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Abstract 

Because earthquakes have a large impact on human society, statistical methods for better 

studying earthquakes are required. One characteristic of earthquakes is the arrival time of seismic 

waves at a seismic signal sensor. Once we can estimate the earthquake arrival time accurately, 

the earthquake location can be triangulated, and assistance can be sent to that area correctly. This 

study presents a Bayesian framework to predict the arrival time of seismic waves with associated 

uncertainty. We use a change point framework to model the different conditions before and after 

the seismic wave arrives. To evaluate the performance of the model, we conducted a simulation 

study where we could evaluate the predictive performance of the model framework. The results 

show that our method has acceptable performance of arrival time prediction with accounting for 

the uncertainty. 
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1 Introduction 

1.1 Background 

Earthquakes are incredibly powerful natural disasters that have large impacts on society. 

For example, a magnitude 8 earthquake occurred in 2008 in Sichuan, China and killed almost 

69,225 people. In 2010, a 7.0 magnitude earthquake killed approximate 200,000 people in Haiti. 

Because the impact of some earthquakes is so large, there is a great need to learn as much as 

possible about these events. 

From the earliest seismograph invented in China in 132 AD to the permanent global 

earthquake detection network stations built today, there have been many scientific advances. 

Today’s earthquake researches can not only detect the orientation of the earthquake which the 

ancient seismograph did but can also detect the seismic waves and quantize them. In addition, 

there are many earthquake observatories around the world which monitor seismic activity today. 

Traditionally, the analysis of seismographs was done by hand. As these observatories are 

becoming more and more automated, observers are not required to stay in observatories all day. 

This automation is a result of the use of computers to record and analyze seismic data.  

Earthquakes produce two types of seismic waves: body waves and surface waves. Body waves 

travel through the interior of the earth whereas surface waves travel on the surface of the earth. 

In addition, body waves travel faster than surface waves. Body waves are composed of P waves 

and S waves (Shearer, 2003). Both P and S seismic wave signals are time series processes; 

however, P waves can travel through both liquids and solids, whereas S waves can only travel  
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P-waves and S-waves from a small (M4) earthquake that took place near 

Vancouver Island in 1997. 

 

 

Fig. 1. Plot for a real seismic wave signal which contains S wave and P wave over a period of 12 

seconds. The P wave and S wave arrival time are shown on the diagram. 

through solids. P waves travel faster than S waves and do so with an example time series shown 

in Fig. 1 (Earle, 2016).  

In order to detect the earthquake arrival time and locate where the earthquake occurred as 

quickly as possible, seismic waves are monitored with sensors at many locations around the 

world resulting in an increasing amount of seismic data. Because of the increase in data 

collection, there is a need for development of new statistical models to replace the traditional 

inference by eye. An important characteristic of seismic waves is arrival time. The arrival time is 

the time at which a seismic signal is first detected. If the arrival time of an earthquake is 

estimated with precision, the earthquake’s location could be triangulated with high accuracy. 

Therefore, accurate and precise estimation of arrival time is vital for earthquake warning and 

attribution.  

This thesis focuses on estimating the arrival time of seismic waves using a change point 



3 

time series model. Because we are uncertain about the model and parameters, we account for 

model uncertainty by fitting a number of models and then applying Bayesian model averaging 

(BMA) over the model set and parameter uncertainty is accounted for by using a Bayesian 

posterior. The final estimate of arrival time is estimated with uncertainty by fitting the models 

over a grid of candidate models and applying a second iteration of BMA over the range of 

possible change points. 

1.2 Previous Work 

To motivate the model, we introduce prior work on the statistical modeling of S wave 

arrival times using the multi-variate locally stationary autoregressive (Takanami & Kitagawa, 

1991). Takanami and Kitagawa (1991) built models for describing background noise and the 

signal associated with an S wave arrival and define the arrival time as the change-point between 

these models. 

The seismic signal data in Takanami and Kitagawa (1991) is the amplitude of two 

different seismic wave frequencies. The background noise model defines the seismic wave signal 

after the arrival of the faster P wave but before the S wave is detected. Because the background 

noise is the seismic signal before S wave is detected, the background model includes white noise 

and the tail of P wave. 

The background noise model is: 

𝒚𝒕 = ∑ 𝜽𝒊𝟏𝒚𝒕−𝒊 + Ɛ𝟏𝒕
𝑝1
𝑖=1 ,  (𝑡= 1,…, 𝜏)    (1) 

where 𝒚𝒕 is the observation at time t. Ɛ𝟏𝒕 is white noise which has mean 0 and covariance 

matrix Ʃ1, 𝜽𝒊𝟏 is the autoregressive coefficient matrix of the model for the tail of P wave, τ is 
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the S wave arrival time, and 𝑝1 is the order of the model for tail of P wave.  

Because P wave moves faster than S waves, Takanami and Kitagawa (1991) assumed the 

tail of P wave is dominated by the S wave. Thus, the signal model combines S wave signal and 

an uncorrelated white noise giving rise to the signal model: 

𝒚𝒕 = ∑ 𝜽𝒊𝟐𝒚𝒕−𝒊 + Ɛ𝟐𝒕
𝑝2
𝑖=1 ,  (𝑡= 𝜏 +1,…, 𝑇)   (2) 

where the white noise Ɛ𝟐𝒕 has mean 0 and covariance matrix Ʃ2, 𝜽𝒊𝟐 is an autoregressive 

coefficient matrix for the S wave, 𝜏 is the S wave arrival time, and 𝑝2 is the order of the model 

for S wave.  

 Takanami and Kitagawa (1991) fit their model for each fixed 𝜏, calculated the Akaike 

information criterion (AIC) value across the possible arrival times 𝜏, and selected the arrival 

time based on the model with minimum AIC value. However, uncertainty exists in model 

selection and these authors selected a single model based on the lowest AIC value, not 

accounting for uncertainty. A possible approach to account for uncertainty is to apply AIC 

weighting over the arrival time. However, this has been shown to have poor performance in 

model selection (Link & Barker, 2006) and does not result in a probabilistic estimate of 

uncertainty. Similar to Takanami and Kitagawa (1991), we model the seismic activity using a 

change point model which includes an autoregressive and moving average model (ARMA) 

structure for the seismic wave process; however, we use an uncorrelated Gaussian white noise 

model for the background process. To properly account for model and arrival time uncertainty, 

we employ Bayesian model averaging (BMA), leading to a computationally efficient 

parallelizable frame work for estimation (Hoeting et al., 1999). Furthermore, if BMA estimation 
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were used to obtain three arrival time interval estimates from different locations, interval 

estimates could be used to locate the earthquake epicenter with associated uncertainty using 

triangulation methods. In contrast, methods that generate point estimates for the arrival time (like 

estimating the change point with Akaike information criterion (AIC)) have a low probability of 

producing a triangulated estimate that covers the true earthquake location due to a lack of formal 

uncertainty propagation. The contributions of this thesis are a modeling framework that accounts 

for uncertainty in the arrival time estimate while additionally accounting for model uncertainty 

and an improvement of triangulation for area estimation which uses BMA interval estimates.  

 In the section 2, we present the model framework and show how we use BMA to 

estimate the arrival time of seismic waves. In the section 3, we outline a simulation study that 

demonstrates model performance empirically. Finally, we discuss the result of our study and 

present avenues for future research.  

 

  



6 

2 Model Statement 

2.1 Model Introduction 

The statistical modeling of observations indexed in time is called time series (Chatfield, 

2003). Based on this definition, the seismic signal collected by a seismograph is a time series. 

Takanami and Kitagawa (1991), Hayah and Kim (2013), and Colombelli (2014) have used 

methods from time series to study earthquakes, and we use these methods as inspiration for our 

work. 

The models used in this study assume the time series is stationary. A second order 

stationary time series is a time series which has no trend, no seasonality and constant variance 

(Chatfield, 2003). Specifically, if a distribution {𝑦1, 𝑦2, … , 𝑦𝑡} is a second order stationary time 

series, the mean and variance of this distribution will be constant over time 𝑡, and the correlation 

between  𝑦𝑎 and 𝑦𝑎+ℎ (1 <  𝑎, 𝑎 + ℎ <  𝑡) only depends on the interval ℎ. In a strictly 

stationary time series, the distribution of {𝑦1, 𝑦2, … , 𝑦𝑎} is the same as {𝑦1+ℎ, 𝑦2+ℎ, … , 𝑦𝑎+ℎ} 

for any choice of 𝑎 and ℎ. Many models can be used in stationary time series analysis 

including the moving average model (MA), the autoregressive model (AR), and the 

autoregressive-moving-average model (ARMA). 

2.1.1 Moving Average Model 

 The moving average (MA) model can be presented as the current white noise innovation 

plus a weighted sum of past innovations where the weights are called coefficients. 

Moving average models of order q are given by: 

𝑦𝑡 = ∑ 𝛽𝑖Ɛ𝑡−𝑖
𝑞
𝑖=1 + Ɛ𝑡,                        (3) 
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where Ɛ𝑡 is the current white noise where Ɛ𝑡~𝑁(0,  𝜎Ɛ
2), 𝜷 = (𝛽1, 𝛽2… , 𝛽𝑞) are moving 

average coefficients, 𝑦𝑡 is the observation at time 𝑡, and 𝑞 is the order of MA model. 

The autocorrelation function (ACF) is an important tool in evaluating the model order of 

a stationary time series. The empirical ACF estimates the correlation between points at lag 𝑘 in 

a time series process by: 

𝑟𝑘 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−𝑘−�̅�)
𝑛
𝑡=𝑘+1

∑ (𝑦𝑡−�̅�)2
𝑛
𝑡=1

, 𝑘 = 1,2, …            (4) 

where 𝑦𝑡 is the observation at time 𝑡, �̅� is the mean of observation, and 𝑛 is the sample size. 

In a time series process, the cut-off of the empirical ACF can be used to determine the order of 

MA model. For example, if the empirical ACF is between −
2

√n
 to 

2

√n
 after lag 𝑞, we can use a 

MA(q) to model this process. 

2.1.2 Autoregressive Model 

 The autoregressive (AR) model describes a time series model where the current 

observation is regressed onto past observed values with additional uncorrelated white noise.  

The autoregressive models of order p is: 

𝑦𝑡 = ∑ 𝜙𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖 + 𝜂𝑡,                       (5) 

where 𝜂𝑡~𝑁(0,  𝜎𝜂
2) is uncorrelated white noise, 𝝓 = (𝜙1, 𝜙2… ,𝜙𝑝) are 

autoregressive coefficients, 𝑦𝑡 is the observation at time 𝑡, and p is the order of AR model. 

The empirical partial autocorrelation (pACF) can be used as a tool to estimate the order of the 

AR model in a time series process. The pACF is the ACF between points separated at lag 𝑘 in 

time conditional on the linear correlation for all observations with lag less than 𝑘.The empirical 

pACF at lag 𝑘 is: 
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𝜌𝑘 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦𝑡,𝑦𝑡−𝑘∣𝑦𝑡−1,𝑦𝑡−2,…,𝑦𝑡−𝑘+1)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦𝑡∣𝑦𝑡−1,𝑦𝑡−2,…,𝑦𝑡−𝑘+1)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦𝑡−𝑘∣𝑦𝑡−1,𝑦𝑡−2,…,𝑦𝑡−𝑘+1)
,    (6) 

where 𝑦𝑡 is the observation at time t. If the empirical pACF is between −
2

√𝑛
 to 

2

√𝑛
 after lag p, 

then the AR(p) model is a reasonable choice for the time series. 

2.1.3 Autoregressive-Moving-Average Model 

The Autoregressive-moving-average model (ARMA) is constructed by combining an 

autoregressive (AR) model and a moving average (MA) model (Cryer & Chan, 2008). 

The ARMA model of order 𝑝 and 𝑞 is : 

𝑦𝑡 = ∑ 𝜙𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖 + ∑ 𝛽𝑖ξ𝑡−𝑖

𝑞
𝑖=1 + ξ𝑡,              (7) 

where 𝝓 = (𝜙1, 𝜙2… ,𝜙𝑝) are the autoregressive coefficients of the AR portion of the model 

and 𝜷 = (𝛽1, 𝛽2… , 𝛽𝑞) are the coefficients of the MA portion of the model, 𝑝 is the order of 

AR portion, 𝑞 is the order of MA portion, and ξ𝑡 are uncorrelated white noise error terms with 

mean 0 and variance  𝜎𝜉
2. 

2.1.4 Change Point Model for This Study 

 We assume that prior to the arrival of the seismic wave, the background process is a 

white noise process because the background process is a random process that has the same 

intensity at various frequencies. After the seismic signal arrives at the seismograph, the seismic 

signal becomes stronger and can be detected. Although the seismic signal is non-stationary 

during a long time interval, it is approximately stationary during a short time interval (Ozaki & 

Tong, 1975). Thus, we assume the seismic signal can be represented as a stationary time series 

process during a short time interval.  
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Our model combines two equations, the white noise process model which describes the 

seismic signal before the arrival time, and an ARMA model which describes the process after the 

arrival time. Therefore, we use a change point model to model the change of condition which are 

before and after the arrival time. Our model framework is the following: 

Background Noise Model: 

Before the arrival of the earthquake signal, we assume the signal is a white noise process: 

𝑦𝑡 = 𝜖𝑡,                             if    𝑡 ≤ 𝜏  (8)               

Where the background noise observations are defined as {𝑦𝑡}, 𝜖𝑡~𝑁(0,  𝜎𝜖
2) is uncorrelated 

white noise, and 𝜏 is defined as the earthquake arrival time.  

Signal Model: 

Because we assumed the seismic signal is stationary for small timescales, an ARMA model can 

be used to describe the signal. The signal model describes the seismic wave process after the 

arrival time 𝜏. 

𝑦𝑡 = ∑ 𝜙𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖 + ∑ 𝛽𝑖𝛿𝑡−𝑖 + 𝛿𝑡,   

𝑞
𝑖=1   if    𝑡 ≤ 𝜏  (9) 

In the above equation, 𝝓 = (𝜙1, 𝜙2… ,𝜙𝑝) are the parameters of the AR portion of the model 

and 𝜷 = (𝛽1, 𝛽2… , 𝛽𝑞) are the parameters of the MA portion of the model, 𝑝 is the order of 

AR portion, 𝑞 is the order of MA portion, and 𝛿𝑡 are uncorrelated Gaussian white noise error 

with mean 0 and variance  𝜎𝛿
2. 

 In order to simplify the calculation when we fit this model, we noted that the 

ARMA(p,q) process can be represented as AR(∞) model (Chatfield, 2003). Because the AR 
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model is easier to fit than a ARMA model using Markov chain Monte Carlo (MCMC), we 

decided to use AR(∞) representation. 

Using the AR(∞) representation, the signal model is: 

𝑦𝑡 = ∑ 𝜙𝑖𝑦𝑡−𝑖 + 𝜂𝑡
∞
𝑖=1 ,                if 𝑡 > 𝜏     (10) 

where 𝜂𝑡~𝑁(0, 𝜎𝜂
2) is uncorrelated white noise and {𝜙𝑖} are autoregressive coefficients.  

In practice, we are unable to fit an AR(∞) model with an infinite number of parameters, 

thus we approximate the AR(∞) model with an AR(𝑝) model where the best choice of 𝑝 is 

unknown. 

The full change point model given 𝜏 and 𝑝 is: 

Change Point Model: 

𝑦𝑡 = {
𝜖𝑡,                          if 𝑡 ≤ 𝜏

∑ 𝜙𝑖𝑦𝑡−𝑖 + 𝜂𝑡
𝑝
𝑖=1 ,              if 𝑡 > 𝜏

    (11) 

2.2 Bayesian Framework 

2.2.1 Markov Chain Monte-Carlo 

To obtain estimates of the location of the change point with associated uncertainty, we 

used a Bayesian framework. In order to estimate the posterior distribution for each parameter, we 

used Markov chain Monte Carlo (MCMC) because MCMC is an efficient approach to draw 

samples from the posterior distributions which are intractable (Ravenzwaaij, Cassey & Brown, 

2016).  

A Markov Chain is a memoryless stochastic process where the current state only depends 

on values of the last state. For example, the generated random sequence of states up to iteration 

𝑛 in the stochastic process are 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Because of the Markov property, we have 



11 

𝑝(𝑥𝑛 ∣ 𝑥𝑛−1, 𝑥𝑛−2, … 𝑥1) = 𝑝(𝑥𝑛 ∣ 𝑥𝑛−1 ).               (12) 

The posterior probability density 𝑝(𝑋) is: 

𝑝(𝑋) = 𝑝(𝑥1)∏ 𝑝(𝑥𝑖 ∣ 𝑥𝑖−1 )
𝑛
𝑖=2 .              (13) 

In addition, the Markov Chain is stationary which means the transition probabilities are 

unchanged at different positions in the chain. For any different points 𝑛 and 𝑛∗ in the Markov 

Chain, 𝑘(𝑥𝑛 ∣ 𝑥𝑛−1) is equal to 𝑘(𝑥𝑛∗ ∣ 𝑥𝑛∗−1) which means that the probability 𝑥𝑛−1 

transitions to 𝑥𝑛 is same as the probability 𝑥𝑛−1∗ transitions to 𝑥𝑛∗ . We only use the samples 

from the stationary Markov Chain to implement Monte-Carlo estimate, which in practice means 

we eliminate the initial MCMC iterations as burn-in. 

The Monte-Carlo method allows for numeric calculation of functions of a probability 

distribution using a large number of samples when these functions are difficult to calculate 

analytically. For example, the mean 𝜇 of a probability density 𝑝(𝑥) is: 

𝜇 = ∫ 𝑥𝑝(𝑥)𝑑𝑥
𝑥

.                    (14) 

Sometimes, the integral of (14) may be difficult to calculate analytically. In these cases, a Monte-

Carlo method estimate can be calculated by drawing a large number of samples 𝑛 from the 

probability density 𝑝(𝑥). Then, the samples are 𝑥1, 𝑥2, … , 𝑥𝑛, and the Monte Carlo estimate of 

mean �̂� is: 

�̂� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 .                        (15) 

As the number of Monte Carlo samples increases, 

𝑙𝑖𝑚
𝑛→∞

�̂� = 𝜇.                         (16) 
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2.2.2 Metropolis-Hastings Algorithm 

 The Metropolis-Hastings algorithm is a Markov Chain sampling method that produces 

stationary Markov chains (Robert & Casella, 2010). In order to converge the correct distribution, 

it is necessary for the Markov chain to be stationary when we implement MCMC sampling. A 

Markov chain satisfying the detailed balance relationship: 

𝑝(𝑥∗)𝑘(𝑥 ∣ 𝑥∗) = 𝑝(𝑥)𝑘(𝑥∗ ∣ 𝑥)                (17) 

is stationary, where 𝑝(𝑥∗) and 𝑝(𝑥) are target densities, 𝑘(𝑥∗ ∣ 𝑥) and 𝑘(𝑥 ∣ 𝑥∗) are 

transition probabilities. If equation (17) is true, then the Markov chain is stationary. For many 

algorithms, equation (17) may not be satisfied. Because of that, the MCMC will converge to an 

incorrect distribution. In order to solve this problem, the Metropolis-Hastings algorithm was 

proposed by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and promoted by 

Hastings (1970). This algorithm uses the acceptance rate 𝛼(𝑥∗) to determine whether to move 

𝑥 to a new state 𝑥∗: 

𝛼(𝑥∗) = 𝑚𝑖𝑛(1,
𝑝(𝑥∗)

𝑝(𝑥)
×
𝑞(𝑥∣𝑥∗)

𝑞(𝑥∗∣𝑥)
),               (18) 

where 𝑞(𝑥∗ ∣ 𝑥) and 𝑞(𝑥 ∣ 𝑥∗) are proposal distributions. 

Thus, we have  

𝑝(𝑥)𝑞(𝑥∗ ∣ 𝑥)𝛼(𝑥∗) = 𝑝(𝑥)𝑞(𝑥∗ ∣ 𝑥)𝑚𝑖𝑛 (1,
𝑝(𝑥∗)

𝑝(𝑥)
×
𝑞(𝑥 ∣ 𝑥∗)

𝑞(𝑥∗ ∣ 𝑥)
) 

            = 𝑚𝑖𝑛(𝑝(𝑥)𝑞(𝑥∗ ∣ 𝑥), 𝑝(𝑥∗)𝑞(𝑥 ∣ 𝑥∗)) 

                = 𝑝(𝑥∗)𝑞(𝑥 ∣ 𝑥∗)𝑚𝑖𝑛(1,
𝑝(𝑥)

𝑝(𝑥∗)
×
𝑞(𝑥∗ ∣ 𝑥)

𝑞(𝑥 ∣ 𝑥∗)
) 

                             = 𝑝(𝑥∗)𝑞(𝑥 ∣ 𝑥∗)𝛼(𝑥),           (19) 
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which satisfies the detailed balance. Therefore, the Metropolis-Hastings algorithm uses the 

acceptance rate to make the Markov chain stationary when implementing MCMC sampling to 

guarantee the Markov Chain converges to the correct distribution. To evaluate a proposed jump 

from state 𝑥 to 𝑥∗, we draw a random number 𝑢 from Unif (0, 1) and compare with 𝛼(𝑥∗), 

 {
𝑥 = 𝑥∗,                          (𝑢 ≤ 𝛼(𝑥∗))
𝑥 = 𝑥,                           (𝑢 > 𝛼(𝑥∗))

     (20) 

if 𝑢 ≤ 𝛼(𝑥∗), then accept 𝑥 move to 𝑥∗, where 𝑥∗ is a new generated proposal state. If 𝑢 >

𝛼(𝑥∗), 𝑥 is set to be 𝑥 without movement.  

2.2.3  Stan Software 

In our study, we implemented MCMC sampling using the Stan software. Stan is a mature 

platform for statistical modeling and computation that is widely used in engineering, sociology, 

biology and business. There are various probability functions and algebra in Stan’s math library. 

Stan also can interface with the current data analysis languages such as R, Python, Bash, 

MATLAB and Julia. In addition, Stan is an open-source software which can work on the current 

main platforms such as Linux, Mac and Windows (Stan Development Team, 2014). 

2.2.4 Hamiltonian Monte Carlo 

Stan uses Hamiltonian Monte Carlo (HMC) for MCMC sampling (Stan Development 

Team, 2014). HMC is effective in preventing random walk behavior and increasing the 

computational efficiency in terms of effective sample size per second (Hoffman & Gelman, 

2014). The Hamiltonian method uses auxiliary momentum variables 𝒙 and draws from the joint 

density: 

𝑃(𝒙,𝑸) = 𝑃(𝒙 ∣ 𝑸)𝑃(𝑸),                     (21) 
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where 𝑃(𝒙 ∣ 𝑸) is the density of the auxiliary momentum variables conditional on the current 

state 𝑸 and 𝑃(𝑸) is the probability density for parameter 𝑸. The joint density 𝑃(𝒙,𝑸) can 

be defined as a Hamiltonian function: 

𝐻(𝒙,𝑸) = − 𝑙𝑜𝑔 𝑃(𝒙,𝑸) 

= − 𝑙𝑜𝑔 𝑃(𝒙 ∣ 𝑸) − 𝑙𝑜𝑔 𝑃(𝑸) 

        = 𝐾(𝒙 ∣ 𝑸) + 𝑈(𝒙,𝑸),                         (22) 

where 𝐾(𝒙 ∣ 𝑸) = − 𝑙𝑜𝑔 𝑃(𝒙 ∣ 𝑸) is called the kinetic energy, 𝑈(𝒙,𝑸) = − 𝑙𝑜𝑔 𝑃(𝑸) is 

called the potential energy (typically called the log-posterior in statistics), and 𝐻(𝒙,𝑸) is called 

the total energy. In this study, 𝑈(𝒙,𝑸) represents the likelihood. The x are called momentum 

variables and following a multivariate normal distribution with mean 0 and variance Ʃ that is 

learned during the estimation algorithm.  

In a dynamic system, 𝐻(𝒙,𝑸) is defined by a current parameter Q and new momentum 

𝒙. The dynamic Hamiltonian equations are: 

{

𝑑𝑸

𝑑𝑡
= +

𝜕𝐾

𝜕𝒙
𝑑𝒙

𝑑𝑡
= −

𝜕𝑈

𝜕𝑸

                         (23) 

The leapfrog integrator algorithm that approximates Hamiltonian dynamics updates, the 

momentum and position by repeating the algorithm below 𝑛 times: 

{
 

 𝒙 ← 𝒙 − 휀
1

2

𝜕𝑈

𝜕𝑸

𝑸 ← 𝑸+ 휀Ʃ𝒙

𝒙 ← 𝒙 − 휀
1

2

𝜕𝑈

𝜕𝑸
,

                      (24) 

where 휀 is the step size of the leapfrog algorithm. If the Hamiltonian algorithm implements 𝑇 

leapfrog steps, the overall computation time will be 𝑂(𝑛𝑇).  
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After 𝑇 iterations of equation (23), the new state 𝐻(𝒙∗, 𝑸∗) will be obtained. Similar to 

the Metropolis-Hastings’ acceptance rate, the new state 𝐻(𝒙∗, 𝑸∗) is accepted with probability: 

𝑚𝑖𝑛 (1, 𝑒𝑥𝑝(𝐻(𝒙,𝑸) − 𝐻(𝒙∗, 𝑸∗))).    (25) 

If the new state 𝐻(𝒙∗, 𝑸∗) is not accepted, the previous value of the parameter will be used for 

the iteration. Although the computation of HMC method is more complicated than MCMC 

method, HMC can generate less correlated samples than Metropolis-Hastings, resulting in a more 

efficient algorithm in. terms of effective sample size per second. 

2.2.5 Priors  

In order to fit model (11) within a Bayesian framework, we defined priors for the 

unknown parameters 𝝓, 𝜎2, 𝜎𝜂
2. We assigned 𝜎2 and 𝜎𝜂

2  inverse-Gamma (𝛼0 = 0.5, 𝛽0 =

0.5) priors. Because it is difficult to specify priors on the AR 𝝓 that make the time series 

causal, we instead assign priors on a transformation of 𝝓. If we apply uniform prior support on 

the partial autocorrelation function (pACF) parameters �̃� and then transform the pACF 

parameters to the autocorrelation function (ACF) parameters, any 𝝓 we obtain under that 

condition will provide a causal time series process. Therefore, the uniform priors on the pACF 

parameters induce a causal prior on 𝝓 giving rise to a causal time series. The pACF to ACF 

formula for AR(p) model (Monahan, 1984) is: 

𝜙𝑖
(𝑘)
= 𝜙𝑖

(𝑘−1)
+ �̃�𝑘

(𝑘)
𝜙𝑘−𝑖
(𝑘−1)

,    (𝑖 = 1,… , 𝑘 − 1)     (26) 

where 𝑘 = 1,… , 𝑝, {𝜙𝑖
(𝑘)
} = 𝝓 are the coefficients of AR(p) model, �̃�𝑘

(𝑘)
 is the partial 

autocorrelations at lag 𝑘 where ∣ �̃�𝑘
(𝑘)
∣< 1 and {�̃�𝑘

(𝑘)
} = �̃� 
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2.3 Model Averaging and Estimation of 𝝉  

In practice, model uncertainty exists if the true model is unknown. For example, if the 

true data generating process is an AR(5) model but we fit an AR(3) model, there will be 

unaccounted for uncertainty due to an error in model choice. We could use AIC value to select 

the best model for a data set. However, if we use Akaike information criterion (AIC) to choose 

the best model from to from a set of candidate models (Banks & Joyner, 2017), an error in model 

selection still could be made.  

The AIC value for each model is: 

𝐴𝐼𝐶𝑖 = −2�̂�𝑖 + 2𝑘𝑖,                (27) 

where �̂�𝑖 are the log of maximum likelihood for each model and 𝑘𝑖 are the number of 

parameters for each model.  

In our study, the correct model for the seismic signal is unknown and model uncertainty 

needs to be accounted for. In addition, we are fitting a fixed change point model where the true 

change point is unknown. Thus, it is necessary to account for uncertainty when estimate the 

arrival time in our study. There are two methods that can be used to overcome the model 

uncertainty: AIC model averaging and Bayesian model averaging.  

2.3.1 AIC Model Averaging 

 AIC model averaging is a method to account for uncertainty. AIC model averaging 

weights different models by AIC weight. In order to calculate the AIC weights, the AIC 

difference is computed: 
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∆𝐴𝐼𝐶𝑖 = 𝐴𝐼C𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛,                 (28) 

where 𝐴𝐼𝐶𝑚𝑖𝑛 is the minimum of {𝐴𝐼𝐶1, 𝐴𝐼𝐶2, … , 𝐴𝐼𝐶𝑛} of the models under consideration, 

𝐴𝐼𝐶𝑖 is the AIC value for the ith model and ∆𝐴𝐼𝐶𝑖 is the difference in AIC between the i-th 

model and the model with the minimum AIC. 

 Using theses model weights, the relative likelihood for model 𝑀𝑖 is: 

𝐿(𝑀𝑖 ∣ 𝑦) ∝ 𝑒𝑥𝑝 (−
1

2
∆𝐴𝐼𝐶𝑖),              (29) 

where 𝑦 is the data. The AIC weight for model 𝑀𝑖 is: 

𝑤𝑟∣𝜏 =
𝑒𝑥𝑝(−

1

2
∆𝐴𝐼𝐶𝑟)

∑ 𝑒𝑥𝑝(−
1

2
∆𝐴𝐼𝐶𝑖)

𝑟
𝑖=1

,                   (30) 

where R is the total number of models under consideration. 

Therefore, in our study, if we used AR(2) to AR(20) models to fit the data and used AIC 

weight model averaging to account for model uncertainty, the estimate of arrival time �̃� is: 

�̃� = ∑ ∑ 𝑤𝑟∣𝜏𝜏
𝑅=20
𝑟=2

𝑇=500
𝜏=1 ,                 (31) 

where 𝑤𝑟∣𝜏 are the AIC weights for each candidate model given the change point 𝜏, 𝜏 is all 

possible change points which is from 1 to 500 and 𝑇 is the total 500 time point in this time 

series. 

The use of AIC weight induces the “K-L (Kullback-Leibler) prior” which makes the AIC 

weights approximate to the posterior model probability distribution (Burnham & Anderson, 

2004). Therefore, the posterior model probability distribution of AIC weight is: 

𝑤𝑖 = 𝑃(𝑀𝑖 ∣ 𝒚) ≈
𝑒𝑥𝑝 (−

1

2
𝐴𝐼𝐶𝑖)

∑ 𝑒𝑥𝑝 (−
1

2
𝐴𝐼𝐶𝑟)

𝑅
𝑟=1

        (32) 
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However, the K-L prior has strong effect on the AIC weight, and the AIC weight tends to favor 

models with more parameters (Link & Barker, 2006). Due to this fact, the use of AIC weights for 

model averaging would tend to choose models with larger values of the autoregressive model 

order 𝑝 which may cause bias. Thus, we present an alternative method to account for the 

uncertainty.  

2.3.2  Bayesian Model Averaging 

Bayesian model averaging (BMA) is an approach that accounts for the uncertainty in 

model choice (Hoeting et al., 1999). BMA averages the posterior distribution over the model set 

by weighting posterior model probability for each model under consideration. Madigan and 

Raftery (1994) also noted that the BMA prediction will often be better than using a single model. 

 Our goal is to estimate 𝜏. Due to the uncertainty of the value of the autoregressive 

model order 𝑝 in our model, we perform a grid search over set of all possible 𝑝 from 2 to 𝑅 =

20 instead of choosing the optimum model with fixed 𝜏. Therefore, we used AR(2) to AR(20) 

models to fit the data and used BMA to account for model uncertainty, reweighting models based 

on how well they fit with the data.  

 For estimating arrival time 𝜏 with uncertainty, we need to compute the posterior 

distribution of the estimate arrival time 𝜏. We fit a model for each possible value of 𝜏, then 

perform model averaging over the set of all possible choices of change point. Thus, the posterior 

distribution we are interested in is:    

[𝜏 ∣ y]=
∑ [20
𝑝=2  𝒚∣𝑀𝑝,𝜏][ 𝑀𝑝∣𝜏][𝜏]

∑ ∑ [20
𝑝=2  𝒚∣𝑀𝑝,𝜏][ 𝑀𝑝∣𝜏][𝜏]

𝑇
𝜏=1

       (33) 
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In equation (32), 𝑀2 to 𝑀20 are the set of possible models with 𝑀𝑝 representing the AR(𝑝) 

models. [ 𝑀𝑝 ∣ 𝜏] is 
1

19
 because we assume each model is equally likely, a priori. The prior 

distribution over arrival times [𝜏] is 
1

𝑇
 because we assume before any data are collected that 

any time point in the time series is uniformly likely to be the change point. [ 𝒚 ∣∣ 𝑀𝑝, 𝜏 ], the 

likelihood of the data under model 𝑀𝑝 times the prior distributions and given change point τ, is 

defined as: 

[ 𝒚 ∣∣ 𝑀𝑝, 𝜏 ]=∫[ 𝒚 ∣∣ 𝑀𝑝, 𝜏, 𝜽𝒑 ][ 𝜽𝒑 ∣∣ 𝑀𝑝, 𝜏 ] 𝑑𝜽𝒑,   (34) 

where 𝜽𝒑 is a set of parameters {𝜙1, 𝜙2… , 𝜙𝑝,𝜎𝜂
2} for model 𝑀𝑝. The integral of equation (33) 

is calculated by MCMC sampling, accounting for parameter uncertainty. 
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3 Simulation Study 

3.1 Simulation Method 

 

Fig. 2. Simulated data from the change point model (11) with 𝑝 = 4. The redline at time 250 

indicates the arrival time. 

In order to examine how well the model framework performs, we conducted a simulation 

study.  

We simulated 54 independent datasets from change point model (11) with  𝜎2 = 0.9, 

𝜎𝜂
2 = 1, 𝑝 = 4, {𝜙1, 𝜙2, 𝜙3, 𝜙4} = {0.5, 0.3, −0.5, −0.2}, 𝜏 = 250, and T = 500. An example 

of one of the simulated datasets is shown in Fig. 2. We noted our simulated process is similar to 

the real seismic waves on Fig. 1 because the pattern in the data is noticeably different after the 

change point which is the arrival time. Thus, our change point model could describe real seismic 

signals well.  
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We fit 19 different models given 500 different change points for each of 54 independent 

simulated datasets resulting in total 513,000 model fits. Because the study required fitting many 

models, we used the high performance “Razor computing cluster” at University of Arkansas that 

has 4,328 cores with a peak performance of 76 TF (Trillion Floating Point Operations per 

Second), and supports various statistical software including Matlab, Python, and R, among others 

(“Arkansas High Performance Computing Center (AHPCC)”, n.d.). The use of the computing 

resource allowed for efficiently fitting many models for each of the 54 simulated datasets. 

We used Stan (Stan Development Team, 2014) to fit the 19 models for each of the 54 

datasets by sampling 700 samples per chain, keeping 200 samples after 500 warmup iterations 

and fitting 4 chains giving 800 posterior samples per model fit. To generate posterior 

distributions for model averaging, we fit a grid of all values of 𝑝 and 𝜏 for each simulated 

dataset. Next, we implemented BMA using the equation (32) and obtained the model averaged 

posterior for the simulated arrival time weights [𝜏 ∣ y] for each simulated dataset.  

3.2 Results 

To check the estimates of arrival time 𝜏, we plot the posterior density of the arrival time 

𝜏 with the simulated true value of 𝜏 = 250 as a vertical red line for 6 of the 54  

 

 

 

 



22 

Estimate of Arrival Time by 6 simulations 

 

Fig. 3. Posterior densities for estimation of arrival time averaging over all possible model orders. 

(zoomed in to the time period 𝑡 from 200 to 300). The red line at 𝑡 = 250 indicates that the 

true arrival time we set for the simulated data. The blue shaded region shows the central 80% 

credible interval for arrival time. The heights of the curves represent the BMA posterior density. 

simulated datasets (Fig. 3). The central 80% credible interval for estimating the arrival time 𝜏 is 

shown in the shading. Simulation 49, 51, 52, and 54 have change point predictions that contain 

the simulated arrival time 𝜏 = 250 within the 80% central credible interval. However, some of 

the predictions are failed to cover the arrival time, such as simulation 50 and 53, whose credible 

intervals do not contain the simulated arrival time 𝜏 = 250. The empirical coverage for 𝜏 based 

on a central 80% credible interval in these 6 simulations is 67%. However, the empirical 

coverage for 𝜏 in all 54 simulations is 83.33% which is close to its corresponding theoretical 

coverage (80%); thus, the central 80% Bayesian credible interval estimate of arrival time in all 

54 simulations appears to be well calibrated. 
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Calibration Plot of Arrival Time 

  

Fig. 4. Plot for theoretical credible interval coverage of arrival time and empirical credible 

interval coverage of arrival time. The empirical coverage for arrival time is the proportion of 

simulated credible intervals that contain the simulated true arrival time 𝜏 = 250. The red line is 

the one-to-one line that represents a well calibrated prediction. 

To check the general performance of the model in estimating the arrival time, we 

calculated the empirical coverage for 𝜏, which is the proportion of simulated datasets where the 

estimated (1-𝛼) ∗ 100% credible interval estimate 𝜏 contains the simulated arrival time 𝜏 =

250. To check for any potential issues in model fit, we set 𝛼 at values 0.01 to 0.99 in 0.01 

increments to estimate empirical coverage. Then, we plotted the theoretical coverage (1 − 𝛼) 

and versus its corresponding empirical coverage for 𝜏 (Fig. 4). We note that the points in Fig. 4 

approximately coincide with the one-to-one line, suggesting that the theoretical coverage and the 

corresponding empirical coverage for 𝜏 are approximately equal. Therefore, the BMA estimate 

of arrival time is well calibrated for estimation of 𝜏.  
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Average Estimate of Arrival Time 

 

Fig. 5. Averaged posterior density for estimate of arrival time of 54 simulations (zoomed in to the 

time period 𝑡 from 200 to 300). The blue shaded region shows the central 80% credible interval 

for the arrival time and the red line at 𝑡 = 250 shows the true arrival time for the simulated 

data. The height of the curves represents the averaged BMA posterior density. 

Another way to check the general performance of the arrival time estimate is to average 

all the posterior densities for the 54 simulations and plot the averaged posterior density of 𝜏 

with the simulated true value of 𝜏 = 250 as a vertical red line (Fig. 5). The shaded region 

shows central 80% credible interval for the arrival time 𝜏. We see the average highest posterior 

density of arrival time over all 54 simulations is close to the simulated arrival time 𝜏 = 250 and 

is contained within the 80% central credible interval. This provides evidence that, on average, the 

BMA approach to estimating arrival time accurately.  
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Estimate of Model’s Order by 6 Simulations 

 

Fig. 6. Posterior densities for estimation of model order averaging over all possible arrival times. 

The blue shaded region shows the central 80% credible interval for the model order and the red 

line at 𝑝 = 4 shows the true model order for the simulated data. The heights of the histograms 

represent the BMA posterior density. 

We plotted the posterior density for the autoregressive model parameter order 𝑝 and 

selected the same 6 simulated datasets in Fig 6. The red line shows the true simulated model 

order of 𝑝 = 4 we shade the 80% central Bayesian credible interval. Fig. 6 shows that the 

predictions on simulations 49, 50, 51, 52 and 54 contain the simulated model order 𝑝 = 4 

within the 80% central credible interval. Especially on simulation 49, 50 and 51, the simulated 

model order 𝑝 = 4 is at the highest BMA posterior density of estimation of model order 𝑝; 

thus, simulation 49, 50 and 51 perform very well on estimating of model order 𝑝. Because only 

the estimate of model order 𝑝 for simulation 53 does not contain the simulated model order 

𝑝 = 4, the empirical coverage for 𝑝 is 83% for the six example plots, which is close to its 
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theoretical coverage (80%) in these 6 simulations. The overall empirical coverage for 𝑝 in all 54 

simulations is 75.93%, and it is also close to its corresponding theoretical coverage (80%). 

However, if we increase the theoretical coverage to 90%, the general empirical coverage in all 54 

simulations for 𝑝 is 77.78%, and it is not close to its corresponding theoretical coverage. 

Therefore, the general estimate of model order 𝑝 in all 54 simulations may not always perform 

well depending on different theoretical coverage values. 

Ideally, because all datasets were simulated from an AR(4) model, the estimates of the 

autoregressive model parameter order 𝑝 should perform well. However, Gonzalez and Foy 

(1997), and Bedossa, Dargère and Paradis (2003) have stressed that due to the sampling error, 

sampling variability exists in their estimates. We found similar results where the sampling 

variability influences our sampling. If we repeat the same procedure many times, the average 

estimate of autoregressive model parameter order 𝑝 will be close to the true model order we set. 

Thus, it is important to check the general performance of the model in estimating the 

autoregressive model parameter order 𝑝 and the average estimate of autoregressive model 

parameter order 𝑝 in all 54 simulations in next steps. 
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Calibration Plot of Model’s Order 

 

Fig. 7. Plot for theoretical credible interval coverage of arrival time and empirical credible 

interval coverage of BMA model order estimate. The empirical coverage for the model order 𝑝 

is the proportion of the simulated credible intervals that contain the simulated true model order 

𝑝 = 4. The red line is the one-to-one line that represents a well calibrated prediction. 

We repeated the same procedure as Fig. 4 for the autoregressive order parameter 𝑝 (Fig. 

7) to check the general performance of the model in estimating the autoregressive model 

parameter order 𝑝. The plot is not as tight with the one-to-one line, especially as the theoretical 

coverage increases. For larger values of 𝛼, the empirical coverage is far away from the one-to-

one line. Because of that, the theoretical coverage and its each corresponding empirical coverage 

for 𝑝 are not approximately equal. Therefore, the BMA might not be calibrated for estimation of 

𝑝; however, this might simply due to the impact of the model space being a discrete parameter 

and the sample size being relatively small. A more computationally intensive simulation study 

could be used to further explore this relationship. 
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Average Estimate of Model’s Order 

 

Fig. 8. Averaged posterior density for estimation of model order of 54 simulations. The blue 

shaded region shows the central 80% credible interval for the model order and the red line at 

𝑝 = 4 shows the true model order for the simulated data. The height of the histogram represents 

the averaged BMA posterior density. 

Following the same procedure as Fig. 5, we plotted the averaged posterior density of 

autoregressive model parameter order 𝑝 of 54 simulations (Fig. 8). The red line shows the true 

simulated model order of 𝑝 = 4 we set and the shade regions show the central 80% credible 

interval for model order. We see the true model order of 𝑝 = 4 we set is at left boundary of 

central 80% credible interval; however, the simulated value of 𝑝 = 4 is at the highest average 

posterior density. Therefore, the estimate of autoregressive model parameter seems to be 

performing well even though the simulated parameter 𝑝 = 4 is at the boundary of the central 

80% credible interval. Thus, there is need for more investigation into the performance of the 

BMA framework in estimating the model order. 
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For readers’ convenience, we used our results to build shiny app and deployed it to the 

cloud to share with readers (https://hareluyaboy.shinyapps.io/thesisapp/). A shiny app is a self-

service platform that is convenient for users to visualize and share their projects on website 

(Shinyapps.io team, 2018).  

  

https://hareluyaboy.shinyapps.io/thesisapp/
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4 Discussion  

In this thesis, we demonstrated that the change point model framework (11) can estimate 

the seismic wave arrival time accurately while the use of BMA allows for calibrated estimation 

of uncertainty about arrival time. One concern about using BMA is whether the true model is in 

the model set; although we only used AR(2) to AR(20) models in our model set, the final BMA 

model represents a model that is outside the model set which can help reduce this issue. 

However, the 19 models we used may be not enough to account for model uncertainty in future 

analyses, and if this is the case, more models can be introduced into the model set. 

In this simulation study, data were simulated from an AR(4) model only. Because the 

AR(4) model is in the model set, the BMA should be able to fit the data well. As such, the 

estimation of the quality of prediction of seismic arrival time on real data is probably over 

optimistic. One way to test this issue would be to explore different data generating models and 

perform the simulation study over these new classes of simulated data.  

Moreover, although the result shows the BMA may not calibrate the estimation of 

autoregressive model parameter 𝑝, the average estimate of the model parameter 𝑝 performs 

well. There is need to investigate this reason in future study. 

In reality, researchers desire to pick the arrival time of a seismic wave as quickly as they 

can. In order to increase the calculation speed, parallel computing is needed. Parallel computing 

is a method that breaks a problem into many parts, and uses many computing tools to solve each 

separate part at the same time (Grama et al., 2003). For example, in this study, we used 19 
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models to fit the data; if we use 19 computing cores for each model to implement the model 

fitting at the same time, the calculation speed will theoretically increase nearly 19 times relative 

to using one computing core. Therefore, although we increase the candidate models in practice, it 

is possible to optimize the calculation speed for nearly real-time estimation if we properly use 

parallel computing resources.  

To fully account for the uncertainty in future studies, there should be as many models to 

account for uncertainty as possible. We have already seen that our Bayesian framework performs 

very well on estimating the change point in our simulation study. In order to check our model’s 

practicability, it is necessary to fit the data from real seismic wave and check its performance in 

future work.  
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