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ABSTRACT 

 
WASP’s goal is to augment and eventually replace the bulky, costly, and complex data              

acquisition systems used for vibrational reliability tests on satellites. As a mechanism to             

guarantee that a spacecraft is mechanically durable and strong enough to withstand the             

acceleration forces experienced on the vessel during launch, companies conduct vibrational           

experiments on their spacecrafts by subjecting them to high G-force events. Using wired             

accelerometers connected to obstructive cables, the mounting process and test setups required to             

perform such experiments are expensive, laborious, and have the potential to generate            

measurement inaccuracies. We developed a low-cost, battery-powered module, designed for          

engineers, to replace the current sensors and data acquisition systems with a wireless solution.              

This will enable precise testing of conditions on a smaller time frame and at a lower cost and                  

help eliminate the disadvantages of a wired system. A custom circuit board has been fabricated               

containing the critical measurement and processing components required to realize this objective,            

as well as a complete software solution to facilitate data transmission to a wireless router over                

WiFi. 
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Introduction 

Problem Statement 
The application and area of focus for this project is the space industry. Space and aerospace 
companies send satellites and other spacecrafts into space for any number of purposes, whether 
they be academic or research-based, for military or defense purposes, or simply for exploratory 
missions. However, successfully launching a spacecraft is a complex procedure that can take 
years to plan and hundreds of millions of dollars to fund. As a result, it is the company or 
organization’s duty to perform extensive tests on a spacecraft prior to launch to ensure the 
success and durability of the vessel. While there are numerous ways a spacecraft can fail during 
a launch, the target focus of this paper is vibrational analysis and testing of spacefaring vehicles. 
Theses tests are performed to analyze the mechanical durability of the spacecraft against the 
extremely strong vibrational forces experienced during launch. Companies simulate these 
experiments by conducting non-destructive vibrational experiments on their vehicles to ensure 
that they will survive the high G-forces required to leave the atmosphere.[1] Figure 1 displays a 
typical test setup featuring a spacecraft placed on a shake table and mounted with sensors that 
connect, via long cables, back to data acquisition modules (DAQs) in a control room. 
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Figure 1: A typical mounting setup for spacecraft vibrational testing.  

 
 
These tests are currently conducted with upwards of 200 wired accelerometers simultaneously 
connected to very expensive high performance DAQs.[2] It is not uncommon for a DAQ to cost 
upwards of one hundred thousand dollars while any individual sensor can cost up to one 
thousand dollars. [3] The result is a disarray of wired connections that make installing and 
debugging these sensors an excessively laborious and time-consuming process. However, aside 
from the difficulties in physically setting up the vibrational tests, the cables themselves 
contribute to the load of the system under test and by adding extra weight, can skew the 
vibrational measurement results. [4]  
 

 
Figure 2: A tangled array of sensor cables mounted on a spacecraft.  

 
We propose a wireless solution featuring a low-cost battery powered module to augment and 
eventually replace the wired testing and data acquisition systems. By reinventing the current 
system around an existing high resolution sensor, we can effectively eliminate the pitfalls of a 
wired system while maintaining the current standard of testing. 
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Benefit 
Our device will greatly benefit any company interested in doing vibrational tests as well as 
academic or smaller scale space projects that cannot afford to spend hundreds of thousands of 
dollars on test equipment. By making the modules wireless, we are able to eliminate all of the 
wires in the system, removing any possible effects due to weight. The devices will also cost as 
little as $100, saving valuable resources that can be allocated elsewhere. Finally, the devices will 
be small enough to be easily mounted in hard to access locations, and given that they can be 
managed remotely, the test operators will be able to easily install our system and run tests at a 
later date while other preparations are made. 

Existing Solutions 

Wired  
Traditionally, the approach for acquiring data is to attach all of the wired sensors to the 
spacecraft. Each sensor has a short amount of wire with a connector attached at the end. From 
there, longer cables can be run from the sensor to the data acquisition system (DAQ).The cables 
have to be carefully mounted to the spacecraft for two primary reasons: to not damage the 
spacecraft during the test, and to not significantly change the load properties of the device under 
test (DUT). The second issue stands out to our team because if one would want to add more 
sensors to better study the system, the added weight will alter the load properties of the system, 
which is in direct opposition to the goal. This is because the more sensors that are added, the 
more likely the results are not representative of the actual system. [4]  
 
As mentioned earlier all of the sensors will be connected to DAQs. Typical industrial DAQs are 
rack mounted and allow for several connections at once. Each rack can easily cost ten thousand 
to one hundred thousand dollars. [3] This cost prohibitor makes it difficult to add channels or 
reconfigure the technology. Typically larger control rooms are built and designed to house the 
DAQs from which cables protrude to connect the sensors to the modules. Given that each cable 
will perform slightly differently and have a unique transfer function, an individual “profile” 
needs to be generated so that these differences can be calibrated out. Although the classic wired 
solution is robust and tested, it is cost-prohibitive, and lacks versatility.  

Wireless  
In our preliminary research, we found that no wireless solution exists for vibrational tests in 
commercial applications. We did however find researchers at Georgia Tech who developed a 
platform with similar attributes. Their papers commonly cite applications such as civil 
engineering monitoring projects with no mention of space systems applications. Their system is 
called Martlet and runs on the IEEE 802.15.4 standard, with a typical bit rate of 100kb/s. The 
system footprint is 60x60mm and uses two large AA alkaline batteries. The hardware is run with 
a TI SOC and a TI baseband radio, which take up a large portion of the board.[5] Upon further 
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analysis of their hardware architecture, the SOC could likely be substituted for a smaller SOC 
with less features. This architecture allows for many sensors to be integrated and contains some 
critical signal conditioning components.  
 
Although this system is fit to measure acceleration, its scalability is limited by the 
communication protocol. Research shows that even 5-15 devices transmitting simultaneously  (as 
a satellite test would expect) increase the bit error rate multiple magnitudes.[6] This limiting 
ability is most likely why the board contains a SD card on the device and data is streamed post 
test. Although this system is similar to ours, it is not suited for the scale and expected data rates 
of satellite testing.  

Proposed Solution  
 
In order to improve upon the current method of conducting vibrational experiments on 
spacefaring vehicles, we propose a wireless alternative. Our objective is to design a custom 
circuit board that, when mounted on a spacecraft, could measure the acceleration experienced 
during the test, digitize the analog signal, and then transmit the data wirelessly to a base station. 
Figure 3 below outlines the high level functionality of our proposed system. In order to have this 
solution mitigate the pitfalls of the bulky, heavy, and expensive wired measurement systems, this 
custom circuit board will need to possess a small footprint and be both low power and low cost. 
The base station receiving the data will not be designed during this project - rather, it will consist 
of an off-the-shelf piece of hardware, such as a WiFi router, that can be programmed 
appropriately to communicate with several of our custom boards. The base station and the 
custom board will run software designed by us that will control and facilitate the data 
acquisition. The whole solution will be robust and easy to use.  
 
 

 
Figure 3: Functional level block diagram of our proposed solution .  

Requirements 

Background 
 
To have a clear idea of what our system requires, one needs to better understand the tests that 
need to be run and what tests our system targets. In our research we identified three main types 
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of vibration tests that are run on spacecrafts: random vibration, sinusoidal vibration, and shock. 
[2] Random vibration is typically a test where the spacecraft is subjected to quasi-random 
vibrations within some specification limit. This is done to ensure complete test coverage of the 
spacecraft against unanticipated vibrational events. Sinusoidal vibration is when the spacecraft is 
acceleration a constant frequency with varying amplitudes. Test designers can then sweep 
frequency to help identify natural resonances of the spacecraft.  Shock testing is when the 
spacecraft is subjected to high impulse vibrations, and these are typically done to simulate 
pyrotechnics exploding, which can be used to separate stages of the spacecraft. The vibration is 
typically at much larger magnitude that the two previous tests. [2] Working with our 
collaborators at SSL we determined that although we could pursue a prototype to accommodate 
all three tests, just focusing on random vibration and sinusoidal vibration makes sense. This is 
because not only would we have to design a proof of concept but to accommodate shock testing 
we would have to “harden” the solution. This means we would have to design the system to not 
destroy itself under the extreme acceleration conditions. 
 
The setup for both the sinusoidal and random vibration tests are exactly alike. The spacecraft or 
device under test (DUT) is attached to a large shake table. From there accelerometers are 
attached. This process is the most laborious and time consuming step in the process. Our contacts 
at SSL have informed us depending on sensor placement, partial disassembly of the satellite may 
occur to facilitate placement of the sensors in the exact location needed to take data. The process 
of mounting can take upwards of a week of attaching the devices before the test is actually run. 
This small detail is critical to our design since our device is battery powered and needs to be 
powered on at the time of sensor attachment since it may become inaccessible due to reassembly. 
After sensor attachment, all the sensors are then wired into the control room which houses the 
data acquisition modules. Each sensor has to be manually verified at this point. Verification is 
critical because the engineers want to ensure that all sensors are functioning properly before the 
test is conducted. After verification the actual testing process begins. These tests can run up to 
30-40 minutes, where the sensors are typically being sampled continuously during the entirety of 
the test. Once the test is complete, the data is then processed for examination. Having this clear 
outline of the test conditions and the procedures played a critical role in correctly architecting 
our system.  

System Specifications 
 
As this project is intended to be an eventual replacement for wired vibrational analysis testing of 
spacefaring vehicles, the primary goal of the designed system is to match the current standards of 
measurement in sensitivity and precision. In accordance with that, the system specifications 
concerning the accelerometer and also the Analog to Digital Conversion were mostly set by 
Space Systems Loral (SSL). However, the remaining specifications regarding power 
management and that of our wireless subsystem were available to us to determine. Table 1 below 
breaks down each of the categories of specifications around which our hardware was designed. 
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Table 1: Technical specifications governing WASP system design.  

Category Specification Determined by 

Accelerometer (single 
axis) 

+/- 500g measurement range 
10kHz frequency response 

SSL 

ADC (single channel) 16 bits resolution 
40 ksps minimum 

SPI interface 

 
SSL + Team WASP 

 

Battery (single cell 
LIPO) 

3.7V nominal 
3.0V - 4.2V range 

Low battery detection <3.0V and % 
charge remaining 

 
Team WASP 

Chipset - CYW43907 3.3V ± 10% VDDIO and VBAT 
Support 2.4GHz and 5GHz WiFi 

Cypress 

Board Footprint < 100x100 mm SSL + Team Wasp 

 
Beginning with the accelerometer, SSL stated a desire to be able to detect upwards of +/- 500g’s 
of acceleration with vibrational frequency content up to 10kHz. Since they also wanted 16 bits of 
resolution on the digitized samples, we reasoned that sampling at at least twice the Nyquist rate 
for this application (40 ksps) would be an appropriate target. The fastest compatible digital 
interface available to us on the CYW platform is the Serial Peripheral Interface (SPI). SPI is used 
to facilitate communication between our ADC and Wireless Chipset.  
 
Moving on to the power management specifications, nothing specific was set in place by SSL 
other than the statement that the modules ought to be battery powered. We selected to go with a 
single cell Lithium-Polymer (LIPO) battery to power our system for their very high energy 
densities and capacities. Given that LIPO batteries are easily rechargeable and recyclable, this 
choice is a sustainable one that avoids having to throw away batteries after every use. As stated 
above, they commonly exhibit a 3.7V nominal voltage with a usable range between 3.0V and 
4.2V. However, LIPO batteries can enter a state of deep discharge which is harmful to the cell 
should the voltage go below 3.0V. [7] As a result, our system needs a way to track the battery 
capacity over time to ensure that such a scenario does not occur. By selecting a 3.0V to 4.2V 
range battery cell, the power electronics architecture will be designed around that specification to 
generate the different voltage rails necessary for operating the various integrated circuits 
included in the design.  
 
The final specifications category concerns the selection of a wireless MCU component. The 
wireless system-on-a-chip from Cypress Semiconductor, the CYW43907, supports both 2.4GHz 
and 5GHz WiFi transmission and due to its high levels of integration, condensed form factor, 
and reduced active and idle power consumption, was selected as the MCU of choice for this 

12 



 

application. As our design will feature the CYW43907 integrated onto the Quiksilver Module 
(described later in detail), the chip requires a 10% tolerance 3.3V rail to power both the VDDIO 
and VBAT rails as they are shorted together. [8, 9]  

Design Rationale 
 
When designing a piece of custom hardware, the initial objective is to understand exactly what 
tasks and functionality the board must be capable of performing. This includes determining the 
specifications for the system, whether they be quantitative or qualitative specifications. Once the 
technical specifications are well understood, it is then possible to begin selecting what kinds of 
circuit components will be required in order to accomplish the design goals. Selecting the 
components for the system responsibly is critical as the complexity and 
performance/requirements of the individual components will dictate the architecture for the 
entire system. If not done carefully, integrating everything together can become a challenging 
process. With an understanding of our technical specifications, we began to narrow down 
specific components for our system. 
 

Accelerometer 
The accelerometer is the analog sensor on our platform which will be used to measure the 
acceleration at a specific location on the spacecraft. These sensors come in many different form 
factors and have many different methods of translating acceleration into an electric signal. Our 
team was generally unfamiliar with the associated specifications of these sensors, so we reached 
out to one of our industry collaborators on the project, Space Systems Loral (SSL). They 
provided us with a base set of specifications that they use to select sensors as well as actual 
model numbers of sensors they currently use. Table 2 enumerates the key specifications of the 
Accelerometer set by SSL. 
 
Table 2: Accelerometer Specifications.  

Measurement Range  Shock Durability  Bandwidth  Sensitivity  

+/- 500G  10 kG  10,000 kHz  >0.02 mV/g 

 
Measurement Range: This is the range of the accelerometer.  
Shock Durability: This is the amount of acceleration the sensor should be able to handle. While 
it may not be able to measure up to that range, this value ensures that the sensor will not be 
destroyed during shock testing.  
Bandwidth: This is the frequency response range of the sensor. Post processing frequency 
analysis is typically done up to this frequency.  
Sensitivity: This is how much voltage is driven from the sensor for each G exhibited on the 
sensor. The lower the sensitivity, the less voltage that is given off from the sensor. 
Other:  
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Additionally, other specifications that are important to the sensor selection are Axis Count, 
Output stage, built-in analog to digital conversion and mounting style. 
 
Axis Count: This is how many axes can be measured simultaneously from the sensor. Sensors 
on a cell phone for example measure in all three of the spatial directions, but high precisions 
sensors are typically limited to a single axis/direction.  
Output stage: This is a feature on many integrated sensors, where they have some type of 
analog front end to amplify and condition the signal for input into a digital converter.  
Built-in Analog to Digital Conversion : Producers of acceleration sensors are integrating 
built-in analog to digital conversion block in their sensor. Doing this allows for very easy and 
versatile integration, only requiring a digital interface to communicate with the sensor. 
Unfortunately this is only common to lower precision sensors and is not common with the 
sensors in the required range of our platform.  
 
Having the required specifications and other specifications in mind, our team searched for 
sensors that could meet our requirements. Unfortunately, we were unable to find any sensors that 
had a digital interface that met the required specifications. That being said, many purely analog 
sensors were found, including many 3 axis sensors. Knowing that each analog sensor will need 
its’ own analog to digital converter and support circuitry to support simultaneous sampling, we 
opted to focus our design efforts on a single axis design. We found many sensors from that same 
vendor that SSL uses (PCB Piezoelectronics) as well as sensors from Analog Devices. We 
compiled our top sensor choices into a matrix for comparison in table 3. 
 
Table 3: Accelerometer Decision Matrix.  
Sensor  Measurement  

Technology  
Measurement 

Range  
Shock 

Durability  
Bandwidth  Sensitivity  Voltage 

Range 
Mounting 

Style  
Estimated 

Cost  

3501B122KG MEMS +/- 2 kG  10 kG  10,000 Hz  0.20 mV/g 5-10V Off board $588.00 

3501A2060K
G 

MEMS +/-60 kG 100 kG  20,000 Hz  0.03mV/G 5-10V Surface 
Mount  

$1000.00+ 

ADXL1004 MEMS +/-500G 10 kG 20,000 Hz 2.63mV/G 3.3-5V Surface 
Mount 

$60.00 

 
 
All three sensors in the decision matrix meet SSL specifications. Further discussions determined 
that either surface mount or external mount are satisfactory. The main difference between the 
PCB Piezoelectronics sensors (3501B122KG & 3501A2060KG) and the Analog Design sensor 
is that the ADXL1004 has an integrated signal conditioning block. [10-12] This conditioning 
block includes an output stage, meaning that we will not need another stage between the sensor 
and the ADC. Due to the design advantages of that sensor, as well as the reduced cost, we 
decided to go with the ADXL1004 sensor. One other key feature of the ADXL1004 is that it 
includes a self test mode, which we can use to verify that the sensor is functioning as expected 
before we attach it to the spacecraft. Since the sensor is surface mount, the physical layout (PCB 
design) will be driven around the requirements of the ADXL1004.  
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Wireless System-On-Chip 
The wireless system on chip (SOC) in our system is analogous to the brain in a human: it 
manages all of the subsystems on our board while providing the main function of wireless 
communication. The choice of the wireless SOC therefore is critical - when selecting a SOC, we 
need decide based on our systems needs. These needs are: low idle power, as well as the SOC 
supporting a wireless communication protocol that meets our data rate, node count and operating 
range requirements.  
 
Since our solution intends on sending data real-time to the server, we need to first select a 
wireless protocol that can support our expected bit rate. We have estimated a worse case bit-rate 
of 20Mb/s per node.  Because of this protocols that are built on IEEE 802.15.4, which supports 
maximum bit rates of 100kb/s like Zigbee are not suitable.[6] While Bluetooth can support our 
data rate, the protocol was not designed for having hundreds of clients connected to a single 
access point. In our research we did not find any implementations of a network topology similar 
to what our expected needs are. The one protocol that catered to our needs was WiFi. WiFi is an 
evolving standard that has been designed to be a scalable solution, supporting bit rates well 
above our needs. WiFi offers tens of meters of range, multiple channels, as well as control 
schemes to allow scaling.  One feature that appealed to us is called Modulation and Coding 
Scheme or MCS. This is a feature that WiFi uses to manage bit-rate and bit error rate depending 
on network congestion. [13] This is something that the protocol itself manages, providing a 
seamless experience. This feature was important to us since it provides provisions to support 
scaling this project.  
 
Using WiFi as the protocol significantly narrowed our search, but we were still left with more 
than a few options. We still had a number of parameters to choose from, the most significant 
being the choice between a distinct MCU/RFSOC and an all in one chip. Two separate ICs offer 
more flexibility in MCU selection and selection of advanced features, but an integrated solution 
is more likely to save power, reduce design time, reduce design complexity and prevent extra 
software development. 
 
Our advisor, Dr. Dezfouli has previously collaborated with Cypress Semiconductor before on 
WiFi IOT related projects. In the last few years Cypress acquired a WiFi and MCU combination 
part line from Broadcom. The part he was most familiar from that line is the CYW43907. Upon 
investigation, this part had many appealing features including: Ultra low power non-networked 
sleep (at the time one of the lowest power consumption parts on the market), needed peripherals 
(I2C, SPI, etc) and documented implementations of reference designs that we can derive our 
design from.[14] The combination of hardware met with software support through their forum 
solidified our decision to pursue this part.  
 
It should be noted that since our project has been fabricated, more wireless combo chips in the 
same class as the CYW43907 have been released to the market, offering the same or better 
features. Not only are there new features and lower power, but also silicon level issues on the 
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CYW43907 that have forced Cypress to deprecate HW blocks have been since been resolved. 
Fortunately we were able to work around these deprecated HW blocks.  

Battery Technology 
 
For WASP, the selecting the correct battery technology was critical. This is because it directly 
influences design in many ways, including power management and system size. The battery 
needs to be small enough that it can be paired with a board and mounted easily, while also 
supplying a large range of current for a significant duration. To select a battery, we looked at all 
the different battery packages and chemistries and selected based on the characteristics of size, 
energy density, and rechargeability.  
 
Common Coin Cells 
 
Perhaps the most natural choice of battery from a small form factor is the coin cell battery. These 
batteries are the smallest of any consumer battery, and would easily fit on a WASP board while 
not contributing significantly to the overall board size. One benefit of these batteries is due to 
their small size, some chemistries like Zinc-Air can have tremendous energy densities, meaning 
they have the most energy in the smallest space. [15]  However, despite high energy density, 
coin cells have many attributes that make using them unsuitable for WASP. The average 
capacity of a coin cell battery is around ~300 milliamp hours, making available test length a 
concern. In addition to this, even the largest coin cells from a size and capacity standpoint are 
only able to supply around 50 milliamps continuously, much less than would be needed for 
typical transmit power for our WiFi chipset.  
 
Alkaline batteries  
 
Another common option for batteries is Alkaline. These are the most common battery type you 
would see in a supermarket. Alkaline batteries come in a range of sizes, but many are too large 
and heavy to be used on a WASP board (a common 9V battery for example). Many batteries are 
moderately sized, like the AA and AAA varieties. Although the correct sizes exist, Alkaline 
batteries have undesirable characteristics for our application. Though most have effective 
capacities of around 3000 mAh, that can drop to below 1000 mAh for higher current draw 
applications, such as when we are continuously transmitting data. Alkaline batteries are also not 
rechargeable, meaning that over the lifetime of our system thousands and thousands of batteries 
would be bought and thrown away, contributing heavily to both the overall cost of our system, as 
well as producing a large amount of waste which would be easily avoided with a rechargeable 
battery chemistry. [16]  
 
 
Modern Variants 
 
The best choices for our application are the more modern battery chemistries that combine 
rechargeability and high energy density into a small package. We did not consider Lead-Acid, 
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which isn't produced in a form factor suitable for our platform, that leaves us with three options, 
as seen in table 4. [7, 17, 18]  
 
Table 4: Comparison of various rechargeable battery chemistries. 

Battery Voltage (nominal) Energy Density Charge lifetime 

Nickel-Cadmium (NiCd) 1.2 50-150 W-h/L ~2000 Cycles 

Nickel-Metal Hydride (Ni-MH) 1.2 140-300 Wh/L 180-2000 Cycles 

Lithium Polymer (LiPo) 3.7 693 W-h/L 400-1200 Cycles 

 
Each of the three battery types listed above presented above would be a decent choice for a 
system like ours - they all allow for relatively small packages and high capacities, while also 
being rechargeable. However, the best choice was clear: Lithium Polymer. 
 
Lithium Polymer 
 
Upon concluding our battery research, LiPo batteries were determined to be the top choice for 
our application. LiPo batteries have the highest energy density among rechargeable batteries, 
meaning that they pack more energy into a smaller space, allowing us to support longer test 
durations using the same amount of space. That also means that we are able to charge the 
batteries less frequently which results in a longer total battery lifetime. LiPo batteries also come 
in a variety of form factors which allows the engineers using the system to choose a slightly 
larger or smaller battery size as needed, while maintaining the capacity to draw large amounts of 
current during a test period regardless of size. In addition to features benefiting users, lithium 
polymer batteries are a good choice from a design perspective. The nominal voltage is much 
closer to the voltages required by our chipset meaning less regulation and better efficiencies, and 
LiPo’s are very common in a variety of devices, giving us a wider selection of mature, well 
designed parts for a more cohesive design overall.[7]  

Power & Power Management 

Voltage Regulators 
 
As our system is battery-powered, many intermediate voltage rails are required to power the 
various integrated circuits on the module, all of which will have to be derived from the battery. 
Voltage regulators are a class of circuits designed to take an unregulated variable voltage (in this 
case a single cell LiPo battery) and produce a constant regulated output voltage over various load 
conditions. Given that our system will be operating in modes ranging from hibernate states, in 
which there is very little current draw, to wireless transmission states, where hundreds of 
milliamps may be consumed, it is critical that the selected voltage regulators be capable of 
operating over a wide load profile. When selecting an appropriate voltage regulator, the first 
question to ask is whether or not a linear regulator or a switching regulator should be used for the 
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application. Generally speaking, switching regulators generate DC output voltages by 
modulating the duty cycle at which currents are transferred to a load. They typically offer high 
efficiencies at the expense of noise, PCB area, and complexity.[19] Linear regulators, on the 
other hand, generate DC outputs by modulating the resistance of a pass element that transfers 
current to a load. These converters are the simplest to implement and have low noise profiles, but 
can suffer from lower efficiencies depending on the application.[20] There are numerous 
considerations to take into account when analyzing a voltage regulators performance, however, 
some of the most important ones include efficiency, stability, available output current limits, 
required dropout voltages, and noise performance.[20]  
 

Battery Supervisor 
Due to the use case of our system, a battery will predominantly be used to power the system. 
These batteries need to be operated within their operating specifications. This includes but is not 
limited to voltage and current limits. For our system, we are using a Lithium Polymer Battery 
(LIPO) as mentioned in the previous section. LIPO batteries have a nominal cutoff voltage of 
3.0V. Beyond that voltage, the battery will be considered in an under-voltage state. This can lead 
to the battery not being able to hold a charge in the future or even becoming a safety risk. That 
being said, we will need a subsystem on our platform to monitor the battery voltage and cut off 
the battery from the rest of the system once that under-voltage condition is met. Another key 
requirement is to know the remaining charge in the battery. Since our system will run idle for 
hours and then begin a test lasting 30-40 minutes, we need to know how much capacity our 
battery has before starting a test. This information can be fed back to the server, which will make 
the decision if a module has enough remaining battery to complete the test. One common method 
to monitor the battery capacity is to integrate the system current over a time interval to get the 
battery charge. More complex methods like battery chemistry curve tracing and impedance 
tracking exist as well. 
 
While our base requirements could be implemented with discrete components, many integrated 
circuit companies have built application specific integrated circuits (ASIC) to monitor the battery 
and report information back to the host device. This information can be cell voltage, cell 
temperature, instantaneous current and milliamp hours. Since many parts exist with different 
features, different footprint, and associated costs, we created a decision matrix with each part 
where we enumerated all the features, costs and footprint to better aid us in making an informed 
decision in table 5. [21-23]  
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Table 5: Battery Supervisor Decision Matrix.  
Component  

Name  
  Methodology Comm. 

Method  
Features  Footprint  

& Package  
Est Cost. 

 
Comments 

LTC2941-1  Gas Gauge:  
dQ/dt 

integration  

I2C Internal Sense Resistor, 
Undervoltage Protection. Low 

current (<70uA)  
 

6mm^2  
 QFN Package  

$2.80 1% Charge 
Accuracy. Very 

simple to 
interface with.  

BQ27Z561 Impedance 
track 

I2C Charge Management, 
Thermistor management, 

Undervoltage Protection. Low 
Current (<93uA)  

3mm^2  
 BGA Package 

8 

$2.50 Very complex 
to interface 
with. Need 

external sense 
resistor 

MAX17260 Gas Gauge:  
dQ/dt 

integration  

I2C Undervoltage Protection. 
Time to empty estimator.  Low 

current (<5.1uA)  

9mm^2  
 QFN Package 

$2.21 Need external 
sense resistor. 

 
After taking many factors into consideration (bringup time, added cost, added power 
consumption, area required) we chose the LTC2941-1. It can be noted from the table that this is 
the most expensive part, but the other two parts required a high precision sense resistor and at the 
expected volume of our boards can add up to $3 per board. It is also worth mentioning that this 
part had all the features that we required and very few unneeded ones. In comparison, both the TI 
and Maxim parts required a substantial amount of firmware simply to bootstrap the part.  
  

Analog to Digital Conversion  
When considering what type of ADC to use for our system, the primary issues we took into 
consideration were resolution and sampling rate, power consumption, required signal 
conditioning, and digital interface. However, the first task was to select an ADC architecture, as 
they come in a diverse range of forms. Our project requires 16 bits of resolution with a minimum 
sampling rate of 40 ksps. Successive approximation register (SAR) converters permit high speed 
conversions with moderate to high resolutions and thus represented an excellent choice for this 
application. This topology is an excellent middle ground between delta sigma converters, which 
offer high resolution at the expense of slower speeds, and pipeline converters that provide very 
high speeds at the cost of lower resolutions. As we were working with an Analog Devices 
accelerometer and were in contact with one of their Field Applications Engineers (FAE) to help 
us in designing this critical analog stage of our module, we opted to also select an ADC from 
Analog Devices in order to aid in the process of interfacing the accelerometer with the ADC. 
When narrowing down their selection of ADCs that met our specifications, we settled on a 
couple of options and again adopted a matrix of criteria to select a specific part. Those criteria 
are outlined below in Table 6. 
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Table 6: ADC Decision Matrix.  

Part Number Resolution and 
Sampling Rate 

Power 
Consumption 

Integrated 
Features 

Digital Interface 

ADAQ7980 
(SAR) 

16 bits 
500 ksps 

16.5 mW ADC Driver 
LDO for Vdd 
Vref Buffer 

SPI 

AD4008 
(SAR) 

16 bits 
500 ksps 

4mW High-Z Mode SPI 

 
 
Looking first at the ADAQ7980, this part is a 16 bit SAR ADC featuring extremely high levels 
of integration. As a system-in-package (SiP), the device features critical signal conditioning and 
power management components integrated inside the package. The part includes an integrated 
LDO to power the system, high impedance ADC driver on the analog inputs, and a voltage 
buffer on the reference rail. These components, in addition to several integrated passive 
components, dramatically reduce the complexity of external components needed to make the 
ADC function. For our system architecture at the time, only an external filter on the analog input 
and a voltage reference would need to have been provided. However, after investigating the part 
further, it was discovered that the integrated ADC driver amplifier required at least 1.3V of 
headroom on the common mode input. This means that in order to achieve the full scale 
operating range of 0 to 3.3V (and therefore the maximum g-range on the accelerometer), we 
would have had to generate an additional voltage rail for our system thus adding more area and 
power consumption, which counteracts the benefits of choosing this component in the first 
place.[24]  
 
For this reason, we selected the AD4008 for our design. While the part requires an external LDO 
to be powered, such an addition is very simple and consumes minimal current. In addition, it has 
high-Z mode functionality which is an integrated high impedance input stage that accomplishes 
the same goal as an integrated ADC driver, but mitigates the voltage headroom problem of the 
ADAQ7980. [25]  
 
 

PCB Design Software  
Since our design requires us to build a custom printed circuit board (PCB), there is the need to 
determine what software suite our team would use to design and manage the board. PCB 
software allows for an electrical schematic to be translated into a physical design. This physical 
design is what will be given to a manufacturer to produce and assemble a PCB. Our design is 
relatively complex and has several subsystems and necessary support architecture. Due to those 
complexities, we cannot select just use any PCB design software. A criteria was needed to 
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determine what our designed requirements were for the project. We have listed all requirements 
in table 7. 
 
 
Table 7: PCB Software Requirements.  

Feature Required/Optional Comments 

Component Libraries Required  Having components libraries will allow our 
team to focus on our design rather than 
designing and adding components to a library. 
Having verified libraries will allow for further 
confidence in our design.  

Multi-Layer Support Required We anticipate our design will require at least 4 
layers for signals and power routing. 

Parametric Rules  Required Allow us to set rules for the design (spacing, 
trace thickness, keep out).  

Built-In Signal & 
Power Integrity 
Simulation  

Optional  

Manufacturing 
Friendly Export 

Required   

Free to Use Optional We are okay paying for low-cost education 
license of the software. 

 
Once the base requirements were established, we looked for software packages that could meet 
our requirements. Table 8 was compiled to compare our 3 main options: Altium Designer, 
Cadence OrCad, and Eagle. [26-28]  
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Table 8: PCB Software Decision Matrix.  

Feature Altium Circuit Studio  Cadence OrCAD Eagle 

Component 
Libraries 

✓ X X 

Multi-Layer 
Support (>4) 

✓ ✓ X 

Parametric 
Rules  

✓ ✓ X 

Built-In Signal 
& Power 
Integrity 
Simulation  

✓ ✓ X 

Manufacturing 
Friendly Export 

✓ ✓ X 

Free to Use X  X ✓ 

Comments Student License $150 per 
year. No difference from 
Commercial License 

No student version 
available upon contact 

Only supports 2 
layers, can only make 
a PCB 80cm^2 

 
Given the features outlined in Table 8, it was agreed upon that Altium Designer was the 
optimum choice for this project. Although the software costs money, having a verified 
component library maintained by Altium is the primary motive why we decided to go with this 
PCB design software. Although only one license was purchased, the license can be shared across 
several computers with the only requirement being that only one person can use the license at a 
time.  
 

Firmware and Software 

Overview 
To be a complete solution, the WASP system needs to provide all of the device software 
necessary to make each board functional as well as server software to govern the system as a 
whole. This means that our system needs to include board software (client) and server software, 
each running on a completely different hardware platform with completely distinct set of 
capabilities and tools to leverage them. These two pieces, though separate, need to communicate 
seamlessly which requires the design of each component to happen in tandem with all the others 
to create more cohesive system.  
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In addition to requiring multiple pieces of software, the WASP system was also required to be 
highly configurable and scalable, which represented a unique challenge for us. The system 
needed to be able to handle a variable number of boards and data rates while ensuring the same 
reliability as a fixed system. This meant that we needed to make large protocol design decisions 
early on in our timeline, and design the software around our obstacles.  
 
We break down the description of the software into the three categories of System 
Multi-threading, Drivers, and Networking to elaborate on each piece in more detail.  
 

System Multi-threading 
 
Client 
 
On the client side (the side of the WASP boards), our hardware determined our software 
ecosystem. The CYW43907 chips come with WICED Studio, a free set of APIs developed for 
use on that chipset to provide the base WiFi capabilities, as well as other convenience functions 
to make app development easier. Besides creating a custom TCP/IP stack from scratch, WICED 
is the only software solution available on the 43907 platform, making the choice an easy one. 
 
Every build on the WICED system that makes use of WiFi must use an RTOS (Real Time 
Operating System) [29], of which there are two choices available in WICED: FreeRTOS, a 
mature open source RTOS, and ThreadX, a proprietary RTOS used in many commercial 
applications which comes free as pre-compiled binaries with WICED. Both offer similar 
features, and in our case, the WICED system of APIs abstracts the underlying RTOS details 
away from us, which makes both options good choices. In the end we settled on ThreadX, as it is 
the standard RTOS for most WICED builds, and it supports over the air updates, which we 
wanted to integrate as a part of our system, and FreeRTOS did not.  
  
Each application built on WICED has a base system of threads. The lowest level contains the 
networking thread, which handles the movement of data to the WLAN core of the 43907 from 
the application core, and the hardware IO thread, which handles the calls to hardware to do IO 
operations. These two threads are transparent to the application in user space, and only run when 
called via an API function. On top of the lower level is the main thread, which runs all of the 
application code, and is where our WASP application codes lives. The main thread can spawn 
additional threads which we make use of to run our main data manipulation function, which 
combines sampling data from the ADC and sending data over wifi. This function makes use of 
the lower level threads to do the raw data movement, but when combined as necessary by our 
application, the stack needs become too great for the main thread, requiring we spawn one with a 
larger stack, which in our case is 10240 bytes, or slightly less than 2x that of the main thread.  
 
In addition to the main level of thread, there exists a supervisor thread called the “watchdog” 
which monitors all of the other threads running, managing a timer resetting the system if one 
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thread holds the processor for too long (at timer expiration), potentially signalling an error. In 
our case, the watchdog thread offers little utility, even becoming a source of error. Each thread 
has a priority associated with it at creation which signals to the RTOS scheduler which threads 
should be scheduled to run. In our case, the hardware IO thread that is handling the sampling is a 
higher priority than the watchdog, and because it runs so frequently, the watchdog is unable to 
run and interprets this as a reset-worthy event. Unfortunately we are unable to disable the 
watchdog, so instead we must manage the timer manually from user space, resetting the reset 
timer at each loop iteration. 
 
Server 
 
On the server side, we were less limited by hardware, and as such we had free reign to choose 
from any number of hardware and software environments to develop and test the server side 
software. One important thing to note is that the WASP server isn't involved in any post-test data 
analysis and processing. Because of the amount of data generated, a large server or cluster of 
servers wouldn't be unreasonable for the most intensive test plans, but due to the fact that our 
server would not participate in that process, we were free to select a more appropriate embedded 
environment. 
 
Our requirements for a server device were then easily defined: we would need a reasonably fast 
device with a few cores to support multiple threads of execution, with support for a well 
documented network stack and  programming environment. In an ideal scenario, our server 
software would be deployed on the router that serves as the communication hub for our system. 
This configuration would allow us to have finer grained control over the low level wireless 
operation of the router from the server software, while also eliminating any extra configuration 
of the system necessary from an engineer with an external server setup. Unfortunately, this setup 
has its problems from a development standpoint. First, router firmware is very lean and as such 
does not come with a  build environment, meaning rapid prototyping is not possible. For each 
change that gets made to the server, we would need to compile an entire firmware image from 
scratch, and then reflash the image on to the router, wasting valuable time. In addition to that, 
worrying about integrating fine wireless control into the control scheme of our application really 
only makes sense as a fine tuning step once the application is built and proven, not before. For 
these reasons, we decided to opt for an external system for development. 
 
Fortunately, our router of choice (a Linksys-WRT3200ACM) has very standard hardware 
configuration consisting a 1.8 GHz ARM core CPU made by Marvell with 512 MB of RAM 
which made it very easy to pick a platform to emulate the processing power if we ever pursued 
running the server on the router. We ended up picking a Raspberry Pi 3 B+ system to run our 
server, for a few reasons: the 4 core ARM CPU running at 1.2 GHz possesses a very similar 
amount of processing power and similar amounts of RAM, and a 300 Mb Ethernet port meant we 
could link the server and router using a single cable and support the same levels of network 
throughput. The most attractive feature however, was the Linux operating system and included 
GCC C compiler, allowing us to leverage our existing expertise of the Linux network stack, 
POSIX compliant pthread threading interface, while also being able to make use of the wealth of 
documentation and examples whenever we needed. 
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The server side threading choices were perhaps one of the most important design decisions we 
made from a software perspective. While each client manages its own data transmission, the 
server is responsible for capturing the data stream for every device, up to the allowed maximum 
of 300. To make the server as efficient as possible, the server divides up the work of receiving 
transmission to four threads, one running on each of the processors four cores, assigning which 
board goes to which thread dynamically to effectively balance the load. 
 

 
Figure 4: WASP Server work division implementation.  

 
In addition to the packet reception threads, the server employs various other threading techniques 
to manage some of the servers communications needs. A single thread runs in the background to 
send a sleep command to any WASP board asynchronously when a test is terminated by the 
engineer. The server will also spawn a thread each time a board connects to receive a calibration 
value from the connecting board. Spawning and then returning from threads allows the server to 
stay in communication with the board as it takes a few minutes to calibrate itself, while not 
interfering with the main loop handling board registrations that needs to run on a finer timescale.  

Drivers  
 
The WASP module has a number of different hardware components on board, each using a 
different protocol for communication back and forth with the main chip. For each of the devices, 
a driver needed to be designed to implement the communication so we could use the devices 
individually for our purposes. For each of the protocols we needed a driver for (SPI, I2C), we 
designed a generic low level driver, capable of reading from and writing to arbitrary addresses in 
standard one byte and two byte quantities. In addition to the low level driver, we implemented a 
higher level driver API for each device that wraps the low level driver and additional logic into a 
few convenience functions, abstracting away the details of the device communication into a 
simple function call. This method allows for easier app level control of the devices, while also 
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allowing for future device integrations to be easily integrated by re-using our generic low level 
driver and wrapping device specific functionality into an API as we did.  
 
In addition to our core device drivers, we also implemented a set of APIs around common tasks 
for convenience. APIs exist for simple tasks, such as toggling and blinking LEDs at custom 
intervals, as well as more complex tasks, like controlling OTA updates, setting power modes, 
and switching WiFi networks. This ideology of providing high level functions to the application 
allows for easy implementation of features in the future, as well as support for other applications 
of our hardware and software by other teams. 

 
 
 
 

Wireless Module Design  
 
Having performed extensive research into the necessary components and various integrated 
circuits required achieve our project goals, we began the process of formally designing the 
system architecture. This process requires analyzing how the different parts can be integrated 
together. Designing the wireless module began with a simple high level block diagram and 
progressed into a detailed diagram of the system functionality, replacing black box sub-systems 
with actual integrated circuit part numbers, which allows a designer to then smoothly transition 
into producing an electrical schematic and PCB layout. 
 

Architectural Block Diagrams 
To understand our system better we have created two block diagrams that describe our system in 
varying level of detail. Figure 5 shows three blocks: Power Electronics & Battery, Wireless 
SOC, and Accelerometer and Analog to Digital Conversion. That subdivision explains the three 
main portions of our system and we used arrows to imply the general connectivity.  
 
In Figure 6 we elaborate from that first diagram and explode each of those three blocks into all of 
the major components. We used the block color to denote what subsystem it belongs to. The 
figure also contains a wiring key to show the reader what type of connection is made between 
block. For example, the connection between the Quicksilver and the Gas Gauge is a digital 
interface (I2C) where as the connection from the ADXL1004 to the ADC 4008 is an analog one. 
It should be noted that while this shows all of the major components, it does neglect passive 
components, bootstrapping components, and the diagram does not reflect the physical layout of 
the system.  
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Figure 5: High level block diagram separated by major subsystem.  

 

 
Figure 6: Low level block diagram showing all major components and their connections.  
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CYW43907  
 
Our wireless chipset, the CYW43907, is the most significant piece of hardware in our custom 
sensor module. This chip contains the wireless and application processor needed to sample, 
wrap, and then send the ADC samples to the server. This chipset is the most complex piece of 
silicon on our system, and required an intense design effort to ensure proper functionality. 
Thankfully the electronics and manufacturing industry are aware of this and have engineered a 
solution. To make integration easier and increase wireless performance, companies like Murata 
will take the wireless chipset (CYW43907) and all of the support components such as the 
oscillator and diplexers and solder them onto a small PCB putting it into a conformal coating and 
RF shielding. This completed device is typically called a module and this can be soldered 
directly onto a design. For our design we used the LBWA1UZ1GC from Muarta. The only 
external components needed to complete the integration of the wireless chipset are: SPI Flash 
(Used to store Application Firmware),  32.768kHz crystal oscillator (Used for the Hibernate 
Block), an inductor (1.2V buck rail on CYW) and 2.4/5GHz antenna. The SPI Flash, Oscillator 
and Antenna are not included in the module because they are dependent on the application where 
the components inside of the module are necessary for every application. The inductor is not 
inside of the module due to the size of the component. [9, 30]  
 
Initially we wanted to directly place the LBWA1UZ1GC on our PCB, but due to unavoidable 
constraints our industry contact was unable to review our design. Our integration efforts were 
mostly based off of the CYW943907, which is a evaluation platform produced by Cypress using 
the LBWA1UZ1GC module. Since we didn’t direct support we had to use the reference design 
schematic to make connections, but we didn’t always know the purpose of connections like 
bootstrapping configurations. At this point we had to investigate an alternative or decide to take 
that risk to directly integrate the package. After some investigation, we found an evaluation 
board made by Arrow Electronics called the Quicksilver that had the CYW43907 in the 
LBWA1UZ1GC package. The Quiksilver contains a Arduino-like motherboard and a daughter 
board that  
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Figure 7: An annotated image of the Quicksilver module.  

 
contains the LBWA1UZ1GC module, the SPI flash, the 32.768kHz crystal oscillator, 1.2V 
Inductor and a single 2.4/5GHz antenna. This daughter board can be soldered onto our custom 
PCB and will function just as intended. The daughter board simplifies many of the connections, 
taking care of bootstrapping and power rails configuration. The only connections it exposes are 
JTAG for programming, UART for communication, a single 3.3V in and all of the GPIO and all 
of Hardware PHYs (SPI, I2C, RMMI, USB etc). [8] Since the board was intended for use on the 
Quicksilver evaluation kit (which has the all the design files including the schematic public) we 
can ensure the connections on our board are copies of one another which allowed us to verify pin 
functionality on the quicksilver platform before we commit them to our own design. Having this 
ability allowed us to design with confidence when interfacing with our other subsystems like the 
ADC and Gas Gauge.  

ADXL1004 
The single axis accelerometer we chose is the ADXL1004 from Analog devices. This part uses 
Micro-Electro-Mechanical Systems (MEMS) methods to measure acceleration. The device 
functions like a wheatstone bridge with one of the resistor legs of the bridge being the MEMS 
sensor. Depending on the acceleration applied to the sensor, a voltage potential will be created 
across the output and the voltage is directly proportional to the acceleration.  [31]  
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Figure 8: A physical and circuit model representation of a MEMS accelerometer.  

 
The ADXL1004 uses that principal to build an integrated solution. The ADXL contains an 
output stage, amplifying the voltage from the MEMS element. Doing this not only amplifies the 
signals, but also decouples downstream systems like the ADC from loading on the MEMS 
element. The part runs on a single voltage rail; this rail not only feeds the output stage, but also is 
the reference directly across the MEMS element. Since the parts measures +500G to -500G the 
sensors outputs VDD/2 when no acceleration is measured. The sensitivity of the sensor measured 
in mV/G is directly dependent to the voltage. [10] The sensitivity is defined by the equation:  
 

                        Sensitivity ( ) DD                          (eq. 1) G
mV

 = 5
4 * V  

 
Since our voltage rail is 3.3 volts our sensitivity is 2.64mV/G. In context to our system this mV 
step needs to be able to be detected by our ADC. Using 16 bits and considering INL and DNL 
we are well within that limit. All of the interpretation of acceleration is directly related to this 
value, that being said we decided to decouple the voltage rest of the system that requires 3.3V. 
To do this we used a precision voltage rail to ensure a voltage rail with a low variance (<1%) 
across temperature and board-to-board (Further discussed in a later section).  
 
The frequency response of our system is specified up to 10kHz. We placed a first order RC filter 
at the output of the accelerometer, which filters out noise generated from the internal oscillator of 
the output stage as well as vibrations above 10kHz. Working with a field applications engineer 
who supports this line of parts, we designed a filter with practical values. We designed the filter 
with a R=715 ohm and C= 10nF. This gives us a 3dB cutoff at 22kHz. Although this value is 
10kHz greater than our desired maximum frequency, this was done to prevent minimal amplitude 
loss at the 10 kHz frequency. The RC filter was simulated in LT-Spice to verify the transfer 
function. In simulation we measured ~-800mdB loss at 10KHz.  If the roll off of the filter proves 
ineffective, we have provisioned on our design to support a second order RC filter by placing 
pads down for extra components. Currently on our design we do not populate those extra pads. 
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Figure 9: RC filter Bode plot and cursor information from LT-Spice Simulation.  

 
The ADXL contains 3 auxiliary IO: Standby, Self Test, Overange.  
Standby 
Driving the standby pin high will put the part into a low power mode (I=~228uA), doing this will 
shut down the oscillator block on the part. We have connected this to our wireless SOC to put the 
part into standby when needed. 
Self Test 
Driving self test high will use electrostatics to displace the MEMS element. The amount of 
displacement is based on the VDD of the sensor. From there you can measure the delta between 
the sensor output before and after self-test was asserted. If the delta is within a range specified by 
the data sheet the user or software can determine if the sensor is fit to be used. We use this 
feature on our system to verify the sensor is functional before every test. We have connected this 
signal to our wireless SOC to trigger the self test.  
Overrange 
Overrange is an output that will be asserted by the ADXL1004 in case the sensor is subjected to 
greater than 1kG, when that condition is met the ADXL1004 will drive over range as well as the 
part will be put into standby for 200us. Putting the part into standby protects the sensor and 
oscillator. We have this output tied to a HW interrupt on our SOC. This can be used to relay back 
to the server in an over range event has occurred.  
 
Mechanical Considerations 
 
To correctly transfer mechanical vibration to the sensor, proper mounting of the module to the 
device under test needs to be considered. Since we are not versed in this topic, we leveraged the 
datasheet and evaluations modules for the ADXL1004. The primary goal is to secure the board to 
device under test in a way that the board itself doesn’t generate harmonic vibrations. To mitigate 
this, rigid mounting is needed to be placed directly around the sensor. [10] The ADXL1004 
evaluation platform provide a mounting cube, which directly screws into the PCB. We designed 
the mounting of our system to be able to attach to the same mounting cube.  
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AD4008  
The analog to digital converter selected for this design was the AD4008 from Analog Devices. 
The device is a single channel, 16 bit, Successive Approximation Register (SAR) ADC. This part 
features a maximum sampling rate of 500 ksps, which more than satisfies the 40 ksps 
specification we determined in order to satisfy the Nyquist rate. We chose this particular 
component due to its extremely low power consumption, high-Z mode functionality, and an 
integrated SPI interface. 
 
Looking first at power consumption, the part claims to dissipate only 5mW with high-Z mode 
enabled sampling at 500ksps, which implies only a few milliamps of current draw when 
sampling and performing conversions. In addition, the converter powers down at the end of each 
conversion cycle to save power implying that power consumption is directly proportional to 
sampling speed. The part requires a Vdd of 1.8V to power the part and can accept a reference 
voltage of 3.3V making the ADC compatible with our accelerometer. It is also worth noting that 
since Vref is 3.3V, this converter has an LSB size of 50.35uA and is therefore easily capable of 
resolving the accelerometer sensitivity of 2.64mV/g. 
 
Moving on to the high-Z mode provided by the AD4008, this is a feature intended to mitigate the 
effects of nonlinear charge kickback at the start of each acquisition phase when the sampling 
capacitors connect to the input voltage. This high impedance mode allowed us to simplify the 
complexity of our design by not requiring an input signal buffer to drive the ADC. This means 
that the analog voltage output from the ADXL1004 accelerometer, following the RC low pass 
filter, can be directly connected to the analog inputs of the ADC.  
 
Interfacing with the part is done over Serial Peripheral Interface (SPI). SPI is a serial interface 
that is run as a Full-Duplex interface. While SPI is not a standardized protocol, it typically 
contains 4 connections: Master Out Slave In (MOSI), Master In Slave Out (MISO), Clock and 
Chip Select (CS). MISO and MOSI are used for the data transfer and CS is used to tell the slave 
that they are selected and to expect a transaction to occur. Devices can choose to clock in data on 
the rising edge of the clock or the falling edge. Typically vendors will specify which mode their 
part supports by denoting the part as CPHA=1 or CPHA=0, where 0 means data is clocked in on 
the rising edge and 1 means the falling edge. [32] In some newer parts the clocking edge is 
potentially configurable, but in our case the AD4008 clocking is fixed. Care was taken verify 
that the ADC and CYW43907 have compatible versions of SPI.  
 
The ADC contains multiple modes that are categorized into two groups: 3 wire modes and 4 wire 
modes. 3 wire modes are used when the master device (CYW43907) does not need to send data 
(over MOSI) to the ADC. 4 wire modes are used when the master (CYW43907) does need to 
send data (over MOSI) to the ADC. For our application High-Z needs to be enabled and this is 
done via a register write, so a 4-wire mode will have to be used during the initialization of the 
ADC. After that is done, we switch to a three wire mode since no data needs to be sent to the 
ADC while we are collecting samples from the accelerometer. A signal called conversion (CNV) 
is used to initiate any a transaction between the CYW43907 and the ADC. This could be 
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analogous to chip select but has a dual role and does not have the same characteristics that one 
would associate with chip select. Not only does CNV tell the ADC to get ready to accept 
incoming data and shift data out, but also is used to turn on the acquisition stage of the part and 
convert the current voltage  between V+ and V- and convert that to a code that can be then 
shifted out. To start a conversion the line transitions from low to high and stays high for a certain 
amount of time as specified by the datasheet (tconv). From there CNV is driven low. Once CNV 
is low the master can start driving the clock for 16 cycles, during each of those cycles a bit will 
shifted out, the total of which are the two bytes of conversion data. This procedure is then 
repeated to take another sample. [25]  
 
The ADC looks at the the state of MOSI at the rising edge of CNV to determine what mode it 
needs to be in. For our use MOSI needs to idle high at all times. This presented us with a 
problem since the SPI hardware block on the CYW43907 does not idle high and while we could 
have a weak pull up, we were concerned about contention with the push-pull driver of the 
CYW43907. Because of this, we opted to use a bit-bang SPI driver on our platform so we cound 
configure the MOSI line to idle high via software. We have connected our ADC via pins that are 
multiplexed between GPIO and SPI so we can experiment with both versions. [9] The bit bang 
driver allows for a maximum clock rate of 1MHz, which provides a maximum bit rate well 
within our needs. [33] In the software section of the report we further discuss this 
implementation and customizations to this driver that were needed to have the ADC function as 
intended.  
 

Power Electronics 

Buck-Boost  
 
As our system is being powered off of a single cell Lithium Polymer (LiPo) battery, which have 
a nominal voltage of around 3.7V and a usable voltage range between 3.0V and 4.2V, we wanted 
to ensure that our system could capture that entire range in order to maximize the battery lifetime 
of our system. Thus, a Buck-Boost converter was selected to provide the main voltage rail for 
our system, from which any other voltage domain can be derived. Since our accelerometer 
(ADXL1004) requires a minimum Vdd of 3.3V and was to be powered by a separate 3.3V 
precision voltage reference chip, we chose to select the output of our Buck-Boost to be 3.7V to 
provide enough room for any required dropout voltages feeding into any cascaded regulators. 
Note that if simply a Buck converter had been used and set to 3.7V, almost half of the LiPo 
voltage range would become unusable.  
 
In regard to selecting a specific Buck-Boost component, output current, noise, quiescent current, 
and efficiency were among the top selection criteria. We used Texas Instrument’s online 
software Webench Power Designer to help narrow down the selection of converters. The 
TPS63020 was selected for our design and features a resistively programmable output voltage 
capable of delivering a maximum of 4A load currents.[34] Simulating the performance of the 
converter across our input voltage range and with load currents up to 500mA, Webench 
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simulates a converter efficiency range between 88% at light loads up to 94.5% for our max load 
currents. The efficiency at light loads is aided by a power saving mode that occurs when the 
average inductor current falls below 100mA. In this state, the converter switching frequency is 
greatly reduced to maximize the efficiency across the entire operating region. Furthermore, the 
TPS63020 switches automatically between step down and step up modes, consumes less than 
50uA of quiescent current, and in normal operation switches at 2.4MHz.[34]  

Precision Voltage Reference  
 
The use of a precision voltage reference was selected for this design in order to increase the 
measurement precision of the analog signal chain in our design. It was desired to power the 
accelerometer (ADXL1004) and ADC (AD4008) with the same supply so that the measurement 
vibrational signals and corresponding digital codes are effectively correlated to the same 
reference supply. Thus, if changes in Vdd affect the accelerometer readings, then those same 
changes will be reflected by the ADC. Since the accelerometer output and sensitivity is directly 
ratiometric to its supply voltage, it is desired to minimize changes on this rail. Precision voltage 
references provide extremely constant voltages that are resistant to temperature changes, noise 
on the supply rail, and process variation.[35] Powering our accelerometer or ADC directly from 
the Buck-Boost converter (or even an LDO) would risk unwanted switching noise or voltage 
ripple resulting in measurement inaccuracies.  
 
For our design, we selected the LT1461 as our precision voltage reference making sure to 
consider temperature drift, power supply and noise rejection, and available output current. The 
device comes in a fixed 3.3V output form, which satisfies the ADXL1004’s minimum supply 
voltage requirement. The part can deliver up to 50 mA load currents, which is more than enough 
for our application, and the output voltage is guaranteed to within +-0.08% of the nominal value 
with a temperature drift of only 12 ppm/deg C.[36]  By selecting a 3.3V reference rail, our 16 bit 
ADC has an LSB size that comes out to 0.05mV, which is capable of resolving the 
corresponding accelerometer sensitivity of 2.64mV/g. 

Linear Regulators 
 
With a 3.7V main system voltage rail established by the Buck-Boost converter, it was necessary 
to then derive any other required voltages to satisfy other various ICs on the board. The 
CYW43907 normally requires a 3.3V +- 10% VDDIO rail as well as a VBAT that can range 
from 3.0V to 4.8V. However, since we integrated the Quiksilver Module onto our board, that 
module has the two rails shorted together, thus we only had to supply a 3.3V rail to both pins. In 
choosing which type of regulator to use to generate 3.3V, two primary choices existed: a Buck 
Converter or a Linear Regulator. Note that the existing 3.3V precision voltage reference cannot 
be used for this purpose as it can only provide a maximum of 50mA of output current.[36] While 
a Buck converter could accomplish this task with efficiencies upwards of 90% (verified using TI 
Webench), we did not opt to use this regulator topology as it would contribute extra switching 
noise to our system that may affect the sensitive analog components. In addition, cascading a 
Buck converter from a Buck-Boost converter requires a second inductor on the board, which 
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occupies a large footprint and can likely cause coupled EMI effects. A linear regulator was 
chosen to supply this 3.3V rail as they are simple to implement, occupy smaller board areas, and 
do not contribute switching noise. In this scenario, a linear regulator stepping down a 3.7V rail to 
a 3.3V rail possesses a maximum efficiency of 89.19%, however, in order to better justify this 
decision over a Buck converter, calculations were estimated using Ti Webench tools to 
back-calculate the expected input current draws from the battery if either regulator was used. 
While a Buck was estimated to consume less current, the extra battery lifetime that this current 
reduction would provide was deemed insignificant compared to the additional noise performance 
to outweigh the benefits of using an LDO. 
 
We selected the TPS73733 as the 3.3V LDO for our design for its appropriate dropout voltage 
and available output current abilities as well as its stable transient response and load regulation 
performance.[37] By using a fixed voltage version, we were able to reduce board area and cost 
by not requiring additional resistor dividers. 
 
The second LDO required on the board was a simple 1.8V component to power the Vdd of our 
analog to digital converter (AD4008). While dropping down from 3.7V to 1.8V results in an 
LDO efficiency of 48.65%, since the AD4008 is expected to only consume a maximum current 
when sampling of around 1mA, the dissipated power losses are minimal. Thus, an LDO was 
once again preferable to a Buck converter for such light loads. The TPS78018 was chosen for its 
fixed output voltage form, low 500nA quiescent current consumption, miniaturized packaging, 
and strong power supply rejection from switching frequencies coming from the Buck-Boost 
converter.[38]  

Gas Gauge 
The gas gauge we chose (LTC2941-1) serves two purposes on our system. The first is total 
power consumption, which is role of keeping track of the remaining charge that is on the battery. 
This part continuously tracks the battery capacity as long as a battery is connected which is 
important because our SOC will periodically undergo wake and sleep cycles. Even though the 
SOC is asleep, other subsystems will still be idling and consuming power. In a commercial 
solution like an iPhone this part is typically married to the battery pack and is not on the main 
mother board meaning that the part is always on, and needs to be programmed at the factory with 
the correct settings. Since we do not have that option on our design, we needed to place the 
gauge as far upstream as possible. We decided not to place it at battery connector, but rather after 
our reverse voltage protection PMOS transistor. Although the PMOS we chose has a low 
RDSON of 3mOhm and it will incur I^2R losses, it was unclear in the data sheet for the gas 
gauge if the device could handle the reverse voltage and to be safe we put it down stream of our 
reverse voltage protection. [39] Since the battery is not married to the gas gauge we need to have 
scheme to ensure proper tracking. We propose that an operator or engineer will take a fully 
charged battery with a predetermined capacity and connect it to the system; our system knows 
that this is the first power up and set the accumulated charge register via I2C to reflect how many 
coulombs this battery has. Since the system will not be powered down until after the test is 
complete, the coulomb counter register will correctly reflect the capacity. The SOC can read then 
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the accumulated charge register whenever it needs and report back to the server with that 
information.  
 
The second role of the gas gauge is to protect the battery from under voltage discharge. To 
accomplish the low battery detection the AL/CC pin on the gas gauge is connected to the enable 
pin of the 3.7V regulator, so when the battery hits the 3.0V threshold the gas gauge drives 
AL/CC low and de-enables the 3.7V regulator, shutting down the regulator and everything 
downstream of it. The current draw on the battery will not be zero since the gas gauge and the 
3.7V regulator will be drawing quiescent current. This draw it is extremely low (<70uA) and we 
deemed that as not detrimental to the battery. [23]  
 
Both the low battery detection and the correct battery capacity values are not set by default on 
the gas gauge, so when the system powers up for the first time it will need to correctly set the 
registers. More information about the Gas Gauge register configuration is in the software section 
of the report.  

In Circuit Power Measurement 
Although we have a gas gauge on board, since this design is a proof of concept we would like to 
have a way to measure instantaneous power on board. To do this we placed an INA219 from 
Texas Instruments on our system. This device combines digital logic and a current sense 
amplifier to take a voltage drop measurement across a sense resistor and convert that information 
into a power or current measurement. This measurement can be transferred over I2C to a event 
recorder. The INA219 has a variable gain amplifier that feeds into its’ internal ADC. Having 
control over the gain allows for better utilization of the ADC’s full scale. This also allows the use 
of a single sense resistor and reduces the need to have complex analog switch networks. We used 
this feature to our full advantage to reduce the cost and complexity. Depending on the effective 
number of bits set on the ADC we can achieve a maximum effective sampling rate of 11kHz, 
which is well within our required resolution. [40]  
 
For our design we picked a 220 mOhm 1% sense resistor. Picking the sense resistor is a balance 
of how much voltage drop the system can handle and how sensitive the current sense amplifier 
is. Since the amplifier has a variable gain we chose our resistor to have less than 10% voltage 
drop of our nominal voltage at our estimated max current of 500mA. We have also placed the 
same sense resistor between the 3.3V LDO and the 3.3V loads, but only have test points to 
measure the voltage drop. We decided not to run the kelvin leads to the same INA and have a 
multiplexer switch between them because of the physical distance and expected noise that the 
lines will pick up.  
 
To interface with the INA we placed a header that exposes VDD and I2C of the device. Since we 
do not want the power consumption of the INA itself to reflect in the measurements, we have a 
master device like an Arduino or Raspberry Pi provide the 3.3V at 1mA maximum.  [40]  
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PCB Design 

Schematic Design  
Once we had an architecture and a general sense of the connections that needed to be made, we 
created a schematic. Multi page schematic designs can be created in two ways: flat or 
hierarchical. A flat design design uses multiple pages to create the circuits and uses page 
connectors or off-sheets to pass connections to other pages. A hierarchical design uses the idea of 
modules, where a user will create a block and all connections that go off page are made with 
ports. From there the user compiles this page, which will create a symbol which will only expose 
the connections intended. This technique is commonly used for designs that use modules that are 
intended to be reused. Since we are not concerned about reusability, we opted for a flat design 
for better readability. Although you do not have to label all of the connections on the schematic, 
we decided to explicitly label all connection on our design. This was done to make sure all 
connections were correctly made as well during routing we know the signal and its importance. 
We used a simple naming scheme where all voltage rails follow ”Voltage Value_Usage”, and all 
other signals follow “Sub-system Name_Usage”. This scheme explains the purpose of the 
connection and what subsystem the refer to. Altium Circuit studio has a comprehensive rule 
checking system, which allowed us to check our design for any schematic level errors. We also 
used peer review to verify all signals were connected correctly and no major oversights were 
made.  
 
Our design has 36 unique components and while we could have made our own symbol and 
footprints for each component, we didn’t believe this was effective use of our time. To find 
symbols for all of our components we leveraged several established and reputable component 
libraries as well as vendor provided design files. Many of these files were used without 
modification, but we did end up modifying some components slightly like silk screen or via 
sizes. In our design we have components that we place a symbol for and route, but do not 
populate at the time of production. Typically these components are used for changing boot 
strapping or making secondary connections. These components are called “No Stuff” and Altium 
has a feature to not include these components in the bill of materials (BOM).  
 

PCB Layout 
Once the schematic has been thoroughly reviewed, we moved on to taking the components and 
physically placing them on a circuit board and connecting them. Many consideration have to be 
taken into account to have a successful physical design. These included: Stackup, Design For 
Manufacturing, Noise Mitigation, Wireless Performance, Power Delivery Network Performance 
and Signal Integrity. Having a successful design comes down to the initial placement of the 
components. Having a good placement or floorplan makes routing logical and methodical. We 
spent a considerable amount of time optimizing the placement of the components. We balanced 
the size of the board to allow for a small enough footprint to conduct physical testing, but also 
allow for debugging of the system with test points and headers.  
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Figure 10: A top view floorplan of our PCB.  

 
Once the components were placed, we could begin to route. We first routed all critical signals 
like analog signals and our SPI interface. Care was given to route with the least length and least 
amount of via transitions. Then we poured all power planes. Planes were used instead of traces to 
allow for higher current carrying capabilities. From there we routed all the rest of the IO and then 
finally we could pour the ground planes. We poured as much ground as possible and made all of 
layer 2 ground to provide isolation to our sensitive analog components. We then used vias to 
connect all of the ground pours together on adjacent layers.  
 
A PCB design has many parameters that are required for design. These parameters are typically 
related to the manufacturing abilities of the company fabricating the design. That means that we 
had to have a general idea of the manufacturer that we were eventually going to work with. We 
extensively surveyed the capabilities of both domestic and foreign manufacturing companies to 
make an informed decision. Our decision was based on features that were required for our design 
like hole size, minimum spacing, and minimum trace size. These rules are then imported into 
Altium, from there we can run a Design Rule Check or DRC against our board. This is important 
because some vendors will not run this check themselves, and any errors not caught can cause 
delays as well as errors in manufacturing.  
 
Once the design was pretty much ready for fabrication, we ran power analysis simulations on our 
power planes and traces in CST microwave studio. This analysis takes the PCB design including 
the material properties and allows one to simulate voltage source and loads. From there you can 
analyze the voltage drop and current density of the power planes.  We designed all of our power 
planes using the IPC-2221 standard, which specifies equations to determine the maximum 
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current capacity based on the temperature rise of the copper. While our power planes are based 
off that specification and should be able to support our estimated maximum current, CST will tell 
us the voltage drop at specific pins. This is important because on our precision reference rail we 
want to reduce as much voltage drop as possible from the regulator to the accelerometer as well 
as make sure no rail droops too low during a max current transient. From the results of the 
simulation minor changes were made to the layout like extra return current vias and shape 
modification.  
 
The physical dimensions of our completed design are 80 mm x 65 mm x 1.57 mm, which is 
within our original specification.  
 
 

  
Figure 11: 2D current density simulation results for PP3V3 and PP3V7 voltage rails.  
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Figure 12: 2D voltage drop simulation results for PP3V3, PP3V7 and PP3V3_ADXL voltage 

rails.  
 

Assembly 
Once the design files were reviewed, we had to get the board fabricated and assembled. 
Although assembly can be done by hand, due to unexposed pins and sensitive components we 
decided that we would prefer to get the board assembled by a company. Since the design is 
immature and we are not experts in PCB manufacturing we opted to work with a vendor who 
would provide design for manufacturing support (DFM). Although overseas vendors will be 
cheaper and can provide some DFM support, we opted do work with a domestic vendor due to 
faster communication. We ended up choosing Sierra Circuits in Sunnyvale CA because not only 
can they fabricate, but they can also assemble the PCBs. To streamline the process of assembly 
Sierra also procured the components necessary and anything they could not order we provided 
(ie the Quicksilver modules).  
 
To fabricate and assemble the design, many files are needed. Vendors work with manufacturing 
files compared to our schematic and board files. Thankfully, Altium has built in manufacturing 
output file generation, including Gerber files and many others. Gerber files are a file format that 
explains the board on a layer by layer basis. These layers include the physical copper layer, but 
also mechanical layers like silk screen, solder mask and keep-outs. The file known as a drill file 
provides XY coordinates of all required drill holes and denotes the size and if they need to be 
plated or not. These files are needed for the PCB itself, but other files are needed for the 
assembly. A machine called a pick-and-place will pick up the components and place them on the 
board in their proper location. The machine needs an explicit file to give XY coordinate of where 
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the part is located and the relative rotation. On top of this, a drawing needs to be created to call 
out all the components on the board and where their pin 1 is located. Special alignment pins were 
placed on our design called fiducials  that are used by the pick and place machine to create a local 
coordinate system for the PCB. Altium provides a plugin called Draftsmen which takes your 
design and outputs the needed mechanical drawings. This was very useful since a manual, scale 
drawing could take hours of work. 

 
Figure 13: Draftsman drawings provided to the vendor for assembly.  

 
Through the DFM checks provided by Sierra minor issues were found and resolved between us 
and Sierra engineers. Overall, working with this vendor was very straightforward and they 
communicated clearly what they required from us and gave us good feedback as well as being 
prompt. It only took five days from placing the purchase order to receiving the boards back.  
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Figure 14: Image of the assembled prototype.  

 

Testing and Results  

Power  
 
Upon receiving our boards back from the fab, our first task was to inspect their performance and 
verify no critical errors were created during manufacturing or assembly. This involved first 
checking that no unexpected short circuits or open circuits existed on critical pins of the various 
ICs. Upon probing the boards, we observed no obvious assembly errors, which gave us 
confidence to connect a voltage source and power on the board.  
 
After applying a DC voltage to the system, all of the voltage rails appeared to be functioning 
stably at or close to their intended values. The 3.3V LDO, 3.3V precision reference, and 1.8V 
LDO were all operating nominally, however, we observed that the Buck-Boost converters were 
sitting a little higher than expected around 3.81V. After researching the issue further, this was 
confirmed to be due to the IC operating in its power save mode where the nominal voltage 
typically sits an average of 3% higher. A histogram taken by a high precision 6 decimal 
multimeter can be seen below of this rail when the system is in power save mode. 
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Figure 15: Histogram showing the distribution of the 3.7 voltage rail under light load.  

 
 
For an expected output of 3.7V, 103% of that results in a 3.81V rail, which is confirmed by the 
figure. Thus, each component on the board appeared to be properly powering on, meaning that 
we could begin testing the functionality of different subsystems on the board. 
 
One area of great importance that required analysis and characterization was the power 
consumption of our entire system. As we designed the system to be as low power and efficient as 
possible, it was necessary to determine exactly how much power the device uses in various 
modes of operation. These tests were critical given that the boards will be mounted on a 
spacecraft and left in a low power hibernate state for any number of days leading up to a 
vibrational test. To accomplish this characterization we wrote a testbench to read data from the 
INA219 measuring the total system current consumption in order to estimate how much battery 
lifetime our system would have for a given battery capacity. The INA was powered and 
programmed off board by an external Arduino so that the measured current values did not 
include the chip’s own quiescent current consumption. It should be noted that all tests were 
performed with battery voltages closer to 3.0V as lower voltages cause the system to draw more 
current than higher voltages. Such behavior is expected from a boost converter. The board’s 
power consumption was measured in three different modes, the results of which are shown 
below in Table 9. 
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Table 9: System Power Measurements.  

 
Board Mode 

 
WiFi 

 
Vbat  

 
Average 
Current 

 
Average Power 
Consumption  

 
Battery 

Lifetime** 

System in 
Hibernate 

- 3.10 V 1.428 mA 4.427 mW 24.91 days 

Networked and 
inactive 

2.4 GHz 
5 GHz 

3.14 V 
3.07 V 

154.21 mA 
227.78 mA 

484.2 mW 
699.3 mW 

 
20.99 hours 

Networked and 
Communicating* 

2.4 GHz 
5 GHz 

3.15 V 
3.10 V 

443.12 mA 
347.97 mA 

1.396 W 
1.079 W 

 
8.25 hours 

* 100% duty cycle, max throughput, 20Mbps 
**Assuming 2500 mAh battery 
 
The first mode tested was when the CYW43907 is in its hibernate mode in which the device is 
not connected to the network and its internal power management unit is powered down. This 
represents the lowest power state of our system and most of the current consumption is the 
aggregate of all the component quiescent currents. The board was measured to consume an 
average of 1.428mA. However, observing the current data produced by the INA219, there were 
noticeable current spikes up to around 3mA occuring at seemingly periodic intervals, which 
exceeded the expected total quiescent currents. Investigating the issue further concluded that the 
current spikes were once again a product of the Buck-Boost converter’s power save mode. In 
power save mode, the output voltage is allowed to fall before being compared against a specific 
reference comparator at which point the voltage pulses back up at a near instantaneous speed. 
Such a rapid change in the output voltage effectively looks like a step input to the system, which 
couples back to the input of the converter causing the current spikes observed in our 
measurement. They therefore represent a real current draw that must not be subtracted out from 
the measurements. 
 
The second and third modes tested involved the CYW43907 being connected to the WiFi 
network (either 2.4GHz or 5GHz) and either idling or transmitting data. Here, idling is being 
used to distinguish from data transmission in which packets are being sent over the network. In 
this idling mode with no transmission, the system consumed an average of 154.21mA connected 
to 2.4GHz WiFi and 227.78mA on 5GHz WiFi. In the transmitting mode, the system consumed 
443.12mA on the 2.4GHz network and 347.97mA on the 5GHz network. However, for this test a 
maximum transmission duty cycle of 100% was used (zero time delay between packets being 
sent), in order to simulate the highest possible current consumption. This meant that data was 
being sent at a rate of 20 Mbps, which can be compared to the rate of a functional vibrational 
test, where a rate of around 5 Mbps is expected. Between the maximum duty cycle and low 
battery input voltage applied during these tests, it is not expected to draw more current than the 
values provided in Table 9.  
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While power measurements for our system were insightful, they do not directly translate to a 
quantity that can determine how long our system could last after being installed on a spacecraft 
before requiring a recharge. Hence, a second test was created, analyzing the same three modes of 
board operation, that made use of the fuel gauge to keep track of the lost battery capacity during 
the test. Since a real 2500mAh LIPO battery was used for this test and one cannot accurately 
know the initial battery capacity upon plugging it in, we wrote an initial value of 2500mAh to the 
fuel gauge, ran the tests for a time interval of 10 minutes, and then reported the final battery 
capacity at the end. While the absolute battery capacity values are meaningless, the amount of 
capacity lost from beginning to end can be used to extrapolate how much time our system would 
be able to last on a fresh 2500mAh battery. Given that LIPO batteries are approximately linear 
over most of their operating region, this method is a reasonable approximation.  
 
Observing the rightmost column in Table 9, we estimated an allowable battery lifetime of 24.91 
days assuming the system was left entirely in hibernate and waking up every ten minutes to 
check if a test is ready to be run. This figure results from the very low power consumption of the 
module in hibernate and represents a key result from our design. On the order of 20 days should 
be sufficient time for engineers to mount the sensors on a spacecraft and set up any required 
tests. 
 

Sensor Performance 
Due to timing and logistics we were unable to complete dynamic vibrational analysis. This 
analysis would allow us to directly correlate the time domain and frequency response of our 
sensor with a reference platform like a shake table. Although we do not have a system to vibrate 
our board we can characterize our sensor in a stationary fashion as well as using the acceleration 
due to gravity.  
 
Precision Reference Testing 
As mentioned earlier the accelerometer output is directly ratiometric to the the VDD of the 
sensor. In conversion of the ADC samples to voltage or g value we need to use a vref value. 
Since we do not have a way to measure vref on each board we assume it is exactly 3.3V. This is 
a justified assumption due the high precision of the voltage regulator. To better justify this claim 
we used a 6.5 digit multimeter and plotted the distribution of voltages. We measured the rail in 
two conditions: hibernate and during data sampling. We decided to measure during two different 
modes because the current consumption on the rail is different. Figure 16 is when the system in 
hibernate and figure 17 is when the system is in test. We do see the rail in test mode droop 
slightly, but this is due the higher current consumption and is expected. Even though the delta 
during a test is higher than in hibernate it correlates to a worst case mV/g change of 0.1%, which 
we are extremely satisfied with. Note that this is a DC voltage measurement since it was done 
with a standard multimeter. We measured voltage ripple with an oscilloscope but ran out of 
vertical resolution and hit the noise floor of the device. We measured 4mV of ripple, which 
correlate to  1.51g of error, but we could not conclude that it was from the voltage source or the 
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noise floor of the scope. To better understand if this ripple can cause a measurement error we ran 
static testing.  
 
Table 10: Precision Reference Testing Results.  

Test Condition  Minimum Measured Maximum Measured Delta  

Hibernate  3.300921 3.301028 10.7uV 

Test (Taking Samples) 3.296497  3.296731 234uV 

  

   
Figure 16: A distribution of PP3V3_ADXL under hibernate conditions.  
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Figure 17: A distribution of PP3V3_ADXL under data sampling conditions.  

 
 
Static Measurement Testing.  
 
We ran two static tests. The first on one is to position the board off-axis and measure the 
acceleration, which should yield a measurement of 0g. The second test we ran is where we set 
the board on axis and move the device to measure +/- 1g. According to the datasheet for the 
ADXL1004 we can expect a normalized g offset depending on the temperature. At room 
temperature we can see up to +/- 2g of offset as shown in figure 18. [10] That being said we 
expect to see an offset upon taking measurements. Since the datasheet does not provide a transfer 
function for calibration we created a naive approach of calibration that will allow us to generate a 
calibration value for each sensor that can be then later accounted for. This calibration scheme 
take a series of samples for 30 seconds and then takes the average over the entire period. From 
there the average value is then passed to the server to be recorded. Each board has its own unique 
calibration value, which our post processing python script will use to correct the measurements.  
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Figure 18: A graph from the ADXL1004 datasheet showing the normalized offset vs 

temperature.  
 
 
We ran our first test for a duration 100 seconds where we have the board sitting as flat as 
possible on a level surface. Over those 100 seconds we take about 5 million samples, so we have 
plenty of samples to produce a histogram. Plotting both calibrated and uncalibrated data in figure 
19 and 20 respectively, we can see that our calibration scheme is working as expected. We see 
the calibrated data is centered slightly off the 0g bin by 0.1g. Fitting the calibrated data to a 
normal distribution in Matlab we have a mean of - 0.110804 and a standard deviation of 
0.102539. We believe this deviation is due to a combination of ADC nonlinearity, cross axis 
coupling of the accelerometer as well as the board not being exactly level due to some through 
hole pins slightly propping up the board (~1-3 degrees).  
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Figure 19: Histogram of calibrated idle (0g) testing of the system.  
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Figure 20: Histogram of uncalibrated idle (0g) testing of the system.  

 
 
 
The second test we ran was to observe if the sensor can correctly detect the acceleration due to 
gravity (+/- 1g) when the board is correctly oriented. To do this we put the board flat, then orient 
it in the +1g direction, wait for a couple seconds, then transition the board to the -1g orientation. 
We plotted the time domain signals as well as individually binned the data in the +1g and -1g 
samples to see the distribution of measurements. Both the +1g and -1g distributions are centered 
to their expected value within 0.1g. We observed a -8g transient that quickly decays when 
rotating the board. Due to previous testing we do not believe this is due to the voltage rail noise, 
which can cause an incorrect measurement. We have speculated that we exerted the board to a 
larger g force and it correctly detected it. Unfortunately without vibrational equipment we could 
not further verify this transient. Overall, our verification efforts here have proved insightful and 
have helped verify our design efforts.  
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Figure 21: Histogram of calibrated static +1g testing of the system.  
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Figure 22: Histogram of calibrated static -1g testing of the system.  
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Figure 23: Time domain plot of calibrated +1g/-1g testing of the system.  

 
 
 
 

Software  

Overview 
 
To take advantage of all the advanced features the WASP board provides and to meet our 
requirement of being a drop in replacement for an existing data acquisition system, we needed to 
do some significant development on our own software platform. Each individual system is 
focused towards speed and reliability in an embedded environment, and as such, C was the 
language used for all the development, both on the server side as well as the host side. On our 
custom board, we made use of the software development kit (SDK) provided by Cypress, 
WICED. WICED (Wireless Internet Connectivity for Embedded Devices) provided a set of APIs 
that allowed us to take full advantage of the low power WiFi connectivity and the included 
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ThreadX RTOS. WICED also made it possible for us to integrate some of their turnkey solutions 
like over the air update functionality, and made the process of programming over JTAG with our 
SEGGER jlink relatively easy [41].  
 
Testing of all our software was done on the host side using the CYW943907 development kit up 
until we were able to confirm functionality with our custom board. On the server side, we were 
targeting the software to run on the base station, but as the router did not include an on platform 
build system, we chose to employ a Raspberry Pi 3, which has very similar compute capability as 
our target platform and a linux based development environment to enable rapid prototyping and 
testing.  

Drivers  
 
To be able to communicate with the battery fuel gauge and the ADC, we needed to implement 
our own custom driver software. We built each driver to be lean and efficient while providing a 
public high level API to the main application to simplify the code. The drivers are split into three 
parts, two for each communication protocol we used: I2C and SPI, and the last being the generic 
GPIO driver. 
 
 

.  
Figure 24: WASP board driver overview. 

 
I2C 
 
The I2C protocol is used exclusively for communication with the LTC2941-1 battery gas gauge. 
Much of the code is dependent on the battery being used - the battery capacity is set at build time 
using a #define statement.  
 
Register Read/Write functions 
 
The LTC2941-1 has eight 8 bit registers, the first two being status and control registers 
respectively, and the remaining 6 being grouped into sets of two registers to read 16 bit 
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quantities of battery information (accumulated charge and charge thresholds low and high). To 
be able to use these correctly, we provide a set of four private functions that can read and write in 
8 and 16 bit quantities. Each read function takes a base register address and returns the data read, 
and each write function takes a base address and a data value, returning success if and only if the 
data read back immediately after a write is correct. 
 
Choosing a prescaler 
 
The first step to setting the battery information in the gas gauge is to choose a prescaler (denoted 
by m). The prescaler “effectively increases integration time by a factor M programmable from 1 
to 128. At each underflow or overflow of the prescaler, the accumulated charge register (ACR) 
value is incremented or decremented one count.” [23] The prescaler is calculated by the formula 
in equation 2: 
 

                                   m                                 (eq. 2) = (128 BC R)* *
(2 0.085mAh 50mOhm)16

* *
 

    
 

Where BC  is the defined battery capacity, R is the resistor value (50 milliOhms in our case) and 
0.085mAh is the constant LT defines as the charge (Q) LSB scaling factor. However, M  can be 
only be one of the first 7 powers of 2 (1,2,4,8,16,32,64,128), and so to choose our prescaler we 
first calculate m with our values and choose the closest option from the list. Although we could 
use the default prescaler (128), picking a value that better suits the battery capacity will allow us 
to better utilize the register space. [23]  
 
 
Device initialization/Setting Vbat Alert 
 
Once the prescaler is chosen, we can then move on to initializing the device. We first initialize 
the I2C interface on the CYW module, followed immediately by polling LTC device. We read 
from the status register and compare against the default state provided by the datasheet to 
confirm the device has been brought up successfully. If all the checks pass, we then write the 
prescaler value we found earlier as well as enable 3.0V Vbat alert setting (AL/CC) to the 
command register.  Enabling this alert will set AL/CC to drive low if the V+ falls below 3.0V. 
Finally, we calculate the proper value to place in the accumulated charge register (ACR). This is 
done with the following equation: 
 

                                  ACR V alue  loor( )                    (eq. 3) = f BC 128*
0.085mAh m*

 
 
Where BC is the defined battery capacity in mAh, m  is the prescaler we determined earlier and 
0.085mAh is the constant LT defines as the charge (Q) LSB scaling factor. This value is split 
since its MSB and LSB will be written to different registers. Once calculated, we write the values 
to their respective registers, completing the gas gauge initialization. [23]  
 
Public API 
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The public API is simple, only consisting of 2 functions able to get the up-to-date battery 
coulombs or mAh respectively. Each of the functions reads from the accumulated charge 
registers and applies a simple unit conversion. These functions are used by the main application 
to monitor the battery status and report to the server or potentially disqualify itself from further 
activity if the battery lacks the required charge to complete a test. 
 
 
SPI 
 
The SPI protocol is used for communication with the AD4008 ADC to take samples from our 
integrated accelerometer. The ADC has requirements that the CYW43907 SPI hardware block 
was unable to support as mentioned in a previous section, so we elected to a use a modified 
bitbang driver that emualtes the SPI hardware completely from software -  at the expense of 
some speed, added processor overhead and power.  
 
 
ADC Requirements/Bitbang Driver 
 
Cypress ships a lightweight bitbanging driver capable of running at a max speed of 1 MHz. We 
decided that the speed was acceptably fast based on our required bitrate, and that modifying the 
existing driver would be much faster than implementing our own. [33]  
 
We had to make additions and modifications to the driver to support our ADC. The first one is to 
add support for conversion signal (CNV). CNV is connected to the ADC via a GPIO on the 
CYW43907. A simple pulse was needed, but we had to verify that the length of the pulse 
satisfied the minimum conversion time required by the AD4008 data sheet. [25] A logic analyzer 
was used to verify the pulse length. The second requirement is that in order to operate in the 
intended mode on the ADC we needed the Master Out Slave In (MOSI) signal to idle high. This 
is critical to ensure correct operation of the ADC. This change was simple once we identified 
where MOSI was configured in the driver initialization. A simple modification was made and 
verified to idle high upon power up.  
 
Setting Mode  
 
As mentioned earlier we need to enable High-Z mode for our ADC. This mode is enabled via a 
simple register write t the single register exposed on the ADC. This is done using 4 wire mode of 
the ADC, where CNV will pulse for the required amount of time. From there the CYW43907 
passes two bytes, which is the write command (0x14) immediately followed by the data to write 
to the register (0xE4), which sets the high Z bit. We then wait briefly and read the register back 
to verify. This is done by sending the read command (0x54) and then looking at lower 8 bits that 
are shifted out of the ADC. We compare this value to what we would expect from our previous 
write, verifying that the High-Z mode has been correctly set.  
 
Conversions 
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Taking a sample is very straightforward on the ADC. We pulse CNV for the time specified by 
the ADC and then start the SPI clock for 16 cycles, each of those being one bit of conversion 
data. Those 16 bits are shifted out of the ADC into the CYW43907 via the MISO connection.  
 
Public API 
 
The public API provided by our WASP software encapsulates all of the work of communication 
over SPI and setting the modes into 3 simple functions, adc_adxl_setup, adc_set_high_z, and 
adc_sample. The first function, adc_adxl_setup , accomplishes all of the work of initializing the 
SPI interface as well as setting all of the default levels for CNV and MOSI, as well as the pin 
modes and ISR triggers needed for the ADXL special functions, which we deal with in the next 
section. The other work of initialization is done by adc_set_high_z , where the proper mode for 
sampling on our board gets set. Finally, adc_sample does the actual sampling, returning a 16 bit 
sample for each call. 
 

Additional Accelerometer Functions 
 
Our ADXL1004 accelerometer provides a few other features that we incorporated into our 
driver, namely self test and standby modes, as well as a dedicated over range alert pin. 
 
For WASP, one of the most important things to uphold is the accuracy of data. The self test 
mode on the ADXL accelerometer gives us the ability to check if the sensor is in working order 
and will provide accurate data, or if it has been damaged somehow and should be disqualified. 
We implement the check by taking a sample via the ADC as per usual, then setting the self test 
pin on the ADXL high. Setting the pin will physically displace the sensor, allowing us to take 
another sample and compute a voltage delta. This delta is then compared against a high and low 
bound which is set via a #define statement (for our purposes we have defined the range to be 
between 15 and 30 mV), and if the voltage delta falls outside of that range the part is considered 
not fit for use. The self test function will return the state of the part, allowing the data to be 
passed to the server. 
 
The ADXL also provides a standby mode pin to send the part into a lower power mode when not 
in use, saving power when the WASP board would be in hibernate. Unfortunately, the 
CYW43907 pins tri-state when in hibernate mode meaning we can’t guarantee that the sensor 
will stay in standby without additional hardware not present on our rev1 WASP board. 
Regardless, we provide the set/clear standby functions that could potentially be used in a future 
revision. 
 
The last special function the sensor provides is an over range pin that is triggered when the 
acceleration is over 2 times the full scale acceleration output, this mechanism is used to protect 
the sensors internally oscillator from damage. Our driver internally attaches an interrupt to this 
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pin that sets a flag disabling the part until a reset occurs, allowing the device to be inspected for 
damage before seeing any potentially incorrect data. 
 

Host Side Networking  
 
For WASP, the networking code is likely the most critical function. To be a worthy replacement 
for a wired system, WASP needs to be able to provide high data rates with equally high 
reliability, as well as means to control and monitor the function and performance of individual 
sensors easily and efficiently. With that in mind, we went about defining our networking system 
from a low level. 
 
Fundamentals 
 
Synchronization 
 
The first principal challenge we faced with networking was data synchronization. In a wired 
DAQ, all the data collection is triggered at the same time, and propagation speed of data through 
the wires is nearly the speed of light. In a wireless system, networking delays are introduced on 
top of the main challenge, that every piece of data needs a timestamp to be usable for analysis. 
Without a timestamp, the data received would be impossible to correlate to vibration events, and 
the data would then be meaningless. Knowing this, we surveyed the CYW43907 platform and 
found its three main timing features: a real time clock (RTC), an ISO time clock, and a internal 
nanosecond clock. The RTC was far too imprecise - offering accuracy only to the second made 
little sense with thousands of data points coming in that timespan. The nanosecond clock offered 
fantastic resolution, but the resolution came at the expense of it being too hard to synchronize 
across devices on the network. The ISO clock however, was easily synchronized across devices 
using SNTP (simple network time protocol). The downside however, was that the millisecond 
time resolution didn’t offer much room for inflated sample rates if we ever wanted to increase it 
to support another application.  
 
Our chosen solution ended up being a hybrid solution of the nanosecond and ISO clocks. The 
ISO clocks will be synced together at device startup using a local NTP server to ensure a uniform 
clock across all devices. The nanosecond clock value will be reported to the to server as a part of 
device registration and stored so an accurate time delta can be calculated for all subsequent 
nanosecond times reported, and with each WASP packet sent both time values are packaged with 
the acceleration data. Finally, the clocks are frequently re-synchronized with the NTP server to 
correct for any drift in times possible, though we likely wouldn’t a significant amount over the 
course of a single testing period. 
 
Protocol Selection 
 
Our first and main goal with WASP was to achieve a high data rate: 40,000 acceleration data 
points per second per board at a minimum. TCP (Transmission Control Protocol) is the more 
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commonly used protocol for sending packets over the internet, but it was engineered to be 
reliable at the expense of faster speeds. TCP uses complex flow control algorithms which would 
add overhead to every packet sent, and would reduce our overall data speed. On the other hand, 
UDP (User Datagram Protocol) avoids any overhead and is targeted for speed and throughput, 
but in exchange, there is a chance packets could be lost. However, UDP is reliable enough to be 
the main means of sending streaming multimedia (e.g Spotify music, YouTube videos) and 
coupled with keeping packet sizes small, we saw experimentally that packet loss was much less 
than 1%, which made UDP perfect for WASP data packets. 
 
A WASP data packet is 511 bytes in total, and consists of a 4 byte packet count (to accurately 
measure packet loss on the server side), 35 bytes of timing and synchronization data (27 bytes 
for ISO time and the rest for the nanosecond clock value) and 472 bytes of data, which are in a 
contiguous array of 236 separate 2 byte acceleration samples. With 472 data bytes per packet, we 
only incur an 8% transmission overhead. 
 

 
Figure 25: WASP data packet 

 
 
One of our other goals for WASP was to allow for extensibility and user control through 
commands as well as an accurate accounting of the systems resources (battery levels, in service 
debug and test, OTA), and for these goals reliability of packet reception at both ends was much 
more important than data rate. In the end, we decided to complicate our network architecture by 
adding TCP communication to our in place UDP system to allow us to meet our goals. 
 
 
WASP command and control packet types are more numerous - there are 3 packet types for 
initial device registration with the server which contain device registration data like MAC 
address, battery information and self test return codes, commands for further testing, and 
responses to specific commands, as well as 2 types for command/control requests and responses 
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for times of board activity. As all these packets are TCP, we could afford to be more liberal with 
packet sizes, though we still kept packets small for greater performance - most packet fields are 1 
byte, and bit fields were avoided for simplicity of implementation. 
 
Device Side Control description 
 
At a high level, the WASP board will always exist in one of five possible states: Off, Powerup, 
Hibernate, Active and Test. Each of these modes are enumerated below. 
 
Off 
 
The off state is the simplest of the states: the board is powered off completely, and is without 
power. The only way out of this mode is through a user connecting a battery, sending the device 
into its powerup state. 
 
Powerup 
 
The powerup state is the transient state that the device enters immediately after the board is 
powered or through a wake from the hibernation state. At each entrance into the powerup state, 
the device will determine the boot type. If the boot type was a first time powerup or an exit from 
hibernate (non-special functionality) the device will proceed with the standard start up 
initialization functions: initializing all of the external ICs, performing some self test functions, 
setting up network functionality, and finally registering with the base station for further 
instruction. At the time of registration, the base station will respond to the device with 
commands depending on the state of the system, and either send the device into hibernate mode 
or active mode. 
 
Hibernate 
 
Hibernate is the WASP device’s lowest power mode, which is critical to maintaining a long life 
on battery. In this mode, almost all of the external ICs will have been put into their low power or 
sleep modes, and the CYW43907 is off save for the small internal counter waiting to wake the 
device back up. Hibernate mode has a fixed duration: 10 minutes. That means that each time the 
device goes to sleep it will sleep for exactly 10 minutes before waking back up and reentering 
the powerup state. 10 minutes was chosen as it is a long enough duration to save a significant 
amount of power, but it is also short enough that the system can be quickly responsive given that 
the test command has been given - the whole system will be ready to begin in at most 10 
minutes. This setting is very much related to the constraints at SSL, and as such the hibernation 
time can be changed at build time using a #define. It can also easily be made dynamic to fit a 
more dynamic setting, as we did during the initial verification phase of our board. 
 
Active 
 
Active mode can be thought of mostly as a transition mode - this is the mode the device is in 
when it it waiting for the rest of the system to come back online from hibernate to initiate an 
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acceleration test. In this mode, the WASP device will be performing its final pre-test checks and 
initializations, and listening for the test begin command from the server to send it into the Test 
mode. 
 
Test  
 
Test mode is main mode of the WASP board, as it accomplishes the primary function of our 
system - taking data from the integrated accelerometer, serializing it into a network ready format, 
and sending it off to the server, repeating the process until the test is finished. The WASP board 
will only leave the test mode by a command from the server signalling that the test period has 
ceased, and upon receiving the message it transitions back into hibernate mode to await further 
tests or be collected and used elsewhere. 
 

Server Side Networking 
 
The server is likely the most complex piece of software created for the WASP project, as it 
combines intricate networking code, threading, polling IO, and a complex system of 
management of the WASP data. Below we will walk through the server step by step. 
 
Detailed Server Operations 
 
Global variables 
 
The WASP server uses global variables for the purposes of management of data and devices 
across threads, and having a globally visible data set allows for the thread that handles printing 
debug information to have data stream from each process. The first few global variables are all 
parallel arrays of length 300 - these serve as a global look up table for all the relevant device 
information like MAC address, IP address, assigned port, and file pointers associated with each 
device. The rest of the arrays hold data like battery levels, time of first connection, and self test 
information which allows us to display these data points on a per device basis to the users. The 
rest of the variables help the server keep track of the current mode, and the number of devices in 
each state.  
 
Command Line Interface 
 
The WASP server has a standard command line interface like that of any standard linux C 
program, with a set of options as well as a help page. Our CLI is implemented using the GNU 
standard argp set of functions. We provide four options to be used in any order: 
 

1. Verbose (-v): This option sets a flag telling the server to enable additional printing. This 
option is intended mostly for debug purposes, but may be useful in other situations.The 
default for this argument is false. 
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2. Calibrate (-c): This option sets a flag that adds an extra step during the client registration 
step of each board, commanding the client to go through its built-in calibration step and 
reporting its result to the server for use in post processing (see static measurement 
testing ). The default of this argument is false for the WASP team, though it should 
default to true for production use. 

3. Data Directory (-d): This option takes one string argument, specifying a directory for all 
generated files to be placed in. If the specified directory does not exist, it will be created 
with 0777 permissions, meaning any user has read/write/execute access from within. The 
default argument is the current working directory. 

4. Network Interface (-n): This option takes one string argument which is a network 
interface as seen in the linux program ifconfig  (which internally uses the /net/dev 
interface of the procfs ). This argument specifies the network interface that the server 
should listen on if WASP’s service discovery protocol is enabled. The default argument 
is eth0. 

 

 
Figure 26: WASP server CLI. 

 
Initialization 
 
Once the arguments are parsed, the first thing the WASP server does is check the endianness of 
the server hardware. Because of the necessary serialization of data to be sent by the WASP 
boards, the interpretation of that data on the server side is partially dependent on the endianness 
of the server side hardware. If the server detects its running on a big endian machine, it will 
throw an error message indicating the problem and abort. 
 
The WASP server then begins by creating a file called “mode” which will serve as the means by 
which an engineer can change the testing mode asynchronously. The mode is initialized to be 
hibernate, meaning all devices will be immediately sent to sleep to preserve battery life. If the 
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calibration argument evaluates to true, the server will also create a file called “calibration.data” 
which will store all of the device calibration values and associated MAC addresses. 
 
Next, the server initializes a thread whose sole purpose is to print data. The print thread will print 
useful debug information and the current server state to the user, as well as a formatted table 
showing all of the connected devices and their information (MAC addr, battery level, self test 
status, and time since the last hibernate wakeup) which comes from the global variables 
described above. Additionally, if the verbose flag is set, the thread will also list some information 
about the running threads, along with some other debug information. The thread will update the 
data on the console once every 5 seconds so as not to consume any resources that are better 
allocated to data reception. 
 

 
Figure 27: Output of the print thread for 1 device. 

 
Once the server finishes creating the print thread, it zeros out the data in the lookup tables, and 
begins the TCP server functionality.  
 
TCP server 
 
The WASP TCP server has the responsibility of listening for and responding to WASP board 
registration messages. At each message reception, the server will decide whether or not to send 
the board back to sleep, to fetch an update, or optionally to initiate the calibration step if the flag 
is set. To do this, the server first creates a TCP socket on port 50005 (TCP registration port in the 
WASP protocol) and begins to listen. 
 
As mentioned above, the WASP server needs to listen in for TCP registration packets, but it also 
needs to keep track of the time since the last registration for each board for display to the user. 
This creates a problem because accepting a connection from a WASP board is a blocking 
operation, meaning we cannot do anything until a packet arrives. To get around this, we use a 
form of polling IO provided by the Linux OS via the select()  function. Using select, we can 
define a timeout of 1 millisecond for the packet reception, allowing us to only accept connections 
when one is ready to be read. At each loop iteration, we update the list of file descriptors to be 
monitored (which is just our TCP socket in this case) and we call select. If a connection becomes 
available for reading, we can service it, otherwise we can go about the timekeeping necessary to 
keep track of the boards. 
 
If select()  flags that there is a connection available, we accept the connection and spawn a new 
file descriptor for the connection to be serviced. We can then read the registration packet and 
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begin processing. Once the packet is read, we first look through the lookup table to see if the 
board has previously connected and is already in the table. If it exists in our table, we simply 
update its information and send it a command to sleep or get ready to test based on the current 
mode. If it isn't in our table the device is connecting for the first time - its information is first 
recorded, then it is assigned a UDP port for sending data during the test before the commands are 
sent. If the calibration flag is set, the server will spawn another thread tasked with 
asynchronously receiving the calibration value from the WASP board and writing it to the 
calibration file. In either case, once the commands are sent and everything is received, the file 
descriptor is closed (as the TCP connection is no longer relevant) and the loop will continue. 
 
If select times out on the other hand, the server first checks its mode, immediately continuing on 
to the next iteration if the server is still sending boards to hibernate. However if the user has 
chosen to edit the mode file to signal a test cycle to begin, the server will start a timer for 12 
minutes. The purpose of this timer is to allow for all the devices to come back from hibernate 
and from the logic above be sent into active mode to await the test. 12 minutes was chosen 
instead of 10 because the devices need some time to connect to the network, which may take a 
moment. Once the timer begins, no new devices are allowed to register with the server, so the 
number of devices we are waiting for is fixed. If that number is reached before the timer expires, 
the server will proceed on to the next stage. If the timer expires and the number of devices is less 
than what it should be, the user will be prompted as to whether they would like to continue. 
 
Once we have moved past the 12 minute timer, we move to another short timer, this time only 2 
minutes. The purpose of this timer is to allow the devices to start and complete their NTP sync. 
We have found experimentally that the time taken to sync time across all the devices can take 
anywhere from a few seconds to a little over a minute, but having the timer set at 2 minutes gives 
us some margin of error so that every device can sync up before the test begins. 
 
Once the devices finish their sync, they will begin waiting for the test to begin, and the server 
will spawn the UDP data reception threads. The logic is such that only 1, 2 or 3 threads will be 
created if only those number of devices are connected to save resources if they aren’t needed. 
Once the threads have been successfully created, the main thread will sleep for a few seconds to 
allow the reception threads to complete their initialization, then it will jump into its UDP 
broadcast function.  
 
Broadcast UDP 
 
Once the wasp boards have all been synchronized, they will begin to wait for a test start 
message. However, we want all of the boards to begin to take data at the exact same time (to the 
best of our abilities) and sending TCP or UDP packets through regular means will introduce a 
slight delay as it sends each start packet one by one. A better way would be to send a single 
packet to all the boards simultaneously through a broadcast message. While TCP would be 
preferred to guarantee the packets will be received, TCP is unicast only, so instead we must use 
UDP. 
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To send the broadcast message, we first create a new UDP socket like any other. On Linux 
however, sockets require special permissions to broadcast. To set the correct permissions, we use 
the setsockopt()  system call to set the broadcast permission bit. We can then change the mode to 
test active by writing the mode file created earlier, and sending the message to the broadcast 
address (255.255.255.255) on the specified WASP protocol port of 50006. For a normal packet 
the data being sent would matter, but in our case the WASP board considers the reception of a 
packet with any data to be a valid test start signal. 
 
Using UDP inherently means that there is a chance that the test start signal may not reach the 
destination. However, in a closed system (the intended use case of the vibrational tests), the 
network would have no activity for seconds prior to the signal being sent, eliminating any chance 
of collisions. Despite that, we choose to be very cautious, and we send the test start signal 10 
times repeatedly to ensure that the signal is heard by all the devices. 
 
UDP reception and Data storage 
 
Once the main thread spawns the UDP reception threads, they all will immediately begin to go 
through the initialization process to become ready to receive data. It’s important to note that the 
main thread spawns each UDP reception thread with the same main function, meaning that they 
all do the exact same operations, the only difference being the argument to the function - the port 
that thread is responsible for. 
 
Each thread first begins initialization by setting up local copies of the information contained in 
the global look up table. Because each thread is running on it own core, there is a possibility of 
contention between two or more threads wanting to access the same data at the same time. By 
creating a local copy, we can avoid implementing any complex methods to avoid that contention 
and also benefit from the speedup. Each thread will make a local copy of the MAC and IP 
addresses while also maintaining the global index of each entry so it can update the global tables 
when necessary. These arrays are all of length 75, as each thread will be responsible for one 
quarter of the total devices up to a max of 300 as set above. To make the local copies, the thread 
will scan through the global array and note which devices have the port assigned to the current 
thread, populating the local data as it finds them. 
 
In addition to making local copies of the MAC/IP addresses, the thread will also create a file for 
each device assigned to it. WASP takes the approach of having a single file for all the data of a 
single board so that data can more easily be attributed to boards, and therefore locations on the 
satellite as the locations are fixed. The file names are created as the MAC address of the board to 
aid with that correlation. For each device found, the the thread will turn the MAC address into a 
string, create a CSV file for that MAC, and write the CSV header. CSV was chosen for simple 
and fast post processing that will work in almost any software. The file pointers are then updated 
to a parallel array with the MACs and IPs.  
 
Once all the required files are created, the thread can then prepare to receive data by 
creating/binding a new socket, and entering the receive loop. The receive loop simply receives a 
packet and the IP of the sender, uses the IP to find the correct file to write to from our local array 
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of file pointers, and writes the data to the file. The files aren’t open and closed in the receive loop 
as the open and closing operations have a non-negligible delay that could incur packet loss. 
Instead, the files remain open for the duration of the test, and the buffers are flushed after each 
write, effectively writing the data to the file without closing it. By flushing the write buffers, we 
can avoid the delays of opening and closing the file, while also saving gigabytes of memory. 
Flushing also gives us the benefit that if the user were to quit the server unexpectedly, the data 
would be safe, and the files would automatically be closed by the OS when it cleans up the open 
file descriptors on exit. The receive loop will also check the mode the server is in at each 
iteration, breaking from the loop and closing all the open files if the user decides to end the test 
(by updating the mode file). The function will then return to the main, and once all the threads 
have exited the main thread will exit, terminating the program. 
 
Once the WASP boards receive the broadcasted test start signal, they will immediately begin 
sampling data and sending packets. By the time the test start signal is received, all four threads 
would have successfully initialized and will be waiting for packets. 
 
 
TCP Asynchronous Client  
 
In addition to UDP functionality, the WASP server also provides a TCP client to send commands 
asynchronously to the WASP boards during tests. Currently the WASP boards listen for TCP 
commands but take no action on the reception - this feature was added in case the need arose to 
send commands mid-test, but currently we don’t use it. In any case, the WASP server will spawn 
a thread to send TCP commands as soon as the broadcast signal is sent, but no actual sends take 
place. We leave the logic of when to send up to any future party interested in using this feature. 
 

WASP SDP 
 
As we were undergoing the lengthy process of qualifying our system, one step stood out as a 
great annoyance - setting the server address. In the original version, the WASP server needed to 
be set up before anything else so its IP address could be found, and subsequently hard coded into 
the WASP board firmware. This process was not ideal, and we found that changing location to 
do tests meant that a new IP needed to be programmed into all of the boards which was a very 
time consuming process. To address this, we implemented our own simple version of a service 
discovery protocol (SDP).  
 
Our SDP implementation makes use of the same type of broadcast messages as the test start 
commands to communicate with an unknown server. On startup, the WASP board will send out a 
broadcast message over UDP to every device on the network on port 60007. On the server side, a 
thread is running a dedicated listener, which will determine its own IP address on startup, and 
when it receives the broadcast message from a board, it will respond with the address as a period 
delimited string. The WASP board can then turn this received address into a binary IP address, 
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and continue its startup procedure. To enable the protocol, the user must build a version of the 
server with SDP added. 
 

OTA Subsystem 
 
WASP has an interesting functional requirement in that once the boards are placed, no human 
will come into contact with the device for potentially many weeks. This meant that we had to 
design the board to operate at very low power levels, but it also presents another interesting 
challenge - we recognize that we may want to fix bugs or even quickly add features, and we need 
a complete method of doing so that will work reliably.  
 
The WICED software provided an example implementation of an OTA (Over The Air) update 
application which used the CYW chipset ability to become an access point to push updates, all of 
which was built on top of HTTP. While some of the features provided were applicable to us, the 
overall flow of pushing updates wasn’t desirable. Instead, we opted to build our own pull based 
system on top of the a stripped down version of WICED’s OTA subsystem.  
 
Our version of OTA is simple and is designed to require almost no interaction with the end user. 
Each build of the WASP firmware is associated with a version code consisting of a major and 
minor release number (ie 1.6). The most recent firmware build is placed on the WASP server and 
a corresponding file is updated with the latest version number. At registration, the WASP board 
will receive the version number of the firmware that has been placed on the server. The device 
will then check this number against its own number, and if the server number is greater, it will 
request the filename of the updated binary firmware file, reboot into the OTA update mode, and 
proceed to update itself. In the update mode, the device will query the HTTP endpoint it received 
from the server to download the file. Once downloaded, the device will reboot, where the 
bootloader will take over by extracting the new firmware into a staging area of nonvolatile 
memory, replacing the old firmware with the newly extracted version, and finally rebooting itself 
into the updated version. The newly updated device will then proceed like normal as described 
above. 

Final Cost  
 
We received $1500 from the School of Engineering as well as $2900 from Analog Devices. Both 
of these required grant proposals of why our project aligned to the ethos of both organizations. 
Thankfully we didn’t not have to purchase any test equipment like multimeters or oscilloscopes 
since the senior design lab had adequate material. We did use some of our own devices like 
programmers, a logic analyzer, SMD rework tools, a microcontroller, and single board 
computers, but we didn’t get reimbursed from the school since we intend to keep them. We made 
sure that funds were spent appropriately and effectively. For example we were able to direct 
Sierra Circuits, the manufacturer of our hardware to procure the components from a specific 
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website, which we determined was the lowest cost. In table xxxx we have rolled up all the 
expenses that were covered by the two grants. 
 
 
Table 11: Project Costs Paid By Grants 

Category  Description  Cost  

WASP Custom PCB  Cost of fabrication, BOM, and design tools 
for 5 boards 

$3348.56 

Evaluation Kits ADC Eval Kit $312.32 

Total  - $3660.88 

 
We also considered the cost of each WASP Board at an expected volume of 1000 board. 
Building at a larger volume allows for cost breaks from the BOM as well as manufacturing cost. 
It is very common for prototype and low volume boards to cost multiple times more that the 
device once in volume production. We ran quotes using the expected volume and accounting for 
the BOM costs, manufacturing, and material costs, we can expect each board to cost $100 or 
less. Considering just the cost of the sensors that are currently used which cost upwards of $1000 
each, we see a cost reduction on the order of 10x.  

Social Analysis 

Ethics 

Ethical Justification 
 
Space exploration is undoubtedly going to become an even more frequent endeavour for 
companies, organizations, and academic institutions. This is because not only are the missions 
mysterious and enticing from an exploratory point of view, but because it will continue to lead to 
the advancement of new technologies and open doors for new research. Yet, for most curious 
individuals or scientific groups, space exploration remains largely inaccessible due to the sheer 
cost of planning, testing, and executing a launch. The effect of this is a gap in knowledge that 
forces those without the necessary funds to make scientific hypotheses and conclusions based off 
of another organization’s space mission, and not their own. Given that many missions are funded 
by governmental organizations that have their own agenda and dictate the purpose of the 
mission, there is so much information out there to learn and research to be conducted. This is 
ultimately a missed opportunity where sufficient funding simply does not exist. 
 
As a result of this inaccessibility, the question must then be raised as to what ethical action can 
be taken to open up space exploration to a broader audience of both intellectual and curious 
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individuals. The Markkula Center for Applied Ethics claims that “ethical actions treat all human 
beings equally - or if unequally, then fairly based on some standard that is defensible.”[42] This 
argument leads to the general idea that people who work harder or contribute more value to a 
group or cause should be rewarded more for their efforts. However, what happens when two 
equally skilled scientists or engineers work on a space exploration project yet one of them works 
for a government-funded organization while the other for a smaller university? It quickly 
becomes apparent that rewarding the former employee more just because of their involvement in 
a group that possesses funding to actually execute a launch does not feel like the “right” or more 
ethical action to take. 
 
As the engineers behind this project, it is our belief that cost, manpower, and setup complexity 
are the three main roadblocks in providing accessible space exploration to a larger audience. In 
order to justify the cost of building a spacecraft, it must obviously be tested extensively to ensure 
that the craft will not fail during the mission. With the current method of vibrational analysis 
testing the sheer complexity and time required for the setup itself is enough to give only the 
largest and well funded organizations a shot at succeeding. The objective of WASP is to deliver 
a lower cost, small form factor, and highly configurable device that can augment or replace the 
current wired testing equipment in a manner that is easy to install and just as accurate in regard 
to measurement precision. By doing so, we hope that this module will allow smaller groups of 
researchers to invest in spacecraft test equipment while only needing access to a computer and a 
WiFi router instead of a state-of-the-art control room. In addition, by adding software 
functionality and user-friendly interfaces, the engineers will be able to setup and conduct the 
tests in a quicker time frame with fewer people involved. Thus, space exploration may therefore 
become more accessible to all and mitigate the issue of lack of funding or regulatory bodies 
dictating the outcome of a exploratory or research mission. 

Engineering Virtues 
 
The ultimate goal of our project is to produce a system to assist with vibrational testing of 
spacefaring vehicles. As we are designing the system to replace current wired and bulky 
measurement systems, our sensor module must be small enough to mount of a satellite without 
adding to the system load, low power enough to permit long testing times without requiring a 
battery recharge, and use as few components as possible so that the new system is less expensive 
than the current wired system.  
 
Therefore, in regard to the frugal innovation constraint of manufacturability, our system 
accomplishes this by trying to minimize our component count and eliminating unnecessary 
functionality that is not integral to the vibrational analysis. The design will be easily 
manufactured in large quantities and result in a final form factor that is on the order of a few 
square centimeters. Our decision to manufacture the boards locally in the US was chosen as a 
means to facilitate better communication with a PCB fab, ensuring that the manufacturing 
process is well understood and significant collaboration exists between us and the fab house. 
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In regard to usability, we want to ensure that our design is easily implemented by other 
engineers. The amount of labor required to both install and debug our wireless system must be 
less than that of the current system or else our design cannot be justified as a suitable 
replacement. We are ensuring that there is both physical mounting capabilities, software 
functionality, and long lasting battery lifetimes to try and offload some of the arduous user tasks 
that are required of these systems. As engineers from different technical backgrounds will use 
our system, it must function in parity with all of their skills giving access to different kinds of 
users.  

Safety  
Our physical system poses little to no threat to a user. Steps were taken in the design process to 
ensure that the system does not pose a risk to itself as well as the user. Starting from the input to 
the system we have reverse voltage protection. Even though our battery connector has a keyed 
connector we placed a MOSFET to prevent any reverse current from flowing into the board if the 
battery is connected in the wrong direction. The most significant safety risk in our system is the 
Li-Po battery itself. One issue is these batteries have to operate within the specified limits. We 
have properly spec’d our battery to ensure our maximum current is within its’ recommended 
operating limit. Operating voltage needs to be maintained or the battery can damage itself as well 
as possibly combust. Ignition of these batteries is especially dangerous since these can trigger 
thermal runaway situations where the battery will burn hotter and hotter until the energy stored 
in the battery is depleted. The gas gauge on our system protects the battery, which will cut off the 
battery from the rest of the system once the voltage limit is met.  
 
Another safety consideration we have examined is the wireless emissions from the WiFi radio. 
While WiFi does not transmit ionizing radiation, limits are still in place by the FCC and the FDA 
for transmission power. [43]  In the United States all devices are evaluated and approved by the 
FCC to ensure the transmission power is within legal limits as well as within the specified 
frequency band. The Quicksilver module as well as the LBWA1UZ1GC have already been 
certified by the FCC. This ensures that our device does not pose a threat to humans as well as 
interfere with other devices.  

Risk 
Once our system is fully functioning, the intention is to replace the currently working system. 
These tests are used to qualify spacecrafts against the design specifications needed to ensure a 
successful deployment. The risk our project presents is that if one were to use our system to 
qualify their system and our platform has an issue that presents erroneous data, an incorrect 
decision could be made on the bad data. That could mean putting a spacecraft up in the sky that 
was damaged during flight and does not function or something more catastrophic like affecting 
the performance of the rocket itself. The scale of the risk is something we have not taken lightly. 
To ensure proper operation we have spent significant amount of time engineering a robust 
system as well as validating critical components of the system affecting measurements. Although 
we have not been able to complete dynamic vibrational analysis alongside a reference sensor, 
this test is something we have made clear to our collaborators and advisors that this is necessary 
to consider our system as a functioning and safe alternative. 
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Sustainability  

Social  
 
This device is intended to simplify the lives of engineers interested in performing vibrational 
tests on spacefaring vehicles. Such tests are necessary to ensure the safety of the vehicle during 
high force events such as takeoff and re-entry. We want the installation process of these modules 
to be easier, less bulky, lightweight, and easy to debug in the case of a device failure.  We also 
hope that this system can be modified and potentially used for other applications with different 
types of sensors.  One example could be in medical applications to capture physical motion or 
perhaps even vital health data from a patient to gain more information on the nature of their 
condition. 
 
In addition, although it may appear abstract, our project’s outcomes have strong ties to Social 
Equity. Satellite development even on the academic level is plagued by the high cost of not only 
materials to build the satellite, but also the test equipment. Test equipment costs are extremely 
high but are needed to ensure a successful design. As a result, this only allows well-funded 
universities or corporations to build and test satellites. This creates an unfair situation where only 
certain experiments can make it to space.  With our test system, the costs are significantly lower 
than the conventional system. This will allow for any university regardless of major funding to 
test their satellites. We believe that any university regardless of size and funding should be able 
to build and test satellites for the further advancement of knowledge.  
 

Environmental 
 
In our design project, one of our main goals is to deliver a module that is completely wireless 
and portable, and consequently we need a battery to deliver the portable power necessary to 
make our design work. We chose to use a LiPo battery due to its best in class energy density, but 
this choice has a significant impact on the sustainability of our project as a whole. LiPo batteries 
use the mineral Lithium to achieve their level of performance, and lithium production can be a 
dirty business.  The mining process involves pumping salt water deep into the ground to pick up 
the valuable materials, and then the resultant lithium rich water is left to evaporate leaving the 
mineral behind to be collected for further processing.[44] This poses two problems: the mining 
process is an incredibly energy intensive process, but even worse, the mineral rich water is prone 
to mixing with groundwater or other natural water resources, which can be very problematic for 
the neighboring environment. Furthermore, the main production of lithium occurs in south 
america, thousands of miles away from the processing plants which are primarily in China.[44] 
Due to the distance and nature of the material to be shipped, heavy cargo ships are the main 
means of transportation of the raw lithium. The shipping industry is notoriously the largest 
producer of greenhouse gasses, making the transport of lithium a large greenhouse gas producer 
with an equally large carbon footprint. 
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As with any other design project containing anything more than the most basic electronic 
circuits, our module will feature many capacitors. Projects like ours also have an additional 
constraint on their choices for passives: size. Picking the smallest capacitors can help us save 
money and space, but that choice has a downside - many of the smallest capacitors utilize the 
material Tantalum for their capacitive material. Tantalum is a particularly devastating material 
for the communities in africa where it is predominantly found, and due to the ever increasing 
demand, the damage continues to get worse. From an environmental standpoint it isn't much 
better. Like the lithium described above, tantalum is processed great distances from where it is 
mined, meaning that the process of shipment incurs a great greenhouse gas penalty. The 
processing is much the same - due to the strength of the material, it requires heavy processing 
requiring a multitude of strong chemical processes. Each of these steps in the path to making a 
refined product like a surface mount capacitor is very harmful to the environment, both due to 
the greenhouse gases (that are stronger than CO2 in many cases) and the high energy cost to 
sustain intense heats and pressures where the reactions take place.  
 
Researching if there were any battery alternatives more sustainable than lithium batteries was a 
challenging task. In spite of its issues from a sustainability point of view, it offers an incredible 
value to us due to its small size and high capacity. We were reluctant to make any changes, but 
we decided to look up some potential alternatives. What we found was actually surprising: 
compared to other rechargeable batteries (obviously disposable batteries would be a worse 
options due to the high waste) with high energy densities, Lithium was among the best options. 
In place of a change though, we still have a plan for improving our sustainability situation with 
regards to lithium. Our main energy consumer in our project is the processor module on the 
board, and we have complete control over what it does at any time via our code development. By 
optimizing our code for better efficiency and maximizing time spent in low power states, we can 
effectively reduce the size of battery we need and therefore reduce our lithium consumption. We 
believe this to be the best means of change for our project. 
 
The choice regarding how to minimize our impact through tantalum was much easier compared 
to the plan we had to devise for our lithium use. Ceramic capacitors offer many of the same 
benefits as tantalum caps: small size, good performance, and ceramic capacitors aren’t polarized 
meaning less chance of error if we ever needed to hald solder any. Ceramic capacitors also don’t 
explode if they are overvolted - this wouldn't be an issue in our design due to proper tolerance 
parts being in place, but it is a nice added bit of safety for a project that deals with expensive 
equipment. The downside to ceramic capacitors is that we could possibly pay slightly more, but 
passive components are by far the cheapest parts on our board, and the substitution won’t cause a 
significant change to the overall price. 

Economic 
Economic development has been the biggest social factor in shaping our project. Its impact 
comes on a few levels - firstly, we wanted to make our physical components as low cost as 
possible while still ensuring maximum reliability for our users. This is because of two reasons: as 
students, we are on a constrained budget, and we cannot afford to be careless with our funds. 

72 



 

Production and assembly cost is high for us, limiting the amount of things we can do. We have to 
be very careful not to make any mistakes, because we likely only have a single try to produce an 
working design. We also have to carefully choose components, technologies, and methods that 
give the most performance per dollar to maximize our board output while simultaneously 
providing the best design.  But more importantly, we want to provide a product that is cheap 
enough to be a good value proposition to our target market, while also broadening the application 
of safety critical technology. One of our original goals was to reduce the cost of the systems used 
for these tests - and by doing so the companies that use our designs can save money to be 
reinvested, hopefully back into more satellites, or other space related research and development, 
which we believe is to the benefit of the whole human race. 

 

Future Work  

Vibration Comparison Testing 
As mentioned earlier we were only able to complete static vibration testing. Unfortunately due to 
logistics and timing we were unable to complete dynamic testing. This test would be run on a 
shake table alongside a reference sensor to be able to compare results after the test is complete. 
This testing is something we believe is critical to be able to compare and qualify the system 
alongside wired solutions. Frequency and time domain analysis is needed to verify performance 
of our data acquisition system. Although we were not able to complete this testing, the static 
testing allowed us to create all of the required server side, client side and post processing 
software, so in theory one should be able to attach the board to a shake table and proceed with 
testing with little to no development effort.  

Condensed Form Factor 
 
As our design is intended to be mounted on a spacecraft with minimal weight and size so as not 
to affect the accuracy of the vibrational measurements themselves, there will always be a need to 
reduce the form factor of our system. This would require altering the PCB design and conducting 
a second hardware revision. Firstly, as this was our first revision and we left ample room for 
extra components if needed, added headers for debugging purposes, and included numerous test 
points, we would begin to shrink the form factor by removing or condensing these parts after 
having gained confidence from the initial design. However, the biggest reductions in form factor 
could be achieved by integrating the components currently on the Quiksilver Module directly 
onto our PCB. The module contains the CYW43907 SiP, a single antenna, a SPI flash, an 
inductor, and a crystal oscillator, all of which could be added directly onto the WASP module 
without a separate solderable card. This design revision, in particular, would be very challenging 
due to the complexity of the CYW43907 SiP. Nevertheless, since we have confidence on the 
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PCB design of our other subsystems, proceeding with this level of integration could become a 
feasible task. 

Multi-Axis Accelerometer 
 
The WASP module currently utilizes a single axis MEMS accelerometer to acquire analog 
vibrational signals. However, in order to design a more robust system that better analyzes the 
complete acceleration profile of a spacecraft under test, the WASP module could be upgraded to 
a three axis system. From a hardware perspective, this would require a three axis accelerometer 
and a corresponding three channel ADC or three separate single channel ADCs. In regard to 
software, the new system, assuming the same sampling rate on each axis, would need to be 
capable of handling three times as much data being received from the accelerometer and 
eventually transmitted over WiFi. Doing so would broadly entail integrating the three data 
streams into a single packet structure and compensating it on the server side to de-interleave the 
data for post processing. 

Large Node Testing And Evaluation 
 
As was mentioned above, we were only able to fabricate a total of five of our WASP boards due 
to the immense cost of fabrication for a precision module on our university budget. Due to this 
fact, we were limited in our system tests to 5 boards, much less than our soft limit of 300 devices 
on a network. To fully evaluate the maximum performance of the system we designed, we would 
need to test the working system on larger numbers of boards on a closed network (ie no other 
networks within range, no devices connected besides WASP modules), ideally in a real satellite 
testing facility. Due to the emphasis we placed on the scalability of our system, we would not 
anticipate any problems or degradation of service up to numbers in the hundreds of devices, but 
this testing would allow us to take more data related to the working of our system and analyze 
the performance limitations of such a system. 

Software Optimization and Improved Feature Set 
 
As with many prototype or proof-of-concept software works released, the WASP source code 
was written with delivering a working product as the highest priority, while organization and 
optimization came after. As such, some work remains on refactoring our codebase to be more 
condensed, readable, and organized. Additionally, time could be well spent on performing an in 
depth analysis of the client and server along with the large node testing mentioned above to more 
heavily optimize the code and streamlining the system to consume less processing resources and 
provide more performant code overall. These tasks would be a high priority for us if we had 
slightly more time. 
 
In addition to refactoring, we have imagined some extra features and improvements that could 
add functionality and ease of use to our system. Chiefly among these ideas is a graphical 

74 



 

interface. Although our command line interface and regularly updating ASCII table of devices is 
quite helpful, the gold standard for interfacing would be a GUI. This GUI could present the 
information in a better format, and potentially even automate any interaction the engineers would 
need to have with the server.  
 
Besides the GUI, we would also like to add support for the server to run on big endian machines, 
like any processor in the x86 family of devices. Currently we disallow the use of the server on 
big endian machines to avoid any errors based on the difference of byte ordering from the WASP 
devices, but effort could be made to add support for all devices, significantly broadening the 
range of devices the WASP server can be used on. 
 
Finally, we believe there are more features that could be added to the platform on both sides to 
support other tests types and applications. The features added would be heavily dependent on 
applications, but in general, we would imagine SD card support, variable sampling rates, and 
more configurability would be beneficial to almost all future stakeholders. 
 
 

Lessons Learned 

Timeline & Design Challenges 
Our initial timeline was extremely aggressive; this was done so we could possibly create a 
second design revision of the board. By the end of the Fall quarter we wanted to send out the 
initial prototype for fabrication. While we have had experience in internships working on 
aggressive timelines like this, due to our engineering and core classwork load we quickly 
realized that this is not feasible. To reduce our total workload we just elongated our project 
schedule to accommodate our academic schedule. Increasing our timeline put the second design 
revision extremely close to the end of the school year, so our group agreed that if we did not 
finish the second design revision we would still consider our project in a completed state.  
 
Integrating the CYW43907 Murata implementation is not a trivial trivial task, it contains over 
100 pins ranging from power, ground, bootstrapping and interfaces. Due to the tight pin pitch a 
mistake cannot be corrected after layout is completed. That being said to have confidence in our 
implementation we asked our partners if they would help review our schematic. Initially they 
commited and created a internal work order that allowed us to have foresight on the progress. 
Slowly, no progress was made and attempts to contact the support engineers were meet with no 
response. Our hardware design efforts were mostly stopped waiting for a response. Eventually 
after two months we decided we had to commit to a unreviewed design or determine a way to 
integrate the module in a fashion that will reduce the risk of error. Thankfully we found the 
Quicksilver module and pursued that path without any issues. This experience is a good example 
of why engineers need to be able to think on their feet as well as be able to factor risk in decision 
making. Although brief, we can use this experience in the future to make better engineering 
decisions.  
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Hardware and Software Integration 
Our project is a good example of why software and hardware teams cannot operate without each 
others input. Our system requires tight coupling of how the hardware functions to get the most 
out of the software as well the hardware design needs to take software limitations into account. 
The most salient examples are the design and implementation of our SPI and I2C drivers. We 
had to have a clear understanding via component datasheets how we needed to interface with our 
gas gauge and ADC. From there we designed software to correctly send and receive data to the 
device. While this sounds trivial, operating in this mindset will translate to architecting a much 
larger system, where intensive collaboration between hardware and software teams is necessary 
to ensure a proper solution is created.  
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Appendix A: WASP Module Schematic 
For full design files including Altium files please refer to the github repository linked below in 
Appendix B.  
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Appendix B: Software 
 
The WASP source code consists of many files and thousands of lines of code, much too many to 
include in this document. Instead, we have placed all of our C source and Altium design files 
into a Github repository for viewing. To view the files, please see the WASP-Final repository. 
The directory structure is listed as follows: 
 

● PCB/  - This folder contains all of the Altium design files generated as a part of creating 
the printed circuit board. 

● WASP_main/ - This folder contains all of the files necessary to build the WASP board 
firmware. The directory structure is correct for a WICED build, simply drag this folder 
into the WICED apps folder and follow the instructions in the readme to build the 
application. 

● modifications/ - This folder contains all of the base WICED files that need to be modified 
to ensure a successful build of the firmware. For instructions on how to modify, see the 
readme. 

● post_processing/ - This folder contains Python and MATLAB scripts with which to do 
some simple processing on the generated data files.  

● server/ - This folder contains the source files and makefile needed to build the WASP 
server. Instructions to build can be found in the readme. 

● README.md - This file contains all of the instructions needed to build the software and 
evaluate the WASP system in a step by step format.  
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Appendix C: Project Timeline 
 
 
 
Hardware Design Schedule 

 
 
 

Software Design Schedule  
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