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Abstract The weakly nonlinear stability of the triple diffusive convection in a Maxwell
fluid saturated porous layer is investigated. In some cases, disconnected oscillatory neu-
tral curves are found to exist, indicating that three critical thermal Darcy-Rayleigh num-
bers are required to specify the linear instability criteria. However, another distinguishing
feature predicted from that of Newtonian fluids is the impossibility of quasi-periodic bifur-
cation from the rest state. Besides, the co-dimensional two bifurcation points are located
in the Darcy-Prandtl number and the stress relaxation parameter plane. It is observed
that the value of the stress relaxation parameter defining the crossover between stationary
and oscillatory bifurcations decreases when the Darcy-Prandtl number increases. A cubic
Landau equation is derived based on the weakly nonlinear stability analysis. It is found
that the bifurcating oscillatory solution is either supercritical or subcritical, depending
on the choice of the physical parameters. Heat and mass transfers are estimated in terms
of time and area-averaged Nusselt numbers.
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Nomenclature

d, depth of the porous layer;
PrD, Darcy-Prandtl number;
g, gravitational acceleration;
q, velocity vector;
K, permeability of the porous medium;
RSi, solute Darcy-Rayleigh number of the ith

component;
k̂, unit vector in the vertical direction;
RT, thermal Darcy-Rayleigh number;

M , ratio of heat capacities;
t, time;
p, pressure;
x, y, z, space coordinates;
α, horizontal wave number;
Λ1, stress relaxation parameter;
αT, thermal expansion coefficient;
μ, dynamic viscosity;
αSi, solute analog of αT (i = 1, 2);

∗ Citation: Raghunatha, K. R., Shivakumara, I. S., and Shankar, B. M. Weakly nonlinear stability
analysis of triple diffusive convection in a Maxwell fluid saturated porous layer. Applied Mathematics
and Mechanics (English Edition), 39(2), 153–168 (2018) https://doi.org/10.1007/s10483-018-2298-6

† Corresponding author, E-mail: shivakumarais@bub.ernet.in
c©Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/223093796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


154 K. R. RAGHUNATHA, I. S. SHIVAKUMARA, and B. M. SHANKAR

ν, kinematic viscosity;
ε, porosity;
ρ, fluid density;
κT, thermal diffusivity;
σ, growth term;

κSi, solute diffusivity (i = 1, 2);
τi, ratio of diffusivity (i = 1, 2);
λ1, stress relaxation time;
ψ, stream function.

Subscripts/superscripts

b, basic state;
U, upper boundary;

L, lower boundary;
∗, dimensionless variable.

1 Introduction

The thermal convective instability in a layer of Newtonian fluid-saturated porous media is
a classical problem in convective heat transfer, and now it is a well-understood phenomenon.
Different effects have been taken into account on this study, and the developments are well
documented in the literature[1–4]. The non-Newtonian fluid flows and heat transfer in porous
media have been a topic of interest in recent years due to their importance in geophysics, ce-
ramic processing, bioengineering, filtration, liquid composite molding, polymer engineering, and
oil reservoir engineering[5–6]. To a large extent, the performance of an oil reservoir depends on
the physical nature of the crude oil presented in the reservoir. The light crude oil is essentially
Newtonian, but the heavy crude oil is found to exhibit a non-Newtonian fluid behavior. In par-
ticular, some oil sand contains waxy crude at shallow depth in reservoirs, which is considered
to be a viscoelastic fluid[7–8]. The Darcy-Bénard problem for viscoelastic fluids has received
considerable attention in the literature because the study can give necessary information about
the mobility control in the oil displacement mechanism, which can improve the efficiency of oil
recovery[9–17]. It has been revealed that the convection onset in a viscoelastic fluid-saturated
porous medium is oscillatory instead of stationary, which depends on the fluid elasticity. Re-
cently, various types of flow problems for the Oldroyd-B and Maxwell viscoelastic fluids have
been analyzed[18–20].

The double diffusive convection in porous media is another interesting topic of research, and
has attracted many researchers from various fields of science and engineering due to its wide
applications, e.g., the solidification of binary mixtures, the migration of the solutes in water-
saturated soils, and the geophysical system, electro-chemistry, and the migration of moisture
through the air contained in fibrous insulation. The study reveals a variety of interesting convec-
tive phenomena, which are not observed in a single component fluid-saturated porous medium.
For example, the exchange principle of stabilities is not always valid, and the conductive base
state may become unstable through a growing oscillatory mode. Newtonian fluids have been
widely studied on this topic[21–22]. However, the double diffusive convection in a non-Newtonian
fluid-saturated porous medium has received only limited attention in the literature[23–25].

Nonetheless, many fluid dynamical systems occurring in nature and engineering applica-
tions involve more than two stratifying agencies with different molecular diffusivities, in which
a multicomponent convection-diffusion is bound to occur. As a first step towards the under-
standing of the complex multicomponent convection, Griffiths[26], Pearlstein et al.[27], Straughan
and Walker[28], and Straughan and Tracey[29] studied the triple diffusive convection in a fluid
layer both experimentally and theoretically. Rudraiah and Vortmeyer[30], Poulikakos[31], and
Griffiths[26] studied the counterpart in a layer of porous media. Since the results obtained by
these authors were incomplete in the vein of Pearlstein et al.[27], Tracey[32] reconsidered the
problem, presented systematically the results similar to those of Pearlstein et al.[27], and per-
formed the nonlinear stability analysis with the energy method. Rionero[33] considered a triply
convective diffusive fluid mixture, which saturated a horizontal porous layer. Rionero[34] con-
sidered the triple diffusive convection in porous media, obtained the conditions for inhibiting
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the convective onset, and performed a global nonlinear stability analysis. Ghalambaz et al.[35]

theoretically studied the triple diffusive convection in a square porous cavity.
The studies on the triple diffusive convection in porous media are mainly focused on Newto-

nian fluids, and a corresponding problem for non-Newtonian fluids is in the much-to-be desired
state. Although Zhao et al.[36] investigated the triply diffusive convection in a Maxwell fluid-
saturated porous layer and obtained the criterion for the onset of stationary and oscillatory
convection, their study is silent in revealing some of the unusual behaviors that the system is
capable of supporting, which have important implications on the instability of the system. The
interest to the present work is of two folds. One is to study the linear instability theory in
detail and unveil some remarkable departures from those of single and double diffusive cases.
The other is to perform a weakly nonlinear stability analysis to understand the stability of
bifurcating the equilibrium solution by deriving a cubic Landau equation. The heat and mass
transfer is also discussed in terms of the Nusselt numbers.

2 Mathematical formulation

The physical configuration is shown in Fig. 1. We consider a horizontal layer of an incom-
pressible Maxwell fluid-saturated Darcy porous medium with the thickness d, which contains
three stratifying agencies, i.e., the temperature T and two solute concentrations Si (i = 1, 2).
The lower and upper impermeable boundaries of the porous layer are kept at different constant
temperatures, TL and TU (< TL), and solute concentrations, SiL and SiU (< SiL), respectively,
with the sign convention that ΔT (= TL − TU) > 0 when the temperature is destabilizing and
ΔSi (= SiL − SiU) > 0 when a solute concentration is stabilizing. A Cartesian coordinate
system is chosen such that the z-axis is vertically upwards and the x-axis is horizontal. The
gravity is acting vertically downwards with the constant acceleration g = −gk̂, where k̂ is the
unit vector in the vertical direction. The equation of states is given by

ρ = ρ0(1 − αT(T − TL) + αS1(S1 − S1L) + αS2(S2 − S2L)), (1)

where ρ is the fluid density, and ρ0 is the density at the reference temperature and solute
concentration. By analogy with the constitutive equation of the Maxwell fluid, a modified
Darcy-Maxwell model is used to describe the flow in a porous medium. The governing nonlinear
stability equations in dimensionless form are

(
1 + Λ1

∂

∂t

)( 1
PrD

∂q

∂t
+ ∇p+

(
−RTT +RS1S1 +RS2S2

)
k̂
)

= −q, (2)

A
∂T

∂t
+ (q · ∇)T = ∇2T, (3)

Fig. 1 Physical configuration
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∂S1

∂t
+ (q · ∇)S1 = τ1∇2S1, (4)

∂S2

∂t
+ (q · ∇)S2 = τ2∇2S2, (5)

where q = (u, v, w) is the velocity, p is the pressure, RT = αTgΔTKd/(νκT) is the thermal
Darcy-Rayleigh number, RSi = αSigΔSiKd/(νκT) (i = 1, 2) is the solute Darcy-Rayleigh
number of the ith component, Λ1 = λ1κT/(d2ε) is the stress relaxation time parameter, PrD =
νd2ε2/(κTK) is the Darcy-Prandtl number, τi = κSi/κT (i = 1, 2) is the ratio of diffusivities,
A = M/ε, in which ε is the porosity, K is the permeability of the porous medium, λ1 is the
relaxation time, M is the ratio of heat capacities, κT is the thermal diffusivity, κS1 and κS2

are the solute analogs of κT, αT is the thermal expansion coefficient, and αS1 and αS2 are the
solute analogs of αT. It should be noted that the considered modified Darcy-Maxwell model
includes the classical viscous Newtonian fluid, which is taken as a special case for Λ1 = 0.

The following transformations are used in non-dimensionalizing the governing equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, y, z) = d(x∗, y∗, z∗), q∗ =
qd

κT
, p∗ =

pK

μκT
,

t∗ =
κTt

d2ε
, T ∗ =

T − TL

ΔT
, S∗

i =
Si − SiL

ΔSi
(i = 1, 2).

(6)

The boundary conditions are

q · k̂ = 0 at z = 0, 1, (7)

(T, S1, S2) = (0, 0, 0) at z = 0, (8)

(T, S1, S2) = (−1,−1,−1) at z = 1. (9)

The steady basic state is quiescent and considered as follows:

qb = 0, p = pb(z), T = Tb(z), Si = Sib(z) (i = 1, 2). (10)

The basic state temperature, solute concentration, and pressure distributions are⎧⎨
⎩
Tb(z) = −z, Sib(z) = −z (i = 1, 2),

pb(z) = p0 + (RS1 +RS2 −RT)z2/2,
(11)

where p0 is the pressure at z = 0. Since the temperature and solute concentrations vary linearly
with respect to the vertical coordinate z, perturbing the basic state and following the standard
stability analysis procedure, we can obtain the following nonlinear stability equations:

Lζ = (0, J(ψ, T ), J(ψ, S1), J(ψ, S2))T, (12)

where L is the linear differential operator given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1

PrD
L
∂

∂t
+ 1

)
∇2 RTL

∂

∂x
−RS1L

∂

∂x
−RS2L

∂
∂x

∂

∂x
A
∂

∂t
−∇2 0 0

∂

∂x
0

∂

∂t
− τ1∇2 0

∂

∂x
0 0

∂

∂t
− τ2∇2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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ζ = (ψ, T, S1, S2)T, J(·, ·) stands for the Jacobian with respect to x and z, ψ(x, z, t) is the
stream function, L =

(
1 + Λ1

∂
∂t

)
, and ∇2 = ∂2

∂x2 + ∂2

∂z2 is the Laplacian operator.
The boundary conditions now become

ψ = T = S1 = S2 = 0 at z = 0, 1. (13)

3 Weakly nonlinear stability analysis

A weakly nonlinear stability analysis is carried out to analyze the stability of the bifurcating
periodic solution with the perturbation method. Accordingly, the dependent variables ψ, T ,
S1, and S2 and the thermal Darcy-Rayleigh number RT are expanded in power series of a small
perturbation parameter χ (� 1)[37–38] as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RT = RT1 + χ2RT2 + · · · , ψ =
∞∑

n=1

ψnχ
n,

T =
∞∑

n=1

Tnχ
n, S1 =

∞∑
n=1

S1nχ
n, S2 =

∞∑
n=1

S2nχ
n,

(14)

while the other parameters PrD, A, Λ1, τ1, τ2, RS1, and RS2 are taken as given. At each stage
in the expansion, a column vector may be defined by

ζn = (ψn, Tn, S1n, S2n)T (n = 1, 2, 3, · · · ).
The scaling for the time variable t is allowed such that

∂

∂t
=

∂

∂t
+ χ2 ∂

∂s
.

In Eq. (14), RT1 is of no significance because it becomes zero due to the symmetry when the
solvability condition is imposed. Substituting Eq. (14) into Eq. (12) and equating like powers
of χ yield a series of linear partial differential equations at each order.
3.1 First-order system: linear instability analysis

At the leading order in χ, the equations are linear and homogeneous. Therefore, the first-
order problem reduces to the linear instability problem for overstability, and we have

Lζ1 = 0. (15)

The solution of Eq. (15) satisfying the boundary conditions is assumed as follows:

ψ1 = (A1eiωt +A1e−iωt) sin(αx) sin(πz), (16)

T1 = (B1eiωt +B1e−iωt) cos(αx) sin(πz), (17)

S11 = (C1eiωt + C1e−iωt) cos(αx) sin(πz), (18)

S21 = (D1eiωt +D1e−iωt) cos(αx) sin(πz), (19)

where the overbar denotes the complex conjugate. The amplitudes (A1 −D1) and (A1 −D1)
are allowed to vary over the slow time s. The relation between the amplitudes is obtained by
substituting Eqs. (16)–(19) into Eq. (15) as follows:

A1 = − (δ2 + iωA)
α

B1, C1 =
(δ2 + iωA)
(δ2τ1 + iω)

B1, D1 =
(δ2 + iωA)
(δ2τ2 + iω)

B1, (20)
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where δ2 = α2 + π2. The amplitude B1 remains to be undetermined at this stage, and it
will be determined from the solvability condition of the O(χ3) equation. In Eq. (15), the first
equation gives an expression for the thermal Darcy-Rayleigh number for the occurrence of
oscillatory convection, and this can be written (after clearing the complex quantities from the
denominator) as follows:

RT =
τ1δ

4 +Aω2

ω2 + τ2
1 δ

4
RS1 +

τ2δ
4 +Aω2

ω2 + τ2
2 δ

4
RS2 +

δ4

α2

( 1
1 + ω2Λ2

1

)

+
Aω2δ2

α2

( Λ1

1 + ω2Λ2
1

− 1
PrD

)
, (21)

and ω2 satisfies

a1(ω2)3 + a2(ω2)2 + a3(ω2) + a4 = 0, (22)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = δ2Λ2
1,

a2 = α2PrDϕ1Λ2
1RS1 + α2PrDϕ2Λ2

1RS2 − PrDδ
2Λ1 + δ2 + τΛ2

1δ
6 +APrD,

a3 = α2PrDϕ1(1 + Λ2
1τ

2
2 δ

4)RS1 + α2PrDϕ2(1 + Λ2
1τ

2
1 δ

4)RS2 − PrDδ
6Λ1τ + τδ6

+ Λ2
1τ

2
1 τ

2
2 δ

10 +APrDτδ
4,

a4 = α2PrDϕ1τ
2
2 δ

4RS1 + α2PrDϕ2τ
2
1 δ

4RS2 − PrDδ
10Λ1τ

2
1 τ

2
2 + τ2

1 τ
2
2 δ

10 +APrDτ
2
1 τ

2
2 δ

8.

In the above equations,

τ = τ2
1 + τ2

2 , ϕi = Aτi − 1 (i = 1, 2).

Equation (22) shows that, for a suitable combination of the dimensionless parameters PrD, A,
Λ1, τ1, τ2, RS1, and RS2, it is possible to have either two or three different real positive values
of ω2 at the same wave number α. In that case, for each one of these frequency values (ω2 > 0),
there is a corresponding real value of the thermal Darcy-Rayleigh number on the oscillatory
neutral curve.

For a singly diffusive case (RS1 = RS2 = 0), it is observed that oscillatory convection occurs,
i.e.,

ω2 =
δ2PrDΛ1 − δ2 −APrD

δ2Λ2
1

> 0. (23)

Thus, the necessary condition for the occurrence of oscillatory convection is

Λ1 >
1

PrD
+
A

δ2
. (24)

For a doubly diffusive case (e.g., RS2 = 0), we obtain a dispersion relation quadratic in ω2 as
follows:

b1(ω2)2 + b2(ω2) + b3 = 0, (25)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1 = Λ2
1δ

2,

b2 = ϕ1PrDα
2Λ2

1RS1 − Λ1δ
2PrD + (1 + τ2

1 Λ2
1δ

4)δ2 +APrD,

b3 = ϕ1PrDα
2RS1 − Λ1τ

2
1 δ

6PrD + τ2
1 δ

6 + τ2
1 δ

4APrD.
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Since ω2 > 0 for the occurrence of oscillatory convection, a careful glance at Eq. (25) provides
the necessary conditions as follows:

τ1 <
1
A
, Λ1 >

1
PrD

+
A

δ2
. (26)

The condition ω = 0 corresponds to the stationary onset. Thus,

RS
T =

RS1

τ1
+
RS2

τ2
+

(α2 + π2)2

α2
(27)

is the thermal Darcy-Rayleigh number, above which the layer is unstable. It is observed that
Eq. (27) is independent of the viscoelastic parameter, which indicates that the effect of vis-
coelasticity appears only in the case of time dependent motion. We note that RS

T attains its
critical value at αc = π and the critical thermal Darcy-Rayleigh number for the stationary
onset is

RSc
T =

RS1

τ1
+
RS2

τ2
+ 4π2. (28)

We can obtain important information about the neutral stability curves in the (α,RT)-plane by
locating the bifurcation points, at which the steady and oscillatory neutral curves meet. These
will occur on the steady neutral curve at the wave number αb, for which ω = 0 is a root of
Eq. (22). Thus, a4(αb) = 0 or equivalently

π6� +APrDπ
2 + α2

b

(
3π4� + 2π2APrD +

PrDϕ1δ
4RS1

τ2
1

+
PrDϕ2δ

4RS2

τ2
2

)

+ (3π2� +APrD)(α2
b)2 +�(α2

b)3 = 0, (29)

where � = 1−Λ1PrD. For any chosen parametric values, the critical value of R0
T with respect

to the wave number, which is denoted by R0
Tc, is determined as follows. Equation (22) is solved

first to determine the positive values of ω2. If there are no positive values of ω2, no oscillatory
convection is possible. If there is only one positive value of ω2, the critical value of R0

T with
respect to the wave number is calculated numerically from Eq. (21). If there are two or more
positive values of ω2, the least of R0

T amongst these two ω2 is retained to find the critical value
of R0

T with respect to the wave number.
3.2 Second-order system

At order χ2, the equation is inhomogeneous and given by

Lζ2 = (R21, R22, R23, R24)T, (30)

where

R21 = 0, R22 =
πα

2
(B1A1 +B1A1 +A1B1e2iωt +A1B1e−2iωt) sin(2πz), (31)

R23 =
πα

2
(C1A1 + C1A1 +A1C1e2iωt +A1C1e−2iωt) sin(2πz), (32)

R24 =
πα

2
(D1A1 +D1A1 +A1D1e2iωt +A1D1e−2iωt) sin(2πz). (33)

The above relations suggest that the stream function, temperature, and solute concentration
fields involve the terms of the frequency 2ω, and are independent of the fast time scale t.
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Thus, the stream function, temperature, and solute concentration fields at second-order can be
articulated as follows:

ψ2 = (ψ20 + ψ22e2iωt + ψ22e
−2iωt) sin(2πz), (34)

T2 = (T20 + T22e2iωt + T 22e−2iωt) sin(2πz), (35)

S12 = (S120 + S122e2iωt + S122e−2iωt) sin(2πz), (36)

S22 = (S220 + S222e2iωt + S222e−2iωt) sin(2πz), (37)

where (ψ20, ψ22), (T20, T22), and (S120, S122, S220, S222) are, respectively, the stream function,
temperature, and solute concentration fields, and they are independent of the fast time scale.
The coefficients ψ20, ψ22, T20, T22, S120, S122, S220, and S222 are related to the amplitude at
order χ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T20 =
α

8π
(A1B1 +A1B1), S120 =

α

8πτ1
(A1C1 +A1C1),

S220 =
α

8πτ2
(A1D1 +A1D1), ψ20 = 0, T22 =

παA1B1

(8π2 + 4iAω)
,

S122 =
παA1C1

(8π2τ1 + 4iω)
, S222 =

παA1D1

(8π2τ2 + 4iω)
, ψ22 = 0.

(38)

Therefore, the solution at this order is

ζ2 = (ψ2, T2, S12, S22)T. (39)

3.3 Third-order system
Now, the equation at order χ3 is

Lζ3 = (R31, R32, R33, R34)T, (40)

where

R31 = − 1
PrD

∂

∂s

(
L+ Λ1

∂

∂t

)
∇2ψ1 −RT2L

∂T1

∂x

− Λ1
∂2

∂x∂s
(R0

TcT1 −RS1S11 −RS2S21), (41)

R32 = −A
∂T1

∂s
+ J(ψ1, T2), (42)

R33 = − ∂S11

∂s
+ J(ψ1, S12), (43)

R34 = − ∂S21

∂s
+ J(ψ1, S22). (44)

The third-order equations have the solution as follows:

ψ3 = A3eiωt sin(αx) sin(πz) + · · · , (45)

T3 = B3eiωt cos(αx) sin(πz) + · · · , (46)

S13 = C3eiωt cos(αx) sin(πz) + · · · , (47)

S23 = D3eiωt cos(αx) sin(πz) + · · · . (48)
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The right-hand-side terms of Eq. (40) have been evaluated from the previously known solutions
at orders χ and χ2. The algebra involved in finding the solutions at this order is straightforward.
Therefore, only the results are presented here. We derive the solvability condition for Eq. (40),
which is in the form of a first-order nonlinear ordinary differential equation (cubic Landau
equation) for the unknown complex amplitude B1 as follows:

γ
dB1

ds
=

(α2

δ2
(1 + iωΛ1)Δ1RT2 − ηB1B1

)
B1, (49)

where

γ =A− α2Λ1Δ1

δ2
Ro

Tc +
Δ1(1 + 2iωΛ1)(δ2 + iωA)

PrD

−
(α2Δ1(1 + iωΛ1)
δ2(τ1δ2 + iω)2

RS1 +
α2Δ1(1 + iωΛ1)
δ2(τ2δ2 + iω)2

RS2 − α2Δ1Λ1

δ2(τ1δ2 + iω)
RS1

)
(δ2 + iωA)

+
α2Δ1Λ1

δ2
(δ2 + iωA)
(τ2δ2 + iω)

RS2 +
α2AΔ1

δ2
(1 + iωΛ1)
(τ1δ2 + iω)

RS1 +
α2AΔ1

δ2
(1 + iωΛ1)
(τ2δ2 + iω)

RS2, (50)

η =
α2Δ1

δ2
(1 + iωΛ1)(δ2 + iωA)

(τ1δ2 + iω)

(
Δ2 − (δ4 + ω2A2)(3π2δ2τ1 + iω(δ2 − π2))

4(τ2
1 δ

4 + ω2)(2π2τ1 + iω)

)
RS1

+
α2Δ1

δ2
(1 + iωΛ1)(δ2 + iωA)

(τ2δ2 + iω)

(
Δ2 − (δ4 + ω2A2)(3π2δ2τ2 + iω(δ2 − π2))

4(τ2
2 δ

4 + ω2)(2π2τ2 + iω)

)
RS2

+ (δ2 + iωA)Δ2. (51)

In the above equations,

Δ1 =
PrD

PrD + iω(1 + iωΛ1)
, Δ2 =

3π2δ2 + iωA(δ2 + π2)
8π2 + 4iωA

.

Let B1 in the phase-amplitude form be as follows:

B1 = |B1|eiθ. (52)

Let
(α2

δ2
(1 + iωΛ1)

)
Δ1γ

−1 = βr + iβi, γ−1η = ξr + iξi.

Then, substituting the above equations into Eq. (49) yields

d|B1|2
ds

= 2RT2βr|B1|2 − 2ξr|B1|4, (53)

d(ph(B1))
ds

= RT2βi − ξi|B1|2, (54)

where ph(·) represents the phase shift. The magnitude and direction of the periodic convective
solution and also the frequency shift are determined in Eq. (49). The nature of bifurcation
depends on the sign of the quantity as follows:

Ω =
βr

ξr
. (55)
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If Ω > 0, the bifurcation is supercritical and stable. If Ω < 0, the bifurcation is subcritical and
unstable. The temporal evolution of |B1| can be expressed as a function of the initial amplitude
B

[39]
0 as follows:

|B1|2 =
B2

0

(ξr/(RT2βr))B2
0 + (1 − (ξr/(RT2βr))B2

0) exp(−2RT2βrs)
. (56)

From the above equation, it follows that |B1| ∼ B0 exp(RT2βrs) when s→ −∞ and |B1| → 0,
which is just as the linear theory. However, |B1| → √

RT2βr/ξr when s → ∞, which is
independent of the value of B0.

4 Heat and mass transfer

The time and area-averaged thermal Nusselt number (NuT) and the solute Nusselt numbers
(NuS1, NuS2) are determined[23] as follows:

NuT = 1 +
δ2

2
Ω(RT −R0

Tc), (57)

NuS1 = 1 +
δ2(δ4 + ω2A2)
2(δ4τ2

1 + ω2)
Ω(RT −R0

Tc), (58)

NuS2 = 1 +
δ2(δ4 + ω2A2)
2(δ4τ2

2 + ω2)
Ω(RT −R0

Tc). (59)

5 Results and discussion

The triple diffusive convection in a layer of Maxwell fluid-saturated porous media has been
investigated by performing both linear instability and weakly nonlinear stability analyses. The
linear instability analysis has revealed some interesting results under certain conditions, which
has not been observed hitherto in the literature. This has been achieved through a systematic
study on the topology of neutral stability curves. Based on the weakly nonlinear stability
analysis, a cubic Landau equation is derived, and the stability of the oscillatory bifurcating
solution is analyzed. The heat and mass transfer is quantified in terms of the Nusselt numbers.

The neutral stability curves in the (α,RT) plane are illustrated in Figs. 2 and 3 for dif-
ferent values of the stress relaxation parameter Λ1, Darcy-Prandtl number PrD, and solute
Darcy-Rayleigh number RS1 for the chosen parametric values. These figures show that the

Fig. 2 Oscillatory neutral stability curves in the (α,RT) plane for different values of Λ1 and PrD
when A = 1, τ1 = 0.2, τ2 = 0.27, RS1 = −30, and RS2 = 80



Weakly nonlinear stability analysis of triple diffusive convection 163

Fig. 3 Neutral stability curves in the (α,RT) plane for different values of (a) Λ1 when PrD = 10,
A = 1.2, τ1 = 1.0, τ2 = 1.1, RS1 = −10, and RS2 = 100 and (b) RS1 when PrD = 20,
Λ1 = 0.05, A = 2, τ1 = 0.32, τ2 = 0.29, and RS2 = 50

stationary and oscillatory neutral curves are connected in a topological sense, which implies
the requirement of single critical thermal Darcy-Rayleigh number to recognize the instability
characteristics of the system. Moreover, the increases in Λ1 (see Figs. 2(a) and 3(a)) and PrD
(Fig. 2(b)) will decrease in the stability region. The stability region gets enlarged with an
increase in the positive (i.e., stabilizing) values of RS1, while an opposite trend can be seen
with an increase in the negative values of RS1 (see Fig. 3(b)).

The evolution of the neutral stability curves is displayed in Figs. 4(a)–4(f) for PrD = 10,
A = 2, Λ1 = 0.1, τ1 = 0.159, τ2 = 0.270, and RS1 = −15.92 for positive values of RS2

varying from 63 to 59.3. These figures exhibit an altogether different behavior, which indicates
significant ramifications on the linear instability of the system. It is seen that the oscillatory
neutral curve is connected to the stationary neutral curve at two bifurcation points when
RS2 = 63 (see Fig. 4(a)). The oscillatory neutral curve is skewed slightly towards the lower
wave number region, and also pinched on both sides, which gives rise to two values of R0

T for
some wave numbers. The upper maximum values of the oscillatory neutral curve lie on top of
the minimum value of the stationary neutral curve. The bifurcation points move closer together
when RS2 is decreased to 61 (see Fig. 4(b)) and starts detaching from the stationary neutral
curve when RS2 is decreased further to 60 (see Fig. 4(c)). Till this stage, the linear instability
of the system can be easily determined by a single value of RT. With a further decrease in the
value of RS2, the closed convex oscillatory neutral curve totally detaches from the stationary
curve (see Fig. 4(d)), and moves well below the minimum of the stationary neutral curve (see
Fig. 4(e)) when RS2 = 59.5. The importance of this type of detached oscillatory neutral curves
is that it is necessary to have three critical values of RT to specify the linear instability criteria
of the Maxwell fluid-saturated porous layer instead of the usual single value. From Fig. 4(e), it is
seen that the linear instability criteria involve three values of RT, and may be viewed as follows.
When RT < RT1 and RT2 < RT < RT3, the layer is linearly stable. When RT1 < RT < RT2

and RT > RT3, the layer is unstable. A further decrease in the value of RS2 shows that the
closed oscillatory neutral curve collapses to a point and ultimately disappears, which leaves
only the stationary neutral curve when RS2 = 59.3. Nonetheless, one salient feature that does
not carry over from the case of Newtonian fluids is the absence of the heart-shaped oscillatory
neutral curve within the maxima at the same thermal Darcy-Rayleigh number and different
wave numbers.

Figures 5 and 6 exemplify the stability boundaries for the same parametric values consid-
ered in Fig. 4. From Fig. 5, we can see that the stability boundary can be viewed individually
in three regions. To the right of the point of (A) (RS2 > 60.133 7), oscillatory instability first
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Fig. 4 Evolution of neutral stability curves with PrD = 10, A = 2, Λ1 = 0.1, τ1 = 0.159, τ2 = 0.270,
RS1 = −15.92, and different RS2

occurs at a lower value of RT, then stationary instability occurs, and there is a critical thermal
Darcy-Rayleigh number RTc. To the left of the cusp (B) (RS2 < 59.390 8), instability occurs
as stationary convection, oscillatory instability does not occur, and again there is one value of
RTc. The enlarged version of the figure clearly reveals three distinct regions of RS2, and it is
seen that, in some range of RS2, three values of RTc are needed to specify the linear instability
criteria.

The sensitivity of the viscoelastic parameter Λ1 on disconnected oscillatory neutral curves is
elucidated in Figs. 7(a) and 7(b). Although Fig. 7(a) makes obviously the requirement of three
values of RTc to specify the linear instability of the system, a slight deviation in the value of
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Fig. 5 Stability boundary for PrD = 10,
A = 2, Λ1 = 0.1, τ1 = 0.159, τ2 =
0.270, and RS1 = −15.92

Fig. 6 Expanded view of the multivalued re-
gion

Fig. 7 Variations of the relaxation parameter Λ1 on the evolution of neutral stability curves, where
PrD = 10, A = 2, τ1 = 0.159, τ2 = 0.270, RS1 = −15.92, and RS2 = 59.5

Λ1 (see Fig. 7(b)) entirely changes the instability mode. That is, the instability ceases to be
oscillatory and the convective onset turns out to be stationary, which represents the sufficiency
of single value of RTc to specify the linear instability criteria. Thus, the viscoelastic property
of the fluid significantly affects the instability characteristics of the system.

It is possible to estimate the parameter set for the boundary separating stationary and
oscillatory solutions. This behavior is illustrated in Fig. 8 on a (PrD, Λ1) plane for different
values of RS2 obtained from Eqs. (21) and (28). It is seen that, for fixed values of PrD and
RS2, there exists a value of Λ1 = Λ∗

1, where R0
Tc = RS

Tc. The value of Λ∗
1 decreases with

the increases in PrD and RS2. In other words, the critical thermal Darcy-Rayleigh number
for the onset of both stationary and oscillatory convection coincides at well-defined parametric
values. Therefore, a codimension-two bifurcation occurs. The figure also indicates that the
value of the stress relaxation parameter, which represents the crossover between stationary and
oscillatory bifurcations, decreases with the increase in the Darcy-Prandtl number. Moreover,
the oscillatory region increases with the increase in RS2, which indicates that the presence of
the stronger concentration gradient is to support the oscillatory convection as the preferred
instability mode.

By use of a weakly nonlinear stability analysis, a cubic Landau equation is derived, and
the stability of the oscillatory bifurcating solution is analyzed, which powerfully depends on
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Λ

Fig. 8 Stress relaxation parameter Λ∗
1 for different values of RS2 when A = 2, τ1 = 0.15, τ2 = 0.27,

and RS1 = −20

the viscoelastic parameter. It is observed that subcritical/supercritical bifurcation is possible,
which depends on the choice of the physical parameters. Nonetheless, the bifurcating solution
is found to be supercritical (stable) in the absence of additional solute concentration fields.
The vigor of triple diffusive convection in the Maxwell fluid-saturated porous medium can be
understood by heat and mass transfer. This has been achieved by estimating the thermal and
solute Nusselt numbers for oscillatory convection. The time and area-averaged thermal Nusselt
number (NuT) and solute Nusselt numbers (NuS1 and NuS2) are displayed as a function of
RT for different values of Λ1 and PrD in Figs. 9(a) and 9(b), respectively. When RT increases,
the heat and mass transfer increases. When Λ1 and PrD increase, the heat and mass transfer
characteristics of oscillatory convection increase. This may be credited to the fact that the
increase in Λ1 is to increase the overstability vibration. Therefore, its effect is to increase the
heat and mass transfer.

Fig. 9 Nusselt numbers Nu (NuT, NuS1, NuS2) for different values of Λ1 and PrD when A = 2,
τ1 = 1.5, τ2 = 1.244, RS1 = −20, and RS2 = 42

6 Conclusions

The triple diffusive convection in a Maxwell fluid-saturated porous medium is investigated
by use of both linear and weakly nonlinear stability analyses. Moreover, disconnected convex
oscillatory neutral curves are found to occur for some choices of the parametric values, which
indicates the necessity of three critical thermal Darcy-Rayleigh numbers to specify the linear
instability criteria instead of the usual single value. However, it is observed that the instability
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onset of the motionless basic state cannot occur via the simultaneous passage of two sets of
complex conjugate temporal eigenvalues from the left half-plane to the right half-plane at the
same critical thermal Darcy-Rayleigh number as observed in the case of Newtonian fluids. The
onset of oscillatory convection increases with the increases in the relaxation parameter and the
Darcy-Prandtl number. The threshold value of the relaxation parameter, at which codimension-
two bifurcation occurs, decreases with the increase in the Darcy-Prandtl number. The stability
of the bifurcating oscillatory solution is analyzed by deriving a cubic Landau equation. There
is a possibility of bifurcation to be either subcritical (unstable) or supercritical (stable), which
depends on the choice of the physical parameters. The variations of the time and area-averaged
thermal and solute Nusselt numbers with respect to the thermal Darcy-Rayleigh number are
presented. The heat and mass transfer rate increases with the increases in the relaxation pa-
rameter and the Darcy-Prandtl number.
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