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ABSTRACT 

The use of artificial light sources has been necessitated by the use of fully enclosed rearing 

facilities for improved environmental control.  Light Emitting Diodes (LED) have been 

developed as a light source that reduce the utilities required to provide equal light to that of 

incandescent sources.  The following reports were carried out to investigate the effects of two 

light color temperatures, light intensity and light intensity gradients on broiler chicken 

production and behavior.  The first investigation consisting of two consecutive trials investigated 

the effect of two light color temperatures (2700 K and 5000 K) in addition to the preference for 

each.  It was found that broilers provided a choice between 2700 K and 5000 K had greater 

(p<0.05) BW than those reared using only 2700 K while those under 5000 K were intermediate.  

Further, broilers displayed a preference for 2700 K during the first and last hour of the light 

period and no preference during the other monitored hours.  In the second report light intensity 

was investigated using 5, 10 or 20 lux (lx) in addition to access to all three intensities.  It was 

found that birds reared using 5 lx and those given access to all three intensities had lower 

(p<0.05) feed:gain compared to those reared under 20 lx with 10 being intermediate.  Further no 

difference (p>0.05) was found between BW or BW CV for each of the treatments.  In the final 

report the use of feed line lighting was compared to conventional overhead lighting.  The effect 

of the gradient (90 lx to 30 lx) resulted in similar production to that of a conventional uniform 

lighting environment of 20 lx.  The use of preference and choice in light environments has been 

suggested to improve the production and wellbeing of broiler chickens in all three of the reports 

using light color temperature, light intensity, and light intensity gradients.   
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INTRODUCTION  

Light and vision have long been topics of interest (Zubairy, 2016). Early philosophers 

understood the importance of vision yet were unable to describe the mechanisms in which it is 

carried out (reviewed: Ackerman, 1998). More recently, the subtle effects of varied lighting on 

both humans and animals are beginning to be researched with the need for such work being 

driven by issues related to the transition from natural light environments to those of artificial 

lighting (Edwards and Torcellini, 2002; Rozenboim et al., 2004; Lewis, 2006; Boyce, 2010; 

Olanrewaju et al., 2014, 2018; Huth and Archer, 2015; Westland et al., 2017; Tähkämö et al., 

2018). 

Advances in housing of poultry in fully enclosed rearing facilities made the use of artificial light 

a necessary. Understanding the effects of different types of artificial light takes into account the 

attributes of photoperiod, intensity and color (reviewed: Lewis and Morris, 2006). Photoperiod is 

the duration of light versus that of darkness in a 24 hour cycle. It is denoted as a ratio with the 

photophase (light or L) on the left and the scotophase (dark or D) on the right. Light intensity is 

often measured in lux or foot candles. However, there are inherent problems with these measures 

for poultry (discussed in detail in the following chapters). Color is measured in two ways: first - 

in nanometers describing the wavelength and is sufficient for monochromatic light; second - 

Kelvin temperature is used to describe types of white light that are comprised of a spectrum on 

different wave lengths (nm) of light. 

Experimental designs of exposing groups of poultry to different lighting treatments have 

traditionally yielded knowledge of the effects of light on growth, physiology and behavior 

(reviewed Olanrewaju et al., 2006; Oliveira and Lara, 2016). New concerns for the preferences 
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of poultry for different lighting regimens have led to the development of new designs in testing 

light and its effects on growth and behavior. 

The use of side by side comparisons are commonly employed to determine the effects of lighting 

in poultry (Lien et al., 2008; Alvino et al., 2009; Olanrewaju et al., 2015a; Archer, 2015, 2018; 

Rault et al., 2017). Choice and preference testing has been less common. However, choice and 

preference testing for poultry has proven useful in optimization of forage materials (Weeks and 

Nicol, 2006), feeders ( Deines, 2016), nesting (Kruschwitz et al., 2008) and perching (Bailie et 

al., 2018). Its use as an approach to determine the most appropriate lighting should yield 

information to questions arising about environmental complexity and how it effects poultry 

production and well-being. To better understand literature of the effects of light on poultry 

production, wellbeing and behavior a clear knowledge of light and avian vision is first needed. 
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VISION IN POULTRY  

Light and Vision  

Vision can be defined as the special sense by which the qualities of an object, constituting its 

appearance are perceived through the process in which light rays enter the eye are transformed 

by the retina into electrical signals that are transmitted to the brain via the optic nerve (Merriam-

Webster, 2019).  The occurrence of vision as stated above depends upon light.  Light occurs in 

the form of wave energy along a spectrum of wave lengths.  This spectrum is large in range, 

from 1 m radio waves to 10 -13 gamma rays (NASA, 2019).  Only a small fraction of light is able 

to be received by the eye and transmitted to the brain as an electrical signal (Grand, 1975; 

Prescott and Wathes, 1999).  Impacts of visible light on poultry take on multiple forms as 

discussed in general above and specifically in the following sections. 

Biology of Vision  

The eyes of poultry species are much larger than that of those of humans and other mammals 

when compared as eye to brain weight ratio (Gunturkun, 2000).  The physical structures that 

light must traverse are similar for avian species as compared to other with light passing through 

the cornea, anterior chamber, lens, vitreous body and finally coming to the retina and its 

photoreceptors where its converted to electrical signals (Gunturkun, 2000).  Birds, like 

mammals, have two types of photoreceptors cells in the retina; these being rods and cones (Hunt 

et al., 2009).  Cones function predominantly during well-lit periods and are responsible for the 

perception of color (Goldsmith, 1990).  In contrast, rods provide non-color vision during 

conditions of low light intensity (Hunt et al., 2009).  These differences are reflected in the 

number of cells present within the eye (Hunt et al., 2009). The rods being numerous with 
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multiple connected to a single nerve while cones, fewer in number each connected to a single 

nerve (Lewis and Morris, 2006). The reception of light is made possible in avian (as well as 

mammalian) species by different types of opsin (Gunturkun, 2000). Rhodopsin is found in rods 

while other opsins (iodopsins in avian species) of specific spectral sensitivity ranges are found in 

cones (Hunt et al., 2009).   

The color vision of avian species is developed to a greater extent than that of mammals where 

rods dominate vision (Hunt et al., 2009). Avian species (non-nocturnal) employ cone dominated 

vision and four cone types: short wave sensitive 1 (max sensitivity of 360-380 nm) (SWS1), 

short wave sensitive 2 (max sensitivity of 440-460 nm) (SWS2), middle wave sensitive (max 

sensitivity of 500-510 nm) (MWS) and long wave sensitive (max sensitivity of 565-570) (LWS) 

which occurs as a double cone (Bowmaker and Hunt, 2006).  The reception of light by spectrally 

sensitive pigments in cones is further by the presence WHERE? of oil droplets (Lind et al., 

2013).  These oil droplets have specific transparence clarities that filter for specific wave lengths 

of light before it reaches the photoreception pigments (Lind et al., 2013). These act to reduce  

dangerous extreme UV light and focus the light for the receptor (Armington and Thiede, 1995; 

Gunturkun, 2000).  However, birds can perceive light within part of the UV spectrum; this being 

useful for the identification of other individuals together with seeds, berries and insects 

(Burkhardt, 1982; Chen et al., 1984).   

The oil droplets, in combination with the additional cone type, result in different perception of 

both color and intensity compared to the human eye (Prescott et al., 2003). This is due to the 

unimodal peak in sensitivity to light color for humans at approximately 540 nm, used as relative 

sensitivity of one if spectrum were to be along the x axis and relative sensitivity along the y axis 

(Grand, 1975). However avian species are reported to have a multimodal distribution of relative 
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sensitivities along the spectrum of light. The greatest peak (approximately 1.1 relative sensitivity 

compared to that of humans 1) occurs at 550 nm. The second (0.9 relative sensitivity) at 460 nm. 

The third (0.7 relative sensitivity) occurring at 640 nm and the final (0.2 relative sensitivity) 

occurring at 370 nm (Prescott and Wathes, 1999).  Thus, poultry perceive light at or around three 

peak sensitivities as either much brighter or even present compared to people (Prescott and 

Wathes, 1999).  This supports the need for research on effects of both the optimal intensity and 

color of light in poultry.  
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PHOTOPERIOD AND BROILER PRODUCTION 

Photoperiod is one of the main variables in lighting programs for poultry. Until recently the use 

of near continuous (23L:1D) or continuous (24L:0D) lighting programs were used by the broiler 

industry due to increased production performance (Bean et al., 1962; Renden et al., 1993; Ingram 

et al., 2000). However, this practice has been replaced with reduced photophase through 

adoption of mandates of a minimum 6 hour scotoperiod in the European Union (Council of the 

European Union, 2007). In the United States of America, the National Chicken Council (2004) 

requires a 4 hour period of darkness. While a reduction of the length of the photophase is thought 

to improves well-being of broiler, some aspects of welfare (ocular development and behavioral 

patterns) are negatively affected if the photophase is reduced excessively (Jenkins et al., 1979). 

Additional lighting regimens include night interruption or intermittent photoperiods as well as 

increasing the photophase (Buyse et al., 1996a; b; Kühn et al., 1996; Buys et al., 1998; 

Apeldoorn et al., 1999; Schwean-Lardner et al., 2007). Intermittent photoperiods consist of more 

than one photophase and scotoperiod within a 24 hour cycle (Lewis and Morris, 2006). 

Photoperiods are more variable and include those that increase from day of placement as well as 

those that are shortened after brooding (most commonly d 7) and extend through the production 

period (Renden et al., 1996; Schwean-Lardner et al., 2007; Lewis et al., 2008).  

Extended Photophase 

The practice of continuous or near continuous lighting was widely adopted due to the increased 

growth compared to 16L:8D lighting (Moore, 1957; Bean et al., 1962; Weaver and Siegel, 1968). 

Further, the practice of continual illumination enabled chicks to feed at times when it was most 

comfortable e.g. pre and post natural light periods especially when environmental temperatures 



8 
 

were high (Heywang, 1944). However, this practice has been shown to have negative effects 

compared to more moderate photoperiods (Stone et al., 1995; Li et al., 2000; Sanotra et al., 2002; 

Liu et al., 2004; Abbas et al., 2008; Lewis and Gous, 2009; Lewis et al., 2009; Das and Lacin, 

2014; Yang et al., 2015). Effects of continuous and near continuous lighting have been reported 

to have negative impacts on the ocular development (Jensen and Matson, 1957; Lauber et al., 

1961). Furthermore, the use of continuous lighting was found to interrupt the diurnal rhythm of 

the eye causing retinal abnormalities (Stone et al., 1995; Liu et al., 2004).  

When broiler chickens were reared under a range of photoperiods from 2 to 24 hours of light, 

those under continuous light were found to have abnormally heavy eyes (Lewis and Gous, 2009). 

The view that broiler production is improved under continuous light has been challenged (Blair 

et al., 1993; Rozenboim et al., 1999b; Lewis et al., 2009). Blair and colleagues (1993) reported 

that broiler chickens reared under an increasing day length of 4 h weekly increases starting at d 4 

at 6L:18D) had lower mortality, feed conversion and similar BWG compared to those reared 

under continuous light. In addition, improved livability was reported for broilers reared under 

increased day lengths regardless of intensity (Charles et al., 1992). Downs and colleagues (2006) 

reported reduced mortality using reduced day lengths early in the production cycle and attributed 

this to reduced early growth and improved skeletal development (Downs et al., 2006). 

Intermittent Lighting  

Intermittent lighting programs have been of interest since at least the 1950’s (Barott and Pringle, 

1951; Clegg and Sanford, 1951; Moore, 1957). This was due to the findings that chicks reared 

under supplemental light hours had slower growth compared to natural day lengths (Paulino, 

1949). Clegg and Sanford (1951) reported improved growth of broiler at 6 weeks of age using a 

6L:6D lighting schedule compared to 12L:12D (516g vs. 450 g BW respectively) (Clegg and 
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Sanford, 1951). Additionally in a separate trial within the same report, broilers reared under 

2L:2D intervals had improved growth over those under 12L:12D at 6 weeks (768g vs. 666g) 

(Clegg and Sanford, 1951). It was concluded that the growth increase of broilers reared using 

intermittent light was due to a more uniform provision of nutrients to the birds over time (Clegg 

and Sanford, 1951). Similarly the use of intermittent light was reported to have varied effects on 

growth dependent on the patter or durations used (Barott, and Pringle 1951). The use different 

intermittent lighting periods of 8L:4D, 6L:6D, 4L:4D, 3L:5D, 3L:3D, 2L:6D, 2L:4D, 2L:3D, 

1L:5D, 1L:4D, 1L:3D and 1L:2D were evaluated (Barott and Pringle, 1951). The use of the 

1L:4D schedule resulted in the highest growth followed by 1L:3D and 2L:3D. (Barott and 

Pringle, 1951). It was thought that the chicks were able to fill their crops within an hour of light 

yet were emptied and ready to consume again after 4 hours of darkness (Barott, and Pringle 

1951). However, it was suggested that the optimal situation for production would be continuous 

lighting allowing chicks to access feed at will instead of risking chicks becoming hungry during 

the dark period (Barott, and Pringle 1951). Similar results were reported by other researchers 

(e.g. Moore, 1957). The highest growth rate was obtained using continuous light however similar 

growth was seen using intermittent light with “4 to 6 periods per day” of light, though durations 

were not reported (Moore, 1957). However, not all reports agreed. Cherry and Barwick (1962) 

reported no difference in growth for chicks reared under near continuous 23L:1D and 

intermittent periods of 1L:2D, 1L:3D, 1L:5D and 1L:7D.  

The use of intermittent lighting has been reported to result in positive welfare outcomes. Simon, 

(1982) found improved leg health through the reduction in twisted legs of chicks reared in batter 

cages when comparing continuous and 1L:2D regimens (Simon, 1982). This was later confirmed 

by Wilson and colleges (1984) who reared male broiler chicks in floor pens using the same 
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lighting treatment previously mentioned finding fewer abnormalities under intermittent light. 

Moreover, the use of a gradually increasing light period during the flock was found to reduce the 

occurrence of sudden death syndrome compared to near continually lit (23L:1D) birds, with 

similar growth and FCR (Classen and Riddell, 1989). A similar conclusion was reached by each 

investigator that the improved health of the intermittently illuminated birds was likely due to 

increased activity during the light periods compared to the relatively low activity across all times 

on continuously lit birds (Simmons, 1982; Wilson et al., 1984; Classen and Riddell, 1989).  

More recently the physiological effects of intermittent light have been investigated (Ohtani and 

Leeson,; Kühn et al., 1996; Apeldoorn et al., 1999; Abbas et al., 2008; Zheng et al., 2013; Das 

and Lacin, 2014; Olanrewaju et al., 2018). Birds reared using intermittent light have been 

reported to have increased plasma levels of growth hormone (GH) than those under 23L:1D 

(Kühn et al., 1996). Apeldoorn and colleagues (1999) reported that the pattern of heat production 

was altered for broilers reared under intermittent light in addition to improved energy 

metabolization. Similar heat production patterns have been reported in other studies with 

intermittent light; levels of metabolizable energy intake being higher and growth improved c 

(Ohtani and Leeson, 2000). Circulating plasma concentrations of corticosterone (CORT) are 

reduced in broilers reared under intermittent lighting (Abbas et al., 2008).  In addition, there 

were elevated white blood cell counts and T3 concentrations (Abbas et al., 2008). Furthermore,  

Zheng and colleagues (2013) reported increased serum melatonin levels for broilers reared under 

intermittent light as well as superior thymus and bursa indexes (Zheng et al., 2013). However in 

a very recent study, no differences were found in humeral immune response (Olanrewaju et al., 

2018).  
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Reduced day length  

Early findings (discussed above) found improved growth using continuous lighting programs 

(Moore, 1957). However, the early literature was not in concordance as some reports found no 

difference in growth of broilers reared using 24 or 12 h of light (Skoglund et al., 1966). In an 

early behavioral study, Squibb and Collier (1979) found that the feeding times of broilers housed 

under 24 h was 12 min/h while the feeding time of broilers housed under 12 h of light was 25 

min/hr. While the use of continuous light was shown to improve growth (Robbins et al., 1984; 

Renden et al., 1996; Ingram et al., 2000), much of the gain in BW was found to be comprised of 

fat rather than muscle (Robbins et al., 1984). An increase of 12% greater body fat was reported 

for broilers reared under 24 h of light compared to those reared under 16L:8D as well as reduced 

leg abnormalities (Robbins et al., 1984). 

The use of continuous lighting was reported to have negative effect on the immune function of 

cockerels compared to those reared under 12L:12D (Kirby and Froman, 1991). In addition, 

extended photoperiods increased mortality rate (Gordon and Tucker, 1995), induced corneal 

flattening (Li et al., 2000), decreased leg health (Sanotra et al., 2002), and reduced comfort 

behavior (preening and wing shaking) (Bayram and Özkan, 2010). A 23L:1D lighting regimen 

reduced displays of comfort behaviors to a undetectable level  (Schwean-Lardner et al., 2012). 

There was no improvement with behavioral indices with more than 10 h of darkness was 

compared over 8 h (Schwean-Lardner et al., 2012).  

It has been demonstrated that lighting can optimize BW and while maintaining acceptable 

wellbeing (Lien et al., 2007). A lighting schedule of 16L:8D was used from 8 to 43 d followed 

by a 23L:1D from 44 to 49 d. The birds had lower BW at 43 d compared to those under 23L:1D 

from 8 d. However, at 49 d birds from both treatments were of similar BW (Lien et al., 2007). 
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The durations of light used in broiler production has changed with increased understanding of its 

effect on the growth and wellbeing have increased (Moore, 1957; Prescott et al., 2003). While 

intermittent lighting the use of intermittent lighting has provided similar growth and improved 

wellbeing compared to extended day lengths it has been over shadowed by the adoption of 

relegation of photoperiods of reduced day length (Council of the European Union, 2007; 

National Chicken Council, 2014). However, the adoption of new technology as discussed further 

below has allowed for similar and improved production under the new guidelines of day length 

(Archer, 2015).  

 



13 
 

LIGHT COLOR IN BROILER PRODUCTION 

The perception and reception of color light in poultry is different to that of humans as discussed 

earlier (Biology of Vision). These differences in perception and reaction to color necessitate the 

investigation of the effects of color on poultry. In broiler production, the use of colored light has 

been of interest to producers for some time. Early reports suggest that the use of red paint over 

production facility windows or red colored incandescent bulbs increased the feed consumption 

and growth in young chickens (Bowlby, 1957). Since that time the development of new 

affordable light source technology such as Light Emitting Diodes (LED) have enabled producers 

and scientists further investigate the effect of both monochromatic colors as well as spectral 

compositions of light that can easily be adopted into commercial practices (Rozenboim et al., 

2004; Liu et al., 2017; Archer, 2018).  

Red light  

Some of the earliest reports on the effects of color on the rearing of broilers from producers 

using field trials to improve understanding of growth and behavior of broilers (Bowlby, 1957). 

The reduction in aggression and flighty activity was reported for broilers reared using red lights 

(Bowlby, 1957). The induction of behavioral changes in the birds was attributed to the inability 

to distinguish blood within the environment that triggered aggression and cannibalism (Bowlby, 

1957). Further, the use of blue lights following red light was found to render broilers almost 

blind during catching, further depressing activity (Bowlby, 1957). While red light reduced 

aggression and other behavioral issues, red incandescent light during development resulted in 

decreased sperm production compared to equal intensity unfiltered incandescent (Carson et al., 

1958). This work has been followed by numerous others demonstrating the reduction in growth 
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and efficiency of broilers reared under red light (Foss et al., 1972; Prayitno et al., 1997; 

Rozenboim et al., 1999a).  

Blue and Green Light 

The application of other colors have also been investigated. Rozenboim and colleagues (1999a) 

found that broiler chickens reared using green light had increased growth under green light 

compared to those under blue, red or white as early as 3 d. However, those birds reared under 

blue light had later onset of growth and eventually achieved similar BW at 35 d (Rozenboim et 

al., 1999a). This work was further confirmed by a later report where birds reared under green 

light from 1 to 20 d and switched to blue light till 40 d had great BW than those reared under just 

blue or green light alone (Rozenboim et al., 2004). In similar trials, Cao and colleges found 

improved growth till 26 d under green light and those under blue light had greater BW gains 

from 27 to 49 d (Cao et al., 2008).  

Increased levels of T lymphocytes were reported in broilers reared under green light at 21d while 

similar levels were seen in birds reared under blue or green at 49 d, both being higher than birds 

reared under red light (Xie et al., 2008b). To better understand the increased growth of broilers 

reared under green light, Liu and colleagues (2010) measured satellite cell mitotic activity as 

well as insulin-like growth factor compared to those reared under red and blue light. There was 

increased satellite cell activity = under green compared to blue and red light. However, both blue 

and green had improved IGF levels compared to red (Liu et al., 2010) 

White Light 

When a combination of light wavelengths is received by the eye the color is perceived as white. 

The wave lengths that make up white light are not always equal resulting in different appearance.  
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The appearance of these different combinations of light have described as black body 

temperatures measured in Kelvin (K). This is simply the color of light emitted from an ideal 

black body at a specific temperature (K). However, LED light does not follow the same form as 

incandescent lights and therefore assigned correlated color temperatures also K that match the 

closest black body temperature appearance as seen by the human eye.  The use of lights of 

differing spectrums in poultry production has under gone limited investigations.  

Olanrewaju et al.,(2015) found that the use of 2700 K and 5000 K color temperature LED light 

sources were acceptable for rearing broilers with no blood physiological variables were found to 

be outside of homeostatic ranges.  LED sources of 4100 K  and 6065 K were evaluated for 

preference and  production performance by Riber (2015). No preference was reported on three 

(4, 10 and 22) of the six monitored d while a preference for 6,065 K was found on d 16, 28 and 

34 (Riber, 2015). Further those birds reared using 6065 K were found to be heavier (67±19.2 g) 

than those under 4100 K (Riber, 2015). Archer (2017) evaluated the production performance as 

well as welfare parameters of broilers reared under two LED bulbs at 2700 K or 5000 K 

commonly used in the poultry industry. Birds reared under 5000 K were found to have more 

favorable bilateral asymmetry, plasma corticosterone concentrations, heterophil/lymphocyte 

ratio, tonic immobility, wing flapping, and vocalization than 2700 K birds (Archer, 2018). 

Further, those birds reared under 5000 K light had greater BW and lower feed:gain than those  

birds reared using 2700 K lights(Archer, 2018).  
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INTENSITY OF LIGHT AND BROILER PRODUCTION 

Understanding of the effects light intensity has on broiler production have long been in question. 

Much of industry practices and trends come from two basic ideas about light intensity and how it 

effects the behavior of broiler chickens. First, that broilers reared under too dim of light will have 

suppressed feed intake (Cherry and Barwick, 1962; Lien et al., 2007). Second, that excessive 

intensity result in lower feed:gain due to increased activity (Cherry and Barwick, 1962). These 

two general ideas are thought to be true, the levels at which light intensities are optimized is 

often debated due to the negative welfare states such as increased eye myopathies and reductions 

comfort behaviors (preening) in broilers house under reduced intensities (Bercovitz et al., 1972; 

Alvino et al., 2009). While a portion of the early investigations were focused on optimization of 

light environments for production of broiler chickens much of the later work has been in 

response to the European Union’s adoption of a mandated 20 lux intensity requirement for 

broiler production (Council of the European Union, 2007).  

Minimum Intensity Limits 

Early investigations suggested that the acceptable range of light intensity for poultry be from 

1.08 lx to 10.76 lx(Cherry and Barwick, 1962). However, more recent works have reported 

mixed results that include reduction in BW, behavioral synchronization, and increased foot pad 

lesion at 1 lx (Deep et al., 2010, 2011, 2013; Blatchford et al., 2012). Deep and colleges (2010) 

reared birds under 1, 10, 20 and 40 lx for 35 d and reported no effect on performance however as 

light intensity increased the occurrence of foot pad ulcerations decreased. In a longer grow out of 

56 d in a similar trial, no differences were reported for performance between 20 and 5 lx 

(Olanrewaju et al., 2016). However, not all reports agree. When rearing birds under 1, 5 and 10lx 
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a quadratic response for BW and feed:gain were reported for broilers reared to 35 d (Deep et al., 

2013).  

Intensity Gradients  

While the establishment of minimum light intensities has been the focus of many investigations 

others have focused on the differences in intensity or gradients, able to induce behavioral 

rhythms (Alvino et al., 2009; Blatchford et al., 2012). The use of 0.5 lx dark period (sometimes 

used when light intrusion from passing cars or other outside sources) was found to be 

distinguishable by broilers when a 1 lx light period was used (Blatchford et al., 2012). Moreover, 

Alivino and colleges (2009) found similar results using a 1 lx dark period and a 5 lx light period 

that increased the activity of broilers during the dark period compared to those provided a 20 lx 

light period. However, the use of greater (20 lx vs 10 lx) gradients between dark and light 

periods has also been reported to increase the fearfulness of broilers for those reared under 20 lx 

(Robles, 2010).  

Preference testing has also been used to better under stand optimal light intensities for rearing 

broilers (Davis et al., 1999a; Raccoursier, 2016). When broilers were provided a preference of 6, 

20, 60 and 200 lx at 2 wk birds preferred 200 lx for all observed behaviors (Davis et al., 1999a). 

However at 6 wk a preference for 200 lx was only observed for active behaviors while 6 lx was 

preferred for resting behaviors (Davis et al., 1999a). In a similar investigation Raccoursier (2016 

) reported that broilers at 40 d consumed more feed an area lit at 20 lx compared 5 lx when given 

a free choice. Additionally, birds were observed to occupy an area without feed and water at 1 lx 

in the greatest density within the test system (Raccoursier, 2016).        
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CHOICE AND PREFERENCE TESTING IN POULTRY  

Beginning in the 1960’s, the welfare of poultry in commercial production systems began to be 

questioned, particularly in Europe beginning with the Brambell Report (Brambell, 1965).  

Since then, animal welfare has developed into a major field of study with multiple journals 

currently. Poultry production has been extensively examined, especially table egg production 

(Wegner, 2009). Some of the earliest research on animal welfare was conducted with poultry 

(Dawkins, 1977). Studies of welfare and well-being can generally be divided into two aspects, 

physiological and behavioral (Nicol et al., 2009). Physiological welfare parameters are most 

closely associated with stress physiology. Measures of physiological welfare in poultry include 

the following: heart rate, body temperature, asymmetry, immune function (heterophil to 

lymphocyte ratios), and circulating concentrations of CORT in birds (Broom, 2011; Scanes et al., 

2018). These measures paired with behavioral traits have yielded significant contributions and 

their use has been increasing (Broom, 2011; Sales et al., 2015; Liu et al., 2017; Pettersson et al., 

2017).  

Choice or preference trials are a means to investigate well-being in a non-invasive manner 

(Dawkins, 2015).  Such studies have provided insights to improve poultry welfare and 

potentially optimize well-being (Ma et al., 2015). Some of the earliest work in advancing animal 

welfare was on laying hens (Hughes, 1973). The preference of hens for different housing types 

was examined addressing the question: “do hens housed in battery cages suffer” (Dawkins, 1977 

Hughes, 1976). This early work has proven to be influential for preference trials to follow as its 

approaches have been employed in numerous other studies (Davis et al., 1999; Kruschwitz et al., 

2008; Riber, 2015; Weeks and Nicol, 2018).  
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An area that has received attention is investigating what of “feelings” of animals together with 

their use and importance to production. Further, it was stated (Dawkins, 1977) that while a 

preference or choice trials may indicate “likes” or “dislikes”, a measure was needed to quantify 

how much the hens “liked” or “disliked” the battery cage. Much attention in these early works 

were given to convincing the science community that the “feelings” and emotions of animal were 

both real and worthy of investigation beyond social responsibility. Feelings were and are thought 

to have developed as critical evolutionary tool aiding survival (Dawkins, 1977) If so, the 

guidance from these early works should be heeded. Results from preference studies in poultry 

need to be placed in context and their “generality established” for different environments, ages, 

sexes, and genetic strains (Dawkins, 1977). 

Design and applications of choice and preference testing in poultry  

Choice and preference investigations have expanded beyond the early investigations of layer 

housing to include the wide range of variables in poultry production. These include cage type, 

bedding material, feed types and regimes, light intensity and color, mates, foraging, heat, and 

even social companionship (Nicol, 2011).  

Free choice investigations provide a basic understanding of what birds will choose at a given 

time. The measures employed are simple, such as number of choices made between options or 

the duration of time spent in an area or environment. However, even early in the development of 

poultry preference and choice investigations, it was recognized that there is a need to measure 

the strength or preference (Dawkins, 1977, 1983; Nicol et al., 2009).  Early investigations 

attempted to assess the true needs of poultry with much of the discussion focusing on dust 

bathing of caged hens. One method applied used the economic theory of customer demand to 

hens in cages with hens provided with a choice between litter and wire flooring (Dawkins, 1983).  
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To better understand the value of each, birds were feed deprived for set amounts of time and then 

provided a choice with feed available in only one of the choices (Dawkins, 1983). Without food 

deprivation, hens consistently chose the litter flooring over the wire but as the duration of food 

deprivation increased, the hens would choose feed over the preferred flooring (Dawkins, 1983). 

Thus, while hens would choose litter, they valued feed over litter. The challenge with this study, 

as with all choice welfare trials, was in the interpretation of the results. Dawkins (1983) stated 

that just because the hens preferred litter over wire, it did not explicitly mean they were suffering 

without it. It is important to note that there was not, and is not now, a single definition of welfare 

or suffering. While some consider that welfare is the ability to exhibit of all natural behaviors 

(Duncan, 1980), others suggest that those activities that animals have an intrinsic drive to 

perform must be allowed (Dawkins, 1983).  

In the 1990s, the approaches employed in preference and choice studies in poultry welfare began 

to change. In the place of multiple options to choose, birds were hindered or separated from the 

test variable (food, litter, social interaction). The amount of effort the bird was willing exert to 

reach or complete the variable was assessed as the “cost” it was willing to “pay” in place of feed 

restriction known as resource ranking (Olsson, 2002). The measure of effort exerted provided a 

quantifiable measure for the preference of poultry. However this method was not without flaw. 

The use of multiple variables to be compared were not able to be validated and a more simplistic 

design was employed known as resource ranking. Instead of birds choosing with feed as a 

measure of motivation or need, choice trials began to measure the preference between two 

usually similar variables. This is in part due to the complications associated with resource value 

testing such a test sequencing, observer interference and the possibility of observing a simple 

scanning or monitoring behavior of birds as a choice in its self (Nicol et al., 2009).  
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Determining the preference for feed and feeders  

The use of choice trials to investigate the preference of poultry has yielded important information 

on welfare and has resulted in improved production. Most studies use simple measures of feed 

consumption, growth, and feed conversion to determine what poultry preferred when provided 

with different options. One interesting series of trials explored choice for different nutrient. 

Various genetic lines were presented with feeds either nutrient replete or with deficiencies of 

different amino acids (lysine, methionine and tryptophan). While Leghorn type chickens did not 

show a preference between the deficient and balanced diet, White Rock type chickens showed a 

clear preference for the balanced diet (Noble et al., 1993). Additionally, it was found that meat 

type chickens (broilers) would discern between high and low energy and protein levels in feed 

(Noble et al., 1993). Not only could they detect the difference but broilers showed clear 

preference to diets of higher energy over those containing higher protein (Siegel et al., 1997).  

Some of the most influential work done with preferences in poultry feeding was with particle 

size (Jensen et al., 1962; Savory, 1980; Portella et al., 1988). It had previously been established 

that birds fed pelleted feed could consume their desired amount of feed in less time than those 

fed mash (Jensen et al., 1962). This was followed by the investigation of bird preference to 

particle size. Results showed that the broiler chickens would first eat the larger particles of feed 

at the same rate (pecks) to that of smaller particles (Fujita, 1972). These studies demonstrated 

that with the use of pelleted feed increased feed availability within a flock, due to shorter feeding 

bouts. A similar approach was employed to investigate the preference of feed particle size and 

texture with inclusion of new ingredients and whole grain feeding (Elling-Staats et al., 2017). 

Preference testing has been applied to wet and dry feeding types.  During the first seven days of 

production, broiler chickens demonstrated a strong preference to feed with equal parts water and 
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feed compared to a conventional feed (Elling-Staats et al., 2017).  While these findings may not 

be applicable directly to commercial feeding practices, it may have a sizable impact on the 

development of hatch basket feeding program development (Shane, 2017).  This preference was 

also observed through the rest of the production cycle although to a less extent (Elling-Staats et 

al., 2017).  However, it is important to note that the measure of water diluting the nutrient 

density in the feed may be the driving factor of increased consumption and were not reported 

(Elling-Staats et al., 2017).  

There have been other studies on preferences of broiler chickens.  Deines (2016) examined 

preference of feeder colors for Cobb 500 female broiler chickens. Feed consumption was greater 

for green feeders for the first 5 days of life and red feeders thereafter (Deines, 2016).  However, 

there was no difference in feed consumption when birds were not given a choice (Deines, 2016).  

This trial is an example of the major drawback when using free preference testing of “out of 

sight, out of mind.” While the two control treatments and the preference treatment provide some 

insight, an additional set of titrated treatments may provide insight into the value of preference to 

each of the colors.  
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BEHAVIORAL PREFERENCES OF POULTRY 

Perching 

Much of the research on choice in poultry has evaluated perching behavior in laying hens. 

Perching preference trials usually employ two types of studies: 1. the preference between types 

of perch such as height, diameter and material and 2. the use or lack of use for a perch. Some 

work has evaluated the preference to certain types of perch (Appleby et al., 1998).  It is argued 

that much greater understanding is gained by examining the preference to perch per se. Hens will 

work and exert force to be able to perch during the day but particularly at night (Olsson and 

Keeling, 2000).  However, there are challenges when investigating the value the hens put on 

perching.  Social interaction appears to play a critical role in the effort birds will exert to access a 

perch. Some hens do not exert force to perch if another bird was already perching even if the 

perch was not completely full (Olsson and Keeling, 2000). The use of perches by broilers not 

been subject investigation until recently. Broilers, unlike laying hens, do not utilize classical 

perch designs but prefer to use elevated platforms (Bailie et al., 2018).  

Nesting 

In addition to perching, nesting and pre-oviposition behaviors have been investigated. Hens have 

been reported to prefer a nest area that is enclosed (Cooper and Appleby, 1995). Hens were 

shown to work for up to 40 minutes before lay to reach a nest when a weight loaded door 

separated the two. In addition, hens would pass through a small space of 95 mm2 to reach a nest 

before laying when their average body width was 120 mm (Cooper and Appleby, 1995). The 

same hens withstood up to 8 hours of food deprivation before passing through the same size 

opening to reach food (Cooper and Appleby, 1995).  The difference in preference for nesting and 
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the effort to be exerted to reach a nest is not thought to be related to a weak drive to nest yet a 

difference in what constitutes a satisfactory nest; for example, a dark enclosed separated area 

(Weeks and Nicol, 2006). 

Dustbathing  

Poultry exhibit a drive to dustbathe and will do so when provided with the proper environmental 

conditions (Weeks and Nicol, 2018). These behaviors will also exist as a void or sham execution 

where the animal goes through the motion when there is no actual substrate (Weeks and Nicol, 

2006). The preference of birds for different substrates to dustbathe has been investigated. It was 

found that the preference of hens is largely driven by their previous experience (Van Liere and 

Siard, 1991).  Hens prefer astro-turf over wire floor, and particulate matter over astro-turf 

(Weeks and Nicol, 2006). The value that broilers place on dustbathing has been more elusive as 

some choose to sham dustbathe rather than work for access to substrate (Van Liere 1992).  

Foraging  

There has been interest in foraging for the same reasons as dusting.  Birds kept in an area where 

foraging does not occur will execute sham foraging while feeding (Weeks and Nicol, 2018). This 

is applied to the disposition of birds to “contra free load” where food is worked for even when 

offered without work (Weeks and Nicol, 2006). While there is a clear drive to execute forage 

behavior with or without substrate there is no clear evidence of a preferred substrate (Weeks and 

Nicol, 2006). 

Lighting choice and broiler production 

The use of artificial lighting sources has become a necessity in the production of broiler chickens 

since the adoption of the solid side wall house. Additionally, artificial light is used to improve 
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production in turkeys and other poultry. The use of light in poultry production and how it is used 

can divided into three different categories: intensity, color/wavelength and duration.  

Light Intensity and Broiler Production 

Light intensity has been of increasing interest in broiler production. The use of dim lighting (<5 

lux) was common until recently (Ingram et al., 2000). These low light intensities were used to 

improved feed to gain ratio with reduced energy expenditures.  However, more recently these 

practices have come under scrutiny due to skeletal issues, reduced eye health and altered 

behavior (Rault et al., 2017). While increasing light intensity is a new adaption in commercial 

production, there is evidence that broilers prefer dim light later in production compared to bright 

light. Davis and colleagues (1999) subjected broilers to a free choice of 6, 20, 60 and 200 lux at 

either two or six weeks of age. Two week old chickens spent the majority of their time under 200 

lux.  However at 6 weeks of age, the birds chose to spend most of their time in 6 lux (Davis et 

al., 1999). It is noted that incandescent lights were used in this trial; these producing a wide and 

even distribution of light spectrum resulting in a white light (Lewis and Morris, 2006). However, 

incandescent lights are generally not used commercially in the United States instead LEDs are 

used (The Poultry Site, 2015). LEDs produce varied levels of different wave lengths of light 

(Archer, 2017). Additionally, and of equal importance, is that that broilers were subjected to 

continuous light (24L:0D) (Davis et al., 1999) which may be considered physiologically 

abnormal and affecting such behaviors as sleep (Bayram and Özkan, 2010). 

Color 

With the adaption of LEDS as the predominant light source in poultry production, the 

importance of understanding the effect of light color on poultry have increased. When broilers 
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were given a chance to occupy space lit by yellow or white LEDs, no difference in distribution 

between the two were seen even (Mendes et al., 2013).  However, there was improved 

production under white light (Mendes et al., 2013).  In a similar test, broilers were exposed to 

blue, red, and green lights for 28 days and then provided a free choice between the three. After 3 

hours, birds raised on red or green light displayed a preference to blue light (Prayitno et al., 

1997).  However, broiler chickens reared under blue light exhibited a preference to green light 

(Prayitno et al., 1997).  

Photoperiod 

As mentioned above the daylengths employed have changed over time. In the past lighting was 

commonly provided continually or on a near continual 24 hour cycle (20L:0D). Due to increased 

concern about sleep deprivation, skeletal health and immune function (Downs et al., 2006; 

Brickett et al., 2007), longer dark periods have been implemented in modern broiler production. 

Hens when given free choice spend on average 10 hours within 24 hours in very low light 

intensity (<1 lux) (Ma et al., 2015).  However, the hens were actively laying and more eggs were 

laid in the <1 lux area (Ma et al., 2015). This may suggest that hens spend time at low light 

intensity for resting and for egg laying with seclusion (Ma et al., 2015). When hens were trained 

to switch on a light in a dark room, they would spend 80% of their time in a lit environment 

(Savory, 1982).  However, when trained to turn off a light in a lit room, they spent only 1% of 

time in the dark (Savory, 1982).  The testing of photoperiod through choice is challenging, due to 

the short life span of poultry and the time taken for training.  
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Conclusion  

The use of preference testing has enabled improvements to the lives of poultry. It has also led to 

a prioritization of needs in poultry environments. However, more work is needed to further 

understand the preferences of poultry not only for improved well-being but also increased 

efficiency. Although technology available to producers is changing, research-based inputs are 

continuing to be critical to the progress of the poultry industry.  The use of new approaches for 

the optimization of lighting environments is critical for continuing improvements.  
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CHAPTER 2 

 

 

 

 

 

 

 

PERFORMANCE AND PREFERENCE OF BROILERS PROVIDED DUAL LIGHT 

WARMTH 
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INTRODUCTION 

The use of artificial light in poultry rearing has been necessitated with the enclosure of facilities 

for improved environmental temperature control through tunnel ventilation.  New technology has 

also developed to change the source of light used in most poultry rearing facilities from 

incandescent to LED. These new sources have been demonstrated to improve utility 

consumption and production performance of broiler chickens (Archer, 2016). The understanding  

of the effects light colors have on poultry production have grown (Rozenboim et al., 1999a, 

2004; Archer, 2018). While some reports have focused on the preferences of poultry for specific 

light colors other than production (Prayitno et al., 1997; Riber, 2015; Raccoursier, 2016). The 

current study was designed to incorporate both production performance and preference for a 

better understanding of their interactions.    
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ABSTRACT  

The use of light emitting diodes (LED) have been widely adopted within the broiler chicken 

industry. LED come in a range of colors and color warmth specific for poultry production. 

Different colored LED lights have been shown to alter the production performance of broiler 

chickens. The present studies reevaluated the use of two common poultry specific LED bulbs of 

differing light warmth (2700 k and 5000 k). Additionally, the studies evaluated the effect of 

providing a choice between the two LED bulbs of differing light warmth to broilers for both 

production as well as distribution, feeding, and drinking behavior. Chicks were housed in choice 

systems each consisting of two rooms of separate illumination. Systems were divided into two 

treatments: 1. cool-cool illuminated at 5000 k on both sides. 2. warm-warm illuminated at 2700 k 

on both sides and 3. cool-warm with onside illuminated at 2700 k and the other at 5000 k.  

Distribution and consumptive (feeding and drinking) behaviors were observed for the cool-warm 

treatment using a remote video system. Production was accessed for all treatments and two 

consecutive trials were conducted. The BW on the cool-warm (study 1: 2.954 kg and study 2: 

3.240 kg) were greater (P < 0.05) than those on the warm-warm (study 1: 2.816 kg and study 2: 

3.110 kg) while those on cool-cool were intermediate (2.867 kg and 3.164 kg). There was no 

effect of treatment on feed:gain in ether trial. The birds reared under the cool-warm treatment 

exhibited a clear preferential (P < 0.05) pattern for warm light during the first and last hour of the 

light period. This preference was either not seen or in some cases reversed during the 5th and 11th 

hour of light. No clear pattern of differences (P < 0.05) were observed between warm and cool 

environments in the feeding and drinking behaviors. The use of dual light warmth LEDs 

improved the BW chickens. The mechanism for this is not clear.  
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INTRODUCTION 

Improvements in technology have reduced utility use for illumination of poultry reared in 

climate-controlled facilities.  Formerly, compact fluorescent (CFL) sources were adopted due to 

the increased efficiencies compared to incandescent lights.  Currently, light emitting diodes 

(LED) are widely used.  It is important to ensure that use of LED light sources is optimized for 

both poultry and utility energy use.  Perception of intensity and color differs between poultry 

species and that of people (Lewis and Morris, 2000).  For example humans have three cones with 

maximal sensitivities for red, green and blue light, birds have a fourth category of cones with 

light perception in the UV-A range (320 nm) (Lewis and Morris, 2000; Yokoyama et al., 2000; 

Lind et al., 2013; Viets et al., 2016). 

It is known that there are differences in perception of specific wavelengths (Lewis and Morris, 

2000) yet light is most often composed of  multiple wavelengths resulting in white light. Light 

color temperature is used to describe these combinations of wavelengths resulting in white light 

produced during the emission of electromagnetic radiation from an ideal black body. The unit 

assigned is the temperature of the surface of the ideal black body in Kelvin (K). While this is the 

original measure of light color temperature, LED sources do not primarily use electromagnetic 

radiation as light. Therefor a new measure is needed. The correlated color temperature (CCT) is 

assigned to alternative light source by their closeness in appearance to the original black body 

temperatures as perceived by the human eye and retains the original unit. 

The use of both monochromatic and white light from LED sources has been the focus of 

numerous investigations. A recent study that evaluated the effect of mixed color LED lights in 

“Meihuang” broiler chickens native to China (Yang et al., 2016) found that feed efficiency was 

improved in chickens raised under blue and green light compared to florescent light.  In the same 
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strain of broilers, feed efficiency was further improved under yellow LED lights as compared to 

blue and green LED lights at 45 and 60 d (Pan et al., 2015).  The use of monochromatic blue and 

green lights were previously found to improve growth performance of Anak broiler chickens 

(Rozenboim et al.1999).   

The efficacy of different warmth LED lights have also been evaluated in a common broiler strain 

(Ross 960 x Ross 708) comparing warm (2,700K), cool1 (5,000K) and cool 2 (5,000K) LED 

lights together with incandescent lights (2,010K) (Olanrewaju et al., 2015b). Increased growth 

using cool LED lights in comparison to the incandescent light treatment was reported 

(Olanrewaju et al., 2015b).  However, there were no differences between the LED treatments in 

the following: feed intake, feed:gain, carcass yield, fat weight, fillet weights, tender weight or 

plasma concentrations of corticosterone (Olanrewaju et al., 2015b).  It was concluded that 

poultry could be raised under utility saving LED lights with no effect to feed efficiency yet with 

improved BW gain (Olanrewaju et al., 2015b).  Similarly, Archer (2015) reported improved 

growth performance and welfare of broiler chickens (Cobb) reared under LED lights compare to 

CFL or incandescent lights. 

When tested under a near continuous d length (23L:1D) lighting regime for 7 wk, broilers 

chickens showed a 44.0% reduction in the serum concentration of interleukin-1b under blue 

lights compared to red lights (Xie et al., 2008a).  Differences in both physiological and welfare 

indicator tests were reported for broilers reared under 2,700 K or 5,000 K LED lights has been 

shown in broilers (Archer, 2018).  Further it has been shown broilers reared under cool light 

(5000 K) exhibited less vocalization during isolation, reductions in latency to right, flapping 

intensity, composite asymmetry, plasma concentrations of corticosterone and heterophil to 

lymphocyte ratio (Archer, 2018).  These results differ from those of Olanrewaju et al. (2015).  



34 
 

An investigation was conducted to evaluate the preferences of broilers for 4,100 K and 6,065 K 

(Riber, 2015). Locations of the birds provided free access to each of the light warmths was 

recorded every 15 minutes during sample d. The preference for light the two light warmths were 

inconsistent across d. Broilers spent a greater percentage of time under 6,065 K on 16, 28 and 34 

d and no differences were seen on  4, 10 and 22 d (Riber, 2015).  However broilers reared using 

6,065 K LED lights had improved BW at d 34 compared to the 4,100 K (Riber, 2015).  

The present studies evaluate the effects of dual light warmth (2,700 K and 5,000 K) 

environments from two LED light sources on performance in broilers compared to those reared 

using a single light warmth (2,700 K or 5,000 K).  In addition, preference of broiler chickens for 

differing warmth (2,700 K and 5,000 K) and behavior preference for feed and water intake were 

evaluated.  

MATERIALS AND METHODS 

Commercial broiler (360 straight run Cobb 700) chicks were distributed into 18 pens (20 birds 

per pen) within a single commercial broiler house at the University of Arkansas’s Applied 

Broiler Research Farm in each of the two trials.  Pens constructed of PVC, wire, and black 

plastic covering, consisted of two 121.92 cm x 121.92 cm rooms separated by a divider of the 

same material (Figure 1).  This divider prevented light from “polluting” the adjacent room but 

allowed broilers to freely move between the two rooms.  A single feeder, water line, and light 

source were provided within each room.  Commercial diets were supplied by the contracted 

integrator. The 18 pens were divided into the three following treatments (6 replicates each): 1. 

treatment cool-cool with both rooms illuminated by a 5000 K light (L6A19DIM 6W, 5000 K; 

Overdrive, Roanoke, VA, USA); 2. treatment warm-warm consisting of both rooms of the pen 

illuminated using a 2700 K (6W, Overdrive) light, 3. treatment warm-cool consisting of one 
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room illuminated by a 2700 K light source and the other by a 5000 K light.  Lighting of each 

pens was supplemented with an incandescent heat bulb for the first 14 d. A 23L:1D lighting 

schedule was used from 0 till 3 d and from d 4 to completion of the flock a 16L:8D lighting 

schedule was used.  Intensity was set at 60 lux from 0 to 13 d.  At 14 d the light intensity was set 

at 20 lux at bird level.   

Feed consumption was measured from d 1 post hatch 15, 23, 32 and 40 d in trial 1 and from d 1 

post hatch 15, 23, 32 and 43 d in trial 2 (Table 1).  Further, consumption was measured within 

the individual pens of the warm-cool treatment on the respective days (Table 2). BW were 

measured on d 40 in trial 1 and d 43 in trial 2.  Additionally, for the warm-cool treatment, remote 

video observations were taken of bird distribution, feeding and drinking (n=5 trial 1, n=6 trial 2).  

These observations were collected on d 16, 24 and 33 for both trials in addition to d 41 (trial 1) 

and 44 (trial 2).  Each of the observations used scan sampling at four evenly spaced time points 

during the 16 hr light period (1, 6, 11 and 16).  Due to camera failure during trial 1 video only 

five of six warm-cool systems were observed (n=5) in trial 1.  Mortality were weighed and 

subtracted from final pen feed consumption to calculate mortality corrected feed:gain.  

A one way ANOVA was performed on data from each trial and differences were separated using 

Tukey’s HSD test in JMP Pro 14 (SAS Institute Inc., Cary, NC).  Differences were considered 

significant when p ≤ 0.05. Confidence intervals were calculated for 0.95 confidence level.  Trials 

were conducted in accordance with University of Arkansas Institutional Animal Care and Use 

Committee protocol 18095.  
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RESULTS AND DISCUSION 

Table 1 summarizes production data. In trial 1, BW of birds from warm warm systems (2.816 ± 

0.032 kg) were lower (p<0.05) than that of warm-cool (2.954 ± 0.032 kg) with cool cool being 

intermediate (2.867 ± 0.032 kg).  There were no differences in feed consumption between 

treatments until d 32-40 when more (p<0.05) feed was consumed in warm-cool (1.813 ± 0.034 

kg) than cool (1.684 ± 0.034 kg) with warm being intermediate (1.700 ± 0.034 kg) (Table 1).  No 

differences were observed in FCR. 

Similar results were observed in the second trial (Table 1). BW was greatest (p<0.05) for warm-

cool (3.240 ± 0.042 kg) and lower for warm warm (3.110 ±0.042 kg) with cool being 

intermediate (3.164 ± 0.042 kg).  No differences in feed consumptions (p>0.05) were seen until d 

32-43 when birds under a warm cool environment had higher (p<0.05) consumption (2.334 ± 

0.029 kg) compared to warm warm (2.219 ± 0.029 kg) and cool cool (2.253 ± 0.029 kg) (Table 

2).  These results (table 1) agree with earlier findings (Pan et al., 2015; Archer, 2017) that growth 

and performance of broiler chickens can be manipulated using light wave length.  However, we 

found no difference is growth between treatments warm warm and cool cool unlike the report 

from Archer (2017). However, that study did not employ combinations of the two light warmths 

(2700 K and 5000 K) (Archer, 2018).  This study suggest that the provision of LED sources with 

two light warmth temperatures increased the growth of broilers.  

To further understand the effect of light warms on feed consumption, feed consumption was 

monitored within each pen of the warm-cool treatment (table 2).  For the first trial, more 

(p<0.05) feed was consumed under cool light (0.500 ± 0.014 kg) than warm (0.448 ± 0.014 kg) 

from d 15-23 but no differences were seen at other time points within the trial.  In the second 

trial, there was greater (p<0.05) feed consumption occurred on the cool side of the choice system 
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than the warm both from d 0-15 and d 15-23.  In contrast, the opposite occurred between d 23 

and 32 with increased (p<0.05) feed consumption under the warm light side of the choice system 

compared to the cool side (see table 2).  These results are similar to the findings of Rozenboim et 

al. (2004) who found an increase in growth by changing monochromatic light sources during the 

flock from green to blue. This suggests that the preference of broilers change over time. 

Video observation and sampling were used to further investigate the way in which broilers would 

distribute within the two pens with different light warmths. A clear pattern of distribution was 

observed with a greater (p<0.05) percentage of birds present under warm light than cool during 

the first hour of the photoperiod and the last hour of the photoperiod (see Tables 3 and 4).  In 

contrast during the 6 and 11th hour, there were either no preference for warm light (Trial 1) or a 

preference (p<0.05) for cool light (Trial 2 ) (Tables 3 and 4).  There was a lack of light 

preference for either feeding and drinking behaviors. This suggests that any preference of light 

warmth ranks below the need to freely feed and drink (i.e. feed and drinker space).  

The distributions of broilers between warm and cool light both trials align with natural light 

(Granzier and Valsecchi, 2014).  During dawn and dusk hours, light warmth is commonly 

between 2000-3000 K due to the scattering of light waves but 5000-7000k during daylight 

conditions. The physiological mechanisms that drive these preferences is unknown.  Further 

work is needed to better understand the differences in growth seen between broilers reared under 

a single light color warmth and those provided choice and optimization between two.  

These studies clearly show that the use of novel lighting programs utilizing dual light warmth are 

able to increase growth, but not feed:gain. 

  



38 
 

REFERENCES 

Archer, G. S. 2017. Color temperature of light-emitting diode lighting matters for optimum 

growth and welfare of broiler chickens. Animal:1–7  

 

Granzier, J. J. M., and M. Valsecchi. 2014. Variations in daylight as a contextual cue for 

estimating season, time of day, and weather conditions. J. Vis. 14:1–23  

 

Lewis, P. D., and T. R. Morris. 2000. Poultry and coloured light. Worlds. Poult. Sci. J. 56:189–

207 

Lind, O., M. Mitkus, P. Olsson, and A. Kelber. 2013. Ultraviolet vision in birds: The importance 

of transparent eye media. Proc. R. Soc. B Biol. Sci. 281  

 

Olanrewaju, H. A., J. L. Purswell, S. D. Collier, and S. L. Branton. 2015. Effects of color 

temperatures (Kelvin) of LED bulbs on blood physiological variables of broilers grown to 

heavy weights. Poult. Sci. 94:1721–1728  

 

Pan, J., Y. Yang, B. Yang, W. Dai, and Y. Yu. 2015. Human-friendly light-emitting diode source 

stimulates broiler growth. PLoS One 10:1–13. 

 

Riber, A. B. 2015. Effects of color of light on preferences, performance, and welfare in broilers. 

Poult. Sci. 94:1767–1775  

 

Rozenboim, I., I. Biran, Y. Chaiseha, S. Yahav, A. Rosenstrauch, D. Sklan, and O. Halevy. 2004. 

The effect of a green and blue monochromatic light combination on broiler growth and 

development. Poult. Sci. 43:344-354. 

 

Rozenboim, I., I. Biran, Z. Uni, B. Robinzon, and O. Halevy. 1999. The effect of monochromatic 

light on broiler growth and development. Poult. Sci.  78:135–138 

 

JPM®, Version 14. SAS Institute Inc., Cary, NC, 1989-2019.   

 

Viets, K., K. C. Eldred, R. J. Johnston, and R. J. Johnston. 2016. Mechanisms of Photoreceptor 

Patterning in Vertebrates and Invertebrates. Trends Genet. 32  

 

Xie, D., Z. X. Wang, Y. L. Dong, J. Cao, J. F. Wang, J. L. Chen, and Y. X. Chen. 2008. Effects 

of monochromatic light on immune response of broilers. Poult. Sci. 87:1535–1539  

 

Yang, Y., Y. Yu, J. Pan, Y. Ying, and H. Zhou. 2016. A new method to manipulate broiler 

chicken growth and metabolism: Response to mixed LED light system. Sci. Rep. 6  

 

Yokoyama, S., F. B. Radlwimmer, and N. S. Blow. 2000. Ultraviolet pigments in birds evolved 

from violet pigments by a single amino acid change. Proc. Natl. Acad. Sci. U. S. A. 

97:7366–71  

 



39 
 

TABLES AND FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of choice system and treatment pen configurations.  
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Table 1. The effect of rearing broiler chickens in choice pens with different light warmth LEDs 

on production 

 Pens each with two rooms with LEDs as below1  

 Cool-Cool Warm-Warm Warm-Cool  SEM 

Trial 1     

Feed consumption     

0-15 d 0.669 0.689 0.688 0.013 

15-23 d 0.927 0.927 0.945 0.018 

23-32 d 1.440 1.413 1.463 0.018 

32-40 d 1.684b 1.700ab 1.813a 0.034 

0-40 d 4.720 4.728 4.909 0.065 

BW 40 d 2.867ab 2.816b 2.954a 0.032 

Feed:Gain2  1.650 1.678 1.667 0.022 

 

Trial 2 

    

Feed consumption     

0-15 d 0.771 0.767 0.755 0.017 

15-23 d 0.942 0.903 0.933 0.019 

23-32 d 1.448 1.404 1.416 0.029 

32-43 d 2.253b 2.219b 2.344a 0.029 

0-40 d 5.413ab 5.293b 5.448a 0.044 

BW 43 d 3.164ab 3.110b 3.240a 0.042 

Feed:Gain2 1.696 1.705 1.695 0.013 

a, b Different superscript letter indicates difference within each row (p<0.05) 
1 Treatment arrays represent pens containing light emitting diodes (LED) as Cool-Cool at 5000 K 

(n=6), as Warm-Warm at 2700 K (n=6), and Warm- Cool at 2700 K and 5000 K (n=6). 
2 Feed :Gain corrected for mortality by the subtraction of total mortality weight from feed 

consumption 
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Table 2. Feed consumption of broilers reared in a choice system with two LED lights of 

different light warmth.  

Day Feed consumption per bird (kg)   
 Cool1  Warm2  SEM 

Trial 1    
0-15 d 0.344 0.344 0.012 
15-23 d 0.500a 0.448b 0.014 
23-32 d 0.732 0.731 0.032 
32-40 d 0.934 0.900 0.044 
0-40 d 2.507 2.402 0.065 

 

Trial 2    

0-15 d 0.407a 0.349b 0.013 

15-23 d 0.487a 0.438b 0.011 

23-32 d 0.678b 0.739a 0.014 

32-43 d 1.173 1.171 0.015 

0-43 d 2.744 2.696 0.031 
a, b Different superscript letter indicates difference (p<0.05) 
1 Cool light at 5000 K produced by a light emitting diode (LED) 
2 Warm light at 2700 K produced by a light emitting diode (LED) 
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Table 3. Feeding and drinking behavior as measured by video observation at 4 hours at 15, 23, 33 and 41 d of broilers reared in choice pens with 

different light warmth LEDs1 (Trial 1)  

1Light emitting diodes (LED) at 2700 K (warm) and 5000 K (cool) color temperatures 
a, b Superscripts denote differences (p<0.05) between cool and warm for individual day and time samples  
y, z ANOVA repeated measures plus Tukey’s down/column within behavior, day and light warmth 

    % Birds Feeding % Birds Drinking % Birds Not Feeding or Drinking 

Day Hour Cool Warm SEM Cool Warm SEM Cool  Warm SEM 

16 

1 7.33 9.10 1.98 1.42 3.23 0.63 32.15b 49.33a 2.86 

6 11.72 12.04 1.88 0.80 3.01 0.85 33.40 38.73 3.32 

11 11.92a 5.44b 1.47 0.81 1.62 0.39 37.47 42.74 3.34 

16 10.84 7.43 2.28 1.01 2.61 0.57 28.73b 49.38a 2.92 

 SEM 2.07 1.77  0.37 0.81  2.97 3.26  

23 

1 5.76 9.86 1.29 1.86 3.52 0.98 37.13  41.88 2.85 

6 7.05 9.06 0.89 2.07 2.89 0.76 43.24 35.68 2.94 

11 10.55 9.28 1.76 1.03 2.25 0.79 39.44 37.44 4.31 

16 10.42 12.34 2.25 1.43b 4.34a 0.81 38.23 46.02 2.53 

 SEM 1.53 1.72  0.64 1.00  3.88 2.91  

33 

1 8.54yz 9.73 1.41 3.34 3.56 1.08 29.35b z 45.49a 2.95 

6 5.64z 5.81 1.42 1.87 1.85 0.99 35.17 yz 49.65 4.79 

11 6.43z 3.75 1.22 1.46 1.65 0.58 42.93 y 43.78 1.51 

16 11.46y 7.92 1.17 2.07 3.14 0.66 31.36b yz 44.04a 2.30 

 SEM 0.99 1.56  0.89 0.67  3.03 3.23  

41 

1 11.08 11.93 y 1.12 2.37 3.03 0.61 29.68b z 41.91a 1.82 

6 5.64 5.68 z 1.51 0.87 0.88 0.22 43.08 y 43.86 1.73 

11 5.19 5.64 z 1.09 1.97 1.95 0.48 40.26 y 44.99 4.59 

16 11.32 6.96 z 2.31 2.16 2.57 0.72 29.42b z 47.57a 3.23 

 SEM 1.94 1.12  0.48 0.59  2.59 3.50  

 

4
2
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Table 4. Feeding and drinking behavior as measured by video observation at 4 hours at 15, 23, 33 and 44 d of broilers reared in choice 

pens with different light warmth LEDs1 (Trial 2) 

1Light emitting diodes (LED) at 2700 K (warm) and 5000 K (cool) color temperatures 
a, b Superscripts denote differences (p<0.05) between cool and warm for individual day and time samples  
y, z ANOVA repeated measures plus Tukey’s down/column within behavior, day and light warmth 

 

 
  % Birds Feeding  % Birds Drinking  % Birds Not Feeding or Drinking 

Day Hour Cool Warm SEM Cool Warm SEM Cool Warm  SEM 

16 

1 8.31 7.15 0.89 1.69 1.37 0.53 32.15b 49.33a 2.15 

6 7.61 4.37 1.56 2.26 1.72 0.67 38.19 45.85 3.97 

11 5.61 4.74 0.94 1.83 1.04 0.43 44.76 42.02 2.78 

16 8.40 6.90 1.68 1.67 0.83 0.80 31.13b 51.07a 6.43 

SEM 1.17 1.25  0.79 0.38  4.36 3.97  

23 

1 9.60 y 12.47 y 1.47 1.39 1.38 0.58 32.91b z 42.25a 2.43 

6 4.29 z 3.61 z 1.43 1.01 1.39 0.44 49.36a y 40.34a 2.27 

11 4.48 z 3.60 z 0.79 1.08 0.69 0.52 49.80 
y 40.34 5.74 

16 5.93 yz 7.00 z 1.49 2.07 1.42 0.54 38.31yz 45.27 2.45 

SEM 1.15 1.49  0.62 0.41  3.12 3.90  

33 

1 10.01 13.94 y 1.59 1.21b 3.28a 0.44 34.12 z 37.44 2.27 

6 4.49 3.84 z 0.76 2.11 2.61 0.64 45.25 y 41.71 1.69 

11 5.80 5.71 z 0.85 1.91 1.20 0.45 45.18 y 40.19 2.59 

16 9.27 10.82 y 1.66 2.81 2.13 0.81 36.89 z 38.09 1.73 

SEM 1.51 1.02  0.68 0.52  1.94 2.25  

44 

1 6.84 yz 8.28 1.49 1.62 2.28 0.76 41.73 yz 39.30 2.40 

6 5.06 yz 4.91 0.87 2.32 2.14 0.58 44.23 yz 41.15 1.80 

11 4.62 z 4.55 1.14 1.76 2.27 0.34 46.62 y 40.18 2.22 

16 10.01 y 7.06 1.34 2.99 2.49 0.66 37.35 z 40.10 1.76 

SEM 1.30 1.16  0.69 0.51  1.97 2.14  

 

4
3
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Figure 2. Distribution as measured by video observation at 4 hours at 15, 23, 33 and 41 d of 

broilers reared in choice pens with different light warmth LEDs1 (Trial 1)  

1Light emitting diodes (LED) at 2700 K (warm) and 5000 K (cool) color temperatures 

Error bars represent confidence intervals calculated at 0.95. Those not reaching 50% determine 

preference for the respective light warmth. 

  

0

25

50

75

1
6

Distribution 

Cool Warm

0

25

50

75

2
3

0

25

50

75

P
o
p
u
la

ti
o
n
 

P
re

se
n
t 

(%
)

3
3

0

25

50

75

0 2 4 6 8 10 12 14 16

4
4

Sample Hour



45 
 

 

 

 
Figure 3. Distribution as measured by video observation at 4 hours at 15, 23, 33 and 44 d of 

broilers reared in choice pens with different light warmth LEDs1 (Trial 2)  

1Light emitting diodes (LED) at 2700 K (warm) and 5000 K (cool) color temperatures 

Error bars represent confidence intervals calculated at 0.95. Those not reaching 50% determine 

preference for the respective light warmth.  
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CONCLUSION 

The distributions of broilers between warm and cool light both trials align with natural light 

(Granzier and Valsecchi, 2014).  During dawn and dusk hours, light warmth is commonly 

between 2000-3000 K due to the scattering of light waves but 5000-7000k during daylight 

conditions. The physiological mechanisms that drive these preferences is unknown.  Further 

work is needed to better understand the differences in growth seen between broilers reared under 

a single light color warmth and those provided choice and optimization between two.  While 

birds were reared within a commercial broiler house the densities were reduced from those 

commonly found in production settings to provide a choice minimally influenced by density. 

Further work is needed to better understand the effects of providing dual light colors in a 

commercial production setting. 

These studies clearly show that the use of novel lighting programs utilizing dual light warmth are 

able to increase growth, but not feed:gain.  
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CHAPTER 3 

 

 

 

 

 

 

 

PERFORMANCE AND PREFERENCE OF BROILERS PROVIDED CHOICE OF 

LIGHT INTENSITY 
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INTRODUCTION 

The use of dim (<10 lx) has commonly been used for the rearing of broiler chickens due to the 

improvements in production performance (Cherry and Barwick, 1962; Deep et al., 2013).  

However, this practice has been reported to have possible negative effects on wellbeing such as 

leg health, foot pad lesions and behavioral rhythms (Blatchford et al., 2009; Robles, 2010; Deep 

et al., 2011, 2013).  Due to the potential for compromised wellbeing the European Union has 

mandated a minimum of 20 lx be provided during the light phase for broiler rearing (Council of 

the European Union, 2007). While in the United States the National Chicken Council requires 

the conciliation of qualified professional in the design of lighting program citing a lack of 

conclusive research on minimal intensities to set a minimum threshold for all production settings 

(National Chicken Council, 2014).  The current study was designed to first investigate the 

preference of broiler chickens for industry relevant intensities (5, 10 and 20 lx) provided from a 

LED source. Second it was designed to access the production performance of broiler chickens 

reared under uniform 5, 10 or 20 lx compared to those enabled to optimize their light 

environment between the three intensities.  
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ABSTRACT  

The appropriate light intensities for broiler production has been investigated for some time.  The 

use of a minimum 20 lux (lx) has been mandated within the European Union. However, there 

have been mixed results about the effects of light intensities below 20 lx, commonly used in the 

United States.  The present study evaluated the use of 5 10 and 20 lx as well as a choice between 

the listed intensities for production performance, processing attributes and preference.  The 

feed:gain was lowest for birds reared using 5 lx and the choice of 5, 10 and 20 lx (1.71 and 1.70) 

compared to 20 lx (1.81) with 10 lx being intermediate (1.74). All other live production 

parameters (BW and BW CV) were similar.  Further, no differences were observed in carcass 

yield, breast yield or abdominal fat.  Preference was determined through the use of a remote 

video system placed above the choice pens.  On d 20 birds observed to be feeding preferred 10 

and 20 lx over 5 lx. All other birds (drinking and not feeding or drinking) preferred 20 lx over 

both 5 and 10 lx.  On d 31 birds feeding no longer displayed a preference while all other 

(drinking and those not feeding or drinking) preferred 10 and 20 lx over 5 lx. On the final 

observation d 41 only those birds not feeding or drinking showed a preference for 10 lx over 5 

and 20 lx.  This report agrees with past reports that the preference of broiler chickens for light 

intensities changes from high to low over time.  Further the use of choice lighting environments 

was able to provide the desired light intensity of broilers at a young age while maintaining 

production parameters of those reared using low intensity (5 lx).  
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INTRODUCTION 

It has long been know that light impacts growth, behavior and reproduction of avian species 

(Lashley, 1916; Baldwin et al., 1938; Heywang, 1944; Paulino, 1949).  However, the 

understanding of the effects of light on poultry production can be masked by the differences in 

reception and perception of light by poultry compared to that of humans (Govardovskiǐ and 

Zueva, 1977; Prescott and Wathes, 1999; Lewis and Morris, 2006).  These differences are due to 

the clarity of the lens and the presence of an additional cone type in the avian eye (Govardovskiǐ 

and Zueva, 1977; Lewis and Morris, 2006). While the human eye has three cones perceiving red 

(700 nm) green (550 nm) and blue (450 nm), the avian eye has a fourth cone which is sensitive to 

light at 415 nm (Lewis and Morris, 2006).  Furthermore, the clarity of the avian lens from 400 to 

320 nm also enables the reception of UV portions of the light spectrum (Burkhardt, 1982). While 

these differences can produce challenges in design, interpretation and understanding on studies.  

Knowledge of the effect of light on poultry has grown in recent years (Rault et al., 2017; 

Christensen et al., 2018; Hesham et al., 2018; Kang et al., 2018; Arowolo et al., 2019).  

Investigations to characterize the effects of light on broilers fall focus on three major areas 

applicable to poultry production: day length (L:D), color (nm) and intensity (lux).  The practices 

of continuous (24L: 0D) and near continuous (23L:1D) lighting have largely been abandoned 

due to negative effects on wellbeing parameters such as mortality (Gordon and Tucker, 1995; 

Lewis et al., 2009), eye development (Li et al., 2000; Liu et al., 2004; Lewis and Gous, 2009), 

leg health (Sanotra et al., 2002) and displays of comfort behavior (Bayram and Özkan, 2010; 

Schwean-Lardner et al., 2012).  This has been reflected in the adoption of guidelines and 

regulations by the European Union (2007) and National Chicken Council (2014) mandating 

minimum lengths of dark periods for broiler chicken production. 
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The use of lights with specific spectral compositions have been used to influence production and 

behavior of broiler chickens (Rozenboim et al., 2004; Xie et al., 2008, 2011; Liu et al., 2010).  

Rozenboim and colleagues (2004) reported increased growth of broilers reared under green light 

from 1 to 10 d followed by blue light from 11 to 46 d.  In addition, there is increased satellite cell 

activity (Liu et al., 2010), villus height (Xie et al., 2011) and immune function (Xie et al., 2008) 

in broiler chickens reared using green monochromatic light.  Others have investigated the use of 

white lights with differing spectral compositions (Sultana et al., 2013; Archer, 2015; Huth and 

Archer, 2015; Olanrewaju et al., 2015).  There has been disagreement between reports about the 

effect of light color temperature.  Olanrewaju and colleagues (2015) found no differences in feed 

intake, feed: gain, carcass yield, fat weight, fillet weight, tender weight or plasma concentrations 

of corticosterone for broilers reared under 2700 kelvin (K) and 5000 K lights.  However, Archer 

(2017)reported differences in vocalization during isolation, latency to right, flapping intensity 

asymmetry, plasma concentrations of corticosterone, heterophil to lymphocyte ratio, BW and 

feed: gain for broilers housed under 2700 K and 5000 K.  The preference of broilers for light 

color temperatures have also been evaluated (Riber, 2015; Aldridge et al., 2019).  When broilers 

were provided with a choice of 6,065 K and 4,100 K light, there was a preference for 6,065 K at 

16, 28 and 34 d but no difference was observed on 4, 10 and 22 d (Riber, 2015).  When broilers 

were provided with a choice between 5,000 K and 2,700 K light sources, there was a preference 

for 2,700 K during the first and last hour during the 16 h L period but no consistent difference 

was reported during two evenly spaced time points (6 and 11 h) during the light period (Aldridge 

et al., 2019).  Additionally, improved BW was observed for those broilers provided a choice in 

comparison to those reared using 2700 K while broilers under 5000 K wer intermediate 

(Aldridge et al., 2019).  
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Common industry practices in regards to the use of low (< 1 lx) intensity have begun to change 

to follow with early work that suggested the use of light intensities between 1.08 and 10.76 lx 

(e.g. Cherry and Barwick, 1962).  This shift in practice is warranted as the use of 1 lux has 

negative effects on measures of wellbeing e.g. (preening, foot lesions and behavioral rhythms) 

compared to more moderate intensities (5 and 10 lx) (Lien et al., 2008; Deep et al., 2011, 2013).  

The effect of higher intensities (>10 lx) have yielded inconclusive results from different 

investigators.  Deep and colleagus (2010) reported no effect on production parameters when 

rearing birds under 1, 10, 20 and 40 lx.  Similarly, both Olanrewaju and colleagus (2016) and 

Archer (2016) found no differences in broilers reared under either 5 or 20 lx. However, Rault and 

colleagues (2017) found that broilers reared under 20 lx exhibited poorer feed:gain in 

comparison to broilers reared under 5 lx. Furthermore, birds raised under 20 lx were observed to 

be more fearful than those reared under 10 lx (Robles, 2010).  

When provided a choice of light intensities of 6, 20, 60 and 200 lx at 2 wk broilers have been 

reported to prefer 200 lx regardless of behaviors displayed (Davis et al., 1999a). When 

preference was evaluated at 6 wk, broilers were observed to carry out active behaviors under 200 

lx while resting and perching were observed to take place under 6 lx, suggesting that uniform 

light intensity distribution may not be optimal for broiler production environments (Davis et al., 

1999a). In a similar investigation, Raccoursier (2016) reported that 40 d old broilers consumed 

more feed when given a free choice, in an area lit at 20 lx compared to 5 lx. Additionally, birds 

were observed to occupy an area without feed and water at 1 lx at a greatest density than within 

the areas of other illuminance of the test system (Raccoursier, 2016).  However, in each report 

only singular light intensities were evaluated for production performance.  
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The present study employed a preference pen design for commercial broilers to evaluate the 

effect of preference in light intensity (5, 10 and 20 lx) for production performance, processing 

attributes and behavior.  

MATERIALS AND METHOD 

A test pen was designed consisting of three freely accessible rooms, each being independently 

illuminated (see Figure 1.).  Each room within the pens were illuminated using a single 5000 K 

Light Emitting Diode (LED) source commonly used in commercial production facilities 

(L6A19DIM 6W, 5000 K; Overdrive, Roanoke, VA, USA).  Pens (3.658 m x 0.914) were 

constructed of PVC, plastic coated wire and a black plastic covering.  Each pen consisted of 

three rooms (0.914 m x 0.914 m).  Rooms were separated by a divider constructed of similar 

materials to that of the pens and prevented light from “polluting” between rooms.  Each room in 

the pens contained a single feeder and nipple drinker line.  The 24 total pens were distributed in 

two commercial broiler houses at the University of Arkansas’ Applied Broiler Research Farm.  A 

total of 480 straight run Cobb 700 broilers, provided by the contracted integrator, were 

distributed (20 per pen).  Commercial diets provided by the contracted integrator were fed ad 

libitum.  The 24 pens were divided into four treatments: Treatment 1 (5 lx) with all 3 rooms 

illuminated at 5 lx, Treatment 2 (10 lx) with all 3 rooms illuminated to 10 lx, Treatment 3 (20 lx) 

with all 3 rooms illuminated to 20 lx and Treatment 4 (5, 10 and 20 lx) with one room 

illuminated at each of 5, 10 and 20 lx light intensities within the pen.  From 0 to 3 d, a 23L:1D 

lighting schedule was used followed by 16L:8D schedule from 4 to 42 d. From 0 to 13 d, a light 

intensity of 60 lx was used in all rooms and treatments were initiated at d 14.  

Feed consumption and BW were measured on d 42 (Table 1).  Mortalities were weighted and 

subtracted for the pens total feed consumption to calculate mortality corrected feed: gain.  Ten 
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birds were randomly selected from each pen at 42 d for processing.  During processing, carcass 

weight, breast weight and abdominal fat were measured. Furthermore, breast tissue was accessed 

for two common muscle myopathies: woody breast and white striping. Myopathies were grouped 

into categories of not present, mild and severe.  To better understand any differences in 

preference for feeding consumption at 5, 10 and 20 lx, feeding consumption was determined in 

each room with different light intensities (Table 3).  Additionally, video observations from 

cameras (Hikvision DS-2CD2141FWD-IS-2.8MM) placed over the pens and behaviors were 

collected on the 5, 10 and 20 lx on 20, 31 and 41 d.  Observations were made every 15 min 

during four evenly spaced h of the L period (1, 6, 11 and 16 h).  The distribution of birds within 

in each room with different light intensities was determined as was the number of birds eating, 

birds drinking and birds neither eating nor drinking (Table 2).   

A one way ANOVA was performed on data from each trial and differences were separated using 

Tukey’s HSD test in JMP Pro 14 (SAS Institute Inc., Cary, NC).  Differences were considered 

significant when p ≤ 0.05. Confidence intervals were calculated for 0.95 confidence level.  Trials 

were conducted in accordance with University of Arkansas Institutional Animal Care and Use 

Committee protocol 18095.  

RESULTS 

Table 1 summarizes live parameters, processing attributes and breast muscle myopathies in 

broilers reared under three light intensities or a choice of light intensities.  No differences were 

seen for BW between any of the light intensities or the preference treatment.  Similarly, BW 

CV’s were no different between treatments.  The feed:gain ratio was superior (p<0.05) both for 

birds reared under 5 lx and those given a preference (5, 10 and 20 lx) compared to those under 20 
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lx. Feed efficiency for 10 lx was intermediate.  No differences were found between treatments 

for carcass weight, carcass yield, breast yield, abdominal fat or muscle myopathies.  

Video observations are summarized in Table 2 and Figure 2.  Overall distributions of birds 

within the pen were observed to change with age.  On d 20, a preference for 20 lx (0.05 CI > 

33%) compared to 5 and 10 lx where no preference was observed.  This difference was no longer 

present on d 31. However, there was a decline in the percentage of birds under 20 lx compared to 

d 20 observations.  By d 41, the preference of the birds shifted to 10 lx from 20 lx following the 

trend observed between d 20 and 31.  Similar trends were observed for birds drinking, birds 

feeding and birds neither feeding nor drinking.  A greater number (p<0.05) of birds were 

observed to be drinking under 20 lx than 5 or 10 lx on d 20. Similarly on d 31, more (p<0.05) 

birds were observed to be drinking under 10 and 20 lx than those under 5 lx. On d 41, no 

differences were observed but numbers birds drinking (0.62% - 5lx, 1.31% - 10 lx and 1.17% - 

20 lx) followed the pattern of change observed on the two prior observation d (31) as well as in 

the total distribution of birds.  The percentage of birds observed to be feeding was greater 

(p<0.05) under 10 and 20 lx compared to 5 lx on d 20 while no differences were observed on 31 

and 41 d.  The number of birds observed to be neither feeding nor drinking followed the pattern 

of change seen by those drinking.  On d 20 a greater (p<0.05) number of birds were observed 

under 20 lx compared to 10 and 5 lx. By d 31, both 10 and 20 lx was preferred (p<0.05) over 5 

lx.  On d 41, differences were observed as the pattern of a shifting preference could be seen with 

the number of birds under 10 lx being greater (p<0.05) than both 5 and 20 lx.  Feed consumption 

under each of the light intensities tended (p>0.05) to follow a similar pattern to the total 

distribution of birds within the pen (see Table 3) 
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DISCUSSION 

The production data differ from those of Raccoursier (2016), who reported no differences in 

production performance when broilers were reared under 5, 10 or 20 lx from incandescent light 

sources.  Moreover, we observed no differences in the consumption of feed under each light 

intensity in contrast to the increased consumption under 20 lx compared to 5 lx (Raccoursier, 

2016).  These differences may reflect the different light sources (LED in the present studies vs 

incandescent employed by Raccoursier (2016).  These light sources have difference spectral 

output composition. Incandescent and LED have been demonstrated result in different 

production performance of broilers (Archer, 2016).  Furthermore, Archer (2016) found that 

broilers reared under incandescent lighting were more susceptible to stress than those reared 

under LED lights. This may also account for the greater number idle birds under 1 lx 

(Raccoursier, 2016).   

The current results agree with an earlier report that the preference of broiler chickens change 

over time from initially high intensity to a lower intensity later in development (Davis et al., 

1999b).  Due to the facilities used being under a commercial production contract the length of 

current trial could not be extend to determine if the preference of broilers for low intensities 

would continue with age.  

The mechanism responsible for the improved feed:gain when provided choice in light intensity 

compared to 5 lx is unknown.  However, improved BW with no effect to feed:gain were recently 

reported when broiler chickens were provided a choice between two light color temperatures 

(2700 K and 5000 K) (Aldridge et al., 2019).  This in combination with the present results 

suggest that provision of variable lighting may be superior to a uniform light environment for 

broiler production.  The use of choice and preference in light intensity up to 20 lx appears to 
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improve feed:gain without changing BW or processing attributes. Further, this work suggest a 

chaning in commercial broilers preference of high to low light intensity with advancing age.   
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TABLES AND FIGURES 

Table 1. Production performance and processing performance of Cobb 700 broiler chickens 

reared under 5, 10, 20 lux, or a choice of intensities to 42 d.   

 Treatments (lx)  

Live Parameters 5  10  20  5, 10, 20  SEM 

BW (kg) 2.64 2.57 2.53 2.65 0.44 

BW CV# (%) 14.24 11.88 14.76 13.97 1.01 

Feed:Gain*. (kg:kg) 1.71a 1.74ab 1.81b 1.70a 0.03 

      

Processing Attributes      

Carcass (kg) 1.87 1.90 1.83 1.90 0.04 

Carcass (%) 73.83 74.17 73.92 73.63 0.27 

Breast+ (%) 24.62 25.02 24.82 24.75 0.28 

Abdominal Fat (%) 1.53 1.42 1.47 1.50 0.05 

      

Muscle Myopathies 
     

Woody Breast Totalα 47 50 44 46  

Normal 13 10 13 14  

Mild 37 42 32 38  

Sever 10 8 12 9  

      

White Striping Total α 44 48 46 47  

Normal 16 12 11 13  

Mild 41 44 41 43  

Severe 3 4 5 4  

      
ab Superscripts denote differences between treatment for noted measure 
*Feed: Gain corrected for mortality by subtracting weight of mortality from feed consumed 
+Combine weight of pectoralis major and minor muscle 
# Coefficient of variation for BW  
αWoody Breast and White Striping - scores from 0-3 by palpation 
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Table 2. Preferences of feeding, drinking and neither feeding nor drinking under 5, 10 or 20 lx 

for Cobb 700 broilers on 20, 31 and 40 d   

 

 

 

 

 

 

 

 

 

 

 

a, b Denote differences within day and behavior  

 

  
Day  

Intensity 20 31 41 

Drinking (%) 

5  0.39b 0.42b 0.62 

10  0.90b 1.36a 1.31 

20  1.57a 1.62a 1.17 

SEM 0.28 0.23 0.22 

     

Feeding (%) 

5  5.19b 8.44 4.97 

10  8.01a 6.47 5.39 

20  8.14a 6.70 4.19 

SEM 0.66 0.60 0.50 

     

Not Feed or Drinking 

(%) 

5  23.21b 20.99b 23.70b 

10  22.13b 25.13a 31.15a 

20  28.49a 27.81a 23.62b 

SEM 1.27 1.02 0.97 
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                                   3.658 m  

Figure 1. Schematic of preference test pen design 
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Figure 2. Distribution of birds within preference pens on 20, 31 and 41 d.  

*Denote differences in preference (95% CI) by more than 33% of the total population occupying 

the indicated intensity.  

  

* * 
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Table 3. Feed consumption (kg/bird) of broilers provided a choice of 5, 10 and 20 lx.  

  Days  

 14-22 23-34 35-42 

5 lux 0.196 0.586 0.535 

10 lux 0.216 0.604 0.541 

20 lux 0.205 0.582 0.477 

SEM 

N=6 0.019 0.035 0.019 
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CONCLUSION 

These findings differ from those of Raccoursier (2016), who reported no differences in 

production performance when broilers were reared under 5, 10 or 20 lx from incandescent light 

sources.  Further, we observed no difference in the consumption of feed under each light 

intensity while increased consumption was reported under 20 lx when provided free choice by 

(Raccoursier, 2016).  Yet these differences in findings could be expected as the sources (LED vs 

incandescent) have difference spectral output composition and therefor perception. Incandescent 

and LED have been demonstrated result in different production performance of broilers (Archer, 

2016).  Furthermore, Archer (2016) found that broilers reared under incandescent lighting were 

more susceptible to stress than those reared under LED lights accounting for the greater number 

idle birds reported under 1 lx by Raccoursier, (2016).  However the current results agree with an 

earlier report that the preference of broiler chickens changes over time from that of a high 

intensity to a lower intensity (Davis et al., 1999b). Though we did not employ as extreme 

intensities (200 lx) to test the preference of broilers yet a shift in preference was clearly 

demonstrated using industry relevant intensities (5, 10 and 20 lx).   

The mechanism responsible for the improved feed:gain when provided choice in light intensity 

are not currently known.  However, improved BW with no effect to feed:gain were recently 

reported when broiler chickens were provided a choice between two light color temperatures 

(2700 K and 5000 K) (Aldridge et al.,).  This in combination with the present results suggest that 

choice or preference in lighting environment applied after 14 d may be superior to a uniform 

light environment for broiler production.   
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The use of choice and preference in light intensity have been demonstrated to improve feed:gain 

without changing BW or processing attributes. Further, the change in preference from high to 

low intensities as age increased was confirmed. 
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CHAPTER 4 

 

 

 

 

 

 

 

FEED LINE LIGHTING IN COMMERCIAL BROILER PRODUCTION    

  



70 
 

INRODUCTION  

The preference of broilers for different light color warmth and intensity has been suggested to 

change with age and time as discussed above.  The present investigation begins to explore the 

initial steps of investigation gradient or choice lighting applications. This is accomplished by the 

use of a feed line lighting system that provides a gradient of light intensity from high intensity at 

the feeder to a lower intensity lateral to the feed line.  The feeding and drinking behavior and 

distribution of birds reared under conventional and feed line lighting are explored. Additionally 

the results of an investigation comparing overhead common LEDs and feed line lighting on 

production performance are presented.  
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ABSTRACT  

The practice of rearing broilers under uniformly distributed low light intensities has been 

demonstrated to have negative effects on development and wellbeing.  However some reports 

have suggested increased uniform light intensity during rearing suppress production efficiency of 

broilers.  Yet more recent studies have found that broilers preference for light intensity may 

undergo changes with age.  Three separate investigations were under taken. The feeding, 

drinking behaviors and over all distributions of commercially reared broilers were characterized 

when reared using a feed line lighting system. Similarly, the.  The feeding, drinking behaviors 

and over all distributions of commercially reared broilers were characterized when reared using 

conventional lighting.  Finally, production parameters and processing attributes were evaluated 

for broilers reared under 20 lx or a gradient of 90 to 30 lx.  In the first trial the number of birds 

resting near the feeders decreased with age.  However, the number of birds sitting near feeders in 

the second trial increased with age.  This is thought to be influenced by a preference for reduced 

light intensity during idle behavior with advancing age.  In the third trial it was demonstrated that 

similar production performance (BW feed:gain) could be achieved using a gradient lighting 

system of higher light intensity (30 to 90 lx) than a lower (20 lx) uniform light intensity.   

INTRODUCTION 

The ability of light to influence the production performance and wellbeing of poultry has long 

been an area of interest for researchers (Bowlby, 1957; Cherry and Barwick, 1962; Foss et al., 

1972).  The use of low intensity (< 10 lux) has been reported to have negative impacts on 

behavioral rhythms (Alvino et al., 2009), ocular development (Lauber et al., 1965) and food pad 

health (Deep et al., 2010).  However, others have reported no difference in welfare parameters 

when comparing 5 and 20 lux (lx) (Olanrewaju et al., 2016; Archer, 2016).  Further, some 
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reports suggest suppressed production performance when rearing broilers under higher (< 20 lx) 

intensities (Cherry and Barwick, 1962; Rault et al., 2017).  The effects of light intensity within 

the literature are not clear, yet they can be aided in the understanding that the effect of intensity 

is influenced by the light source (LED and incandescent) (Olanrewaju et al., 2016; Archer, 

2016).  It has been suggested that LED lights are able to be used at higher intensities than 

incandescent achieving similar production performance (Huth and Archer, 2015). 

The use of Light Emitting Diodes (LED) has been widely adopted in poultry rearing facilities.  

LED as the main light sources have been demonstrated to have numerous benefits to poultry and 

producers.  Watkins (2016) reported a reduction of utility use by LEDs compared to 

incandescent as 80 to 85%.  Broilers reared under LED have been reported to have greater BW 

and improved feed:gain compared to broilers reared under incandescent light (Olanrewaju et al., 

2016; Archer, 2016).  Further broilers reared under incandescent were reported to be more 

susceptible to stress susceptibility compared to those reared using LEDs (Archer, 2016).  While 

the use of LED lights have been demonstrated to improve utility efficiency and production 

performance further adaptation of LED technology may yield further improvements by providing 

a more appropriate lighting environment for broilers.   

Through preference testing, recent reports have suggested that the optimal light environment for 

broiler production may not be uniform in distribution of intensities.  Davis and colleagues (1999) 

found that the preference of broilers changed from 200 lx at 2 wks for all behaviors to 6 lx for 

inactive behaviors and 200 lx for active behaviors at 6 wks.  Similarly, Raccoursier (2016) found 

when provided choice that broilers at more feed under 20 lx than 5 lx when and those idle 

congregated under 1 lx.  Further, when broilers reared under uniformly distributed 5, 10 or 20 lx 

were compared to those provided a choice (5, 10 or 20 lx) similar feed:gain was reported for 5 lx 
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and choice (Aldridge et al., 2019).  To better understand the differences in production and 

behavior of broilers reared using a gradient of intensities 3 separate trials were under taken 

employing a commercially available LED fixture (AviLighting AHPharma, Hebron MD, USA)  

designed to provide high intensity near feed lines within a commercial broiler house and reduced 

intensities in the lateral areas of the house.  

MATERIALS AND METHODS 

A total of 960 Cobb 700 straight broiler chickens were reared in 8 pens in each two trials.  In 

each trial pens were distributed within a commercial broiler house on the Applied Broiler 

Research Farm at the University of Arkansas.  Pens were constructed of a PVC frame and plastic 

coated wire and measured 1.524 m x 6.096 m (half the width of the commercial house) and were 

constructed to include two feeder pans and two nipple drinker lines (see Figure 1).  In trial one a 

single AviLighting fixture (AHPharma, Hebron MD, USA) was attached to the feeder line 

between the to the manufacturers’ instructions (height).  A 23L:1D lighting schedule was 

employed from 0 to 2 d. On d 3, a 16L:8D schedule was implemented and remained for the 

duration of the rearing period.  Light intensity from d 0 to 13 were measured 110 lx directly 

under (23 cm from light to litter) the AviLighting fixture and gradually reduced to 30 lx at the 

edge of each pen furthest from the fixture (see Figure 1.1) while conventional overhead LED 

bulbs were used (Overdrive, Clifton NJ USA).  From 14 to 40 d light was supplied from the 

AviLighting only. Light intensities were measured as 100 lx directly under the fixture and 4 lx at 

the furthest point from the fixture within the pen (see Figure 1).  In trial two the same pen design 

and lighting schedule was use however uniform light intensities at 30 lx were used from 0 to 13 d 

with an intensity of 11 lux used from 14 to 40 d.  
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A remote video observation system (Hikvision DS-2CD2141FWD-IS-2.8MM) was installed 

over each of the pens. Observations were taken using scan sampling.  Birds were observed every 

15 min during the first (AM), a random (R) and last (PM) h of the light period. Birds were 

assigned into one of seven categories: feeding, drinking, standing near (within 0.4 m) of feeder 

(0.914 m2), sitting near (within 0.4 m) feed (0.914 m2), standing near (within 0.4 m) water 

(1.819 m2), sitting near (within 0.4 m) water (1.819 m2) and other (outside the view or the 

camera). Observations were taken on d 15, 21, 35 and 40.  

In a third trial, 1240 Cobb 700 broiler chickens were distributed into 20 pens within in a single 

commercial broiler house at the University of Arkansas Applied Broiler Research Farm.  Pens 

(3.66 m x 1.22 m) were of constructed of a PVC frame, plastic coated wire and covered with 

black plastic to prevent light from “polluting” neighboring pens.  Each pen was equipped with a 

single hanging tube feeder and a nipple drinker line (see Figure 4).  Pens were divided into two 

treatments: Conventional,  being illuminated using two common LED light bulbs (Overdrive, 

Clifton NJ USA) and AVI Lighting, being illuminated using a single Avi Lighting fixture placed 

near the feeder. A 23L:1D lighting schedule was employed from 0 to 2 d. On d 3, a 16L:8D 

schedule was implemented and remained for the duration of the rearing period.  During brooding 

the Avi Lighting intensity from d 0 to 13 were measured 110 lx directly under (23 cm from light 

to litter) the Avi Lighting fixture and gradually reduced to 40 lx at the edge of each pen furthest 

from the fixture and were supplemented with 2 over head LED bulbs.  For the conventional 

treatment light intensity was measure as a uniform 40 lx from 0 to 13 d.  On d 14 light intensities 

were reduced. Avi Lighting intensities were measure at 90 lx directly under (23 cm) under the 

fixture and gradually reduced to 30 lx at the furthest points from the light source. In the 

conventionally lit pens a uniform intensity of 20 lx was achieved.  Birds were weighed on 14 and 
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40 d. On d 40 16 birds were randomly selected from each pen for processing. During processing 

carcass weights, carcass yield, breast weight and yield were collected.  

One way ANOVA was performed and differences, considered as p<0.05, were separated using 

Tukey’s HSD test.  All procedures were carried out in accordance with University of Arkansas 

Institutional Animal Care and Use Committee protocol 18095. 

RESULTS 

Trial 1 

Observations for each day of broilers reared using a feed line lighting system are summarized in 

Table 1.  The percentage of birds feeding decreased from d 15 to d 21 while no further decrease 

was observed Standing near feed decreased from d 15 to 21 and 21 to 35 while no difference was 

observed for d 40.  Birds setting near feed increased from d 15 to 21 before decreasing on d 40, d 

35 being intermediate.  No differences occurred in the number of birds drinking between d.  

Standing near water decreased as age increased from d 15 to 35 with d 35 and 40 being similar. 

Sitting near water increased with age after d 21.  The effect of time for each behavior is 

summarized in Table 2.  Birds feeding was highest for AM followed by PM while the fewest 

birds feeding occurred during R.  Standing near feed and setting near feed followed similar 

patterns with the greatest number of birds in each being at AM and decreasing for R and PM. 

This same pattern was observed for birds drinking, decreasing from AM to R while R and PM 

being similar.  No effect for time of day was observed for birds standing near water or the birds 

outside the view of the camera (other).  

The effect of time of within each of the sample d is summarized by Figure 2. On d 15 feeding 

was greatest during AM and decreased for R and PM compared to AM. However as age 

increased the difference between birds feeding during AM and PM diminished yet remained for 
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R.  The effect of time within each d is summarized by Figure 2. A pattern of increased drinking 

during AM was observed on d 15, and 40.  

Trial 2 

Behavioral observations by d for birds housed under common commercial lighting are 

summarized in Table 3. The number of birds feeding decreased from d 15 to 21 and remained at 

a similar level through d 40. The occurrence of standing near feed decreased with age from d 15 

to 35 before plateauing on d 40. As standing near feed decreased with age the opposite occurred 

for sitting near feed. An increase in sitting near feed occurred from d 15 to 21 and again on 40 

while d 35 was intermediate.  A single increase occurred for drinking on d 21 before returning to 

similar levels as d 21 for the remainder of the trial. Birds standing near water followed the same 

pattern as those standing near feed (decreasing with age). Sitting near water also followed a 

similar pattern of increase with age as setting near feed.  Table 2 summarizes each behavior by 

the time of day (AM, R or PM).  Feeding was greatest during AM followed by PM and being 

lowest during R.  No differences occurred for standing or sitting near feed.  Drinking, like 

feeding, was highest during AM however decreased to a similar level for R and PM. However 

sitting near water increased for AM to R with R and PM being similar. The greatest number of 

birds within the view of the camera were during AM and PM.  

Trial 3 

Production and processing attributes are summarized in Table 5. No differences were observed in 

BW, feed:gain, or BW CV. Further no difference were observed in carcass, breast or tender 

yield.  
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DISCUSSION 

The observation of broilers feeding and standing near feed by d were similar for trial 1 and 2.  

However broilers sitting near feed displayed distinct differences as age progressed. Those reared 

using increased with while those using gradient lighting were similar on 15, 35 and 40 d.  This 

agrees with earlier reports that broilers prefer a lower light intensity when idle as age progresses 

(Davis et al., 1999a; Raccoursier, 2016).  For drinking there was a single increase for those birds 

reared using conventional light on 21 d while no differences were observed for broilers reared 

using feed line lighting. Similar patterns were observed between trial 1 and 2 for both standing 

near water (decreasing with age) and sitting near water (increasing with age).  

Similar patterns of feeding by time of day occurred in trial 1 and 2 however, differences were 

seen in standing near feed during AM compared to R and PM for trial 1 and no differences were 

present during trial 2. This may suggest that birds during the peak feeding time are more likely to 

be approaching the feeder.  For all other measured behaviors similar patterns were observed 

between trial 1 and 2.   

No differences occurred in BW, feed:gain, BW CV, carcass yield, breast yield or tender yield. 

This was likely due the inability to achieve a gradient with a low intensity similar to of past 

reports (1-5 lx).  However, it is suggested that broilers could be reared using gradient lighting, 

suggested to improve wellbeing of broiler chickens (Kang et al., 2018), of higher minimal 

intensity (30 lx) with similar production performance to those reared under 20 lx. Further work is 

needed to better understand the effects of gradient lighting at different levels of intensity on 

production performance and behavior.   
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These investigations suggest that broilers can be reared using higher intensities if a gradient in 

light intensities is used with similar production performance as those reared using lower 

intensities.  
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TABLES AND FIGURES  

Table 1. Feeding drinking and distribution of commercially housed Cobb 700 broiler chickens as effected by age reared using a feed 

line lighting system  

Day 

Feeding 

(%) 

Standing Near* 

Feed (%) 

Sitting Near* 

Feed (%) 

Drinking  

(%) 

Standing Near* 

Water (%) 

Sitting Near* 

Water (%) 

Other1  

(%) 

15 17.18a 5.46a 6.95b 7.37 2.22a 9.12c 51.69b 

21 11.13b 2.41b 9.35a 8.46 1.47b 9.98c 57.19a 

35 10.94b 0.56c 8.16ab 7.86 0.40c 12.73b 59.34a 

40 11.85b 0.18c 7.91b 8.97 0.02c 15.57a 55.51ab 

SEM 0.512 0.216 0.542 0.512 0.116 0.923 1.128 
a, b Denote differences between d for each observed behavior 
*Near is considered within 0.33 m  
1Birds not within 0.3 m of the water lines or feed lines (outside the view of the camera) 

 

 

8
0
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Table 2. Effect of time of day on percentage of broiler chickens exhibiting feeding and drinking behaviors together with distribution 

of commercially housed Cobb 700 broiler chickens reared using a feed line lighting system 

a, b Denote differences between time for each observed behavior 
*The first hour of the light period (16L:8D) 
+A randomly selected hour during the light period 
#The last hour during the light period 
1Birds not within 0.3 m of the water lines or feed lines (outside the view of the camera) 

 

 

 

Time 

Feeding 

(%) 

Standing Near 

Feed (%) 

Sitting Near 

Feed (%) 

Drinking  

(%) 

Standing Near 

Water (%) 

Sitting Near 

Water (%) 

Other1 

(%) 

AM* 14.82a 2.99a 6.85b 10.21a 1.14 9.69b 54.26 

Random+ 10.71c 1.66b 8.83a 6.91b 0.83 13.17a 57.90 

PM# 12.81b 1.82b 8.60a 7.38b 1.07 12.68a 55.63 

SEM 0.562 0.405 0.328 0.370 0.183 0.667 1.061 

 

8
1
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Table 3. Feeding drinking and distribution of commercially housed Cobb 700 broiler chickens as effected by age reared using 

conventional lighting  

Day 

Feeding 

(%) 

Standing Near* 

Feed (%) 

Sitting Near* 

Feed (%) 

Drinking  

(%) 

Standing Near* 

Water (%) 

Sitting Near* 

Water (%) 

Other1  

(%) 

15 18.07a 3.68a 4.56c 7.00b 3.07a 9.00c 54.62ab 

21 10.69b 1.80b 9.36b 9.54a 1.55b 14.22b 52.84ab 

35 11.00b 0.42c 10.35ab 6.75b 0.57c 14.13b 56.79a 

40 11.08b 0.19c 11.56a 6.98b 0.21c 18.26a 51.72b 

SEM 0.581 0.133 0.395 0.514 0.135 0.644 1.067 
a, b Denote differences between d for each observed behavior 
*Near is considered within 0.33 m  
1Birds not within 0.3 m of the water lines or feed lines (outside the view of the camera) 

 

8
2
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Table 4. Effect of time of day on percentage of broiler chickens exhibiting feeding and drinking behaviors together with distribution 

of commercially housed Cobb 700 broiler chickens reared using conventional lighting 

 

a, b Denote differences between time for each observed behavior 
*The first hour of the light period (16L:8D) 
+A randomly selected hour during the light period 
#The last hour during the light period 
1Birds not within 0.3 m of the water lines or feed lines (outside the view of the camera) 

Time 

Feeding 

(%) 

Standing Near 

Feed (%) 

Sitting Near 

Feed (%) 

Drinking  

(%) 

Standing Near 

Water (%) 

Sitting Near 

Water (%) 

Other1 (%) 

AM* 15.21a 1.84 8.41 9.77a 1.73 11.79b 51.25b 

Random+ 9.90c 1.33 9.30 6.02b 1.09 15.30a 57.05a 

PM# 13.01b 1.39 9.17 6.91b 1.23 14.61a 53.38b 

SEM 0.638 0.271 0.581 0.395 0.225 0.762 0.884 

 

8
3
 



84 
 

Figure 1. Schematic of a pen one half the width of the commercial broiler house (Trial 1 and 2) 

 

Trial 1.                6.096 m 

 

 Water line »                                      «Feeder  

1.524 m  « AVI Light 

 

 

 

 1 m 
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Figure 2. Percentage of Cobb 700 straight run broilers feeding on 15, 21, 35 and 41 d during the 

first (AM), a random (R) and last (PM) h of the 16 hour light period when reared using feed line 

lighting system.  

a, b Denote differences of birds feeding by time, within each day.  

a 

a a a 

b 

b b 

b 

b 
b 

a 

ab 
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Figure 3. Percentage of Cobb 700 straight run broilers drinking on 15, 21, 35 and 41 d, during 

the first (AM), a random (R) and last (PM) h of the 16 hour light period when reared using feed 

line lighting system. 

a, b Denote differences of birds feeding by time, within each day.  

a 

b 

ab 

a 

a 

b b 
b b 
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Figure 4.  Percentage of Cobb 700 straight run broilers feeding on 15, 21, 35 and 41 d during the 

first (AM), a random (R) and last (PM) h of the 16 hour light period when reared using  

conventional lighting   

a, b Denote differences of birds feeding by time, within each day. 
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Figure 5.  Percentage of Cobb 700 straight run broilers drinking on 15, 21, 35 and 41 d, during 

the first (AM), a random (R) and last (PM) h of the 16 hour light period when reared using  

conventional lighting  

 

a, b Denote differences of birds feeding by time, within each day. 
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Figure 6. Schematic of pens using a feed line gradient lighting system (trial 3).  
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Table 5. Production performance and processing attributes of Cobb 700 broilers reared using 

conventional and feed line lighting to 40 d 

    
Day 0-14 Control Avi Lighting SEM 

BW (kg) 0.48 0.48 0.008 

Feed:Gain 0.93 0.94 0.019 

    

Day 0-40    
BW (Kg) 2.50 2.49 0.019 

Feed:Gain+ 1.67 1.65 0.014 

BW CV %* 10.72 11.26 0.589 

Carcass Yield % 76.34 76.15 0.215 

Breast Yield % 19.87 19.50 0.237 

Tender % 4.27 4.21 0.049 
 

+Feed:Gain was corrected for mortality by subtracting mortality BW from total feed consumed 
*Coefficient of variation  
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CONCLUSIONS  

While the practice of rearing broilers under uniformly distributed low light intensities have been 

demonstrated to have negative effects on development and wellbeing, some reports have 

suggested increased uniform light intensity during rearing suppress production efficiency of 

broilers.  Yet, more recent studies have found that broilers preference for light intensity may 

undergo changes with age.  Three separate investigations were under taken. The feeding, 

drinking behaviors and over all distributions of commercially reared broilers were characterized 

when reared using a feed line lighting system. Similarly, the feeding, drinking behaviors and 

over all distributions of commercially reared broilers were characterized when reared using 

conventional lighting.  Finally, production parameters and processing attributes were evaluated 

for broilers reared under 20 lx or a gradient of 90 to 30 lx.   

In the first trial the number of broilers resting near the feeders decreased with age.  This is 

thought to be a demonstration of decreasing preference for high light intensities while idle 

similar to the findings of (Davis et al., 1999).  However, the number of broilers sitting near 

feeders in the second trial increased with age.  In the third trial it was demonstrated that similar 

production performance (BW, feed:gain) could be achieved using a gradient lighting system of 

higher light intensity (30 to 90 lx) than a lower (20 lx) uniform light intensity.   
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CHAPTER 5  

 

 

 

 

 

 

 

OVERALL CONCLUSIONS  
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The use of preference and choice for light environment optimizations was investigated.  No 

negative effects were observed when providing broilers with free choice in light color 

temperature (K) of light intensity (lx).  Further, the preference of broiler chickens for different 

light color temperatures was demonstrated to change with time of day following that of natural 

light.   

The preference for light intensity was demonstrated to shift from a high intensity (20 lx) to a 

more moderate intensity (10 lx) as age increased.  Similarly, the distribution of idle broilers 

reared using feed line lighting was shown to disperse away from areas of high intensity as age 

increased.  These findings have the potential to further influence the distribution of broilers 

within the rearing environment.  Moreover, improved feed:gain was demonstrated for broilers 

provided preference (5, 10 and 20 lx) of light intensities over broilers reared using 20 lx.  The 

use of a gradient (30 to 90 lx) was found to have similar production parameters as a uniform 20 

lx environment.   

A critical principle often applied in other areas of rearing environment management 

(temperature) can be employed here.  The use of human focused and driven environmental 

parameters are not necessarily appropriate for poultry.  While the vast majority of both 

production, welfare and preference investigations have focused a determining a single light 

intensity and color to be applied evenly across both time (age) and space (the rearing 

environment), these may have been misguided.  The use of a single color and intensity of light 

was demonstrated not to be preferred by broiler chickens.  This is consistent with the natural 

light environment of the jungle fowl and the needs to avoid prey animals.  Additionally, these 

results further demonstrate the importance of considering the past environments in which poultry 

developed.  This is not to say that we should return to outdated and inefficient production 
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systems.  Yet when considering how to optimize the rearing environment ques able to elicit 

responses similar those found in original environments may have positive effects for both 

performance and wellbeing.  

Further work is needed to better understand the mechanisms driving preferences for both light 

color temperatures and light intensity.  However, the use of preference has been demonstrated to 

achieve equal levels of production efficiency while providing broilers with the ability to optimize 

their lighting environment.   
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