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ABSTRACT

The barrier to entry in electronic music production is high. It requires expensive, complicated software, extensive
knowledge of music theory and experience with sound generation. Digital Audio Workstations (DAWs) are the main
tools used to piece together digital sounds and produce a complete song. While these DAWs are great for music
professionals, they have a steep learning curve for beginners and they must run native on a user’s computer. For a
novice to begin creating music takes much more time, effort, and money than it should. We believe anyone who is
interested in creating electronic music deserves a simple way to digitize their ideas and hear results. With this idea in
mind, we created a web based, co-creative system to allow beginners and pros alike to easily create electronic digital
music. We outline the requirements for such a system and detail the design and architecture. We go through the
specifics of the system we implemented covering the front-end, back-end, server, and generation algorithms. Finally,
we will review our development time-line, examine the challenges and risks that arose when building our system, and
present future improvements.
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Chapter 1

Introduction

1.1 Motivation

Electronic music, including Progressive House, is a genre of electronic music where songs consist of layers of digital

sounds generated by a computer. It is up to the producer to arrange the drum sounds into a rhythm, then select

synthesizer notes to create a melody. Many producers add additional digital sounds to complement the melody and

rhythm and add to the complexity of the track. The layered nature of electronic music means there is lots of room for

auto-generation and co-creation with computers.

There exists AI music tools like Jukedeck, Mubert, and Amper which provide full composition of music intended

for backing tracks. The problem is they take little to no input from the user and produce a pseudo random track. Other

tools like Humtap are app based and produce tracks that are not easily integrated into a DAW for the professional

producer. They also provide little inspiration and minimal ability to change sounds within the track.

1
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1.2 Solution

This is where our app aims to fill the gaps. Rather than requiring a user to generate every layer in their song, we

enable them to start with one layer, and our system will generate the other layers and sounds. For example if a user

has a simple melody in their head, they may upload it in MIDI format to our system, and our system will work

to generate an accompanying harmony. Since end-to-end song generation is very difficult, we focused initially on

harmony generation. After we built several crude algorithms, we implemented the web application portion of the

system. From there we refined our generation algorithms and built a machine learning model. The final system met all

but one of our initial functional system requirements and we met one out of for recommended functional requirements.

The remaining features are discussed in the future work section of this report. Furthermore, we met all of our non-

functional requirements, and stayed within our design constraints. We are confident that with our final system, even

experienced professionals will be able to create quick sketches of their ideas and use the generated layers as inspiration.

Since our system is co-creative and web-based, it is unlike any other electronic music tool on the market. With a simple

UI that presents the song as a layer of tracks, beginners will have no problem navigating the app and producing their

first song. Instead of complicated music software being a barrier to entry, our system will be a path for new and

experienced producers to explore the world of music.

2
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Chapter 2

Requirements

It was our priority to create a music generation engine and enhance it through a website. The music generation engine

generates the musical elements to be presented by the website. It was important for the website we created to have a

user-friendly experience by being both easy to use and contain all of the necessary information. For our engine and

website to complete these tasks we outlined the following requirements.

2.1 Functional Requirements

• The system will have a secure log in system that will ensure the safety of the clients information

• The system will allow the upload of a MIDI file

• The system will allow users to enter a short melody on a digital keyboard

• The system will use the algorithm chosen by the user to generate a MIDI file that harmonizes with the initial

MIDI upload

• The system will allow for the download of the newly generated MIDI file

• The system will allow users to see generated tracks in a piano roll

• The system will allow the user to change the sounds associated with the generated track

• The system will add a drum beat to accompany the melody input

3
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2.2 Non-functional Requirements

• The system should be user friendly and easy to use to ensure musicians can enjoy their creation process

• The system should have a quick response time

• The system should be a reliable system with few system bugs

• The system should have a minimalist design to ensure an elegant design style

• The system will scale to allow for more than 50 users in a moment

2.3 Design Constraints

• The system will be deployed on DigitalOcean

• The front-end will be compatible with all browsers while the external MIDI device features will only be com-

patible with Google Chrome

• The system will be relatively OS and server stack independent allowing deployment on servers other than a

DigitalOcean instance

4
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Chapter 3

Use Cases

The use cases diagram shown in Figure 3.1 demonstrates the possible uses for our web application. There is only one

type of user and that is a general visitor that wants to produce harmonies for their chord progression.

Figure 3.1: Use Cases

5
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Chapter 4

Activity Diagram

The Activity diagram outlines the path a user takes when navigating throughout our web application and its function-

alities.

Figure 4.1: Activity Diagram

6
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When a user visits our website, they will be presented with a login page. Once the client logs in, the user will have

two options. The first option is the ability to upload a midi file to process and the latter is the ability to use an in

browser piano roll to create a musical melody. The website will proceed to process the midi input by the client. After

the website has processed the midi file, the user will be presented with one piano roll for the generated harmony and

one piano roll for a drum beat to the melody input. The client will ultimately be able to choose to download any of the

tracks separated from each other or all in a single midi file.

7
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Chapter 5

Conceptual Model

The conceptual model is a visual representation of what the web application looks like.

5.1 Homepage

Figure 5.1: Homepage

Figure 5.1 presents the web applications homepage. For our homepage, we wanted a simple user interface, immedi-

ately allowing the user to choose whether to upload a midi file or create one in browser.

8
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5.2 Digital Input Piano Roll

Figure 5.2: Melody Creation Page

Figure 5.2 models the layout for our in browser piano roll. Users will be presented with a simplified piano roll if

they choose to create their melody in the browser using their keyboard or mouse, rather than upload a midi file.

9
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5.3 Download Page

Figure 5.3: Download Page

Figure 5.3 models the download page, which will present users with three piano rolls: one for the original melody,

one for the harmony created from the original processed melody, and one for the generated drums. The user can then

change the sound of each piano and listen to them individually or synchronously. The user will be able to ultimately

download all three layers as a midi file using the download button.

10
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Chapter 6

Technologies Used

6.1 Languages

• Python

• JavaScript

6.2 Packages

• mido

• music21

• Tone.js

• Pomegranate

• MIDI.js

6.3 Frameworks

• React

• Django

6.4 Databases

• SQLite3 DB

11
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6.5 Explanation

We can divide the technologies we use into two groups, the core application technologies upon which the system runs,

and the supplementary libraries and packages that perform our midi manipulation and front-end. Because our system

is web based, the foundational technologies are the standard web development languages. In order to improve security,

robustness, and to make interfacing with our generation engine straightforward, we use the Django server framework

with a SQLite3 database. Django uses python which is the language we use in our music generation engine. SQLite3

is a modern database technology that provides ease of use for storing our user’s data including, credentials, session

info, and projects and integrates well with Django. As part of our implementation we experimented with generation

models and determined which algorithms resulted in the best layering. We experimented with Markov chains and used

the python package Markovify combined with manual scraping for a corpus of midi files in our specified format. In

addition to Markov Chains and basic Expert System algorithms, we tried the more complex Bayesian Network model.

For this we used the statistics package Pomegrante, which provides a convenient Bayesian Network class.

On top of the above core architectural technologies, we built our app to adhere to the midi standard by using

additional python and client side packages. Our generation engine requires extensive midi manipulation and for this

we used a combination of mido, and music21; mido for its ease of use and our familiarity with it, and music21 for its

powerful feature set. On the javascript side, MIDI.js was used as a midi sequencer to capture the sequence from the

onscreen piano roll, while Tone.js helped us with audio samples. Finally we used the React front-end library with JSX

syntax to render our complete front end including an onscreen keyboard and display of the midi in the standard piano

roll.

12
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Chapter 7

System Architecture

7.1 Architectural Diagram

With these technologies in mind, we now lay out the architecture for our system as seen in Figure 7.1. To begin, we

chose a web based approach for several reasons. We want our app to be beginner friendly as well as powerful and

a web app will satisfy both these goals. New users dont need to bother downloading our software and we are free

to modify it and improve the generation engine at anytime. Modern browsers also provide powerful languages and

processing which is sufficient to render our UI and process the input events.

We selected client server architecture since we have high compute jobs to be done on both the client and server

side. While data is a significant component of our system and we are storing several types in our database, we feel that

architectures such as data centric or data flow would be ill suited to the heavy client side compute. The largest type of

data we will need to manage will be midi data. Standard two track midi songs are typically between 10-20KB. If we

use a training set of 100,000 songs, we can still be under 1GB. Hence, storing both training data, and user generated

tracks on our server should not be an issue.

13
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7.2 Production Environment

In our original design, we planned to use the Heroku cloud server platform to host our final application. With our initial

research, the Heroku Dynos seemed to fulfill our needs at a fair price but as we attempted the initial deployment, we

realized a major shortcoming. The Heroku Dyno VPS does not allow for local storage which meant we would have no

way to store the users uploaded midi files on our server. We would instead need to purchase bulk storage on another

server and transfer midi files between them. This clearly seemed like unnecessary overhead so we explored other

options. A simple Amazon Web Services E3 instance would be more expensive than a server of similar specifications

on Digital Ocean so we decided to use DigitalOcean as our cloud provider. The DigitalOcean Droplet turned out to be

very intuitive to instantiate and provided a convenient management console.

Our droplet instance runs Ubuntu 16.04.6 LTS and is physically located in Digital Oceans San Francisco server

farm for the fastest delivery to the Bay Area. With our Droplet instance ready to go, we began customizing our cloud

server to our needs. In our initial design, we did not choose a web server software but with a little research, it was clear

that Nginx would be the simplest and fastest server to run with Django. We used Django as our python web server

framework as per our design constraints but we realized that Django recommends using a WSGI compliant middleware

to communicate with Nginx for added security in a production environment. For this, we installed Gunicorn (a WSGI

compliant HTTP server) and set it up to run as a system service. Next, we installed the same versions of Django and

SQLite as our development environment for seamless deployments. Git is used as version control to download the

production build of the site. Finally, so that unicorn and Django restart automatically in case of a server reboot, we

run supervisor, a common server management tool. When all is said and done, deployment can be done in just a few

commands. Please see the docs section of our repository and the server notes.md file for more info on our production

server and the steps taken for deployment.

14
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7.3 Security

It was our goal and a part of our system requirements that our production web application be secure and encrypted.

In order to do this, we started with server security. The server follows traditional linux security protocols with only

one user being given root permissions. Nginx is started as root but not run with root permissions. All configuration

files can only be edited by a user with root permissions, and all log files can only be written by processes with user

permissions identical to the log files. Log files are rotated automatically by Nginx. The Linux utility Uncomplicated

Firewall (UFW) was used to set iptables to only allow traffic on port 443 for HTTPS and port 22 for ssh connections.

With these measures in place, we believe our physical server meets basic security standards.

It was also important for us to encrypt all traffic between our web server and clients so for this we used the free

Certificate Authority Lets Encrypt along with their certbot to verify our server and obtain a TLS certificate. With a

few changes to the Nginx configuration, we were able to serve all traffic over https with end to end encryption.

15
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7.4 Backend Architecture

The initial design for our software architecture was fairly general with the main goals being modularity and simplicity.

We wanted our backend architecture to be intuitive, yet powerful so we imaged a hot-swappable architecture where we

could swap out different generation algorithms with a common interface for passing midi data into them. This would

allow us to rapidly deploy with simple algorithms while experimenting with machine learning algorithms. So, in the

initial stages of our build, we refined this concept and defined the classes and components of such an architecture. The

resultant architecture we call the Beat Engine and can be seen in the UML diagram in figure 7.2.

This architecture begins with the Django views.py file which presents a view when the user visits a specific URL

on our site. When a user submits a midi file, a POST request is sent to the server and one of our upload views is

hit. This view instantiates a Beat Engine object which is where generation begins. The Beat Engine is responsible

for pre-processing the midi file, creating a generation algorithm, and writing the output back to a file. After the Beat

engine is finished, control returns to Django. Each user to our site has their own beat engine instantiated when the

upload a melody.

When the Beat Engine is initialized, it creates an instance of the Beat class. The Beat class is a static container

for the song data and has no methods. It is used simply as a standard for passing data to our generation classes. The

Beat instance has instance variables such as key, tempo, and notes found in the uploaded melody. The most important

attribute is the Music21 stream representation of the inputted melody. This is the data format that our algorithms use,

and they will then generate a separate stream for the output.

Next, the Beat engine instantiates a generation class based on the method that the user selects. For the purpose of

this Senior Design. We have built three generation mechanisms: KeyChord, KeyChord2, and BayesNet. KeyChord

and KeyChord2 are Expert System algorithms and will be briefly explained in the following Chapter. BayesNet is the

single Machine Learning model we experimented and will similarly be explained in detail in the following Chpater.

The beat engine passes the Beat instance to the generation model that has been selected and the Generation Model

performs the generation. The output from the Generation model is written to the harmony stream instance variable of

the beat class and the generation engine returns control to the Beat Engine. Finally, the Beat Engine writes the harmony

and melody combined stream to an output file and returns control to Django. Django now serves the outputted file

back to the user and the user can view their generated track. For more info on the Beat Engine and generation process,

please the documentation on the classes inside the engine directory of our repository.
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Figure 7.1: Architecture Diagram
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Figure 7.2: UML Class Diagram
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Chapter 8

Music Generation Algorithms

Our web application uses 3 different harmonizing generation algorithms. This includes a combination of simple expert

systems and a complete machine learning system. Individuals who use our web application will be able to select which

of the 3 generation engines they would like to use to process their melodies and generate unique harmonizing layers.

Our goal was to allow users the flexibility to decide which engine to use in order to generate diverse layers. We

created 2 expert system engines which we called KeyChord and KeyChord2, and called our machine learning engine

BayesNet.

8.0.1 KeyChord

KeyChord is the initial expert system engine that we built for our application. This initial expert system uses a very

crude algorithm to generate a simple harmony layer using the user-provided melody. This algorithm parses the midi

file of the melody and takes every unique note played in a specific measure and creates a harmonizing chord from

those notes for that specific measure. This algorithm continues to do the same thing for every measure in the midi file

until a simple, yet effective harmony chord is produced for every measure.

8.0.2 KeyChord2

KeyChord2 was our improved expert system. To begin our design of KeyChord2, we took our implementation of

KeyChord and added music theory to add diversity between chords used. According to music theory every musical

key should have a total of 7 harmonizing chords. To find these chords one would permutate through the scale of the

key and begin the scale at the current scale partial. From there the algorithm takes the first, third, and fifth note and

performs a reverse chord look-up to find all of the chords that can harmonize with the key. Our algorithm then chooses

a random chord and adds one of the possible chords to each measure.

19

DocuSign Envelope ID: D0D2190D-B9C7-4B9F-AFCD-2955FF66B162



8.0.3 BayesNet

The BayesNet class is our attempt at a machine learning approach to the problem. The Bayesian Network is a well

know, generative, probabilistic model based on Bayesian statistics. The general idea is that we can estimate the

probabilities of the next chord or harmony note in a sequence given the previous melody note and harmony note.

We were initially unfamiliar with this method but discovered its potential for music generation while exploring our

initial plan of using a Markov Chain. We came across the paper Music Generation Using Bayesian Networks [1]

which presented a general procedure for the use of Bayesian Networks. We began by interpolating their schema and

simplifying the Bayesian network structure to suit our needs for electronic music. We assume that the basic music

structure of an electronic song can be deconstructed into a sequence of melody notes, voicing nodes, and chords. The

power of a Bayesian network comes from describing the conditional dependence between these components. As seen

in figure 8.1, we determine the successive melody note is dependent on the preceding note and similarly the next chord

is dependent on the the previous chord. Each melody note is dependent on both the current voicing note and current

chord. Finally the voicing note is conditional on the current chord. The dependencies are expressed with arrows in

our network structure. The white nodes are the notes to be given to the model, and the grey nodes are the nodes to be

statistically imputed.

In order to perform the imputation we must train the model on a data set of midi songs and generate the conditional

probability tables. The data set consists of 60, two track, midis songs that are derived from popular electronic music

tracks. Music21 is used to parse the midi files and extract the song data. Notes are represented by their pitch class

and chords are represented with their Roman Numeral notation in the given key. With music data extracted for each

song, the probability tables can be filled in. These tables describe the probabilities of notes and their successors for

all possible notes and chords in the corpus. The Bayes Net class has several methods to form these tables. After the

conditional probability tables are found we construct the network using the pomegranate python library where nodes

are initialized with their respective conditional probability tables and the edges are defined. Finally the trained model

is baked and written to disk in JSON format. When the model is ready to be used, the generate method reads the model

from disk and seeds it with an initial chord and voicing note. Then, we can iterate through the user uploaded melody

and generate chord and harmony output with our model.

We have yet to perform a formal quantitative analysis of the Bayes Net model, but initial qualitative tests reveals

the main shortcomings of this model is the repetition that appeared in the generated output. This stems from the fact

that our data set is rather small and a majority of the songs have a significant amount of repetition between notes and

chords. This leads to high probabilities for repeated notes in our model and a high likelihood of repeated output. There

are a couple ways to solve this and the first would be to expand our data set to include more varied song. Of course this

method would also increase the training time. The second method would be to manually configure the probabilities
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according to prevailing music theory. This approach is interesting because it would be a hybrid of a machine learning

model and an expert system and would certainly be something we would like to pursue in the future.

Figure 8.1: BayesNet Design

8.1 Drum Layer Generation

For our Drum Layer, we used a crude algorithm that adds a quarter note beat of bass notes. In order to add variation

we decided to add a 30 percent chance of skipping a specific beat. We chose this algorithm because it follows the

classic quarter note bass beat that progressive house is known for.
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Chapter 9

Design Rationale

In the following section we rationalize our design choices starting from a high level abstraction and diving into the

details of the system.
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9.1 Requirements Rationalization

In order to fulfill our goal of creating a web based tool for beginners and professionals to create electronic music we

specifically chose our aforementioned requirements. Our core music file format is the midi standard. This provides

many benefits including widespread documentation and support as well as language specific tools for working with

song data. Since midi is the widely accepted standard, it was our requirement that the system can take midi input from

a variety of sources. We decided to allow midi upload so that experienced producers can improve melodies they may

have already created. We also aimed to allow external midi device input when used in Google Chrome so musicians

who already own a midi instrument can use our system as a co-creative DAW. However, this is a feature we have not

implemented at this point. Finally, we provide an on screen keyboard so anyone anywhere can use our system. We

present the downloaded track in a piano roll since this is a visualization most musicians are familiar with.

We included a section on recommended requirements since we had several stretch goals that would be ”nice to

have” features if we have extra time in our development period. These features are basically add-ons to the generated

track that will provide the user with more ideation and a longer, more complete song. A bass and drum line combined

with looping would help the user workout the structure of their song while sound and instrument manipulation would

give the user more control over the final project.

The last requirements section involves the constraints on our system. These stem mostly from time and cost

restrictions. We used the free level of Digital Ocean for deployment and we can scale our instances as users join the

system. Since we chose the Django server framework for our backend, our app can technically run on any server

regardless of the underlying server software, be it Apache, Nginx etc. Our front-end is optimized for Google Chrome

but is compatible with most modern browsers including Safari, Chrome, and Edge.

9.2 Package and Front-end Rationalization

Since we built an on screen keyboard and piano roll, we wanted to have a component based dashboard which lends

itself nicely to the React framework. Although the complex UI was a stretch goal of ours, we built simple React

components for these two elements and React assists with the state management and data passing. Finally, we used

several midi manipulation packages in python and javascript throughout our system which makes converting and

displaying the midi much easier. Mido and music21 allow us to create an object for each track and note in python and

manipulate them with functions. This is necessary when feeding a user track into our generation engine as well as

manipulating songs when training the engine.
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9.3 Generation Engine Rationalization

Initially, a large ”unknown” in our system and development process was the generation engine. While we have

done extensive research on the subject of algorithmic music composition, specifically EDM production, we were

still aware that significant challenges would present themselves during development. To that end, we outlined a

general methodology in which we approached the implementation of our engine which gave us an incrementally

better algorithm. We decided to make the generation engine completely modular with respect to the mechanism of

generation. It takes as input a midifile with a single track and single loop of melody. With this rigorous definition,

we can effectively ”hot swap” the generation module. The first generation module we chose to build was a Markov

chain since this is a model we were familiar with, but ended up not being as useful since markov chains did not help

us create harmony layers that harmonized with our original melodies, but rather assisted in composition production.

We then decided to start off by building a crude expert system in order to start creating simple harmonization layers

for our processed melodies. After building a minimum viable product, we decided to improve this expert system

model to create more complex, better-sounding harmonies, however we noticed that this approach would lead us into

a rabbit hole of implementing endless music theory logic. Therefore, we decided to do more research into a machine

learning model and ultimately build another generation engine using the Bayesian network model. We found this

graphical probabilistic model to posses more potential for more complex and pleasing harmony generations, provided

that we gather a large selection of quality midi samples to train our model. We ultimately decided to allow users to

select between the three generation models we created in order to allow more variety in the harmonies that users can

produce.
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Chapter 10

Test Plan

10.1 Testing Done

10.1.1 Unit Testing

Throughout the production of our web application, we testing individual units as we made progress to ensure that we

were diagnosing potential problems as early as possible before connecting these individual components together. We

tested individual components with expected midi file types, as well as unintended files in order to test how our units

handled expected data and edge cases. We ensured that each component behaved as intended and was stable before

linking with other units.

10.1.2 White Box Testing

As we finished our components and integrated them together, we then performed function tests, which ensured that the

components had been correctly connected and satisfied our requirements. This is white box testing since we performed

functional tests with knowledge of the codebase. An example these tests was passing a midifile from the front-end to

the back-end and ensuring it was parsed and fed into the generation engine. These functional tests are non-automatic

and the inputs must be driven manually. Finally we deployed our app to our server as soon as possible to help us catch

platform compatibility issues between our development and production servers early on.
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10.2 Testing Needed

10.2.1 Black Box Testing

Unfortunately due to delays in debugging and system implementation, we were unable to have other users outside of

the development team test out our web application and utilize its functions. Ideally, we want to advertise our web

application to the general public so that we can get user feedback on what they like about our web application, what

they think needs changing, and what bugs they discover that we did not resolve in our white box testing. Ultimately,

this is a product open to musical creators and we want to ensure that we can provide the helpful product that we

envisioned.

10.2.2 Stress Testing

Along with opening our web application to the general public, we would want to also stress test the stability of our

platform and server with many active users to guarantee that our framework is reliable. This will be an integral step in

the deployment of our website because we hope to allow as many musicians as possible to use our website as a tool to

encourage creativity. With stress testing we will ensure that the website will not crash and loose all of the progress a

musician has made in the development of their song.
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Chapter 11

Development Timeline

The Development Timeline as seen in Figure 11.1 demonstrates the schedule we chose to follow for the development

of our project. Development of the project took a total of 10 weeks and after winter quarter we planned to begin

the delivery phase of our project. The Task Breakdown as seen in Figure 11.2 details which group member was be

responsible for each task and how much of their task they had completed.

Figure 11.1: Development Timeline
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Figure 11.2: Task Breakdown
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Chapter 12

Social Issues

12.1 Ethical Analysis

One of the main ethical issue that was raised during the presentation of our web application was the potential for

users to use copyrighted music with our application to ultimately alter and claim as their own. In the music industry,

copyright infringement is a serious issue and can lead to several lawsuits. We understand the severity of this issue

and are fully against such behavior. Although we created our web application with the desire to inspire and assist in

music creation, it is indeed possible for individuals to use our application with copyrighted material. However, our

application serves as only an musical design platform, not an actual publishing platform. The issues with copyright

infringement occurs when users decide to steal work that isn’t theirs then publish and claim as their own. Therefore,

this potential issue lies outside of our control and instead into the hands of publishing platforms. It is common for

musical engineers to manipulate and create remixes from copyrighted music, but again becomes a legal issue only

once they decide to publish or share this copyrighted material without permission from the original owner.
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Chapter 13

Conclusions

13.1 Results

After completing the senior design process, our group was able to reach all of the goals we intended. We ended with

a visually pleasing website with a very user friendly design. Our final product included a total of three hot-swappable

music generalization algorithms that learn from the users input to help produce the best output possible. We hope that

our website will be useful to all music producers to inspire them as they work on their future music production.

13.2 Future Work

While we were brainstorming the functional requirements of our system, we included many ambitious requirements

for us to develop. Unfortunately due to lack of time these features had to be delayed until future implementations of

The Original Beat. These features would all improve the usability of the system and help make The Original Beat

more user friendly for all musicians alike. The features we hope to implement in the future include:

• The system can allow input from an external MIDI Device as a method for inputting a melody

• The system can include Percussive SoundFonts

• The system will allow the user to save and load multiple projects previously worked on

• The system will include a larger quantity of training data for Bayes Net Algorithm

• The system will contain an improved implementation of the digital keyboard which will work on deployment
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13.3 Obstacles Encountered

13.3.1 Lack of Percussive Pitches in Music21

One of the major problems we ran into when we were trying to add the percussive pitches was the fact that music 21

doesn’t allow the programmer to adjust the midi channel it is adding notes to. On a midi file, drums are stored on

channel 10 but unfortunately Music21 only allows one to write to channel 1. To get around this problem, we decided

to dedicate specific notes in channel 1 to drums and adjust the sound in our website.

13.3.2 Debugging Bayes Net

The Bayes Net package proved slightly tricky to use when we began experimentation. We were stumped kn the beat

way to represent notes and chords so as to avoid having too many entries in our probability tables. When encoding the

notes as there note name and pitch class, (i.e. C4) and encoding chords as their common name, (Cmaj) we quickly ran

into very large probability tables that were inefficient for imputation. We soon learned that notes should be encoded

simply by their pitch class, (i.e. c=0) and chords as their roman numeral representation, (i.e. cmaj=I). Finally, we

found if all possible combinations of notes and chords werent defined in the probability tables, the library would run

into a segmentation fault. These faults were particularly nasty to debug since the underlying code in Pomegranate was

written in C. There is no easy way to debug python code in python.

13.3.3 Deployment Challenges

This deployment was our first experience with end to end deployment of a production website so naturally, we ran into

some challenges. The major challenges were with files, permissions, and paths. To begin, the production build of our

piano roll used javascript source map files which were confusing at first. These files are used for debugging minified

javascript in the web console, but we were unaware of this. To fix this we simply built the map file and placed it in the

directory where static files are served from. Next, our application was working fine on our local environment, but the

file upload wasnt working in the production environment and the user was facing a server 500 error instead of being

redirected after uploading their midi file. To complicate matters, Nginx and Django were not logging the server error

in the log files we configured. After lots of digging, it turned out that our logging errors were being buffered and not

written to the files. We needed to set the environment variable:

export PYTHONUNBUFFERED=TRUE

After fixing this we were able to see the server error occurred when attempting to use the python Path library for

opening and writing files. The Path library was not supported on Ubuntu like it was on our macOS local environments.

We simply changed the file paths in python to use strings and the os package functions and everything worked fine.
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13.3.4 Integration of IFrames

One of the challenges we faced on the front-end was the integration of IFrames to appropriately display our in-browser

piano roll, as well as manipulate individual components to alter the piano roll to serve all of our needs. In order to do

this, a fair amount of time was spent analyzing the original code to determine how appropriately add more instruments,

reformat the piano roll to fit in our page, and how to provide easy user interactions with the piano roll. A lot of trial

and error was required in order to determine the most effective ways to do so, but in the end we were able to manage

these IFrames effectively.
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Appendix A

User Manual

A.1 Access

To access the web application:

1. Open a Chrome web browser (Note: The Original Beat is currently optimized only for Chrome web browsers).

2. Enter https://www.theoriginalbeat.com in the browser’s search bar to access The Original Beat.

A.2 Accounts

Upon accessing the site, users will be prompted to sign in to begin using the service. If user has not created an account

with The Original Beat, they will be required to create an account first. Afterwards, they will be logged in and able to

use the service.

A.3 Production

Users will now be able to view the homepage after successfully logging in, where they will be presented with the

option to either create their own melody using an in-browser piano roll, or upload their own melody using a midi

upload feature.
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A.3.1 Create Melody

If user chooses to create their own melody:

1. User will click the ”Piano Editor” button, which will present them with an on-screen piano.

2. Here they can either select notes with their mouse or enter in notes with their keyboard, which will be labeled on

the piano itself. Notes will be recorded on the piano roll automatically as the user enters notes.

3. After the user is done creating their melody, they can hear a playback of their melody using the play button on the

piano roll or select the save button in the upper right of the screen to save their melody.

4. After selecting the save button, the user will be presented with a pop-up card presenting them with their saved

melody and a drop-down list with the harmonizing generation engines, allowing them to select which generation

engine to use to process their melody when clicking the ”Upload” button.

A.3.2 Upload Melody

If user chooses to upload a midi file that they have saved on their computer:

1. User will click the ”Choose File” button, which will allow them to select a midi file saved on their computer (Note:

only files of type .midi will be accepted).

2. After selecting the midi file, user can select which engine to use with the ”Generation Model” drop-down list, which

is set to KeyChord by default. 3. Lastly, user will click the ”Submit” button to start processing their melody with the

selected generation engine.

A.3.3 Generated Layers

Once the midi file is fully processed, user will be presented with a 3 piano rolls, one for the original melody, one for

the generated harmony, and one for the generated drums.

The layers will be labeled accordingly and the user can play each layer individually or play all layers at the same time

using the ”Play All” button on the top of the page. If the piano rolls are not in sync, user can select the ”Re-Sync”

button to re-sync the piano rolls before selecting the ”Play All” button.

Users can also use the drop-down list to the left of each piano roll to select the instrument sound for that layer. Users

can ultimately download all of these layers as midi files using the ”Download” button next to the piano rolls.

35

DocuSign Envelope ID: D0D2190D-B9C7-4B9F-AFCD-2955FF66B162


	Santa Clara University
	Scholar Commons
	6-13-2019

	The Original Beat: An Electronic Music Production System and Its Design
	Eli Yale
	Christian Quintero
	Matt Kordonsky
	Recommended Citation


	The Original Beat Signature Page
	Thesis_The Original Beat_An Electronic Music Production System and Its Design

