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ABSTRACT 

We use a bivariate sample selection model to address peer network effects on participation in 

and/or intensity of use of land being irrigated by alternative irrigation practices in the state of 

Arkansas. As groundwater in the state becomes more limited, the use of scientific scheduling, 

flowmeters, and more efficient row crop water application systems will allow producers to better 

manage water resources. We find relatively large, positive relationships between belonging to a 

peer network of the same irrigation practice and participation in that practice. Intensity of use of 

alternative irrigation techniques is mostly influenced by which crop type the practice is 

associated with and income. 
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INTRODUCTION 

Diminishing groundwater resources are threatening the security of nearly half of the world’s 

drinking water supply and 43% of the world’s irrigation water supply (van der Gun 2012). One 

common solution policymakers have relied on to reduce groundwater use is to improve irrigation 

efficiency. The foundation for improving irrigation efficiency is measuring how much of the 

water applied to the field eventually reaches the plant (Bryant, et al., 2017). Additionally, how 

the water is applied is vitally important. However, several recent empirical studies have shown 

that using more efficient irrigation technologies may increase total farm-level water use and 

groundwater (e.g., Pfeiffer and Lin, 2014). Finding ways to increase efficiency and reduce 

groundwater use are especially important in the state of Arkansas and other irrigation intensive 

states (West, et al., 2016). This paper examines which factors, specifically peer networks, 

influence Arkansas producers’ use and share, or intensity, of alternative irrigation techniques for 

irrigation efficiency. 

In our study, a producer is considered to be in a peer network if he or she knows a family 

member, friend, or neighbor who uses a certain irrigation practice. Belonging to a peer network 

does not necessarily mean that producer also uses the practice, but as the study shows, the two 

are positively related and highly significant. Our goal is to determine how peer networks might 

play a role in the continued use of these irrigation practices and share of acres of land which are 

being irrigated or measured by them. We expect to find large, positive relationships between 

belonging to a peer network of the irrigation practice in question. When the dependent variable is 

a type of irrigation practice, then we hypothesize belonging to a peer network of that same 

irrigation practice would have a large, positive relationship relative to other variables. This 

relationship could come about in two ways: 1) the relationship formed before the irrigation 
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practice was adopted or 2) the relationship exists because the producer adopted that irrigation 

practice. With the data available to us, the causality of the relationship cannot be determined; 

however, it helps establish a building block which further studies can expand upon. 

In addition, we expect belonging to peer network groups of practices connected to the same type 

of crops to positively influence the relationship with the irrigation practice in question. For 

example, we believe a producer using a row crop water application system would be more likely 

to be associated with other row crop water application system peer networks such as surge 

irrigation, center pivots, or precision leveling. These examples showcase the continued use of the 

water application system, but not the share of acres of land affected by it. For that set of 

relationships, we expect similar results to their binary usage counterparts.  

As of 2012, Arkansas ranked third in farm acres irrigated, totaling 4.8 million acres. Between 

2007 and 2012, the state’s irrigated base expanded by 343,220 acres, a 7.7% increase. Only 

Mississippi had a higher percentage increase with 20.7%; however, the total acreage increase for 

Mississippi was less than Arkansas at 283,317 acres (USDA, 2013). The top two states in 

irrigated acres, Nebraska and California, decreased irrigated acreage by 3.1% and 1.9%, 

respectively. In fact, of the top ten irrigated states, only Arkansas, Idaho, Kansas, and Mississippi 

increased their acreage (USDA, 2013). For more perspective, of the 55.8 million acres of 

farmland under irrigation in the United States in 2012, about 8.6% of it was in Arkansas, and 

about three out of five cropland acres in Arkansas are being irrigated (West, et al., 2016).  

In terms of total volume of water applied for irrigation, Arkansas also ranks third in the United 

States as of 2013 with 6.45 million acre-feet of water applied, while California substantially 

leads in this category with 23.49 million acre-feet of water applied (West, et al., 2016). The 

average amount of irrigation water applied per acre in Arkansas in 2013 is 16 inches. This is the 
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same rate of application as fifth-ranked Texas, but less than the 37 inches in California and more 

than the 12 inches in second-ranked Nebraska (West, et al., 2016). 

Arkansas producers draw groundwater from the Mississippi Alluvial Aquifer. While 

groundwater levels remain relatively high closer to the Mississippi River, central and southern 

Arkansas producers face diminishing groundwater levels (West, et al., 2016). The Arkansas 

Natural Resources Commission (ANRC) publishes a yearly groundwater report for the state 

which identifies ‘critical groundwater areas’ determined to have “significant groundwater 

depletion or degradation” (ANRC, 2018). The critical groundwater areas are concentrated in the 

Grand Prairie region (central Arkansas), the Cache region (east Arkansas, west of Crowley’s 

Ridge), and the South Arkansas region (ANRC, 2018). These areas have depths to groundwater 

of 66 feet to 150 feet, compared to non-critical areas which have depths to groundwater under 50 

feet – although this is not the sole metric in determining critical status (ANRC, 2018). 

Nationwide, at least half of irrigated cropland acreage uses less efficient, traditional irrigation 

application systems such as pressure sprinkler systems (Schaible and Aillery, pg. iv, 2012). 

Alternative practices may include soil moisture sensors, commercial irrigation scheduling 

services, and computer-based crop growth simulation models that help producers decide when 

and how much to irrigate (Schaible and Aillery, pg. 12, 2012). These practices contrast to the 

traditional practices which include physically looking or touching the plants, gravity systems 

without enhancements, or regularly scheduled irrigation times. 

Schaible and Aillery (2012) point out that traditional water application systems will become even 

less efficient as application losses increase due to higher evaporation rates caused by rising 

temperatures from greenhouse gas effects. In Arkansas, reliance on the irrigation water from the 

Mississippi alluvial aquifer prompted the 2014 Arkansas water plan to recommend irrigation 
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enhancements (ANRC, 2014). Such practices include Mississippi State University’s Row-crop 

Irrigation Science and Extension Research (RISER) program for soybean and corn production 

and zero-grade leveling for rice production (Krutz, et al., 2014). In 2013, roughly 36% of farms 

and 45% of irrigated acres in Arkansas use at least one efficient irrigation practice (USDA, 

2013). The most common practice is precision leveling or zero-grade leveling with 22% of all 

irrigated acres followed by tailwater recovery systems, diking, time limits or alternative row crop 

irrigation with 18% of all irrigated acres (USDA, 2013). Our study examines three categories of 

efficient irrigation technologies: scientific irrigation scheduling, flowmeters, and row crop water 

application systems.  

Under scientific scheduling, we consider all forms of scientific scheduling, and then two specific 

groups: 1) soil moisture sensors and 2) ET/atmometer along with Woodruff Charts (ETCW). Soil 

moisture sensors are used in conjunction with timed water application systems to inhibit or allow 

a scheduled irrigation based on variations in the moisture of the soil (Qualls, et al., 2001). 

Although shown to increase efficiency in water application, producers have shown reluctance to 

adopt them due to the uncertainty about eventual savings outweighing the relatively high initial 

cost of purchase, installation, and operation (Blonquist, Jr., et al., 2006). Atmometers are used to 

monitor evapotranspiration (ET) of crops by simulating the water use of a well-watered reference 

crop (Andales, et al., 2007). This way producers can determine whether or not to irrigate based 

on the amount of water the crop is losing or retaining. Typically, the reference crop for 

atmometers is alfalfa (Andales, et al., 2007). Woodruff (1975) developed a chart to aid Missouri 

corn producers to schedule water applications based on amount of rainfall – this is not to be 

confused with the Arkansas Irrigation Scheduler. Modern versions of Woodruff charts became 
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publicly available as a computer software program in June 2001 and have grown in popularity 

with producers in states adjacent to Missouri (Henggeler, 2009). 

Our second category, flowmeters, includes all types, and then is broken down into mounted 

flowmeters and portable flowmeters, as described by Louisiana State University’s AgCenter 

Research and Extension (2008). Mounted flowmeters are the most common type and measure the 

velocity of water inside a pipe via a propeller. The flowmeters are mounted either directly in the 

pipe or on a flanged joint. Portable flowmeters are relatively new and do not require any 

modification to the irrigation system and are installed at the universal hydrant or propeller 

(Louisiana State University, 2008). Their appeal comes from their ability to be moved around, 

hence portable, and easy installation and removal. A downside is the relatively higher cost 

compared to the mounted flowmeters (Louisiana State University, 2008). 

The row crop water application systems category includes three practices: 1) computerized hole 

selection, 2) center pivot systems, and 3) surge irrigation. Computerized hole selection  uses a 

computer software program known as Pipe Hole and Universal Crown Evaluation Tool 

(PHAUCET) that determines the diameter of the hole cut into the poly-pipe based on pressure 

changes along the tubing, pipe diameter, row length, and elevation changes in the field (UAEX, 

undated). Using computerized hole selection allows water to reach the ends of varied length rows 

more evenly and can aid in runoff and pumping time (Bryant, et al., 2017). Bryant, et al. (2017) 

indicate using computerized hole selection can save producers $10 per acre for a traditionally 

shaped field and up to $25 per acre for an irregularly shaped field.  

Center pivot systems operate by drawing water from the ground, from a well, at a central “pivot” 

and the extended sprinkler system rotates circularly, spraying water over the crops. These are 

most common in western states since they are more cost-effective when groundwater is the 
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preferred option over obtaining water from surface bodies of water (Schaible and Aillery, 2012). 

In Arkansas, they are normally found in heavy cotton-producing areas. They are used instead of 

traditional furrow irrigation when a producer’s field is impossible or impractical to irrigate in 

that manner, and are best suited for large square-, rectangular-, or circular-shaped fields free of 

obstacles (UAEX, undated). Center pivots allow areas of higher elevation in a field to be 

irrigated as if the field was uniformly downward-sloping. 

Surge irrigation pulses water down the furrows as opposed to a continuous stream. It does this by 

diverting water to the left or right of the pipe via valve movement (Fipps, undated). It has the 

potential to increase furrow irrigation efficiency to levels usually associated with sprinkler or 

drip irrigation systems (Fipps, undated). Henry and Krutz (2017) state that it works on the 

principle that dry soil infiltrates water faster than wet soil. Once the upper part of the furrow has 

been sufficiently saturated, another pulse of water is pumped over the wet soil where it 

eventually settles into the next dry spot in timed cycles (Fipps, undated). Surge irrigation 

improves down furrow distribution efficiency, and, for most soil types, reduces the amount of 

water needed during the first few irrigations (Fipps, undated).. 

Reliance on groundwater from the Mississippi alluvial aquifer calls attention to its conservation 

and sustainability. While eastern states like Arkansas are not as regulated as western states in 

regards to water use, there is a growing concern (Schaible and Aillery, 2012). Arkansas finds 

itself in a unique situation since it could replace groundwater demand with ample surface water 

sources. As depth to groundwater increases, thus increasing costs of pumping, producers will 

need to look for alternative ways to apply water to their irrigated acres.  

The literature is in consensus that the alternatives described in this study can aid in enhanced 

water application to fields, but how these practices are disseminated amongst producers is not 
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clear. Identifying factors which lead to continued use of these practices is helpful twofold: 1) it is 

reasonable to hypothesize a factor explaining continued use could also be used to explain initial 

adoption and 2) continued use is the next logical step in the technology adoption process and 

becomes even more critical as reliance on groundwater increases. In addition, the share of acres 

of land irrigated by these alternative irrigation practices should be studied in conjunction with 

continued use because if a producer finds one of these practices useful, he or she should be 

looking to expand that usage.  
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LITERATURE REVIEW 

While noneconomic social sciences focus more on the impacts peer groups have on technology 

dissemination (Rogers, 1962), economists maintain their interest in more traditional 

measurements, like access to physical capital or human capital such as learning from extension 

services (Feder, Just, and Zilberman, 1985). Maertens and Barrett (2012) emphasize the 

underdeveloped economic literature of how social networks influence technology adoption.  

Since the 2012 study, more emphasis has gone toward social networks’ impact on irrigation 

technology adoption (Genius, et al., 2014; Taylor and Zilberman, 2017). 

It is important to note, however, our study does not attempt to draw conclusions about what 

motivates initial adoption. We examine relationships between existing use and share of land that 

uses alternative irrigation technologies and peer networks. This approach adds to the literature 

twofold: 1) newer studies have focused on adoption, but not whether producers continue to use 

more efficient irrigation systems, and 2) how shares of acres are affected by the efficient 

systems. While adoption is the first step, continuation of the practice and expanded use of it are 

the logical next steps in improving irrigation efficiency long term and are the focus of this study. 

Genius, et al. (2014) considered irrigation adoption in Greece with a focus on peer networks. 

Their study separated its variables into four categories: 1) economic, 2) farm organizational and 

demographic, 3) environment, and 4) social learning – what we are calling peer networks 

(Genius, et al., 2014). Categories 1 to 3 are controls in our study, while category 4 is the focus. 

Genius, et al. (2014) used distance between adopters, exposure to extension outlets, and distance 

from extension outlets as social learning variables. Greater distance between adopters increased 

the time before adoption of irrigation technology by 0.172 years per one unit increase in the 

distance (pg. 340), while exposure to extension outlets and shorter distance from extension 
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outlets decreased the time before adoption by 0.293 years and 0.306 years, respectively (pg. 340-

1). Before Genius, et al. (2014), Koundouri, et al. (2006) used peer networks across towns on the 

island of Crete to analyze adoption of irrigation technologies. Their independent variables were 

extension visits and active information gathering – defined as a producer proactively searching 

for information on these irrigation technologies – and she found positive relationships with 

adoption for both, but relatively low magnitudes compared to other variables in the study. 

Extension visits increased the probability of adoption by 9.52% and active information gathering 

increased the probability by 15.04% (pg. 666). Environmental variables, such as soil type and 

aridity index, had the largest, positive affects toward the probability of adoption (pg. 666). In 

contrast, our variables are specific to irrigation practices found in the Arkansas Delta and use 

knowledge of peer practices to proxy for social learning variables. These peer networks more 

broadly capture the social learning than general knowledge of, or exposure to, extension outlets 

or distance to adopters. 

It is also important to understand how networks interact. The two primary interactions are 

frequency and directionality – how often nodes are interacting and how information is 

transmitted between those nodes (Maertens and Barrett, 2012). There is a rich literature on social 

networks or peer effects – albeit not historically in economic literature (Maertens and Barrett, 

2012). The literature is in consensus that social networks are “defined by individual members 

(nodes) and the links between them through which information, money, goods, or services flow” 

(Maertens and Barrett, 2012, pg. 353). Unfortunately, it is difficult to measure the peer networks 

in our study by frequency and directionality since we do not have the appropriate data for such 

analysis. Both modes are likely represented in the peer network variables available to us. 
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The peer effect literature also emphasizes the difficulty in inferring causality even when the 

social networks are well measured. The primary concern is endogenous evolution of the peer 

networks through feedback (Barrett, 2005; Jackson, 2008; Stephens, 2009). There are almost 

certainly correlated factors amongst nodes within a social network. In addition, simultaneous 

interaction and behavioral changes amongst nodes create an issue where it becomes difficult to 

separate endogenous effects from exogenous effects (Manski, 1993). 

The methodology used in social network adoption papers has evolved as well and should be 

similar to our approach, even though we are not exploring adoption rates. One of the most 

common methodological approaches has been to use conceptual models, such as threshold 

models (Taylor and Zilberman, 2017). In this context, threshold models work by analyzing how 

many nodes in a producer’s social network need to adopt the technology before the producer in 

question also adopts (Taylor and Zilberman, 2017). When there are two choices, conceptual 

models can provide an insightful way to analyze when a producer may change his or her mind in 

regard to adopting a more efficient irrigation technology. As the literature expanded (Useche, 

2003; Koundouri, et al. 2006; Kulecho and Weatherhead, 2007; Alcon, et al., 2011; Genius, et 

al., 2014), economists were noting the growing complexities in social networks; therefore, 

conceptual models could not capture the entire story. Since the mid-2000s, economists have used 

more econometric approaches (Koundouri, et al., 2006; Maertens and Barrett, 2012; Genius, et 

al., 2014; Taylor and Zilberman, 2017), believing that a broader analysis of explanatory variables 

is required before specifying and/or limiting a study to one or two potential choices a producer 

has to make (Taylor and Zilberman, 2017). 

We also believe many of the control variables in our study should serve in a similar fashion to 

categories 1 to 3 used from Genius, et al. (2014). Other irrigation adoption papers, which do not 
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include social network analysis, often use variables related to weather, soil types and/or 

permeability, crop type, cost of water, crop price, income, and field size (Green, et al., 1996; 

Schuck and Sunding, 2005; Koundouri, et al., 2006; Genius, et al., 2014; Schoengold, et al., 

2014). If a certain explanatory variable leads to adoption, then it would be logical to hypothesize 

that same variable would lead to at least participation in the same alternative irrigation practice, 

if not the expansion of its use. Since our data are taken from a single year, producers affirming 

they use a certain technique must have adopted it previously and are continuing to use it. 

A Schaible and Aillery (2012) report outlines some factors which affect irrigation technology 

investment. The report found consistencies in motivation for adopting more efficient technology, 

with slight variations based on where in the United States the producer was located. Producers in 

the western United States cite reduction in applied water and lower labor costs as key elements, 

while eastern producers are more interested in improving crop yield and quality (Schaible and 

Aillery, 2012). Lying on the edge of the east-west divide, Arkansas producers may share 

commonalities with both sets of producers.  

The report also asserts that producers looking to expand irrigated acreage would likely need to 

invest in new, high-efficiency systems, while those looking to reduce irrigated acreage should 

first remove acres which are currently being irrigated by lower efficiency systems (Schaible and 

Aillery, 2012). A decision to increase or decrease irrigated acreage may also be determined by 

the particular crop being grown. Lower valued crops, like hay and other pasture crops, would be 

less likely to be included in a plan to increase irrigated acreage (Schaible and Aillery, 2012). 

Findings in this report influenced the selection of our control variables, such crop type, income, 

and current irrigation technologies being used. 
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While major strides have been made in including peer networks and their relationship to 

adoption of irrigation technologies, or at least their relationship with irrigation technology use 

(Maertens and Barrett, 2012; Genius, et al., 2014; Taylor and Zilberman, 2017), our search of the 

literature could not find any studies that analyze the share of those irrigation technologies 

producers use on their land. Our study aims to not only analyze the effects peer networks have on 

participation in irrigation technologies, but also how those effects influence usage intensity. 
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METHODS   

To determine which factors are associated with the use of the irrigation measurement tools and 

techniques, and the factors that explain the acres of land that use these conditional on the use of 

the irrigation tools and techniques, we use a bivariate sample selection model (Heckman, 1979). 

The models are estimated by maximum likelihood which allows us to examine the impact of 

each independent variable on the dependent variables, and will increase our understanding of 

which variables may be influencing producer choices when it comes to degree of use of the 

irrigation measurement tools and techniques. Each bivariate sample selection model contains a 

participation equation and an outcome equation. The participation equation dependent variable is 

binary to indicate use of given irrigation measurement tools and techniques or not, while the 

outcome equation dependent variable includes the share of acres that are affected by the 

technique; in the case of flowmeters, it is the share of pumps which have flowmeters. 

In a sample selection model, the dependent variable in the participation equation, 𝑦1, is an 

incompletely observed value of a latent dependent variable 𝑦1
∗, where the observation rule is 

𝑦1 = {
0 𝑖𝑓𝑦1

∗≤0 

1 𝑖𝑓 𝑦1
∗>0,

 

and a resultant outcome equation that  

𝑦2 =  {
−   𝑖𝑓 𝑦1

∗≤0.

𝑦2
∗ 𝑖𝑓 𝑦1

∗>0
  

This model specifies that 𝑦2 is observed when 𝑦1
∗ > 0, whereas 𝑦2 has no meaningful value 

when 𝑦1
∗ ≤ 0. The latent variables 𝑦1

∗ and 𝑦2
∗ indicate that the mechanism motivating 

participation (𝑦1
∗) and the share of acres for a particular irrigation technique (𝑦2

∗) are not observed 
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for all sample observations. The standard approach specifies a linear model with additive errors 

for the latent variables, so 

𝑦1
∗ =  𝑥1

′ 𝛽1 +  𝜀1, 

𝑦2
∗ =  𝑥2

′ 𝛽2 + 𝜀2, 

with need for non-standard estimation methods of 𝛽2if 𝜀1and 𝜀2 are correlated (Heckman, 1979). 

We estimate by maximum likelihood, which yields consistent and asymptotically efficient 

parameter estimates, and uses the additional assumption that the error terms are jointly normally 

distributed and homeskedastic, with 

[
𝜀1

𝜀2
] ~ ℵ [[

0

0
] , [

1 𝜎12

𝜎12 𝜎2
2 ]]. 

A crucial aspect of the model is whether 𝜎12 is nonzero (Cameron and Trivedi, 2010). If 𝜎12  ≠

0, then estimation of the outcome equation is non-standard. The participation equation can be 

consistently estimated in isolation from the outcome equation, but the outcome equation must 

include consideration of 𝜎12 if 𝜎12  ≠ 0. 

The bivariate sample selection model implies the likelihood function 

𝐿 =  ∏{𝑃𝑟[𝑦1𝑖
∗  ≤ 0]}1− 𝑦1𝑖

𝑛

𝑖=1

 {𝑓(𝑦2𝑖 | 𝑦1𝑖
∗  > 0)  × 𝑃𝑟[𝑦1𝑖

∗  > 0]}𝑦1𝑖  

where the first term is the participation equation when 𝑦1𝑖
∗  ≤ 0, and the second term is the 

outcome equation when 𝑦1𝑖
∗ > 0.  
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While the interpretation of parameter estimates of the outcome equation are standard, the 

parameter estimates in the participation equation are difficult to interpret.  As a result, a variety 

of marginal coefficients are computed to interpret results. 

One group of marginal effects is how changes in the independent variables in the participation 

equation affect the probability of participating. These marginal effects show the change in the 

probability of participation in response to a one unit increase in a given explanatory variable. 

Marginal effects for the outcome equation are interpreted as the expected change in 𝑦2 for a 

change in an explanatory variable, conditional on participation in use of the irrigation practice. If 

an independent variable appears only in the outcome equation, its marginal effect is equal to its 

coefficient. If the independent variable appears only in the participation equation, a change in the 

explanatory variable in the participation equation affects the expected value of the error term in 

the participation equation which, through correlation of error terms in both equations (𝜎12 ≠ 0), 

leads to an expected change in 𝑦2. If the independent variable appears in both the participation 

and outcome equations, there is an expected change in 𝑦2 from direct effect from the explanatory 

variable in the outcome equation and an indirect effect from the explanatory variable in the 

participation if the error terms are correlated (𝜎12 ≠ 0).   

The bivariate sample selection model is identified because there are variables in the participation 

equation which are not in the outcome equation. Some models do not find 𝜎12 to be significant, 

but we use a bivariate sample selection model for all models for uniformity, and to capture any 

potentially undetected correlation in the error terms. For each equation, variables with t-values of 

less than 1 were dropped from the final specification. The maximum likelihood estimation for 

bivariate sample selection model used Stata® version 13.1. 
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DATA  

The sample data comes from a survey completed in October 2016 that were collected via 

telephone interviews administered by the Mississippi State University Social Science Research 

Center1. Potential survey respondents came from the water user database managed by the ANRC 

and commercial crop growers identified by Dun & Bradstreet records for the state of Arkansas. 

Of 3,712 attempted contacts, 842 resulted in calls to disabled numbers, resulting in a net sample 

size of 2,870. Of the remaining contacts, 1,321 led to no answer, busy signal, or voicemail. 

Another 925 contacts were ineligible due to illness or language barrier or identified as a non-

farmer. In total, 624 contacts reached were eligible to complete the survey. Among the eligible 

contacts, 255 contacts declined to participate, seven scheduled callbacks but did not complete the 

survey, and 171 contacts discontinued the survey. The final sample size is 199 producers that 

completed the survey in its entirety for a response rate of 32.25%.  

The dependent variables (Table 1.1) are split into two types: binary and share, which is on a 

scale between 1 and 0. The binary variables have 174 observations, while the share variables 

have an observation when there is participation. . 

The scientific scheduling variables (Table 1.1) have the lowest participation and share of any 

other dependent variables. 13% of respondents use scientific scheduling, 8 % use soil moisture 

sensors, and 6% use one or more of the  atmometers, computerized scheduling, and Woodruff 

Charts. Given participation in the scheduling practice, the share of use for the scheduling 

techniques range from 5% of irrigated acres to 2%. 

                                                             
1 The survey was part of an effort to understand irrigation practices over four states in the Mississippi Delta region, 

namely Arkansas, Missouri, Mississippi, and Louisiana.  
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The use of flowmeters (Table 1.1) has the second highest percentage of use at 36%, with 

mounted flowmeter and portable flowmeter use being 27% and 16%, respectively. Share for 

flowmeter variables is based on the number of pumps which have a flowmeter, as opposed to 

irrigated acres. Producers who use portable flowmeters have a much larger share of pumps with 

them, 17%, relative to all types of flowmeters and mounted flowmeters, which is 9% and 7%, 

respectively. Producers who choose to use portable flowmeters have a higher proportion of 

flowmeters on their pumps although the portable flowmeters are more expensive than mounted 

flowmeters. . 

Surge irrigation (Table 1.1) has the lowest usage of the row crop water application systems, 18%, 

and shares the lowest share percentage with soil moisture sensors at 2%. Computerized hole 

selection and center pivot use is similar, 34% and 38%, respectively. Their shares are similar as 

well with computerized hole selection users deploying it on 11% of their irrigated acres, while 

center pivot users irrigate 9% of their irrigated acres with the system. 

Peer networks are the explanatory variables of primary interest in this study (Table 1.2). In the 

survey, respondents were asked to answer “yes” if “close family members, friends, or neighbor 

producers has used [irrigation practice or tool] in the past 10 years.” The only peer network 

variables with less than fifty percent of respondents answering in the affirmative were alternate 

wetting and drying (35%) and surge irrigation (37%). Most peer network variables ranged 

between 55% and 75%, with precision leveling having the most affirmative answers at 90%. 

We compare our sample to the 2012 Census of Agriculture using several variables collected in 

both surveys. This comparison indicates our sample is comparable to that of the census. The 

observations for farm operations with less than 300 acres are dropped because these operators are 

unlikely to have commercial operations. In total, 25 observations were dropped.  The shares of 
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irrigated land in rice (share_irr_rice)A 2 are similar between the Census of Agriculture and our 

sample (29.0% versus 27.5%). The shares are also similar for soybean (share_irr_soy)B 3. The 

share is slightly higher in our sample (55.0%) than in the census (49.2%). In our sample, the 

years of farming experience (exper) (Table 1.3) range from 1 to 60 years with an average of 32.8 

years. This is higher than the average in the Census of Agriculture (24.5 years). Most likely, this 

is due to the census reporting years of experience as operators rather than total years of farming 

experience, as in our survey.  

In addition to the variables described above, several other variables are included in our analysis 

to control for crop choice. The shares of irrigated land of cotton (share_irr_cotton)A and sorghum 

(share_irr_sorghum)B in acres are included, as well as dummy variables for growing corn 

(d_corn)A, cotton (d_cotton)B, rice (d_rice)A, sorghum (d_sorghum)A, and soybean (d_soy)A. 

Most producers grew soybeans (96%), sorghum (75%), and rice (72%); while the least occurring 

crop was cotton (13%). Shares of soybean were also the highest (55%). Although sorghum was 

grown by 75% of farmers, it only made up an average of 1% of their acreage. 

Variables were also created to control for irrigation practices and other farm management 

characteristics (Table 1.3). These include shares of end blocking (share_eb), total reservoirs 

(tot_res), and whether a producer had switched from center pivot to furrow irrigation 

(d_piv_fur). The final variables in this category include the use of cover crops (d_covercrops), 

share of acres deep tilled (share_deeptill), share of acres fertilized by gypsum (share_gypusm), 

and the use of electric or diesel pumps (d_electric, d_diesel).  

                                                             
2 Variables with “A” are found in the Summary Statistics table in the Appendix. 
3 Variables with “B” are found in Table 1.3. 
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Three income variables (Table 1.3) are used to control for income ranges. High-income level 

(d_income_high) includes producers with a total income above $200,000, constitutes 14% of 

respondents. Producers with a middle-income level (d_income_mid) had a total income between 

$75,000 and $200,000. This represented the largest share of income at 42%. 24% of producers 

chose not to report income (d_income_na). Producers with a total income of less than $75,000 

are the intercept. 
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RESULTS AND DISCUSSION 

Scientific Scheduling Results 

The role of peer networks is evident in the use and share of scientific scheduling overall (Table 

2.1). Belonging to a peer network of scientific scheduling users has a positive relationship with 

its use, as well as having a formal education in agriculture. Indeed, belonging to a peer network 

for a dependent variable in question typically has a positive relationship with use since most 

users of an irrigation practice have close peers who also use the practice. In addition, belonging 

to a peer network of computerized hole selection, a newer technology like scientific scheduling, 

and a center pivot peer network has a positive effect on the share of acres that use scientific 

scheduling, while belonging to peer networks of older practices like end blocking, zero grade 

leveling, and flowmeters have negative effects on the share of scientific scheduling use.  

Belonging to a multiple inlet peer network group has a positive relationship with the use of 

scientific scheduling and, more specifically, soil moisture sensors. This may be due to multiple 

inlet irrigation being relatively common practice to increase irrigation efficiency, so most users 

of scientific scheduling would know someone who uses the technique. 

Center pivots are an efficiency enhancing irrigation practice (Schaible and Aillery, 2012, pg. 26) 

and producers with peers who use this practice would thus also be more interested in scientific 

scheduling. Also, producers who switched from center pivot to furrow irrigation are more likely 

to have larger shares of land using scientific scheduling and soil moisture sensors. This is a 

reasonable relationship since those who made the switch would be looking to cut down on the 

high costs of center pivots but still have an interest in irrigating efficiently. Growing cotton has a 

negative relationship in the share of scientific scheduling a producer uses, and this suggests that 

non-cotton producers using center pivots are more likely adopting scientific scheduling. 
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There is a relatively high, positive impact that the share of irrigated sorghum has on the share of 

soil moisture sensors. Sorghum is a less water intensive crop that could be grown when water is 

scarce, and those who cultivate this crop may keep a closer eye on water use  with larger shares 

of acres that use soil moisture sensors. However, operations with a larger share of sorghum have 

a lower share of acres using ETCW. 

Producers who use cover crops also use scientific scheduling, and more specifically, ETCW. The 

producers who use cover crops likely have a concern for soil conservation and moisture levels. 

This could explain an interest in water conservation through ETCW. The share of irrigated 

soybean acres is positive with soil moisture sensor use. Soybeans are often the highest farmland 

share of any irrigated crop, so producers that cultivate more soybeans invest more heavily in 

irrigation.  

Producers with a high-income level have a positive relationship with scientific scheduling. 

Additionally, having a high-income level results in a positive relationship in regard to the 

intensity of use of all three variables in this category. Having a high-income level allows 

producers to invest in these scheduling practices, as well as use more of it once adopted. 

Experience plays a seemingly suggestive role in the use of scientific scheduling at large and soil 

moisture sensors, but an unexpected one regarding scientific scheduling intensity. Having more 

experience leads to lower percent chance of using these techniques, but a higher share of 

irrigated acres affected given adoption. It seems that more experienced producers may be 

reluctant at first, but once adoption occurs, they will increase the amount of acres which are 

using scheduling to be irrigated.  
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Flowmeter Results 

Belonging to a peer network of flowmeter users (Table 2.2) has a highly significant, positive 

relationship with using flowmeters and, more specifically, mounted flowmeters. However, 

growing rice itself – where more well pumping occurs – does not have a significant impact on 

flowmeter use.  Perhaps the use of flowmeters has more ties to specific regions of water shortage 

than the cultivation of a particular crop.  Support for this view comes from the positive and 

significant relationship between the number of reservoirs and flowmeter use.  On-farm reservoir 

construction typically only occurs in places where there is serious concern about water shortage.   

More evidence of the connection between water shortage and flowmeter use  comes from the 

negative relationship belonging to a center pivot peer network has with the share of flowmeters 

per pump, and the positive relationship between the use of flowmeters and mounted flowmeters 

with producers who switched from center pivots to furrow irrigation and those with higher shares 

of end blocking. The use of center pivots is primarily used in crop production close to the 

Mississippi River. This region has more groundwater available, so producers would be less keen 

about tracking their water use. Instead, they are adjusting to uneven fields. Those switching to 

furrow irrigation want to lower the maintenance costs of operating center pivot systems but are 

still aware of limited water resources and would perhaps be more interested in tracking their 

water use. 

Furthermore, peer networks of precision leveling and surge irrigation, row crop water application 

systems, have negative relationships with the use of all flowmeters and mounted ones, and the 

share of portable flowmeters, respectively.  Since row crops use less irrigation water than 

conventionally grown rice, belonging to a peer network of irrigation practices for row crops 

relates to less concern about tracking water use.  The peer network groups associated with rice, 
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zero-grade leveling and on-farm reservoir, have a positive relationship with the share of portable 

flowmeters. So while growing rice itself is not significant for explaining flowmeter use, those 

with knowledge of certain rice irrigation practices are more apt to use portable flowmeters. 

Income seems to play a role in the share of portable flowmeters on a farm. All income variables 

are positive and significant in the outcome equation. Since low income is the intercept, this 

shows that a higher level of income is potentially a threshold, allowing producers to purchase 

more portable flowmeters. 

Producers with more experience have a larger share of pumps using flowmeters. It seems that 

producers with more experience have built up a larger collection of flowmeters over time. 

Additionally, producers with a middle-income level are more likely to use mounted flowmeters. 

However, producers with a high-income level do not have a significant change in use. The 

middle-income level could be a threshold for producers to use mounted flowmeters, but a higher 

income level does not provide any more incentive than a middle-income level does. 

Row Crop Water Application Systems Results 

Only a few variables were significant with the use and share of computerized hole selection 

(Table 2.3). As expected, belonging to a peer network of computerized hole selection users has a 

positive relationship with its use. Since computerized hole selection is a newer practice, it makes 

sense that its users come from a more isolated grouping. The share of gypsum has a positive 

relationship with the share of computerized hole selection.  Producers use gypsum to dilute the 

salinity and replenish these soils. Too much water applied to the furrows without computerized 

hole selection can increases the salinity of the soils.  Gypsum and increasing intensity of use of 

computerized hole selection are then both ways to address saline soils, and this explains why a 
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larger share of gypsum use is positively correlated with computerized hole selection. The share 

of irrigated sorghum has a negative relationship with the share of computerized hole selection. 

Sorghum is a less water intensive crop and brings lower values, so producers irrigate their 

sorghum less frequently. 

Those in scientific scheduling peer networks are less likely to use center pivots. If producers who 

use center pivots are often in groundwater abundant areas, then this explains the negative 

relationship with the scientific scheduling networks.  Cultivation of sorghum positively relates to 

center pivot use. This may be simply because the farming of sorghum and cotton occurs together, 

and much of the cotton production occurs close the Mississippi river where groundwater is 

abundant and center pivots are more common.  Belonging to end blocking and tailwater recovery 

peer networks have negative relationships with the share of center pivots. End blocking is a 

conservation practice for furrow irrigation, so producers would not be mixing the two, and 

tailwater recovery systems are common in areas with less groundwater available. Support for this 

claim is that the relationship between tail-water recovery system use and center pivot use is 

negative. Like we observed with mounted flowmeters, middle income level increases the percent 

chance of use, but high income is not significant, so does not seem to provide extra incentive to 

adopt. 

Use of surge irrigation has a positive relationship with belonging to a peer network of its users, 

but the magnitude (1.46) is lower than the coefficient magnitude for the computerized hole 

selection (1.80) or the center pivot (1.69).  Perhaps for rarer irrigation techniques, the role of the 

peer network is weaker, but high income leads to a greater intensity of surge irrigation once 

adopted. More experienced producers are using a lower share of surge irrigation given that they 

use it to begin with. This is different from what we observe with other variables, but surge 
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irrigation is not as popular, so perhaps younger producers are the ones buying into the benefits of 

it.  Surge irrigation use has a positive relationship with the use of electric motors on pumps, and 

the use of diesel pumps creates a negative relationship with the share of surge irrigation. There is 

a negative relationship with the share of deep tillage on the farm. Producers do not mix these 

practices. They will either use surge irrigation or deep tillage, since deep tillage is already a 

practice used to improve water infiltration.   
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CONCLUSION 

A common observation throughout the study was the relatively large, positive relationships 

between belonging to the dependent variable’s peer network and the use of that irrigation 

practice, but not with the intensity of the practice in question. This applies to scientific 

scheduling, flowmeters, mounted flowmeters, and all three row crop water application systems. 

However, none of the dependent variables from the outcome equations shared this relationship 

with their own peer networks. It seems that belonging to a peer network of the irrigation practice 

is affecting participation, but other factors more strongly affect the intensity of that use. Similar 

to  Genius, et al. (2014) peer network variables play a larger role in the use of alternative 

irrigation practices and tools than other control variables. The magnitudes of the peer networks 

regarding participation were larger than the magnitudes of the control variables. 

Income levels above $75,000 also play a role in both continued use and intensity of use. 

Scientific scheduling use increases with a high-income level, while mounted flowmeter use and 

center pivot use increase with a middle-income level. Seeing only middle-income level as 

significant seems to show that these techniques have thresholds between $75,000 and $200,000, 

but having more income than $200,000 does not provide any extra incentive for producers who 

were not already using to employ these techniques.  

Shares of acres of land scheduled to be irrigated by scientific scheduling increased as producer 

income rose to middle income and then also to a high-income level. This was also the case for 

portable flowmeters in terms of the number of pumps that have flowmeters. Intensity of use of 

surge irrigation rises if the producer income level is a high. Scientific scheduling, portable 

flowmeters, and surge irrigation are relatively uncommon practices. It seems that higher income 

levels are allowing producers to amplify intensity of use of these rarer techniques. 
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Peer networks may be more associated with shared groundwater scarcity as opposed to being 

crop-specific. We would expect the use of flowmeter to positively relate  with rice production; 

however, this is not the case. Instead, we observe the use of flowmeters as having a positive 

relationship with rice-specific irrigation techniques, like on-farm reservoirs and zero-grade 

leveling. Both those techniques are usually  in areas where a lack of groundwater is a major 

concern.  

Share of scientific scheduling was positively impacted by the producer belonging to row crop 

peer networks like computerized hole selection, center pivot, and surge irrigation – belonging to 

an end-blocking peer network was the lone row crop technique which negatively affects 

scientific scheduling. Peer networks groups associated with rice, like flowmeters and zero-grade 

leveling, had negative impacts on the share of scientific scheduling. It makes sense that rice 

producers would not invest in row crop scheduling practices. It is curious still that crop type does 

not affect either the use of or intensity of use of scientific scheduling variables. 

Flowmeters shares positively relate  to belonging to a peer network of on-farm reservoir users 

and zero-grade leveling users.  In addition, the flow meter shares negatively relate to  belonging 

to peer networks of row crop practices such as center pivots and surge irrigation.  However, crop 

type does not significantly influence  flowmeter shares. We observe the lack of a relationship 

between crop type and the use of flowmeters as well. Perhaps rice producers outside of water 

scarce  regions are not concerned with tracking water use even though they are cultivating an 

irrigation-intensive crop. A reason we do not see a negative relationship between flowmeter 

share and less irrigation intensive row crop cultivation is that these crops   can be in water scarce 

areas.. 
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Producers using center pivots, a row crop technique, are less likely to have more acres irrigated 

by center pivots if the producers belong to a peer network of  alternate wetting and drying or end 

blocking techniques.  Alternative wetting and drying is a rice cultivation practice and a sprinkler 

irrigation through center pivots is not for rice. End blocking is a conservation technique for  

furrow irrigation, so producers would not use center pivot sprinkler irrigation in conjunction with 

furrow irrigation.  . 

The only control variables from prior studies that  directly overlap with this study  are income 

levels, education, and experience, although other studies did not specify whether the education 

related to agriculture. The role of income in our study and previous studies is the same. This is 

reasonable as more income would allow a producer to adopt sooner, continue using the practice, 

and even expand use. Having a formal education in agricultural is significant for the use of 

scientific scheduling and the intensity of use of center pivots. This relationship makes sense for 

scientific scheduling and center pivot since we expect those with an agricultural education to  

effectively use more technically demanding techniques. 

In previous studies, experience increased time to adoption and our experience variable, when 

significant, showed a decrease in use of the irrigation practice. This was the case for scientific 

scheduling and soil moisture sensors. However, for both of these, more experience actually led to 

increases in the amount of acres scheduled to be irrigated by these techniques. Two possible 

explanations for this observation are 1) more experienced producers use their wealth of 

knowledge to execute these techniques more effectively, or 2) the adoption of a new technique 

indicates an internal preference for embracing new technologies. Koundouri, et al. (2006) and 

Genius, et al. (2014) did not include intensity of use in their studies, so it would be interesting to 

see how experience would affect those variables if they had them. 
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Our data do not allow us to say what the  direction of the relationship is between peer networks 

and use or intensity of uses. The producer may use the technique because his or her peers do, or 

the producer may have joined the peer network group after implementing the technique on his or 

her farm. In future work, having panel data over many years as opposed to cross-sectional data 

could be helpful since we could know when adoption occurred and when the producers’ 

relationship with their particular peer networks began. In addition, we can analyze the evolution 

of peer networks over time: how size of the network changes, or how directionality of 

information dissemination occurs. Control variables present in other studies which could aid our 

analysis include farm level cost of water, weather or climate change considerations, and soil 

type. Regardless of causality, it is clear peer networks are influential in Arkansas producers’ use 

of alternative irrigation techniques and the share of land using those techniques. Determining 

causality of these relationships may prove essential as reliance on the Mississippi alluvial aquifer 

grows  and  the depth to groundwater increases. 
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APPENDIX 

Table 1.1. Summary Statistics of Dependent Variables 

Variables Definition Mean Std. 

Dev. 

share_sci_sche_ac share of scientifically scheduled acres on total 

irrigated acres 

0.05 0.20 

d_sci_sche_ac = 1 uses a scientific scheduling technique 0.13  

share_sms share of soil moisture sensors on total irrigated acres 0.02 0.13 

d_sms = 1 uses soil moisture sensors 0.08  

share_etcw share of ET/atmometers, computerized scheduling, 

and/or woodruff charts on total irrigated acres 

0.03 0.15 

d_etcw = 1 uses ET/atmometers, computerized scheduling, 

and/or woodruff charts 

0.06  

share_fm share of flowmeters on total pumps 0.09 0.21 

d_fm = 1 uses flowmeters 0.36  

share_mount_fm share of mounted flowmeters on total pumps 0.07 0.18 

d_mount_fm = 1 uses mounted flowmeters 0.27  

share_port_fm share of portable flowmeters on total pumps 0.17 0.06 

d_port_fm = 1 uses portable flowmeters 0.16  

share_surge share of surge irrigation on total irrigated acres 0.02 0.10 

d_surge = 1 uses surge irrigation 0.18  

share_chs share of computerized hole selection on total 

irrigated acres 

0.11 0.23 

d_chs = 1 used computerized hole selection 0.34  

share_cp share of center pivots on total irrigated acres 0.09 0.22 

d_cp = 1 used center pivots 0.38  

Standard deviation for binary variables is left blank because this is a redundant transformation of 

the mean. 

174 observations for binary variables. 

Observations for share variables: 

share_sci_sche_ac (23), share_sms (14), share_etcw (11), share_fm (63),                   

share_mount_fm (47), share_port_fm (28), share surge (31.32), share_chs (19), share_cp (66.12) 
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Table 1.2. Summary Statistics of Peer Network Variables 

Variables Definition Mean 

d_pnet_alt =1 close family members, friends, or neighbor 

producers (peer network) has used alternate wetting 

and drying for rice irrigation in the past 10 years 

0.35 

d_pnet _chs =1 close family members, friends, or neighbor 

producers (peer network) has used computerized 

hole selection on in the past 10 years 

0.56 

d_pnet _cp =1 close family members, friends, or neighbor 

producers (peer network) has used center pivot in 

the past 10 years 

0.67 

d_pnet _end =1 close family members, friends, or neighbor 

producers (peer network) has used end-blocking in 

the past 10 years 

0.55 

d_pnet _fm =1 close family members, friends, or neighbor 

producers (peer network) has used flowmeters in the 

past 10 years 

0.66 

d_pnet _mi =1 close family members, friends, or neighbor 

producers (peer network) has used multiple-inlet 

rice irrigation in the past 10 years 

0.70 

d_pnet _precision =1 close family members, friends, or neighbor 

producers (peer network) has used precision 

leveling in the past 10 years 

0.90 

d_pnet _res =1 close family members, friends, or neighbor 

producers (peer network) has used a storage 

reservoir in the past 10 years 

0.65 

d_pnet _sched =1 close family members, friends, or neighbor 

producers (peer network) has used scientific 

scheduling in the past 10 years 

0.53 

d_pnet _surge =1 close family members, friends, or neighbor 

producers (peer network) has used surge irrigation 

in the past 10 years 

0.37 

d_pnet _twr =1 close family members, friends, or neighbor 

producers (peer network) has used a tail-water 

recovery system in the past 10 years 

0.71 

d_pnet _zg =1 close family members, friends, or neighbor 

producers (peer network) has used zero grade 

leveling in the past 10 years 

0.75 

 Standard deviation for binary variables is left blank because this is a redundant transformation 

of the mean. 

174 observations for peer network variables 
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Table 1.3. Summary Statistics of Select Control Variables 

Variables Definition Mean Std. 

Dev. 

d_diesel = 1 uses diesel motor for pumps 0.91  

d_electric = 1 uses electric motor for pumps 0.88  

d_cotton = 1 grows cotton 0.13  

d_sorghum = 1 grows sorghum 0.75  

share_irr_sorghum share of irrigated sorghum on total irrigated acres 0.01 0.06 

share_deeptill share of deeptill use on total irrigated acres 0.20 0.34 

share_gypsum share of gypsum use on total irrigated acres 0.01 0.07 

tot_res number of reservoirs on the farm 0.38 0.49 

d_twr =1 has a tailwater recovery system 0.49  

d_piv_fur =1 switched any acreage from pivot irrigation to 

furrow irrigation 

0.18  

d_income_high =1 2014 household income from all sources before 

taxes is > $200,000 

0.14  

d_income_mid =1 2014 household income from all sources before 

taxes is > $75,000 and < $200,000 

0.42  

d_income_na =1 unreported 2014 household income from all 

sources before taxes 

0.24  

Standard deviation for binary variables is left blank because this is a redundant transformation of 

the mean. 

174 observations for all variables 
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Table 2.1. Results of Variables within Scientific Scheduling Models 

Participation Equation Scientific Scheduling Soil Moisture 

Sensors 

ET/atmometer, 

Computeriz Scheduling, 

Woodruff charts 

d_pnet_mi 1.36b 

(0.021) 

1.19b 

(0.084) 

0.705 

(0.140) 

d_pnet_sched 1.06b 

(0.020) 

-- -- 

d_piv_fur 1.05b 

(0.005) 

1.35b 

(0.004) 

-- 

d_covercrops 0.635a 

(0.055) 

-- 0.792b 

(0.031) 

d_income_high 1.08b 

(0.040) 

-- -- 

exper -0.024b 

(0.038) 

-0.045b 

(0.004) 

-- 

share_irr_soy  2.40b 
(0.036) 

 

Outcome Equation    

d_pnet_chs 0.401 

(0.253) 

-- -- 

d_pnet_cp 0.706c 
(0.000) 

-- -- 

d_pnet_end -0.211b 

(0.043) 

-- -- 

d_pnet_fm -0.652b 
(0.001) 

-- -- 

d_pnet_surge -- -- 0.345b 

(0.007) 

d_pnet_zg -0.787c 
(0.000) 

-0.606c 

(0.000) 
-- 

d_ag_edu 0.494c 

(0.000) 

-- -- 

d_cotton -0.644c 
(0.000) 

-- -- 

d_covercrops 0.283a 

(0.065) 

-- -- 

d_income_high 0.729c 

(0.000) 

-- -- 

d_income_mid 0.393c 

(0.010) 

-- -- 

d_income_na 1.02c 

(0.001) 

-- -- 

exper 0.012b 

(0.019) 

-- -- 

share_irr_sorghum -1.71 

(1.179) 

8.58a 

(0.084) 

-3.61b 

(0.005) 

Note: a, b, c represents significance at 10%, 5%, and 1% levels. 
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Table 2.2. Results of Variables within Flowmeter Models 

Participation 

Equation 

Flowmeters Mounted Flowmeters Portable Flowmeters 

d_pnet_fm 1.54c 

(0.000) 

1.86c 

(0.00) 

1.13c 

(0.001) 

d_pnet_precision -0.781a 

(0.063) 

-1.63c 

(0.001) 

-- 

d_piv_fur 0.679b 

(0.032) 

0.784b 

(0.03469) 

-- 

d_income_mid -- 0.582a 

(0.085) 

-- 

share_eb -- 1.06b 

(0.028) 

-- 

tot_res 0.524b 

(0.023) 

0.952c 

(0.000) 

-- 

Outcome Equation    

d_pnet_cp -0.149b 

(0.046) 

-- -- 

d_pnet_res -- -- 0.066 

(0.142) 

d_pnet_surge -- -- -0.107c 

(0.002) 

d_pnet_zg -- -- 0.096b 

(0.019) 

d_income_high -- -- 0.156b 

(0.032) 

d_income_mid -- -- 0.137c 

(0.004) 

d_income_na -- -- 0.128b 

(0.016) 

exper 0.004a 

(0.092) 

-- -- 

Note: a, b, c represents significance at 10%, 5%, and 1% levels. 
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Table 2.3. Results of Variables within Row Crop Water Application Systems Models 

Participation Equation Computerized Hole 

Selection 

Center Pivot Surge Irrigation 

d_pnet_chs 1.80c 
(0.000) 

-- -- 

d_pnet_cp -- 1.69c 

(0.000) 

-- 

d_pnet_end -- -- 0.476 
(0.107) 

d_pnet_sched -- -0.440a 

(0.083) 

-- 

d_pnet_surge -- -- 1.46c 
(0.000) 

d_pnet_zg -- -- -0.916c 

(0.008) 

d_cotton -- 2.02c 
(0.000) 

-- 

d_electric 0.499 

(0.214) 

-- 0.834a 

(0.075) 

d_income_mid -- 0.545a 
(0.094) 

-- 

d_sorghum -- 1.01b 

(0.027) 

-- 

d_twr -- -0.736c 
(0.004) 

-- 

share_deeptill 0.498 

(0.149) 

-- -0.974a 

(0.073) 

Outcome Equation    

d_pnet_alt -- -0.131b 

(0.047) 

-- 

d_pnet_end -- -0.279c 

(0.000) 

-- 

d_ag_edu -- 0.184c 

(0.006) 

 

d_twr -- -0.026 

(0.533) 

--  

d_diesel -- -0.433c 

(0.003) 

-0.560c 

(0.000) 

d_income_high -- -- 0.169b 
(0.051) 

exper -- -- -0.007c 

(0.000) 

share_gypsum 0.813b 
(0.020) 

-- -- 

share_irr_sorghum -1.36b 

(0.038) 

-- -- 

Note: a, b, c represents significance at 10%, 5%, and 1% levels. 
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Table 3.1 Summary Statistics of Control Variables only found in Appendix 

Variables Definition Mean Std. 

Dev. 

d_corn = 1 grows corn 0.45  

d_rice =1 grows rice 0.72   

d_soy = 1 grows soybeans 0.96  

share_irr_cotton share of irrigated cotton on total irrigated acres 0.04 0.13 

share_irr_rice share of irrigated rice on total irrigated acres 0.29 0.24 

d_part_cons =1 belongs, or has belonged, to a conservation 

organization 

0.53  

d_use_tax =1 used state tax credits program for conversion to 

surface water or land leveling 

0.20  

d_aware_tax =1 aware of state tax credits program for conversion 

to surface water or land leveling 

0.48  

Standard deviation for binary variables is left blank because this is a redundant transformation of 

the mean. 

174 observations for all variables. 
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Table 4.1 Results of Control Variables within Scientific Scheduling Models 

Participation 

Equation 

Scientific Scheduling Soil Moisture Sensors ET/atmometer, 

Computerized 

Scheduling, 

Woodruff charts 

d_corn -- -- 0.582 

(0.385) 

d_diesel -- -- -0.718 

(0.529) 

d_income_high -- 0.934 

(0.708) 

0.670 

(0.542) 

d_income_mid 0.558 

(0.444) 

0.702 

(0.578) 

0.509 

(0.484) 

d_income_na -0.130 

(0.558) 

0.315 

(0.693) 

-0.074 

(0.615) 

d_part_cons -0.725b 

(0.344) 

-0.812b 

(0.411) 

-0.734a 

(0.382) 

d_sorghum -- 2.60 

(1.76) 

-- 

d_twr -- 0.727 

(0.483) 

-- 

d_use_tax -- 0.844a 

(0.434) 

-- 

exper -0.024b 

(0.012) 

-0.045b 

(0.015) 

-- 

share_irr_sorghum -- -22.76 

(17.78) 

-- 

share_irr_soy 0.944 

(0.772) 

-- -- 

Outcome Equation    

N/A N/A N/A N/A 
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Table 4.2 Results of Control Variables within Flowmeter Models 

Participation 

Equation 

Flowmeters Mounted Flowmeters Portable Flowmeters 

d_aware_tax -- 0.342 

(0.238) 

-- 

d_cotton -0.578 

(0.382) 

-0.751 

(0.459) 

-- 

d_diesel -- -- 0.824 

(0.525) 

d_income_high 0.112 

(0.391) 

0.559 

(0.444) 

-- 

d_income_mid 0.276 

(0.290) 

-- -- 

d_income_na 0.434 

(0.346) 

0.605 

(0.411) 

-- 

share_gypsum -- -- 3.45 

(3.07) 

Outcome Equation    

d_covercrops 0.079 

(0.071) 

-- -- 

exper -- 0.003 

(0.002) 

-- 

share_eb 0.138 

(0.118) 

-- -- 
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Table 4.3 Results of Control Variables within Row Crop Water Application Systems Models 

Participation 

Equation 

Computerized Hole 

Selection 

Center Pivot Surge Irrigation 

d_corn -- 0.270 

(0.257) 

-- 

d_cotton 0.368 

(0.344) 

-- -- 

d_covercrops -- -- 0.300 

(0.288) 

d_diesel 0.737 

(0.484) 

-- -- 

d_income_high -- -0.593 

(0.448) 

-- 

d_income_na -- 0.233 

(0.379) 

-- 

exper -0.009 

(0.008) 

-- -- 

share_irr_rice -- -- 0.948 

(0.633) 

Outcome Equation    

d_covercrops -- 0.104 

(0.068) 

-- 

d_income_high 0.002 

(0.118) 

-- -- 

d_income_mid 0.105 

(0.094) 

-- 0.035 

(0.076) 

d_income_na 0.238b 

(0.110) 

-- -0.013 

(0.083) 
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