, or glyphosate + glufosinate fb dicamba, with the exception 

of dicamba applied once at 1120 g ae ha-1 (Table 4). Vann et al. (2017a) achieved similar levels 

of control of large Palmer amaranth with sequential applications of glufosinate and dicamba in 

various mixtures in dicamba-resistant cotton. Merchant et al. (2014) also controlled large Palmer 

amaranth at high levels with sequential applications of herbicide mixtures in 2,4-D-resistant 

cotton. 

 Contrast analysis for 7-day interval and 14-day interval treatments was not significant for 

RRS (P=0.5818) (Table 5). For 2018 locations, where weeds were smaller at the time of 

treatment, however, the same analysis revealed an advantage in Palmer amaranth control with 

the 7-day interval treatments (P=0.0043) (Table 5). The difference in Palmer amaranth control 
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due to sequential application interval suggests that regardless of salvage treatment used, a 7-day 

interval between applications will provide greater control of 15- to 20-cm Palmer amaranth than 

a 14-day interval.  

Glyphosate + dicamba fb glufosinate and glyphosate + glufosinate fb dicamba, averaged 

over application intervals controlled Palmer amaranth at similar levels at RRS and the 2018 

locations (P=0.5517, 0.4347) (Table 5), indicating there is no weed control penalty for applying 

dicamba in the first pass of a salvage treatment in cases where the Arkansas dicamba application 

cutoff date is approaching (ASPB 2019). Dicamba treatments and glufosinate treatments also 

were not different at both RRS and the 2018 locations (P=0.08317, 0.0819) (Table 5), suggesting 

equal effectiveness of the herbicides and that if a salvage situation occurs in dicamba-resistant 

cotton after the dicamba application cutoff date, or in glufosinate-resistant cotton, the crop can 

still be salvaged. 

Barnyardgrass control. There was no barnyardgrass present at Marion, and due to differences 

in weed size, barnyardgrass control was analyzed separately between RRS and LMCRS. 

Barnyardgrass control at RRS was lower overall than Palmer amaranth control at that location 

(Table 3). This response was expected because treatments for this experiment were designed 

with a focus on controlling Palmer amaranth. For RRS, the greatest barnyardgrass control 

resulted from glyphosate + dicamba fb the same combination 7 days later (84%) (Table 3). 

Sequential applications of glyphosate + glufosinate provided 76% control, regardless of interval 

between applications. Barnyardgrass control averaged over all treatments was 61% (Table 3). A 

lack of herbicide coverage caused by a thick weed canopy and the upright leaf angle of 

barnyardgrass, compounded with large weed size at application likely contributed to poor 

control. 
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 Barnyardgrass control at LMCRS was much higher than RRS. All two-pass treatments 

provided ≥90% control, except glyphosate + glufosinate fb dicamba at either second application 

interval (Table 4). Glyphosate + dicamba fb the same treatment 14 days later and glyphosate + 

dicamba fb glufosinate 14 days later controlled barnyardgrass 99%. The only single-pass 

treatment that provided exceptional control of barnyardgrass was glyphosate at 1550 g ae ha-1 

(98%), which was expected (Table 4). Werth et al. (2008) observed glyphosate to be highly 

efficacious on reducing barnyardgrass densities in glyphosate-resistant cotton. While this may be 

a viable single-pass treatment for controlling larger barnyardgrass in cotton, it is likely that 

glyphosate-resistant weed species will also be present, requiring the use of a herbicide with an 

alternative site of action. 

 Contrast analysis between second application interval timings for barnyardgrass control 

revealed no differences for RRS (P=0.9538) (Table 5). For LMCRS, where barnyardgrass was 10 

to 12 cm shorter at application, barnyardgrass was controlled at higher levels at the 14-day 

second application interval compared to the 7-day application interval (P=0.0005). Mean control 

for the 14-day interval was 6 percentage points higher than the 7-day interval (98 vs 92%) (Table 

5). 

Cotton response. Injury to cotton was variable and never greater than 10% for any location; 

therefore, statistical analysis was not conducted (data not shown). Symptoms of phytotoxicity 

were observed; however, these symptoms lessened within 5 to 7 days for all treatments where 

cotton was injured. Comparable levels of injury and similar patterns in cotton recovery have 

been observed when combinations of dicamba and glufosinate or glyphosate were applied to 

dicamba-resistant cotton (Vann et al. 2017a; Cahoon et al. 2015). 
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Cotton height was measured 42 DAFT in 2018.  All cotton receiving a two-pass 

treatment was taller than the weed-free treatment likely due to etiolation (Table 6). Single pass 

treatment heights were generally shorter than the two-pass treatments and likely correspond to 

poor weed control (Table 6). Two-pass treatments differed in height between 7- and 14-day 

second POST intervals (P=0.0354) (Table 7). Height increased as the interval between 

applications increased likely because cotton was etiolating over the period that weeds were 

present, attempting to compete for light. Similar changes in cotton heights with weed 

competition were noted by Buchanan et al. (1977). 

Seedcotton yield. With the exception of glufosinate (1190 g ai ha-1), no other one-pass treatment 

yielded as high as the weed-free check (Table 6). Although it did not differ from the weed-free 

treatment, cotton treated with glyphosate + dicamba fb the same treatment 14 days later (3830 kg 

ha-1) yielded slightly higher than the weed-free treatment (3730 kg ha-1). Cotton receiving the 

same treatment at the 7-day interval between applications yielded nearly the same (3720 kg ha-1) 

as the weed-free check (Table 6). Cotton receiving these two treatments likely produced 

comparable yields to the weed-free check because they both provided total weed control of 97%, 

averaged over both weed species 21DAFT, which is higher than any other treatment (Table 3). 

 Contrast analysis showed no difference in yield between application intervals for the two-

pass treatments (P=0.5976). Mean yields for the 7- and 14-day interval treatments did not differ 

from the weed-free check, either (P=0.8396, 0.6122). Yield from cotton treated with two-pass 

treatments containing dicamba did not differ from treatments that lacked dicamba (P=0.5369) 

(Table 7). No differences between treatments with and without dicamba suggests that growers 

can control Palmer amaranth and barnyardgrass in a salvage situation without using dicamba to 

recover a large portion of potential yield. 
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Practical Implications. Weed size is critical in controlling weeds in any situation, especially a 

salvage situation because weed control with herbicides decreases as weed size increases (Jordan 

et al. 1997; Mellendorf et al. 2013). These data suggest that salvage treatments become less 

effective as weed sizes increase. 

 Overall, the best treatment for controlling both Palmer amaranth and barnyardgrass was 

glyphosate + dicamba fb the same treatment 7 days later. This was consistent regardless of site 

year (Tables 3 and 4). Results of this experiment also indicate that growers have the flexibility to 

choose a treatment that best fits a specific situation. For the 2018 locations, Palmer amaranth was 

controlled at higher rates when the second application of a two-pass system was delayed 7 days 

(96%) compared to 14 days (92%) (Table 5). However, for barnyardgrass, allowing 14 days 

between applications provided 98% control, whereas a 7-day period between treatments provided 

92% control (Table 5).  

Current laws in Arkansas state that dicamba can legally be applied until May 25 each 

spring, but not in mixture with glyphosate (ASPB 2019). Since salvage situations typically occur 

early in the season, it is possible that a salvage treatment may be initiated within the legal use 

period of dicamba, and the subsequent application, 7 or 14 days later, would be outside the legal 

use period. Treatments of glyphosate + dicamba fb glufosinate controlled Palmer amaranth 69 

and 94% in 2017 and 2018, respectively, compared to treatments of glyphosate + glufosinate fb 

dicamba, which controlled Palmer amaranth 65 and 95% in the same respective years (Table 5). 

Control was not different between the two herbicide combinations in either year, indicating 

growers would likely face no weed control penalty for applying dicamba in the first pass of a 

salvage treatment instead of the second. 



59 

Should a salvage situation occur after the dicamba cutoff date or in a glufosinate-resistant 

cultivar, there are also options for salvaging the crop, as long as weeds are no taller than 20- to 

25-cm. For example, the single application of glufosinate at 1190 g ai ha-1 and all two-pass 

treatments that did not contain dicamba controlled Palmer amaranth an average of 93% in 2018 

(Table 5). Seedcotton yield when comparing all two-pass treatments with and without dicamba 

differed by 260 kg ha-1, which was not significant (Table 7). 

 Overall, there was an apparent relationship between treatments that controlled both weed 

species at the highest levels and seedcotton yield. Glyphosate + dicamba fb the same treatment at 

either application interval averaged 97% total weed control but did not differ from two 

applications of glufosinate (Table 4). Yields comparable to the weed-free check were not 

expected; however, results indicate yield potential can be recovered with an effective salvage 

treatment. These results should in no way discourage the use of residual herbicides and timely 

POST applications for weed control in cotton. 
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TABLES 

Table 1. Treatments for salvage and crop tolerance experiments at all  

locations.a,b,c 

Program Rate Second app.  
g ae ha-1 days 

Dicamba 560 - 

Dicamba 1120 - 

Glufosinate 595 - 

Glufosinate 1190 - 

Glyphosate 1550 - 

Glufosinate fb same 595 fb 595 7 

Glufosinate fb same 595 fb 595 14 

Glyphosate + glufosinate fb same 1065 + 595 fb same 7 

Glyphosate + glufosinate fb same 1065 + 595 fb same 14 

Glyphosate + dicamba fb same 1065 + 560 fb same 7 

Glyphosate + dicamba fb same 1065 + 560 fb same 14 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 7 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 14 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 7 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 14 
a Single-pass treatments were not evaluated in 2017. 
b Abbreviations: app., application; fb, followed by; same, same herbicide(s)  

and rate(s) used in the second application that were used in the first application 
c Glufosinate rates are listed in g ai ha-1  
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Table 2. Planting, salvage herbicide application, and harvest dates for trials in 2017 and 2018.a 

 Dates of importance 

Location Planting Initial application 7-day interval 14-day interval Harvest 

LMCRS 2017 June 26 July 17 July 24 July 31  

RRS 2017  June 15 June 22 June 29  

LMCRS 2018 May 24 June 12 June 19 June 26 Oct 8 

Marion 2018 May 16 June 6 June 13 June 20  

a Abbreviations: LMCRS, Lon Mann Cotton Research Station near Marianna, AR; RRS,  

Rohwer Research Station near Rohwer, AR; Marion, on-farm location in Marion, AR 
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Table 3. Mean control of Palmer amaranth and barnyardgrass salvage treatments 21 DAFT at Rohwer Research  

Station near Rohwer, AR in 2017.a,b,c    
Control 21 DAFT 

Program Rate Second app. Palmer amaranth Barnyardgrass  
g ae ha-1  ————— % ————— 

Glufosinate fb same 595 fb 595 7 44 e 50 ef 

Glufosinate fb same 595 fb 595 14 54 de 65 c 

Glyphosate + glufosinate fb same 1065 + 595 fb same 7 88 a 76 b 

Glyphosate + glufosinate fb same 1065 + 595 fb same 14 73 c 76 b 

Glyphosate + dicamba fb same 1065 + 560 fb same 7 81 ab 84 a 

Glyphosate + dicamba fb same 1065 + 560 fb same 14 75 bc 56 de 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 7 70 c 61 cd 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 14 69 c 66 c 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 7 56 d 32 g 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 14 73 c 45 f 

       

Herbicide program   <0.0001 <0.0001 
a Abbreviations: DAFT, days after final treatment; app., application; fb, followed by; same, same herbicide(s)  

and rate(s) used in the second application that were used in the first application 
b Glufosinate rates are listed in g ai ha-1 
c Means within a column followed by the same letter within a column are not different according to Fisher’s 

 protected LSD (P=0.05)
 

6
6
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Table 4. Mean control of Palmer amaranth and barnyardgrass salvage treatments at Lon Mann Cotton Research  

Station near Marianna, AR and on-farm in Marion, AR.a,b,c,d    
Control 21 DAFT 

Program Rate Second app. Palmer amaranth Barnyardgrass  
g ae ha-1  ————— % ————— 

Dicamba 560 - 89 bc 0 i 

Dicamba 1120 - 96 ab 0 i 

Glufosinate 595 - 80 c 58 h 

Glufosinate 1190 - 89 bc 74 g 

Glyphosate 1550 - 10 d 98 a 

Glufosinate fb same 595 fb 595 7 97 a 90 de 

Glufosinate fb same 595 fb 595 14 94 ab 96 abc 

Glyphosate + glufosinate fb same 1065 + 595 fb same 7 93 ab 92 bcd 

Glyphosate + glufosinate fb same 1065 + 595 fb same 14 89 bc 98 a 

Glyphosate + dicamba fb same 1065 + 560 fb same 7 97 a 97 ab 

Glyphosate + dicamba fb same 1065 + 560 fb same 14 95 ab 99 a 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 7 97 a 91 cde 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 14 89 bc 99 a 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 7 98 a 85 ef 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 14 91 ab 79 fg 

       

Herbicide program   <0.0001 <0.0001 
a Abbreviations: DAFT, days after final treatment; Second app., interval between initial application and second  

application; fb, followed by; same, same herbicide(s) and rate(s) used in the second application that were used in  

the first application 
b Treatments that consisted of only one application are denoted by (-) in the “Second app.” column 
c Glufosinate rates are listed in g ai ha-1 
d Means within a column followed by the same letter within a column are not different according to Fisher’s  

protected LSD (P=0.05)

 

6
7
 



68 

Table 5. Significance of contrast statements between 7-day and 14-day interval salvage 

treatments, glyphosate + dicamba fb glufosinate and glyphosate + glufosinate fb dicamba,  

and treatments containing dicamba and treatments containing no dicamba.a,b,c,d 
 

Palmer amaranth control 21 DAFT 

Contrast RRS Means 2018 Means 

7-day vs 14-day application interval 0.5818 70 vs 69 0.0043* 96 vs 92 
     

Dicamba applied first vs dicamba applied last 0.5517 69 vs 65 0.4347 94 vs 95 
     

Dicamba treatments vs glufosinate treatments 0.08317 71 vs 67 0.0819 95 vs 93 
 

    

 
Barnyardgrass control 21 DAFT 

Contrast RRS Means LMCRS Means 

7-day vs 14-day application interval 0.9538 62 vs 62 0.0005* 92 vs 98 
a Abbreviations: DAFT, days after final treatment; RRS, Rohwer Research Station near  

Rowher, AR; 2018, Marion, AR on-farm location and Lon Mann Cotton Research Station  

near Marianna, AR 
b Significant P values (P=0.05) are indicated by (*) 
c Dicamba applied at 560 g ae ha-1, glufosinate applied at 595 g ai ha-1, and glyphosate  

applied alone were excluded from contrast comparing dicamba and glufosinate treatments. 
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Table 6. Cotton height and seedcotton yield at Lon Mann Cotton Research Station near Marianna, AR in  

2018.a,b,c,d 
   

Cotton 

Program Rate Second app. Height 42 DAFT Yield  
g ae ha-1  cm kg ha-1 

Nontreated   53 e 
  

Weed-free   100 b 3730 a 

Dicamba 560 - 69 d 750 d 

Dicamba 1120 - 74 cd 1330 c 

Glufosinate 595 - 99 b 1910 bc 

Glufosinate 1190 - 100 b 2570 ab 

Glyphosate 1550 - 80 c 590 d 

Glufosinate fb same 595 fb 595 7 102 ab 3330 a 

Glufosinate fb same 595 fb 595 14 114 a 3240 ab 

Glyphosate + glufosinate fb same 1065 + 595 fb same 7 109 ab 3130 ab 

Glyphosate + glufosinate fb same 1065 + 595 fb same 14 112 ab 3540 a 

Glyphosate + dicamba fb same 1065 + 560 fb same 7 109 ab 3720 a 

Glyphosate + dicamba fb same 1065 + 560 fb same 14 116 a 3830 a 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 7 105 ab 3270 ab 

Glyphosate + dicamba fb glufosinate 1065 + 560 fb 595 14 116 a 3640 a 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 7 109 ab 3340 a 

Glyphosate + glufosinate fb dicamba 1065 + 595 fb 560 14 112 ab 3660 a        

Herbicide program 
  

<0.0001 <0.0001 
a Abbreviations: DAFT, days after final treatment; Second app., interval between initial application and second  

application; fb, followed by; same, same herbicide(s) and rate(s) used in the second application that were used  

in the first application 
b Treatments that consisted of only one application are denoted by (-) in the “Second app.” Column 
c Glufosinate rates are listed in g ai ha-1 
d Means within a column followed by the same letter within a column are not different according to Fisher’s  

protected LSD (P=0.05)

 

6
9
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Table 7. Significance of contrast statements between salvage treatments  

with 7-day and 14-day application intervals and weed-free check against  

each interval.  
Cotton height 42 DAFT (cm) 

Contrast LMCRS Means 

7-day vs 14-day application interval 0.0354* 107 vs 114 
   

Weed-free vs 7-day interval 0.1872 100 vs 107 

Weed-free vs 14-day interval 0.0128 100 vs 114 
   

 Seedcotton yield (kg ha-1) 

Contrast LMCRS Means 

7-day vs 14-day application interval 0.5976 3350 vs 3570 
   

Weed-free vs 7-day interval 0.8396 3730 vs 3350 

Weed-free vs 14-day interval 0.6122 3730 vs 3570 
   

Dicamba vs non-dicamba 0.5369 3570 vs 3310 
a Abbreviations: DAFT, days after final treatment; LMCRS, Lon Mann  

Cotton Research Station near Marianna, AR 
b Significant P values (P=0.05) are indicated by (*) 
c Dicamba applied at 560 g ae ha-1, glufosinate applied at 595 g ai ha-1,  

and glyphosate applied alone were excluded from contrast comparing  

dicamba and glufosinate treatments. 
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CHAPTER 4 

Effect of Application Parameters and Dicamba Rate on Two Palmer amaranth Populations 

Throughout eastern Arkansas, Palmer amaranth resistant to protoporphyrinogen oxidase (PPO)-

inhibiting herbicides (Group 14) has become widespread. Although most PPO-resistant Palmer 

amaranth populations possess a target-site mutation conferring resistance at this site of action, 

some populations now contain a metabolic resistance mechanism to fomesafen (Group 14). Once 

metabolic resistance manifests, plants may also be tolerant to other herbicides and sites of action. 

Dicamba can now be applied postemergence in many areas of the country due to the recent 

release of dicamba-resistant cotton and soybean varieties. To evaluate whether varying spray 

parameters affected control of PPO-resistant Palmer amaranth, field trials were conducted in 

2017 and 2018 at the Lon Mann Cotton Research Station near Marianna, AR, and on-farm in 

Marion, AR. The experiment was designed as a four-factor split plot organized as a randomized 

complete block. Split plot factors included dicamba rate, nozzle type, and carrier volume, with a 

whole plot factor of Palmer amaranth population. Dicamba was applied at 560 or 1120 g ae ha-1 

through 110015 TTI or AirMix nozzles at 70 or 140 L ha-1 to PPO-resistant or PPO-susceptible 

Palmer amaranth. Palmer amaranth control 14 days after treatment (DAT) was influenced by an 

interaction between population and carrier volume. PPO-resistant Palmer amaranth control at 14 

DAT was 81% regardless of carrier volume, compared to 90% control at 70 L ha-1 and 95% 

control at 140 L ha-1 of the PPO-susceptible population. An interaction between nozzle type and 

carrier volume influenced Palmer amaranth control 21 DAT, where AirMix nozzles at 140 L ha-1 

controlled Palmer amaranth at a greater level (94%) than any other nozzle and carrier volume 

combination (≤90%). An interaction between population and dicamba rate influenced Palmer 

amaranth relative density 21 DAT. PPO-resistant Palmer amaranth showed a higher rate of 



72 

survival than PPO-susceptible Palmer amaranth at both dicamba rates, relative to the nontreated 

check. Results concur with those of other research that suggest PPO-resistant Palmer amaranth is 

harder to control with dicamba. Otherwise, increasing carrier volume affected overall Palmer 

amaranth control to a greater degree than any other factor. 

Nomenclature: Dicamba; Palmer amaranth, Amaranthus palmeri S. Wats.; cotton, Gossypium 

hirsutum L.; soybean, Glycine max (L.) Merr. 

Key Words: Herbicide resistance, dicamba, PPO-resistance, nozzle type, carrier volume 
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INTRODUCTION 

First confirmed in Arkansas in 2011, protoporphyrinogen oxidase (PPO)-inhibiting 

herbicide-resistant Palmer amaranth is now widespread throughout the crop-producing region of 

the state (Salas et al. 2016; Varanasi et al. 2018). The resistant populations in this area mostly 

possess a target-site resistance to all PPO-inhibiting herbicides, as well as resistance to other 

common herbicides like glyphosate and acetolactate synthase (ALS)-inhibiting chemistries 

(Varanasi et al. 2018; Heap 2019). Some populations of PPO-resistant Palmer amaranth have 

been noted as harder to control with other herbicides that are effective on PPO-susceptible 

Palmer amaranth (Schwartz-Lazaro et al. 2017; Steckel 2018). 

In 2018, metabolic resistance of Palmer amaranth to fomesafen was confirmed in 

Arkansas (Varanasi et al. 2018a). A short time thereafter, metabolic resistance to the very long 

chain fatty acid inhibitor S-metolachlor was also identified in Arkansas (Brabham et al. 2019). 

While metabolic resistance to dicamba has not been identified in Arkansas Palmer amaranth, the 

discovery of metabolic resistance mechanisms in Arkansas suggests that resistance to other 

herbicide sites of action could be building (Yu and Powles 2014). 

 Dicamba-resistant cotton was released for commercial use in 2015 and dicamba-resistant 

soybean was released shortly thereafter. With the release of this new technology, certain label 

restrictions were required for the products approved for use in these cropping systems to limit the 

off-target movement of dicamba to sensitive crops. These limitations include nozzle type and 

spray volume specifications, among others (Anonymous 2018a; Anonymous 2018b). 

 Herbicide application is influenced by application pressure, orifice size, nozzle design, 

and characteristics of the spray solution. The droplet sizes a nozzle produces are commonly 

classified by the volume median diameter (VMD), or Dv50 of spray droplets, which is the value 
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of the median size of spray droplets produced (i.e. 50% of droplets are larger and 50% are 

smaller than this value). Increasing VMD can contribute to decreased particle drift when 

herbicides are applied, but in turn it can decrease the efficacy of some herbicides (Meyer et al. 

2016). Another way to classify droplets produced by a nozzle is by examining the relative span 

(RS) of the droplet spectrum. The RS is a unitless measurement that represents the total variation 

in droplet sizes produced by a nozzle, where a smaller number indicates less variation in droplet 

size. Herbicide droplet size can also be affected by the product being applied in the spray 

solution (Mueller and Womac 1997). When comparing the VMD of applications of glyphosate, 

glufosinate, and paraquat, Etheridge et al. (1999) determined that a smaller VMD was generated 

by glufosinate than the other two chemicals. Chemical mixtures can also play a role in altering 

the VMD of a spray solution. When glufosinate was applied alone with a Turbo TeeJet Induction 

(TTI) 11004 nozzle, a VMD of 617 µm was produced, but when glufosinate was mixed with 

glyphosate and dicamba and applied with the same nozzle type, a VMD of 877 µm was produced 

(Meyer et al. 2015). 

 Nozzles are designed to control spray angle, spray pattern, droplet size, and solution flow 

rate as precisely as possible. Nozzles are available that produce a variety of spray patterns, in a 

variety of orifice sizes (Anonymous 2014). Increased droplet size can be obtained by increasing 

the orifice size for any given nozzle (Nuyttens et al. 2007). In order to increase droplet size 

without altering orifice size or spray pressure, nozzles with an inlet above the orifice are 

produced. These are typically referred to as air induction or venturi-type nozzles and work by 

essentially impregnating spray droplets with air, making them larger and less likely to drift 

(Etheridge et al. 1999; Etheridge et al. 2001). 
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When water is sprayed through an AirMix 110015 nozzle at 276 kPa, a droplet size 

classification of medium (VMD 236-340 µm) is produced. At the same pressure with a TTI 

110015 nozzle, a droplet size classification of ultra-coarse (VMD >665 µm) is produced. 

Daggupati (2007) found that AirMix 11003 nozzles covered 2.8, 4.6, and 6.9 percentage points 

more total ground area than TTI 11003 nozzles at 207, 276, and 344 kPa, respectively. In an 

experiment, Meyer et al. (2015) demonstrated that mixtures of dicamba and glyphosate do not 

vary from droplet size classifications obtained with water for two Venturi-type nozzles, one 

specifically being the TTI nozzle. Meyer et al. (2015) also found that increasing carrier volume 

from 94 to 187 L ha-1 increased spray coverage of a dicamba + glyphosate solution by 7% when 

averaged over three nozzle types. 

 Although not as important for the control of horizontally structured broadleaf weeds, 

smaller droplets adhere better to upright grasses, and therefore provide better control (McKinlay 

et al. 1974; Etheridge et al. 2001). Droplet size also plays a vital role in control levels provided 

by contact herbicides. When glufosinate and paraquat were applied to broadleaf signalgrass 

(Urochloa platyphylla [Munro ex C. Wright] R.D. Webster) and common cocklebur (Xanthium 

strumarium L.) with air induction (AI) nozzles (coarser droplets) and flat fan nozzles (finer 

droplets), decreased control was noted in treatments where AI nozzles were used (Etheridge et al. 

2001). McKinlay et al. (1974) observed decreased paraquat efficacy on common sunflower 

(Helianthus annuus L.) as VMD increased. Meyer et al. (2015) also observed a decrease in 

control of Palmer amaranth, hemp sesbania (Sesbania herbacea [Mill.] McVaugh), velvetleaf 

(Abutilon theophrasti Medik.), and barnyardgrass (Echinochloa crus-galli [L.] P. Beauv.) with 

glufosinate as droplet size increased. Conflicting conclusions exist on the effect of droplet size 

and synthectic auxin efficacy. 2,4-D efficacy has been shown to decrease with increases in VMD 



76 

(McKinlay et al. 1972). These are similar findings to Way (1969) and Ennis and Williamson 

(1963), who observed that synthetic auxin efficacy increased as droplet size decreased. Meyer et 

al. (2015), however, noted no difference in efficacy of dicamba on Palmer amaranth, hemp 

sesbania, velvetleaf, and prickly sida (Sida spinosa L.) across VMD values ranging from 340 to 

756 µm. 

 Another factor that can influence efficacy of a foliar-applied herbicide is the carrier 

volume, or amount of herbicide solution being applied per hectare (Knoche 1994). Creech et al. 

(2015) observed no difference in control of Amaranthus spp. when glyphosate was applied at 70, 

94, 140, and 187 L ha-1. However, in the same study, efficacy of 2,4-D on Amaranth and 

soybean increased with increases in carrier volume (Creech et al. 2015), which is similar to 

findings by Smith (1946). When dicamba was applied postemergence to actively growing weeds, 

Butts et al. (2018) observed a greater effect of droplet size on weed mortality with a carrier 

volume of 47 L ha-1 than when dicamba was applied at a carrier volume of 187 L ha-1. Because 

weed control can be affected by a variety of application factors and a metabolic resistance 

mechanism has been discovered in PPO-resistant Palmer amaranth, the objective of this research 

was to determine whether or not there were differences in control of Palmer amaranth between 

two populations when spray parameters were varied. 

MATERIALS AND METHODS 

 Field experiments were conducted on-farm in Marion, AR, on a Dubbs silt loam (Fine-

silty, mixed, active, thermic Typic Hapludalfs) with a PPO-resistant population of Palmer 

amaranth and at the Lon Mann Cotton Research Station (LMCRS) near Marianna, AR, on a 

Zachary soil (Fine-silty, mixed, active, thermic Typic Albaqualfs) with a PPO-susceptible 

population of Palmer amaranth in 2017 and 2018. The objective was to compare the efficacy of 



77 

dicamba on two populations of Palmer amaranth when it is applied according to varying spray 

parameters. No crop was planted at either location in 2017, and in 2018 Deltapine® 1518B2XF 

(Bayer CropScience, St. Louis, MO) was planted at both locations at 9.8 seeds m-1 of row with 

96-cm row spacing to provide a crop canopy. Plots for all experiments were 3.9 m wide by 9.1 m 

long, with only the center 1.95 m receiving herbicide applications, creating a weedy check 

between plots. 

Experiments were designed as a split plot, four-factor factorial and included a nontreated 

as a basis for comparison. Split plot factors evaluated were nozzle type, carrier volume, and 

dicamba rate, with a whole plot factor of PPO-susceptible (LMCRS) or PPO-resistant (Marion) 

Palmer amaranth population. All herbicide treatments were applied to 15- to 20-cm tall Palmer 

amaranth using a Bowman Mudmaster (Bowman Manufacturing, Newport, AR) calibrated to 

deliver 140 L ha-1 at 4.8 km h-1 or 70 L ha-1 at 9.6 km h-1 with 276 kPa of pressure. Nozzle types 

evaluated were AirMix® 110015 (Greenleaf Technologies, Covingtion, LA) and TTI 110015 

(TeeJet Technologies, Wheaton, IL), all at 48-cm nozzle spacing. It should be noted that neither 

nozzle used is approved for use on current dicamba labels (Anonymous 2018a; Anonymous 

2018b). The dicamba herbicide Engenia® (BASF Corporation, Florham Park, NJ) was applied at 

560 g ae ha-1 or 1120 g ae ha-1 in combination with glyphosate (Roundup PowerMAX® II 

herbicide, Bayer CropScience, St. Louis, MO) at 870 g ae ha-1. 80 to 90% of Palmer amaranth at 

both sites was GR (data not shown). Spray characteristics for each nozzle, herbicide, and carrier 

volume combination are displayed in Table 1. Plots were rated 21 days after application (DAA) 

for Palmer amaranth control on a scale of 0 to 100, with 0 being no Palmer amaranth injury and 

100 being death of all Palmer amaranth. Densities of surviving Palmer amaranth m-2 were also 
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estimated at 21 DAA by counting the number of living Palmer amaranth in two 0.5-m-2 quadrats 

placed randomly in each plot. 

Droplet size spectra for each nozzle, carrier volume, and herbicide combination were 

analyzed in a lowspeed wind tunnel at the University of Nebraska-Lincoln West Central 

Research and Extension Center in North Platte, NE. Laser diffraction was used to detect particle 

size distribution with a Sympatec Helos Vario KR particle size analyzer (Sympatec GmbH, 

Clausthal-Zellerfeld, Germany) equipped with a R7 lens. In order to analyze the width of the 

nozzle plume, a 121 linear actuator was used to move the nozzle across the laser. The laser was 

positioned 30 cm from the tip of the nozzle in a low speed wind tunnel with speeds of 24 km hr-1 

during testing. The same spray solutions were evaluated through the same nozzles in the wind 

tunnel that were evaluated in field experiments. Each treatment was replicated three times in 

accordance with American Society of Agricultural and Biological Engineers S572.1. 

Statistical Analysis. Means were separated using analysis of variance via the GLIMMIX 

procedure in SAS 9.4 (SAS Institute Inc., Cary, NC). A beta distribution was assumed for Palmer 

amaranth control and relative density of Palmer amaranth (Gbur et al. 2012). Palmer amaranth 

densities were measured relative to the nontreated control to account for differences in natural 

weed density between experimental locations. Mean separation was based on Fisher’s protected 

LSD (P=0.05). 

RESULTS AND DISCUSSION 

 The effect of year was not significant for this experiment (P=0.4653); therefore, years 

were analyzed together. Both Palmer amaranth control at 14 and 21 DAT and Palmer amaranth 

density 21 DAT were influenced by several two-way interactions and main effects (Table 2). No 

three- or four-way interactions were significant for any parameter. 
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Palmer amaranth Control. Palmer amaranth control 14 DAT was influenced by main effects of 

population and carrier volume, as well as an interaction between population and carrier volume 

(Table 2). There was no interaction between nozzle type and carrier volume 14 DAT at P=0.05, 

but differences between means for this combination were nearly significant (P=0.0517) (Tables 2 

and 3). Control of PPO-resistant Palmer amaranth with dicamba at Marion 14 DAT was 81% 

regardless of carrier volume, whereas at LMCRS, 90 and 95% control of PPO-susceptible 

Palmer amaranth was observed at 70 and 140 L ha-1, respectively (Table 3).  

By 21 DAT, similar control was observed for the interaction of population x carrier 

volume, but control levels were not significantly different (Tables 2 and 3). The interaction 

between nozzle type and carrier volume was not significant at P=0.05 14 DAT. There was a 

tendency (P=0.0517), however, for Palmer amaranth control to be 5 to 6 percentage points higher 

with AirMix nozzles at 140 L ha-1 than with other nozzle type and carrier volume combinations 

14 DAT (Table 3). Greater control was likely observed with AirMix nozzles at 140 L ha-1 

because they produced smaller droplets (VMD=360 µm) than TTI nozzles at the same carrier 

volume (VMD=727 µm), and therefore provided greater coverage of the leaf surface (Table 1). 

A main effect of carrier volume and an interaction between nozzle type and carrier 

volume were significant 21 DAT (Table 2). At this timing, applications made with AirMix 

nozzles at 140 L ha-1 (VMD=360 µm) controlled Palmer amaranth 94%, whereas applications 

made with TTI nozzles controlled Palmer amaranth 90% and 89% at 70 L ha-1 (VMD=688 µm) 

and 140 L ha-1 (VMD=727 µm), respectively (Tables 1 and 3). These results indicate that carrier 

volume was more important for Palmer amaranth control in this experiment when smaller 

droplets were being produced.  Meyer et al. (2016) observed greater control of glyphosate-
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resistant Palmer amaranth with dicamba + glyphosate at 94 L ha-1 (VMD=385 µm) than at 187 L 

ha-1 (VMD=487 µm), but his droplet size for the TTI nozzles was smaller than that used here.  

Palmer amaranth density. Relative densities of Palmer amaranth 21 DAT were influenced by 

main effects of population, nozzle type, carrier volume, and an interaction between population 

and dicamba rate (Table 2). Averaged over all other factors, densities of Palmer amaranth 

relative to the nontreated were 2 percentage points lower when dicamba was applied with 

AirMix nozzles (9%) than TTI nozzles (11%), suggesting the smaller droplets produced by 

AirMix nozzles (VMD=336 to 362 µm), compared to TTI nozzles (VMD=683 to 734 µm), 

probably increased dicamba absorption by the plants (Tables 1 and 4).  

For the main effect of carrier volume, treatments applied at 140 L ha-1 reduced Palmer 

amaranth densities to 9% relative to the nontreated, whereas treatments applied at 70 L ha-1 

reduced densities to 11% relative to the nontreated (Table 4). The influence of carrier volume 

suggests that applying dicamba at 140 L ha-1 allows for greater coverage of the treated area than 

a carrier volume of 70 L ha-1, again placing more dicamba on the leaf surface. The significant 

effects of nozzle type and carrier volume for relative Palmer amaranth density reflect the 

significant interaction between nozzle type and carrier volume for weed control 21 DAT, where 

AirMix nozzles at 140 L ha-1 provided greater control than all other nozzle type and carrier 

volume combinations due to greater coverage and smaller droplet sizes being produced (Tables 

1, 3, and 4). 

 For the interaction between population and dicamba rate, the PPO-susceptible population 

at LMCRS was unaffected by dicamba rate. At this location, only 6 and 7% of treated Palmer 

amaranth, relative to the nontreated, survived dicamba application at 560 g ae ha-1 and 1120 g ae 

ha-1, respectively (Table 4). Dicamb at 560 g ha-1 was likely so effective at LMCRS that no 
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differences in density could be observed between the two rates. However, at Marion, with PPO-

resistant Palmer amaranth, 19% of treated Palmer amaranth survived a dicamba application at 

560 g ae ha-1, and 14% of treated Palmer amaranth survived dicamba applied at 1120 g ae ha-1 

(Table 4). Although the Palmer amaranth population at Marion appeared to be controlled at 

comparable levels to the population at LMCRS 21 DAT based on visible control ratings, relative 

density data indicate that the Marion population was more difficult to kill. Differences in weed 

densities between the two locations suggest that the Palmer amaranth population at Marion is 

more tolerant to dicamba than at LMCRS. Schwartz-Lazaro et al. (2017) found that PPO-

resistant populations were less sensitive to dicamba in the greenhouse than PPO-susceptible 

populations. These findings are not unlike other research which suggests that multiple 

postemergence applications of dicamba may be required to control PPO-resistant Palmer 

amaranth (Steckel 2018). 

Practical Implications. In this experiment, carrier volume was the most important factor in 

Palmer amaranth control with dicamba. In general, treatments applied at a carrier volume of 140 

L ha-1 provided better control of Palmer amaranth than treatments applied at 70 L ha-1, regardless 

of other factors. AirMix nozzles provided higher levels of Palmer amaranth mortality than did 

TTI nozzles, likely due to the smaller droplet size produced. However, current dicamba labels 

approved for postemergence use in cotton state that dicamba must be applied through nozzles 

that produce extremely coarse or larger droplets for Engenia and ultra-coarse droplets for 

Xtendimax (Anonymous 2018a; Anonymous 2018b). By increasing carrier volume, applicators 

can mitigate reduced levels of weed control caused by using a nozzle producing coarser droplets 

by increasing carrier volume. 
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 Special attention should also be paid to Palmer amaranth control with dicamba in fields 

where PPO-resistance is suspected. Metabolic resistance to S-metolachlor was recently 

confirmed in the Marion population and it is possible that this metabolic resistance could 

potentially be the cause of reduced mortality of Palmer amaranth treated with dicamba at this 

location (Brabham et al. 2019). Because PPO-resistant populations have proven to be harder to 

control with dicamba, other weed control methods may need to be employed. Following best 

management practices to mitigate resistance is recommended to control PPO-resistant Palmer 

amaranth (Norsworthy et al. 2012).  
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TABLES 

Table 1. Mean spray characteristics as influenced by dicamba rate, nozzle type, and carrier volume.a,b,c,d    
Droplet spectra parameters 

Dicamba rate Nozzle 
Carrier 

volume 
Dv10 Dv50 Dv90 Relative span 

g ae ha-1 
 

L ha-1 µm SE µm SE µm SE - SE 

560 TTI 70 350 0.7 683 1.9 984 2.1 0.93 0.000 

560 AirMix 70 156 0.7 342 1.8 565 2.0 1.20 0.006 

560 TTI 140 383 2.4 720 0.9 1048 4.2 0.92 0.012 

560 AirMix 140 170 0.5 362 0.8 579 0.8 1.13 0.000 

1120 TTI 70 357 2.1 692 1.0 994 4.3 0.92 0.000 

1120 AirMix 70 151 0.4 336 0.2 553 3.7 1.20 0.009 

1120 TTI 140 381 0.7 734 3.9 1076 9.7 0.95 0.009 

1120 AirMix 140 166 1.2 358 1.4 570 4.1 1.12 0.003 
  

 
        

a Data are reported as means followed by the standard error (SE) of the mean 
b All treatments contained glyphosate at a rate of 870 g ae ha-1 
c Abbreviations: Dv10, 10% of droplets are smaller than this value; Dv50, 50% of droplets are smaller than this value; Dv90, 90% of 

droplets are smaller than this value; TTI, Turbo TeeJet Induction 
d All nozzles used were 110015 orifice size 

 

  

8
6
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Table 2. Significance of P-values for factor main effects and interactions for Palmer amaranth control and density 

averaged over site years.a,b 

 

 

 

 

 

 

 

 

 

 

 

 

aAbbreviation: DAT, days after treatment 
bAsterisks (*) indicate significant treatment effects 
 

 

 

 

 

 

 

 Control  

Source 14 DAT 21 DAT Density 21 DAT 

Population 0.0003* 0.1311 <0.0001* 

Nozzle type 0.0909 0.1380 0.0389* 

Carrier volume 0.0199* 0.0159* 0.0177* 

Dicamba rate 0.5198 0.0766 0.4247 

Population x Nozzle type 0.4719 0.4594 0.3300 

Population x Carrier volume 0.0117* 0.2701 0.2097 

Population x Dicamba rate 0.8502 0.1232 0.0207* 

Nozzle type x Carrier volume 0.0517 0.0022* 0.0928 

Nozzle type x Dicamba rate 0.3325 0.2235 0.4799 

Carrier volume x Dicamba rate 0.7780 0.3588 0.3886 

Population x Nozzle type x Carrier volume 0.0772 0.3388 0.4307 

Population x Nozzle type x Dicamba rate 0.7956 0.5760 0.7177 

Population x Carrier volume x Dicamba rate 0.6810 0.1678 0.0760 

Nozzle Type x Carrier volume x Dicamba rate 0.8522 0.6857 0.1628 

Population x Nozzle type x Carrier volume x Dicamba rate 0.5082 0.5406 0.2870 
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Table 3. Palmer amaranth control as influenced by significant  

interactions of population x carrier volume and nozzle type x carrier  

volume.a,b 

 

 

 

 

 

 

 

 

 

 
a Abbreviations: DAT, days after treatment; LMCRS, Lon Mann  

Cotton Research Station near Marianna, AR 
b Means within a column followed by the same letter are not different  

according to Fisher’s protected LSD at (P=0.05). Means for  

non-significant interactions of Population x Carrier volume 21 DAT  

and Nozzle type x Carrier volume 14 DAT presented for  

informational purposes. 

 

 

 

 

 
Control 

Factor 14 DAT 
 

21 DAT 
 

 -------------- % -------------  

Population x Carrier volume 
    

Marion x 70 L ha-1 81 c 88 
 

Marion x 140 L ha-1 81 c 90 
 

LMCRS x 70 L ha-1 90 b 89 
 

LMCRS x 140 L ha-1 95 a 93 
 

     

Nozzle type x Carrier volume 
    

AirMix x 70 L ha-1 86 
 

88 b 

AirMix x 140 L ha-1 92 
 

94 a 

TTI x 70 L ha-1 87 
 

90 b 

TTI x 140 L ha-1 87 
 

89 b 
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Table 4. Palmer amaranth relative density 21 days 

after treatment as influenced by main effects of  

nozzle type and carrier volume, as well as the  

interaction of population x dicamba rate.a,b 

 

 

 

 

 

 

 

 

 

 

 

a Densities of Palmer amaranth in nontreated plots  

were as follows, Marion 2017: 31 plants m-2;  

LMCRS 2017: 40 plants m-2; Marion 2018: 51  

plants m-2; LMCRS 2018: 36 plants m-2 
b Abbreviations: TTI, Turbo TeeJet Induction;  

LMCRS, Lon Mann Cotton Research Station near  

Marianna, AR 
c Means within a column followed by the same  

letter are not different according to Fisher’s  

protected LSD at (P=0.05). 

 

 

 

 

 

 

Factor Density  
% of nontreated 

Nozzle type   

AirMix 9 b 

TTI 11 a 

   

Carrier volume 
  

70 L ha-1 11 a 

140 L ha-1 9 b    

Population x Dicamba rate 
  

Marion x 560 g ae ha-1 19 a 

Marion x 1120 g ae ha-1 14 b 

LMCRS x 560 g ae ha-1 6 c 

LMCRS x 1120 g ae ha-1 7 c 
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