
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-13-2019

A Questioning Agent for Literary Discussion
Robbie Culkin

Tim Shur

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Culkin, Robbie and Shur, Tim, "A Questioning Agent for Literary Discussion" (2019). Computer Engineering Senior Theses. 130.
https://scholarcommons.scu.edu/cseng_senior/130

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/130?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

A Questioning Agent for Literary Discussion

by

Robbie Culkin
Tim Shur

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 13, 2019

A Questioning Agent for Literary Discussion

Robbie Culkin
Tim Shur

Department of Computer Science and Engineering
Santa Clara University

June 13, 2019

ABSTRACT

Developing a compelling and cohesive thesis for analytical writing can be a daunting task, even for those who have
produced many written works, and finding others to engage with in literary discussion can be equally challenging. In
this paper, we describe our solution: Questioner, a discussion tool that engages users in conversation about an academic
topic of their choosing for the purpose of collecting thoughts on a subject and constructing an argument. This system
will ask informed questions that prompt further discussion about the topic and provide a discussion report after the
conversation has ended. We found that our system is effective in providing users with unique questions and excerpts
that are relevant, significant, and engaging. Such a discussion tool can be used by writers building theses, students
looking for study tools, and instructors who want to create individualized in-class discussions. Once more data is
gathered, efficient and accurate machine learning models can be used to further improve the quality of question and
excerpt recommendations. Co-creative discussion tools like Questioner are useful in assisting users in developing
critical analyses of written works, helping to maximize human creativity.

Acknowledgements

We would like to thank our advisor, Dr. Yi Fang (Department of Computer Science and Engineering), for helping
us with the technical details of our project from brainstorming and research to our final implementation. We would
like to acknowledge our reader, Dr. Don Riccomini (Department of English), who has been very influential and
engaged in our project, providing constructive feedback on our paper and presentation slides. Finally, Dr. Jackie
Hendricks (Department of English), has given us much-needed perspective and information regarding Shakespeare,
literary discussion, and analytical writing. Finally, we would like to thank the Santa Clara University School of
Engineering and the Santa Clara University Honors Program for supporting this project and providing opportunities
to showcase our work.

iv

Table of Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Solution . 1

2 Requirements 3
2.1 Functional Requirements . 3

2.1.1 Critical Requirements . 3
2.1.2 Recommended Requirements . 3

2.2 Non-Functional Requirements . 3

3 Use Cases 4
3.1 Study Tool . 5
3.2 Analytical Writing Tool . 5
3.3 Class Discussion Tool . 5

4 Activity Diagram 6

5 Architectural Diagram 8

6 Technologies Used 10
6.1 Frontend Development . 10
6.2 Backend Development . 10
6.3 Testing . 10
6.4 Source Control . 10

7 Design Rationale 12

8 User Interface 13

9 Backend 16
9.1 Excerpt Recommendation Model . 16
9.2 Character Template Recommendation Model . 16
9.3 Miscellaneous Template Recommendation Model . 17

10 Test Plan 18
10.1 Frontend . 18
10.2 Backend . 18

11 Results 19

v

12 Risk Analysis 20

13 Development Timeline 21

14 Societal Issues 22
14.1 Ethical . 22
14.2 Social . 22
14.3 Political . 22
14.4 Economic . 22
14.5 Health and Safety . 23
14.6 Manufacturability . 23
14.7 Sustainability . 23
14.8 Environmental Impact . 23
14.9 Usability . 23
14.10Lifelong learning . 23
14.11Compassion . 24

15 Conclusion 25
15.1 Experiences, Lessons Learned, Challenges . 25
15.2 Suggested Changes . 26
15.3 Broader Implications . 26

Appendix A Presentation Slides 27

Appendix B User Manual 33
B.1 Setup and Installation . 33

B.1.1 MongoDB . 33
B.1.2 Flask . 33
B.1.3 React . 33

B.2 Launching the Application . 34
B.3 Flask API . 34

Appendix C Source Code and Data 35

vi

List of Figures

3.1 Use Case Diagram . 4

4.1 User Activity Diagram . 7

5.1 Architectural Diagram . 8

8.1 Home Page . 13
8.2 Example Discussion . 14
8.3 Example Discussion Report . 15

9.1 Excerpt Recommendation Model Flowchart . 16
9.2 Character Recommendation Model Flowchart . 17

13.1 Gantt Chart Development Timeline . 21

vii

List of Tables

12.1 Risk Analysis . 20

viii

Listings

B.1 Creating a MongoDB Data Directory . 33
B.2 Installing Python3 Libraries . 33
B.3 Starting a React Server . 34

ix

Chapter 1

Introduction

1.1 Motivation

Developing a compelling and cohesive thesis for analytical writing can be a daunting task, even for those who have

produced many written works. While a writer may have initial opinions about a topic, those opinions take time and

focused thought to develop. Additionally, it is often difficult to find engaging study tools for literary works as most

online resources only provide summaries and descriptions of events, characters, or settings. Similarly, instructors may

want engaging assignments for their students, such as interactive classroom discussions or unique individual writing

assignments.

Having an assistant that can elicit and capture a user’s informed opinions of a literary source can boost productivity,

save time, and keep the writer focused on generating compelling arguments. Such an assistant can also help students

learn and instructors teach about a given work of fiction.

While current tools are able to suggest similar terms or topics to a provided term, they are unable to ask pointed

questions that prompt the user to supply additional information. Instead, they leave it to the writer to ask themselves

relevant questions. Additionally, although some writers prefer to engage in a Socratic seminar or prolonged conver-

sation with a colleague or professor to flesh out opinions, in these conversations one participant’s position on a topic

may dominate and disrupt the free flow of ideas. Such conversations also lack a physical record, unless participants

take time to note results.

For instructors, it is difficult to create individualized classroom assignments for large classrooms. With the variety

of responses to literary discussion questions, multiple-choice assignments are too limiting; rather, instructors may

want to engage each student in unique discussion experiences to check their understanding.

1.2 Solution

We propose a system that engages users in conversation about an academic topic of their choosing for the purposes of

constructing arguments, studying, and evaluating understanding. To keep scope manageable for this project, we have

1

chosen to focus on all thirty-seven of Shakespeare’s major plays. This system utilizes a web interface to ask informed

questions that prompt further discussion about the topic. The system records the conversation to allow the user to focus

on producing creative ideas rather than documenting them. Once the conversation is concluded, the system provides

users with a transcript of the conversation.

Our system fills the gap in current solutions by guiding users through the discussion process with a co-creative

tool. Our proposed solution enhances the ideation process and engages users in unique literary discussions.

2

Chapter 2

Requirements

This section outlines the requirements for the system. We successfully implemented the critical requirements and have

fulfilled our non-functional requirements. We also listed two recommended requirements which we did not satisfy but

will examine for future research.

2.1 Functional Requirements

2.1.1 Critical Requirements

The system:

• Engages users in discussion about Shakespeare by asking users relevant questions.

• Makes a transcript of the conversation available to the user.

• Summarizes the user’s responses for quick viewing.

2.1.2 Recommended Requirements

The system will:

• Organize ideas in a logical, hierarchical order.

• Interface with the user via voice.

2.2 Non-Functional Requirements

The system is:

• Fast: New questions are asked within 300 milliseconds of the conclusion of the user’s response.

• Secure: User data and transcripts remain private.

3

Chapter 3

Use Cases

This section describes the different actions that a user can perform.

User

Initiate a
Discussion

Session

Respond to
Questions

Access
Conversation

Transcript

End Session

Figure 3.1: Use Case Diagram

Figure 3.1 shows the four actions that a user can take. First, the user can open the application and initiate a

discussion session. This involves the user choosing a topic or prompt to discuss with the system. During the discussion,

the user responds to questions generated by the system to elicit ideas. The user can elect to end the conversation at any

time. After the conversation, the user is able to access and download a transcript of the conversation.

4

3.1 Study Tool

Students can use this system to check their understanding of a chosen work of Shakespeare. While practicing for our

conference presentation demo (see Appendix A, Slides), Shur realized he had quickly relearned many of the important

details about Macbeth, which he had last studied in 12th grade.

3.2 Analytical Writing Tool

Writers can use this system to provoke inspiration during the ideation phase of writing. Questions concerning re-

lationships, themes, and more elicit responses that can be easily crafted into theses. Once the discussion session is

concluded, writers may view their responses for later reference.

3.3 Class Discussion Tool

Instructors can use this system to lead in-class discussions by drawing from generated questions for conversation

starters. Instructors may also assign students to engage in conversation with the system, then have students submit the

discussion report to the instructor for evaluation.

5

Chapter 4

Activity Diagram

In this section we outline a user’s typical action flow as they interact with the system.

As shown in Figure 4.1, the user initiates a discussion session with the system and receives a request to provide

their topic of discussion or discussion prompt. Using this topic, the system asks a relevant question. The user responds

with their answer to the question. The system asks another question based upon the user’s response, unless the user

elects to end the discussion. One the discussion is finished, the user may view the results of the discussion.

6

"What's your topic
today?"

Question

[User Response]

 Discussion
Finished?

[User Response]

[Yes]

[No]

[User Initiates Discussion Session]

View Discussion
Transcript

[Exit]

Figure 4.1: User Activity Diagram

7

Chapter 5

Architectural Diagram

In this section, we detail our system architecture.

Figure 5.1: Architectural Diagram

Our system uses a client-server architecture, shown in Figure 5.1. Our system is separated into three modules:

the MongoDB database, the Flask backend, and the ReactJS frontend. The frontend application runs on the client’s

machine, the rest of the computation occurs on the backend server, and data is stored in the database. Modules are

inter-connected via RESTful APIs. We chose to separate these three modules such that there is loose coupling between

modules and high cohesion within each module. This made building and testing each module much simpler as we could

test each module independently without worrying about dependencies between modules. Then, after ensuring that our

message-passing methods for communicating between modules worked properly, connecting the entire system was

simple and relatively bug-free.

The frontend is a single-page application built with ReactJS and handles only the rendering and interactions with

the website. For each session, the client creates a unique sessionId which is used to identify the session. Once

a discussion is in progress, the frontend keeps a local state of the conversation history, saving each question and

corresponding user response. The frontend components were designed such that the client can properly render a

discussion given any discussion state. Each time the user changes the state by selecting a play or entering a new

8

response, a POST request is sent to the Flask backend to save the new session information in the database. Then, a GET

request is sent to receive the next question to ask the user.

The backend is a Flask server written in Python which runs on the server side and handles all computations and

data processing necessary to generate a new question for the user given a discussion state. The server waits to react

to requests sent by the client. When the client sends an discussion update to the server, the server connects to the

database and updates the session data. When the client requests a new question, the server examines the discussion,

generates a new question, and sends it to the client.

9

Chapter 6

Technologies Used

This section details the technologies we use in our system. The design rationale for each technology is detailed in

Chapter 7.

6.1 Frontend Development

• ReactJS

• JSX

• Sass

• JavaScript

6.2 Backend Development

• Python 3

• Flask

6.3 Testing

• Jest / Enzyme

• Postman

6.4 Source Control

• Git

10

For frontend technologies, all of the user-facing components are built as React components. The formatting of

each page uses JSX to mix HTML-like tags with React components and JavaScript logic. For styling our website, we

use Sass instead of CSS for the additional features it provides such as nesting, mixins, and variables. To send RESTful

API requests to our Flask server, we use the axios library for its simple Promise-based style. The react-to-print

library helps us convert our React components into printable pages. Finally, the textarea-caret library helps us

replace the default cursor with a new blinking green cursor.

For backend technologies, all of the server-side code was built using Python 3.6. We use the flask and module

to build a Flask app capable of handling RESTful API requests. To connect to the MongoDB database from Python,

we use the pymongo module. beautifulsoup4 was used to do early web scraping to gather the data necessary for

our system. Finally, we use the numpy, pandas, scikit-learn, and gensimmodules to perform our data processing

and generate new questions for the user.

11

Chapter 7

Design Rationale

Our simple system design enabled us to devote most of our time towards developing a high quality questioning agent.

By simplifying our architecture and using easy-to-configure technologies, we minimized development time on the

system interface to maximize our efforts on the core component: the questioning agent. By doing so, we focused on

developing novel approaches and applications in the field of natural language processing, as it pertains to question

generation and selection.

To match our simple system design, we used a client-server architecture where the core algorithms are processed

on the server and the user interface is rendered on the client side. Since there are no complex system interactions, this

simple architecture design helps us effectively and efficiently fulfill our requirements.

In order to build this system, we used ReactJS to create a basic web application. This is a popular, modern

technology that controls the view layer and enabled us to build a reactive single-page-application. On the server side,

we used Python 3. Python 3 is known for its quick development time and large number of libraries, especially in

the fields of natural language processing and machine learning. We leveraged these advantages to build our system

quickly and effectively.

We also utilized a few testing libraries to streamline the testing of our application. For the frontend, we used Jest

and Enzyme to test our React components. For the backend and internal API, we used Postman to simulate REST API

requests and verify the returned data. More information on testing is located in our test plan in Chapter 10.

Finally, we used Git for source control to ensure that we were able to coordinate our work and avoid data loss.

12

Chapter 8

User Interface

This section outlines the user interface for our system. The system has a basic user flow and minimalist interface so the

user will not be distracted. First, the user is greeted by a home page with a drop-down menu to choose a Shakespeare

play they would like to discuss. Upon choosing a play, they are prompted to begin a discussion session, as shown in

Figure 8.1.

Figure 8.1: Home Page

Once the user begins a discussion session, they can enter their prompt or topic and begin their discussion. The

system displays a question, a cursor that indicates a response should be entered, and a button to end the conversation.

The question is generated by our system with the intention to provoke ideas and encourage deep discussion on the

chosen topic. Our system can also present an excerpt to the user and ask them to describe its significance. After each

13

user response, the system will give the user another question or excerpt. An example in-progress discussion is shown

in 8.2.

Figure 8.2: Example Discussion

After the discussion, the user can examine a discussion report where they can view past questions and their re-

sponses. An example discussion report is shown in 8.3.

14

Figure 8.3: Example Discussion Report

15

Chapter 9

Backend

In this section we detail the Python backend mechanism that provides questions for the frontend to display.

9.1 Excerpt Recommendation Model

Figure 9.1: Excerpt Recommendation Model Flowchart

Shown in Figure 9.1, the excerpt recommendation model takes two factors into account when selecting from all

possible excerpts from the user’s chosen work. Excerpt importance is calculated based on the excerpt’s occurrence in

search results. We use this method of estimating importance because more significant excerpts are more likely to be

cited in academic papers and online discussion. A subsequent iteration of the system will compare text embeddings of

excerpts with the embeddings of prior user conversation to choose the most relevant and significant excerpts.

9.2 Character Template Recommendation Model

Shown in Figure 9.2, the character recommendation model works in two phases. First, the anchor character is chosen

utilizing character importance, which is computed by analyzing how many lines that character has spoken in the chosen

work. Prior conversation embeddings will also be used for this choice. For the second phase, the supporting character is

chosen not only with character importance, but also with the number of scenes shared with the anchor character. These

16

Figure 9.2: Character Recommendation Model Flowchart

shared scenes are drawn from a character co-occurrence matrix that was constructed from the original Shakespeare

corpus.

9.3 Miscellaneous Template Recommendation Model

We also include a template model that asks questions regarding settings, themes, and motives that draws from nu-

merous data sources. This model works similarly to the Character Template Recommendation Model described in

Section 9.2, except that it operates on settings, themes, and motives rather than characters. This model uses similar

prior conversation and importance metrics to choose the setting, theme, or motive.

17

Chapter 10

Test Plan

In this section, we detail our test plan for ensuring that our system is bug-free and meets our specified requirements.

To test our system, we used the following testing strategies:

• Individually test functions and modules

• Test integration between frontend and backend modules

• Test system end-to-end to ensure smooth operation

• Test end-user operation

10.1 Frontend

For the frontend, we tested our application using Jest, a popular testing module in ReactJS. Jest enabled us to not

only unit-test individual functions and components, but also perform snapshot tests that ensure that the system renders

components correctly in our test cases. The Enzyme library helped make our tests more efficient and modular by only

loading a lightweight version of each component which we could test using Jest.

10.2 Backend

For the backend, we tested our Python code using Postman. Using Postman, we were able to test our internal REST

APIs in our Flask application by sending test API requests and verifying that we got the correct response. This enabled

us to test individual functions and modules and ensure that our code was bug-free.

18

Chapter 11

Results

As mentioned in Chapter 10, Test Plan, we asked our peers to engage with our system. We used initial reactions

to guide changes to the frontend UI and question generation process. Subsequent user testing yielded very positive

reactions.

Our system received a very positive response from the audience at the Santa Clara University Senior Design Con-

ference in May 2019. We also presented our project at the ”Analog/Digital: Premodern Technology Meets Silicon

Valley” event in May 2019 at Santa Clara University. This event attracts many scholars of literature, including pro-

fessors and researchers working with Shakespeare. At this event, our project received positive feedback, including

requests to use our application in university classrooms for literary discussion.

Overall, the combination of relevant generated questions, an intuitive and minimalist user interface, and low system

latency resulted in a product that satisfied our requirements and received positive reviews from test users.

19

Chapter 12

Risk Analysis

In this section, we detail several potential risks, their consequences, and the impact of each. For each risk, we provided

several mitigation strategies to ensure that our project met the requirements and was completed on time.

Table 12.1: Risk Analysis
Risk Consequences Probability Severity Impact Mitigation

Time
System not fully completed
on time 0.5 8 4.0

Prioritize tasks and develop
new features incrementally
Set deadlines

Bugs
System won’t work, poor UX,
takes longer to complete 0.9 4 3.6

Test functions and modules
Write clean and modular code

Data Shortage
Algorithms are inaccurate,
must explore other methods 0.6 6 3.6

Search for data sets early
Explore low-data solutions

Insufficient
Technologies

Cannot satisfy requirements,
need to change technologies 0.3 6 1.8

Plan and justify design
Research alternatives

Group member
absent

Loss of productive time, takes
longer to complete 0.35 5 1.75

Eat healthy, sleep well, be
proactive and communicative
Work from home if necessary

20

Chapter 13

Development Timeline

The Gantt chart in Figure 13.1 outlines the development timeline of our implemented solution. Each section is broken

up into separate sub-tasks. The progress of each task is tracked by a date range, a percentage of completion bar, and a

time-line to visualize each task over time.

Figure 13.1: Gantt Chart Development Timeline

21

Chapter 14

Societal Issues

In this chapter, we examine how this project raises several societal issues as any project or engineering application

affects and is affected by society.

14.1 Ethical

An ethical concern related to our project is the possibility of the automation of the instructive process. We feel,

however, that this tool can augment the abilities of educators rather than replace them. Our tool reduces the difficulty

of collecting and organizing data, instead allowing the user to focus on core analysis in their responses.

14.2 Social

Regarding social issues, our project may have a negative impact. By using our discussion tool, users are interacting

with a website rather than discussing literary questions with other people. This may lead to an unintended consequence

of users becoming accustomed to engaging an AI in discussion, impacting the social skills necessary to engage in

discussion with their peers. However, our tool can also be used to better prepare students for engaging in-class

discussions with pre-class discussion assignments.

14.3 Political

At a glance, our project has little political impact because it does not directly engage with the public realm. However,

our project helps educate our users and encourage them to become more critical thinkers, thereby enhancing their

ability to become critical thinkers in the political sphere.

14.4 Economic

We did not borrow any money for the initial stages of our project because we provided free labor and did not host

our website on any costly platforms. However, the next stage of our project might require hiring paid engineers and

22

investing in a cloud hosting solution for our website which will generate cost. As this project develops, we may be

able to recuperate the costs of production with generated revenue from our service.

14.5 Health and Safety

Our system provides no major health or safety risks besides the inherent risks of using a computer.

14.6 Manufacturability

Since our project has no physical or manufacturable pieces, our project does not directly raise any issues of manufac-

turability. On the topic of development, the main problems may arise in the difficulty of hosting a web application

with a heavy-weight machine learning backend.

14.7 Sustainability

This project has little engagement with the environment or the world’s resources, and therefore, has little impact on

broader issues of sustainability. In a more narrow sense, the product can continue to be viable and useful for a long

time, as literary analysis and critical discussion will continue to be important for students, instructors, writers, and

other people.

14.8 Environmental Impact

Our website has negligible environmental impact and does not raise any significant environmental issues beyond the

energy consumption this website requires. With a machine learning model with significant more computation than

simple, static webpages, our website will use more energy than most other websites.

14.9 Usability

Our product, with its intuitive design and simple, minimalist style, provides users with an interface that allows them

to focus on sharing their thoughts and ideas.

14.10 Lifelong learning

One of this project’s greatest impacts is its contribution to the societal issue of lifelong learning. Throughout the

development of this project, we constantly had to learn new tools and techniques such as natural language processing,

ReactJS, MongoDB, and how to write an internal API to communicate between different parts of our system. More-

over, our solution itself encourages people to keep learning, analyzing, and discovering new ideas. Questioner seeks

23

to constantly engage users in literary discussion and challenge them to think about new questions and concepts. Thus,

our project not only helped us continue to learn, but it will help our users keep learning and improving their literary

skills.

14.11 Compassion

While our project does not deal with direct human suffering, this discussion tool seeks to ease the difficulty of literary

discussion and analytical writing. It can be difficult for people to find ways to uncover their ideas and find quotes to

support their thoughts. Our tool provides a solution to this need.

24

Chapter 15

Conclusion

We built Questioner, an online discussion tool that is useful for writers, students, and instructors alike. We engage

users in literary discussion, seeking to assist people in developing critical analyses of written works. More broadly,

this tool helps maximize human creativity and expand research in natural language understanding.

15.1 Experiences, Lessons Learned, Challenges

The biggest lesson learned when building this project was how to design and implement a year-long software applica-

tion. We started with a concept, refined and scoped our idea, designed a system architecture, implemented our design,

tested our implementation, and then redesigned and refined our system. Among our most valuable lessons were how

to properly scope a project to fit with time constraints, how to choose a system architecture that effectively accom-

plishes our goals, and how to work with user feedback to refine our product. Moreover, we needed to learn some of

the technical components of our project such as ReactJS, Flask, and MongoDB. We ran into several challenges which

complicated our ability to achieve our recommended requirements:

• Because the machine learning model had to take prior conversation into account, it required high space and time

complexity, making it difficult to provide users significant questions in a short amount of time.

• We had trouble finding good data sets with literary questions and responses to create accurate question-generation

machine learning models. Therefore, we decided to create an initial system without this feature, and then im-

plement it later once we have gathered enough user data.

• When attempting to implement a voice interface, we realized that speech-to-text programs are not as accurate

as we would like, converting speech in a very unrefined state. Instead, we opted for a standard written entry and

response model.

Moreover, we initially built this project hoping to solve some sort of problem with machine learning. However,

we later learned that machine learning was not the most effective solution to our problem and did not provide the best

25

questions and excerpts without sufficient data. Therefore, we came to the realization that we should not start with the

technology and then look for a problem it can solve; rather, we must always start with the problem and find which

technology solves it best.

15.2 Suggested Changes

We plan on continuing to improve this project in the following ways:

• Host the website on a cloud service to gather user data

• Leverage prior discussion with text embeddings

• Organize discussion report in an outline format

• Allow the user to interface via voice

Currently, our website is only available when locally hosted on our personal computers. If we host our website live

on the cloud, we can find writers, students, and instructors to experiment with the system and give us more feedback.

Furthermore, from these real users we will be able to gather more data to improve our system.

Secondly, our system does not yet take prior user responses into account when generating the next question. If we

embed the user responses and questions with text embeddings (using the gensim module), we can compare generated

questions with prior discussion to determine which question aligns best with the user’s train of thought.

For simplicity, our discussion reports are raw transcripts of the discussion. However, future research can be done

to add value to the discussion reports by organizing ideas into an outline format. This can be done by summarizing

user responses and grouping similar ideas together. Moreover, broad ideas can be separated from supporting details

and a hierarchical organization can be constructed.

Finally, more research can be done to integrate a voice interface into our system. Then, users would be able to

respond to questions naturally via speech and actually start a conversation with our website. We did not pursue this

feature because we foresaw issues with speech being too unrefined and speech-to-text programs being too inaccurate.

15.3 Broader Implications

Our project has broader implications outside the works of Shakespeare. This project can be generalized to other works

of fiction as well, using the same information retrieval (IR) methods leveraged for the Shakespeare corpus. This project

also serves as an excellent testbench for the application of natural language understanding not only to literature, but to

user input. Further exploration of fictional literary works by the IR community will yield benefits for IR and literary

circles alike. Lastly, we believe that tools like ours can be used to augment human creativity for important analyses.

26

Appendix A

Presentation Slides

In this section, we include the presentation slides we used in the Santa Clara University Senior Design Conference in
May 2019.

27

A Questioning Agent for
Literary Discussion

Robbie Culkin & Tim Shur

Advisor: Dr. Yi Fang

SCHOOL OF ENGINEERING

Problem

Motivation, Solution, Requirements

SCHOOL OF ENGINEERING

Motivation

= Literary study and analytical writing can be
challenging

= A limited number of discussion questions are
available online

= Instructors want to provide their students with
engaging learning opportunities

SCHOOL OF ENGINEERING

Solution

= Web-based discussion tool
= Questions and excerpts to:

– Facilitate discussion
– Check understanding
– Provide inspiration for analytical writing

= Intuitive discussion report

SCHOOL OF ENGINEERING

Target Audience

= Writers
– Develop arguments about a work

= Students
– Check and develop understanding of a work

= Instructors
– Evaluate student understanding with unique and engaging

assignments
– Lead in-class discussion

SCHOOL OF ENGINEERING

Focus on Shakespeare

= Relevant to many users
– Required reading for many US high school students

= Well-structured
– Act, Scene, Line, Speaker

= Public domain
= Lots of scholarly discussion

SCHOOL OF ENGINEERING

Requirements

= Functional requirements
– Web application
– Pose thought-provoking questions and excerpts
– Generate a discussion report

= Nonfunctional requirements
– Intuitive
– Fast
– Secure

SCHOOL OF ENGINEERING

System Design

Activity Diagram, Architectural Diagram,
Technologies Used

SCHOOL OF ENGINEERING

Activity Diagram

SCHOOL OF ENGINEERING

Architectural Diagram

SCHOOL OF ENGINEERING

Figure 2: Architectural diagram

Database Python
Backend Frontend

Technologies Used

= Frontend tools
– ReactJS

= Backend tools
– Flask
– Python 3

= Database
– MongoDB

= Source control
– Git

SCHOOL OF ENGINEERING

Testing Methodology

= Unit test individual modules
– Frontend
– Questioning agent
– Report generation

= Test integration between frontend and backend
= Test system with real users

– Ensure intuitive UI and conversation flow

SCHOOL OF ENGINEERING

Implementation Details

Character Template Recommendation Model,
Excerpt Recommendation Model

SCHOOL OF ENGINEERING

Template Questions

= Format
– Discuss [character 1]’s relationship to [character 2].
– What role does [theatrical element] serve in [play]?

= Blanks filled using retrieval/ranking model

SCHOOL OF ENGINEERING

Figure 3: Example template question

Character Template Recommendation
Model

SCHOOL OF ENGINEERING

Figure 4: Template recommendation model

Template Anchor
Character

Supporting
Character

Prior
Conversation

Character
Importance

Character
Importance

Shared
Scenes

Anchor Character

SCHOOL OF ENGINEERING

= Given a list of characters and a play, choose with
probability distribution

= Next step: Add metric for similarity to user input
with text embeddings

Supporting Character

= Given a list of characters, a play, and an “anchor”
character, choose with probability distribution

SCHOOL OF ENGINEERING

Supporting Character: Alpha Selection

SCHOOL OF ENGINEERING

Figure 5: Varying alpha for character selection

Excerpts

= Recommend significant excerpts from the play

SCHOOL OF ENGINEERING

Figure 6: Example excerpt

Excerpt Recommendation Model

SCHOOL OF ENGINEERING

Figure 7: Excerpt recommendation model

Excerpt

Prior
Conversation

Excerpt
Importance

Excerpt

SCHOOL OF ENGINEERING

= Determine excerpt importance via frequency of use
in literature and search results

– e.g., “To be, or not to be…” is commonly quoted

= Next step: Add metric for similarity to user input
with text embeddings

Demo

SCHOOL OF ENGINEERING

Future Efforts

= Leverage prior discussion with text embedding

= Organize discussion report in outline format

= Interface via voice

= Host website

SCHOOL OF ENGINEERING

Broader Implications

= Generalize to other works and forms of writing

= Expand the field of natural language understanding

= Powerful tool to maximize human creativity

SCHOOL OF ENGINEERING

Acknowledgements

= Dr. Yi Fang

= Dr. Don Riccomini

= Dr. Jackie Hendricks

SCHOOL OF ENGINEERING SCHOOL OF ENGINEERING

Thank
you!

Recommendations Based on
Prior Conversation

= User Text Embedding
– Transform text to vector
– Text: “The priest played a pivotal role in Romeo & Juliet’s

demise”
– Vector: [4.56, -6.03, …, 0.72]
– Compare previous conversation with questions/excerpts to

look for similarity

SCHOOL OF ENGINEERING

Data Sources

= Corpus of original Shakespeare plays

= Modern English translations of Shakespeare plays

= Online Discussion Questions

= Online Study Resources
– Genre, setting, themes

SCHOOL OF ENGINEERING

Challenges

= Heavyweight document vector model

= Hosting a website with machine learning

= Shortage of user data

SCHOOL OF ENGINEERING

Use Case Diagram

SCHOOL OF ENGINEERING

Figure 8: Use case diagram

Appendix B

User Manual

This section describes instructions for installing the application and details for the internal API.

B.1 Setup and Installation
This repository uses mongodb for the database, flask for running Python (3.6) on the backend, and nodejs with
reactjs for the frontend.

B.1.1 MongoDB
To run a database locally, you will need to install mongodb on your system. Make sure you have a data directory to
store database documents. To create a folder in the default location, you can run the following:

Listing B.1: Creating a MongoDB Data Directory
mkdir -p /data/db/

chmod 777 /data/db/

Now you should be able to start a mongodb instance by running the mongod command. By default, this starts the
mongodb instance with the URI at mongodb://localhost:27017.

B.1.2 Flask
Next, we need to spin up a Flask instance. Create a virtualenv at backend/env and install the requirements.txt
with the following:

Listing B.2: Installing Python3 Libraries
cd backend

pip3 install virtualenv

python3 -m virtualenv env

source env/bin/activate

pip3 install -r requirements.txt

deactivate

Finally, run the script to start Flask: ./bin/run_flask.sh. The flask server can be reached by default with API
routes at <http://localhost:5000/api/v0/>

B.1.3 React
To get React started, you will need to have nodejs installed. Then, run the following to install the required packages
and run the frontend in development mode:

33

Listing B.3: Starting a React Server
npm install

npm start

This will open the web application in a new tab at <http://localhost:3000/>.

B.2 Launching the Application
After performing all steps detailed in Section B.1, you can launch all parts of the applications at once with the script
./bin/run_all.sh. This script will run the MongoDB instance, the React server, and the Flask app all at once with
debug logging in the log/ directory.

B.3 Flask API
The Flask application has the following API routes:

GET - /api/v0/questions

This route requires a valid sessionId and will return the next question for the session based on the discussion
context such as:

{

"question": "What role does humor play in Hamlet?"

}

GET - /api/v0/report

This route requires a valid sessionId and will return a report of the discussion in the form:

{

"session": {

"sessionId": "16c209bc -42ca-4c22-9e80-172c1cf1cd51",

"discussion": [

{

"msgId": "fc9e81ac -100b-45e2-aae0 -393c65f500d8",

"fromUser": false,

"text": "How are you?"

},

{

"msgId": "c22b3534 -4c62-4aac-837b-45b88807ad7e",

"fromUser": true,

"text": "I’m doing well!"

}

]

}

}

POST - /api/v0/response

This route sends a session object of the form above to be inserted into the database. If the sessionId provided
does not exist, a new document will be made in the given format. Otherwise, the discussion field is extended by the
messages that are given in the body of the POST request.

34

Appendix C

Source Code and Data

Our entire project and all of the data that we used has been open sourced for transparency and visibility. The GitHub
repository is called questioner, located under the username robbieculkin, and can be found at the following URL:
https://github.com/robbieculkin/questioner.

35

	Santa Clara University
	Scholar Commons
	6-13-2019

	A Questioning Agent for Literary Discussion
	Robbie Culkin
	Tim Shur
	Recommended Citation

	A Questioning Agent Signature Page
	Thesis_A Questioning Agent for Literary Discussion

