
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2019

Zero and Low Energy Thresholds in Quantum
Simulation
Yun Xuan Shi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Shi, Yun Xuan, "Zero and Low Energy Thresholds in Quantum Simulation" (2019). Master's Theses. 5019.
DOI: https://doi.org/10.31979/etd.ay96-ubf4
https://scholarworks.sjsu.edu/etd_theses/5019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/223074281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5019?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ZERO AND LOW ENERGY THRESHOLDS IN QUANTUM SIMULATION

A Thesis

Presented to

The Faculty of the Department of Physics & Astronomy

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Yun Xuan Shi

May 2019

© 2019

Yun Xuan Shi

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

ZERO AND LOW ENERGY THRESHOLDS IN QUANTUM SIMULATION

by

Yun Xuan Shi

APPROVED FOR THE DEPARTMENT OF PHYSICS AND ASTRONOMY

SAN JOSÉ STATE UNIVERSITY

May 2019

Dr. Chris Pollett Department of Computer Science

Dr. Peter Beyersdorf Department of Physics and Astronomy

Dr. Thomas Madura Department of Physics and Astronomy

ABSTRACT

ZERO AND LOW ENERGY THRESHOLDS IN QUANTUM SIMULATION

by Yun Xuan Shi

Quantum simulation is the process of simulating a quantum mechanical system

using either a quantum or a classical computer. Because quantum mechanical

systems contain a large number of entangled particles, they are hard to simulate on a

classical computer. It is the task of computational complexity theorists to estimate

the amount of resources to do the same number of operations on either classical or

quantum devices. This report first summarizes the state of the art in the field of

quantum computing, and gives an example of a model of quantum computer and

examples of quantum algorithms that are currently being researched. Then our own

research about k-local quantum Hamiltonians is discussed. We developed programs

to determine if a particular kind of k-local Hamiltonian has zero-energy solutions.

First, to familiarize ourselves with quantum algorithms, we implemented a recently

discovered polynomial-time 2-QSAT algorithm called SolveQ. Then we wrote

several versions of brute force 7-variable 3-QSAT solvers and conducted experiments

for the threshold of satisfiability. We empirically determined that the thresholds for

the four versions, Versions 3, 4, 5, and 6, are 0.741, 1.714, 1.714, and 0.571,

respectively. In addition, experiments were conducted involving the 6-qubit Ising

model, working on which caused us to realize how inefficient the classical computer

really is at simulating quantum mechanical systems. Our conclusion is that quantum

simulation is much less feasible than classical simulation on a classical computer.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Chris Pollett, for coming up with such a

fascinating research opportunity for me, as well as this rewarding thesis topic. It is

amazing that I have come so far, from knowing nothing about quantum computing to

knowing so much. Prof. Pollett taught me the wonderful lesson of team work because

we need other people in this life for things we cannot do on our own. It is with Prof.

Pollett’s help that I came to realize how I can become a contributing member of

society after I graduate.

Thanks to all the professors on my thesis committee, for their diligent reviewing

of this thesis and providing helpful comments. It is through their dedication that my

thesis project was finally successfully completed.

I thank my parents for everything: allowing me to major in physics, and providing

support and encouragement for me as I complete my degree. Without family support,

it would have been hard for me to succeed. I am grateful for their assistance and

guidance. I especially have to thank my father for his suggestions, support and

encouragement, and for the fact that he was the one who first told me about quantum

computing when I was young.

Basically, it was through everyone’s tremendous support that I was able to

complete this culminating project of my graduate studies. I am very fortunate to have

met all these people. Physics is a challenging subject, and I really would not have

come to understand physics like I do now without the guidance and enlightenment of

all the teachers I met along the way.

vi

Last but not least, I would like to thank SJSU for the diverse, supportive and

welcoming environment that gave me so many positive memories that I will look

back on years from now.

vii

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. ix

1. Introduction .. 1

2. Preliminaries .. 7

2.1 Quantum Mechanics ... 7

2.2 Qubits .. 9

2.3 Quantum Gates.. 12

2.4 Computational Complexity Theory .. 19

2.5 Quantum Information Processing ... 24

2.6 Shor’s Algorithm .. 26

2.7 Grover’s Algorithm ... 33

2.8 Ion Trap ... 36

3. Implementation of Quantum Simulators .. 49

3.1 jQuantum... 49

3.2 SolveQ... 52

3.3 Random Generator .. 58

3.4 k-SAT problems .. 59

3.5 Version 1 ... 60

3.6 Version 2 ... 62

3.7 Version 3 ... 65

3.8 Version 4 ... 66

3.9 Version 5 ... 67

3.10 Version 6 and 7 ... 68

3.11 Ising and Antiferromagnetic Heisenberg Models ... 69

3.12 Freezing Point Experiment ... 71

4. Experiment and Results .. 72

4.1 Data and Analysis ... 72

5. Conclusion .. 82

6. References ... 84

viii

LIST OF TABLES

Table 1. Version 1 Success Count .. 73

Table 2. Version 3 Success Count ... 75

Table 3. Version 4 Success Count .. 76

Table 4. Version 5 Success Count .. 77

Table 5. Version 6 Success Count .. 78

Table 6. Models Success Count .. 80

ix

LIST OF FIGURES

 Figure 1. Quantum Gate……………………….……. ... 19

 Figure 2. Shor’s Circuit……………………………….. ………………............. 28

 Figure 3. Grover’s Circuit……………………………................................ 34

 Figure 4. Ion Trap 1 ………………………………..…. 40

 Figure 5. Energy Level Diagram ……………………… 42

 Figure 6. Laser-Ion interaction 2 ………………………. 43

 Figure 7. Stretch Mode Excitation………...………… .. 44

 Figure 8. Experiment Set Up………………………... .. 47

 Figure 9. Laboratory ………………………………... .. 49

 Figure 10. jQuantum Screen………………………………….. …………. 51

 Figure 11. Version 1 Freezing Zone ……………………………... 73

 Figure 12. Version 3 Freezing Zone…………………………….…. 75

 Figure 13. Version 4 Freezing Zone.…………………………….…. 77

 Figure 14. Version 5 Freezing Zone.…………………………….…. 77

 Figure 15. Version 6 Freezing Zone.…………………………….…. 79

1

Chapter 1

Introduction

The dynamics of quantum particle systems are described by their wave functions,

which evolve in time due to quantum Hamiltonians, operators that determine the total

energy of the systems. This thesis is concerned with these Hamiltonians, and whether

simulations of quantum algorithms can be done on classical computers. We are

interested in the computation of the ground state (zero-energy) and low energy solutions

of quantum Hamiltonians. We are also interested in the phase transition from where the

quantum systems have zero or low energy solutions to where they do not. This phase

transition is determined by a ratio between the number of clauses and total number of

variables, called the freezing point ratio. It turns out that reaching above a certain

number of clauses in a given problem instigates these transitions, for both classical and

quantum simulations. Therefore, understanding such transitions provides insights into

how quantum computation and classical computation differ in strength. In this chapter,

we describe our project in the context of what is known about quantum Hamiltonians.

A k-local Hamiltonian is an operator that looks like: 
j

jHH where j=1,2,…,m

for m clauses, and
1

2
)(


 jjjj PICPH kn . Here jC is a k-qubit gate, and jP is a

permutation matrix for n qubits. We are interested in k-local Hamiltonians because it

is known that we can express k-SAT problems as decision problems of whether there

are zero-energy solutions to the specific type of k-local Hamiltonians used to solve k-

SAT problems (Beaudrap & Gharibian, 2015). In classical complexity theory, k-SAT

is the problem of computing a satisfying assignment for a Boolean formula that

consists of several constituent OR clauses of at most k variables or their negations.

2

This problem is known to be NP-hard (Nondeterministic Polynomial Time Hard), the

class of problems which are at least as hard as those in the class of problems that have

polynomial-time verifiable proofs. In history, k-local Hamiltonians were first

considered by Kitaev, in the context of the class QMA (Quantum Merlin Arthur), the

quantum analogue of NP. Kitaev was interested in this topic, because if we can solve

k-local Hamiltonian problems on a quantum computer then we can solve all QMA

problems, and thereby NP problems, since k-local Hamiltonians are the hardest type

of QMA problems. We also study k-local Hamiltonians because models existing in

nature, such as the Hubbard and Ising models, that can be used for information

processing, can be represented as k-local Hamiltonians. It is known that any k-local

Hamiltonian can be built using polynomial resource quantum circuits, even though

building them with classical circuits is inefficient because the circuits will likely

require exponential resources. This is why a quantum computer is superior. A model

of the quantum simulation is discussed in source (Nielsen & Chuang, 2010). When

one studies a physical system, one is often interested in its eigenenergy spectrum and

the corresponding set of eigenvectors. A problem is called QMA-complete if it is

both in QMA and is QMA-hard, and like NP-complete, it has polynomial-time

verifiable proofs. Determining the lowest energy solutions for k-local Hamiltonians

is known to be QMA-complete, even for k as low as k=2. This hardness also holds

for a subclass of k-local Hamiltonians known as k-QSAT, which is the quantum

equivalent of classical k-SAT problems. A good survey of quantum Hamiltonian

complexity is (Gharibian, Huang, Landau & Shin, 2014). In this chapter, we present

our work in the context of what is known about k-local Hamiltonians.

3

A literal is a Boolean variable or its negation. A k-SAT problem is a constraint

satisfaction problem in which several disjunctions (OR clauses) of literals are joined

together in a conjunction (AND clause). Let n be the number of variables in such a

Boolean formula. For k-SAT, we restrict the number of variables in each clause to a

maximum of k. Given such a formula φ, the solution must satisfy all of the OR

clauses in the problem simultaneously. Since a k-SAT clause can be viewed as a

special case of a k-QSAT clause, let us first understand what k-SAT clauses are. As

an example, let us consider a simple OR clause of two variables,)(21 xx  . We can

write the Hamiltonian constraint matrix representing this clause as H= 1100  .

00 is used because 1x is not negated; 11 is used because 2x is negated.

Consider the basis quantum state as 21 xx  . The solutions to this OR clause are

the null vectors of the constraint matrix H. So in this example, 21 xx  = 00, 10 or

11 are the solutions, but 01 is not a solution. What was just described is a 2-SAT

clause, but it is possible to construct a 3-SAT or k-SAT one by applying the same

reasoning using more terms joined together in a tensor product. We know that for k-

SAT, each OR clause in the problem can consist of just one forbidden vector with a

probability of one; whereas, each OR clause in the k-QSAT problem contains

k2 terms with the sum of the probabilities equal to one. A k-QSAT clause is of the

form knk IvvI )(in which v are forbidden vectors summed together for a

total of k2 terms. For 3-QSAT, v might look like:

111110101100011010001000 hgfedcba 

4

Notice that there are 8 terms, since 32 =8. (Also note that each three digit term is an

abbreviation for a matrix that is composed of three matrices joined together in a tensor

product. For example, the term 011 means 111100011 ). Because

each coefficient represents the probability of its corresponding term, we have

1 hgfedcba .

To find the solution of m of these 3-QSAT clauses, jH , joined by AND symbols, we

simply add up the coefficients for each of the jH and find the null vector of this entire

matrix by doing Gaussian elimination, then look for zeros along the diagonal of the

resulting matrix. One problem with implementing this on a computer is floating point

round-off error in Gaussian elimination. One option to handle this problem is to set a

small enough number as our threshold that must not be exceeded for a data slot to be

counted as a zero.

We now discuss our work related to k-local Hamiltonians and k-QSAT. We first

explored available tools for implementing quantum algorithms on the internet and

implemented two famous algorithms, Grover’s and Shor’s algorithms. As we could find

no tool directly geared for k-local Hamiltonian experiments, we wrote new tools to do

this ourselves. Our first attempt at writing a quantum algorithm was Bravyi’s 2-QSAT

algorithm (Gharibian, 2015), which is named SolveQ. This is a polynomial time

algorithm for finding 0-energy solutions for the 2-QSAT instances. Through coding, we

found that SolveQ finds only one solution out of a large set of possible solutions, and

sometimes it will also output that the problem is unsolvable when it is solvable. SolveQ

is still a valid quantum algorithm because it does find a solution with probability greater

than 1/2. The next k-QSAT solver that we wrote was one we imagined on our own for

5

solving general k-QSAT problems the brute force way, called “brute force,” because this

algorithm will give us all possible solutions to a single problem. This employs the

Gaussian elimination approach that was described earlier. Although the code was written

for k-QSAT problems, we actually did not collect data for any other value of k other than

k=3. This is because the algorithms we implemented run in time O(N3) where N=27 since

7 is the number of qubits considered. This was the maximum size that could be

computed quickly on the computer that was used.

After writing these quantum simulators in Java, simulating k-SAT and k-QSAT by

brute force, experiments were conducted on the ability of the computer to solve these

constraint satisfaction problems. We were interested in the threshold of satisfiability,

classically known as the freezing point zone, where most of the problem instances go

from satisfiable to not. As the number of clauses increases, the number of non-zero terms

on the diagonal of the forbidden matrix, our quantum Hamiltonian, increases very fast;

and the likelihood that the formula is satisfiable decreases very swiftly. Only in a narrow

range, near the threshold or freezing point, is the problem actually “hard”— a word

reserved in computational complexity to describe problems to which all other problems

within a class can be reduced to. In source (Bravyi, Moore & Russel, 2014), it was

shown that this freezing point ratio for classical algorithms is a number in the range

3.520-4.490, and for quantum algorithms it is in the range 0.818-3.594. This indicates

that quantum algorithms freeze a lot more easily than classical algorithms, which leads to

the conclusion that quantum clauses are more “constraining” than classical clauses. To

test this idea, we generated 3-QSAT instances with from 5 to 35 clauses and found

whether there are null vectors to the matrix representing their sum. For each fixed

6

number of clauses between 5 and 35, we completed 50 trials and computed the average

number of times the instances were satisfiable. This allows us to plot graphs of average

count of satisfiable instances versus number of clauses to determine an experimental

freezing point ratio of 0.571 (Version 6), which demonstrates the fact that quantum

constraints are more constraining since they take much fewer clauses to freeze, as seen by

our own experiment as well as the value calculated in (Bravyi, Moore & Russel, 2014).

The next section consists of preliminaries, in which we discuss the basics of quantum

mechanics and computational complexity needed to understand our results. We introduce

Shor’s and Grover’s algorithms as examples of the types of algorithms employed by the

quantum computer to do computation, and they are better at performing specified tasks

than any algorithm used by classical computers. We then move on to our own results, in

which we describe our implementation of Shor’s and Grover’s algorithms in jQuantum,

which were built with the intent of testing whether there are existing quantum simulators

for carrying out our threshold experiments. Next we discuss the designs of the quantum

simulator programs that we wrote: first describing the 2-QSAT program and then the

brute force k-QSAT solver followed by the Ising and Antiferromagnetic Heisenburg

Models. We discuss the k-QSAT problem as a specific type of k-local Hamiltonian

problem and survey known results. This is followed by a description of the freezing

point experiments conducted. We then describe our Quantum Ising Model simulator,

which is not yet practical due to limitations of the classical computer, but are nonetheless

an interesting idea for future research. The last chapter is the Conclusion.

7

Chapter 2

Preliminaries

2.1 Quantum Mechanics

In order to understand the work we did on the quantum threshold of satisfiability, it is

necessary to have a basic understanding of quantum mechanics, computational

complexity, and quantum information processing. In this chapter, we attempt to provide

a brief background about the physics behind quantum computers. The quantum

Hamiltonians that we will discuss in this chapter derive from the Schrodinger equation,

which is one of the most fundamental equations in physics. The Schrodinger equation is

a partial differential equation describing the conservation of energy of a particle. The left

side of the Schrodinger equation is the Hamiltonian applied to the wave function. The

right hand side of the Schrodinger equation is an imaginary constant times the time-

derivative of the wave function. The wave function is also called the quantum state. The

two forms of the Schrodinger equation are:

Time-independent:  EH 

Time-dependent:
t

iH






 

Because we want to generate a variety of quantum gates, the version we are more

interested in is the time-dependent version of the Schrodinger equation. The Hamiltonian

on the left represents some energy related operation on the quantum state— in the ion

trap, lasers are used as the energy sources for generating the Hamiltonian. The

Hamiltonians in the Schrodinger equation are represented by Hermitian matrices, which

8

are matrices that have the property  HH . Hermitian matrices have the following

properties:

1) Diagonal entries are real.

2) A matrix that has only real entries is Hermitian if and only if it is a symmetric

matrix. A real and symmetric matrix is simply a special case of a Hermitian

matrix.

3) Hermitian matrices are normal matrices, which are matrices that commute

with their adjoints.

4) A Hermitian matrix can always be diagonalized by some unitary matrix. The

resulting diagonal matrix has only real entries.

5) The eigenvalues of a Hermitian matrix are all real and its eigenvectors are

linearly independent meaning they are orthogonal. Sometimes the

eigenvalues are degenerate.

6) The sum of any two Hermitian matrices is also Hermitian.

7) The inverse of an invertible Hermitian matrix is Hermitian as well.

8) The product of two Hermitian matrices is Hermitian if and only if they

commute.

9)  || H is always real for Hermitian matrix H.

10) Hermitian matrices do not form a vector space over complex numbers since In

is Hermitian but i In is not. However, the complex Hermitian matrices do

form a vector space over the real numbers.

9

11) Take the eigenvectors of Hermitian matrix H and put them in a matrix. This

matrix diagonalizes the Hermitian matrix.

12) The sum of a square matrix and its conjugate transpose is Hermitian. The

difference of a square matrix and its conjugate transpose is skew-Hermitian.

This implies that the commutator of two Hermitian matrices is skew-

Hermitian. Thus, an arbitrary square matrix C can be written as the sum of a

Hermitian matrix and a skew-Hermitian matrix.

13) The determinant of a Hermitian matrix is real.

14) A Hermitian matrix can be decomposed into its real and imaginary parts: the

real part is symmetric and the imaginary part is skew-symmetric. Skew-

symmetric describes a matrix whose transpose is the matrix multiplied by

negative one.

2.2 Qubits

 A quantum computer stores information in terms of qubits, which are two-

level systems. Mathematically, the quantum states we are interested in are composed of

these two-level systems that can be represented in a 2-dimensional vector space with

basis 








0

1
and 









1

0
. In physics, these two basis vectors are written using the shorter ket

notation 0 and 1 . A general state in the 2-dimensional state space can be written as

 1|0||  . Where  and  complex and 1
22
  . Mathematically, a

qubit is represented by this vector with its origin at the origin of a sphere and the tip on

the surface of the sphere. This sphere is called the Bloch sphere, and it has a radius of

one. Quantum states are formed through the coupling of several qubits. It should be

10

noted that all vectors representing one quantum state before decoherence must have a

length of one, even if the state is an entangled state. Such states are called pure states.

Unlike pure states for quantum systems, qubit registers that have been partially measured

or have interacted with the external environment, through a process called decoherence,

often ends up in what is known as a mixed state. For a mixed state, 1
22
  .

Mixed states can be represented by points inside the Bloch sphere. A mixed qubit state

has three degrees of freedom: the angles  and  and the length r. A mixed state that is

generated through decoherence, might be unusable as quantum information. A qubit is

very different from a classical bit, because if a classical bit is described as a vector, then

it can only be either a vector pointing vertically upward, or a vector pointing vertically

downward; whereas, a qubit can take on a whole sphere of values (Maslov, 2017). The

three parameters are the phase of the complex coefficient  , the phase of the complex

coefficient  and the length r, the square root of the square of the norms of the two

coefficients.

Physical systems built from more than one qubit are represented in a state space

which is the tensor product of the constituent states. Below is an example of how to take

tensor products:

















































































0

0

0

1

0

1
0

0

1
1

0

1

0

1

This can be generalized to arbitrary vectors and matrices. Solutions to the

Schrodinger equation indicate how states change with respect to time as unitary matrices

are applied to them. A unitary matrix is a matrix that preserves the norm of the quantum

11

state. Therefore, while a system is evolving, it will be a linear combination of different

qubit states, with the square of the norm of the coefficients always adding up to one, but

these coefficients change over time. When we observe the system, that is take a

measurement, quantum mechanics says the measured qubits end up in a fixed state that

will never change again. Measurements are modeled by measurement operators,

operators with the following trait: IMM
i

ii   . When measuring  , the density

matrix  of the current state  , with respect to }{ iM , we obtain outcome i with

probability given by:)()|Pr( ii MMTri  (Gharibian, Huang, Landau & Shin, 2014).

Even though a single qubit take on a whole sphere full of values, it can only be measured

along a single axis at a time. But measuring the qubit changes its state from whatever it

was before the measurement, to whatever state the measurement produced after the

measurement, for example, for a 7-qubit state, this might be a tensor product of one states

and zero states like 1101001— this state now occurs with a probability of one and will

never change again. As a simple example on a single qubit, we can take measurements

000 M and 111 M . We see that it is true that although a qubit is originally

mathematically very different from a classical bit, once it has been measured via 0M or

1M , it becomes no different from a classical bit, which is no longer a superposition of the

two possibilities. To summarize, once a qubit has been measured, it no longer retains

memory of its past, which can never be restored. At this stage, the wave function is said

to be collapsed, and it is collapsed forever. We can choose to collapse the entire register

or only parts of it as will be discussed later in this paper.

12

The quantum Hamiltonians we consider operate on registers of qubits. To implement

qubits in the real world, each qubit must be some sort of particle that is small enough so

that it is inexpensive to make into a marketable computer. We conclude this section on

qubits by briefly mentioning several real world systems that have been used to model

qubits. All of the following particles have being used for qubits: photons, electrons and

ions. For example, the polarization of a stream of light particles can be used to

implement a quantum bit, with quartz crystals for quantum gates, and polarizers for

measurement. To connect these real-world systems to k-local Hamiltonian, the subject of

this paper, we will conclude this chapter with a discussion of a specific implementation

called an ion trap that uses Ca40+ ions for its qubits.

2.3 Quantum Gates

For quantum computation to be possible, we must be able to process our qubits. First,

we must be able to initialize all of our qubits to a known state. Second, we must be able

to rotate individual qubits, measure individual qubits, perform operations that entangle

pairs of qubits, and stay free of outside interference or decoherence for as long as it takes

to finish our computation. We now describe the kinds of operations typically used in

quantum computers: simple quantum logic gates.

Quantum logic gates operate on sets of qubits. Mathematically speaking, they cause a

set of qubits to undergo unitary transformations. A unitary transformation corresponds to

rotations of the quantum state vector on the Bloch sphere. For systems of qubits, it

corresponds to something like a higher dimensional rotation. A standard basis

measurement is an operation through which information is gained about the state of the

qubit. For  1|0||  , the result will be either up (2||) or down (2|| ), with

13

the probability given in parentheses. A classical computer is built using classical logic

gates: AND, OR and NOT. These gates are built from transistors and resistors, and

operate by manipulation of currents and voltages. Mathematically, these classical gates

are functions that take in two true-false inputs to generate one true-false output. The

quantum computer uses quantum gates and different physical entities, such as spin and

energy, to achieve information processing, which is what this section is about. To design

a quantum algorithm, one must let go of one’s classical intuition, using truly quantum

effects to achieve the desired algorithmic end. Both quantum and classical algorithms,

can be expressed as quantum Hamiltonians, which can then be built into quantum circuits.

In our research of k-QSAT problems, we express classical OR clauses as quantum

Hamiltonians, which we imagine are possible to build into quantum circuits.

Like a classical computer, a quantum computer has both hardware and software, both

of which use algorithms to solve problems. Whereas classical computers use classical

logic gates: AND, OR, NOT; quantum computers use quantum gates such as Pauli X, Y

and Z, and CNOT. We will give the matrices for these in a moment. Coming up with a

good quantum algorithm is difficult, so there are currently few quantum algorithms that

actually perform better than their classical counterparts (Gharibian, Huang, Landau &

Shin, 2014). Some examples of quantum algorithms are Deutch Josza, Shor’s and

Grover’s algorithms. After calculating the results on a quantum computer, the next

challenge is to extract the correct solution from a sea of wrong possibilities. The result of

each quantum measurement is probabilistic. To determine the output of a quantum

computation, one performs a large number of trials and takes the result with the highest

frequency. This can be easily done using a normal computer and an algorithm which

14

allows you to tally the occurrences, reset the original assumptions, and try again with the

quantum computer. It usually takes 3 or 4 runs for you to achieve your answer. The

algorithms needed are the Grover’s Algorithm and Shor’s Algorithm. The articles

(Wikipedia, 2017) are good starting points for understanding the Shor’s and Grover’s

algorithms.

All quantum gates are unitary, so that they are reversible and therefore nondestructive

of quantum information. Mathematically, a complex matrix U is unitary if IUU  .

We write U for TU*)(. Unitary matrices have the following properties:

1) Multiplication by unitary matrices preserves inner product that is yxUyUx ,, 

2) U is normal (matrix N is normal means: 0],[ NN), and U has complex

eigenvalues that lie on the unit circle.

3) U is diagonalizable means given a unitary matrix V and a diagonal matrix D (also

unitary), we have DVVU  .

4) 1)det(U

5) The eigenvectors of U are orthogonal.

6) U can be written as iHeU  where H is a Hermitian matrix.

7) Both rows and columns of U form an orthonormal basis.

8) U is called an “isometry,” meaning that it preserves the norm of a vector.

9) The sum of two unitary matrices is not guaranteed to be unitary.

10) The product of two unitary matrices is also unitary.

The net effect of evolving a quantum system according to a Hamiltonian from the

starting quantum state for a fixed amount of time is a unitary operation applied to the

15

quantum state. Three unitary gates we are especially interested in are the Hadamard,

CNOT , and Phase gates:

 











11

11

2

1
H























0100

1000

0010

0001

CNOT























 nie

Z

2/2000

0100

0010

0001



The Hadamard gate is a single-qubit gate used to achieve quantum parallelism. Both

the 0 or 1 states are changed into equal superpositions of the 0 and 1 states after

the Hadamard gate. The 0 state is changed into a sum of the 0 and 1 states, while

the 1 state is changed into a difference of the 0 and 1 states. The sign probably

makes a difference in generating probability distributions to achieve information

processing. Another way of stating this is that the Hadamard gate is for changing back

and forth between the computational basis and the bell basis. Here the bell basis

is  10
2

1
 and  10

2

1
 .

A CNOT gate is a two-qubit gate, often used to achieve entanglement, or achieve

correlated data. Practically, the CNOT gate is a simple two qubit gate that does nothing

to the control qubit, and flips the value of the target qubit if the control qubit is 1 . The

target output of the CNOT gate corresponds to the result of a classical XOR gate.

Furthermore, the CNOT gate is used for generating entanglement. Many two-qubit states

cannot be completely described by the tensor product of the first qubit and the second

qubit. We call such states entangled. A common application of the CNOT gate is to

16

maximally entangle two qubits in tensor product into two qubits described by the bell

states, which can be written in terms of the bell basis.

   

   

   

   
BABA

BABA

BABA

BABA

















2

1
1100

2

1

2

1
1100

2

1

2

1
1001

2

1

2

1
1001

2

1

We will illustrate one of the four cases now. Suppose we have the input state

  001
2

1
 , and we put the state through a CNOT gate, we now have the bell

state  0011
2

1
 , which is maximally entangled.

Entanglement is a non-local property that allows a set of qubits to express higher

correlation than is possible in classical systems. When several qubits are entangled, each

particle can no longer be described independently of the other particles. For example,

with entanglement, you have changed your solution set from {00, 01} to {00, 11}. And

what if you want the two qubits to have different values? Then the CNOT gate changes

{01, 11} to {01, 10}; notice you have now the two qubits taking on opposite values. In

this example, in choosing if you want the first qubit to be 0 (as in {00, 01}) or the second

qubit to be 1 (as in {01, 11}), you have just processed your information and greatly

narrowed down the possibilities. We see that before the CNOT you have not made any

mathematical statement about the two qubits. After the CNOT gate, you have made the

17

statement that they must be the same as in ({00, 11}), or that they are opposites as in ({01,

10}). There is now a relation between the first and second qubit—hence they are

entangled. In effect, before the quantum gate, the individual qubits are in an undefined

state, but afterwards they are correlated. This correlation between several qubits is the

complete description of the state of the set of qubits; if we choose the same basis to

measure both qubits and compare our results, the measurements will be correlated with a

probability greater than 50%. We will be able to know the second qubit’s value just from

looking at the first qubit’s value. In this manner we can logically relate many qubits and

achieve computation. In the real world, the variables symbolize some physical

characteristic of the system being simulated, and sometimes, the variables are going to

depend on one another, or share a correlation.

Controlled Phase gates are two or multiple-qubit gates that are important in quantum

information processing because they are useful for doing more complex computations

that involve series. One example of their use is to implement the Quantum Fourier

Transform (QFT), a critical component of many quantum algorithms. Phase gates are a

family of single-qubit gates that leave the 0 state unaltered, and multiply a phase to the

1 state. As a part of the QFT, controlled phase gates are used for finding the period of a

function, which allows us to do factoring. The phase gates are built out of the z-rotation

gates, which allow us to rotate the qubit by arbitrarily small angles each time. This is

how you can build the
n

Z 2/1 gate. Without the rotation gates, it would be impossible to

build phase gates with n greater than one. So fortunately, the rotation gates can be

implemented.

18

There are criteria for whether a Hamiltonian can be used to build a quantum gate. In

quantum mechanics we have learned that Hamiltonians are Hermitian, and quantum gates

are unitary. So why is there a discrepancy? Although there are two versions of the

Schrodinger equation, the time-dependent and time-independent versions, we are

interested in the time-dependent case (
t

iH



 ) for making our quantum gates.

This means that when the quantum state passes through a Hamiltonian, which is a

Hermitian matrix, it will evolve according to the following rule: 0

/)( iHtet  . As

you can easily derive for yourself /iHte is a unitary matrix, and it depends on time, this

is why quantum gates perform only unitary operations and are time-dependent; even

though the quantum Hamiltonian itself is Hermitian and not unitary. As discussed later

in the ion trap section, the laser is used to generate H, which, when acted on the quantum

state, causes it to evolve in time according to the time-dependent Schrodinger equation

until the desired gate action is achieved. The fact that quantum gates are time-dependent

has the implication that after you have reached the desired result, you must turn off the

quantum gate.

For more information about quantum circuits, please consult source (Nielsen &

Chuang, 2010). The survey (Gharibian, Huang, Landau & Shin, 2014) contains

information about the decomposition of single and two-qubit gates into rotation

matrices—which represents what the quantum gate does.

19

Figure 1. Quantum Gate

2.4 Computational Complexity Theory

Complexity theory is about classifying computational problems according to their

inherent difficulty, and relating those classes to one another. A problem can be thought

of as a binary relation P on a set I of instances and a set of solutions to those instances. A

pair   Psi , says that s is a solution for problem P with input i. To keep things simple,

we assume that instance i and solution s are encoded as binary strings.

Before quantifying how hard a problem is, we need to fix a computational model.

Since the 1930s, many computational models have been proposed, out of which the most

general have all been shown to be computationally equivalent. This is known as the

Church Turing Thesis, a description of which can be found in (Moore & Mertens, 2011).

We will focus on three models: Turing Machines, uniform circuit families and uniform

quantum circuit families. A Turing Machine (TM) is a device that operates on a two-way

infinite tape. The tape consists of a sequence of squares, each of which contains a single

20

symbol from a fixed finite alphabet together with a blank square symbol. A TM machine

has a tape head which sits over a single tape square at a time. A TM does one-step

computations by using the contents of the tape square currently under its tape head and

the awareness of its current state which must come from a finite set of states. Using these

two pieces of information, a transition function is performed to find a new symbol to

write to the square and also whether the tape head should stay put or move left one square

or right one square. If the TM enters a special state called the Halt state, then the

contents of the tape from the square currently under the tape head to the first blank square

is called the output. An instance of a problem can be input to a TM as a blank tape

except for the squares to the right of the tape head on which the instance is encoded using

the TM’s alphabet which is assumed to contain at least 0 and 1. A TM is said to solve a

problem P if whenever it is given an input instance of P, it can compute after some

number of steps an output s such that   Psi , . Since we assumed P was total, at least

one s exists for every i. We use T(n) and S(n) to denote, respectively, the maximum

number of steps used and maximum number of squares seen to compute a solution on

inputs of length n. These are called the time and space complexity of one problem.

A second computational model is that of the uniform circuit family. A uniform

circuit is a directed acyclic graph with the following properties: Nodes with in-degree 0

are called inputs and are labeled with Boolean variables, 0 or 1. Nodes of out-degree 0

are called outputs. Internal nodes are labeled with gate types. Without loss of generality

(Moore & Mertens, 2011), we will assume the possible gate types are AND, OR and

NOT. Fixing values for its inputs we can proceed from the inputs to the outputs by

evaluating each gate at an internal node, each of whose inputs are known. The size of a

21

circuit is the number of gates it contains. A circuit family { ,......, 21 CC } is a set of

circuits, such that iC takes i as input variables. A circuit family is uniform if there is a

TM which on input i written in binary operates for at most T(|i|) steps, where |i| is the

length of i in binary, and outputs an encoding of iC in binary. We say a circuit family

solves a problem P if when given an instance x of the problem, if we take the circuit ||xC

and evaluate it on input x, we get an s such that (x, s) is in P.

A decision problem P is a problem such that the only solution on an instance i of P is

either the value 0 or the value 1. The class P, polynomial time, is the class of decision

problems that can be solvable by TMs whose runtime T(n) are bounded by a polynomial.

It turns out as stated in (Moore & Mertens, 2011), P could be alternatively have been

defined as the class of decision problem solvable by a uniform circuit family { nC } such

that the size of the encoding of nC in binary is bounded by a polynomial.

We could even restrict the nC a bit more—to make the circuits leveled. A circuit is

leveled if all paths from an input to a certain gate are the same length. If one has a

leveled circuit then we define the level of a gate to be the path length to its inputs. For a

leveled circuit, the level i+1 gates only depend on the level i gates and the mapping

between these layers could be computed as an application of a unitary matrix. This

motivates our last model of computation, the uniform quantum circuit family.

A quantum circuit is a unitary matrix defined as a product of layers where each layer

is either a permutation matrix or a tensor product of CNOT, Hadamard gates, and Z gates.

A quantum circuit family{ nC , nM } is a set of quantum circuits nC such that nC operates

on m>n qubits—n input qubits, m-n ancillary qubits, and there is some measurement nM

22

on the m qubits. The family is uniform if there is a polynomial time |n| -bounded TM

which can output encodings of the gates used by each of its layers for both nC and nM .

A uniform quantum circuit family solves a problem P if when x is an instance of the

problem, then if one takes the quantum circuit ||xC and applies it to
nm

x


0 and then

takes the measurement; the measure output s and x satisfy (x,s)P with probability at

least 3/4. The class BQP is the class of decision problems solvable by uniform quantum

circuit families such that the number m for each n is bounded by a polynomial and the

number of layers in nC is bounded by a polynomial in n.

It is unknown if P=BQP. As factorization can be solved using the Shor’s algorithm

which is built into polynomial sized quantum circuit families, but this algorithm is not

polynomial, and no polynomial TM algorithm for the problem is known, thus it is

suspected that BQPP  . In the study of computation complexity another important

classical complexity class is NP. It consists of those decision problems P that are

verifiable by a polynomially time bounded TM, M, which operates on encodings of

ordered pairs, a polynomial q(n), and we have (x, 1)P iff y , |y| q(|x|) and M on (x,y)

outputs 1.

It is a famous open problem whether P=NP; a $1,000,000 prize is offered by the Clay

Math Institute for its solution. k-SAT is known to be in NP: (φ, 1) k-SAT iff φ has at

least one satisfying assignment υ. In polynomial time given φ and υ, we can check

whether υ satisfies φ by evaluating each clause of φ according to υ.

23

Given two decision problems 1P and 2P , we say 1P polynomial time reduces to 2P if

there is a polynomial time bounded TM which computes a P function f on its inputs such

that (x,1) 1P iff (f(x),1) 2P .

Given a class of decision problems C and a problem P, we say P is complete for C if

P C and given any P’ C we have P’ is polynomial time reducible to P. It is known k-

SAT is NP-complete (Moore & Mertens, 2011).

We complete this section by introducing two more complexity classes, BPP and

QMA. BPP is used to capture problems whose algorithms might involve access to

random coin tosses. A decision problem P is in BPP if there is a TM, M, and a

polynomial q, such that (x,1)P iff for at least ¾ of strings with |y|  q(|x|) and when (x,y)

is operated on by M outputs 1. It is known P BPP BQP, but it is unknown if either

containment is strict. It is also unknown the relationship of either BPP or BQP to NP.

The class QMA is defined to be the class of decision problems P such that there is a

polynomial sized uniform quantum circuit family { nn MC , } and a polynomial q, and we

have (x,1)P iff y |y| q(|x|) and where |||||||| , yxyx MC  outputs 1 with probability at least

¾ on input (x,y).

It is known BQP QMA and NP QMA, but it is not known if either containment

is strict, or whether the given two classes, BQP and NP, are equal. The decision problem,

“Given an encoding of the matrices of a k-local Hamiltonian and an energy value v does

this Hamiltonian have an eigenenergy less than v?” is known to be QMA-complete, even

for k=2 (Gharibian, Huang, Landau & Shin, 2014). A special case of the k-local

Hamiltonian problem is whether a k-QSAT instance has a 0-energy solution. This too is

known to be QMA complete for k 3 (Gharibian, Huang, Landau & Shin, 2014).

24

2.5 Quantum Information Processing

In this section we consider some of the advantages of quantum over classical

computation. The three mechanisms that allow a quantum computer to process

information more efficiently than a classical computer are quantum parallelism,

entanglement and measurement. Quantum parallelism is achieved through a Hadamard

gate, and one way to achieve entanglement is through the CNOT gate. Quantum

parallelism gives you a large set of possibilities and allows simultaneous evaluation of a

function for a large number of inputs, while entanglement deletes most of the possibilities,

so that you are left with only the solutions. Quantum parallelism is mathematically

relevant to our topic because it allows all the values that can be denoted by the q qubits to

become initialized to equal probability, which is the best way to start out our computation.

Everything that comes after this point will alter the probability of all the possible states,

amplifying some and diminishing others, until we arrive at the correct value with the

highest probability. Both quantum parallelism and entanglement are used in the Shor’s

algorithm. Because of quantum parallelism and entanglement, we are able to solve

problems much faster because we can accomplish in one step what we are used to

accomplishing in N steps. Problems that take a million years to solve on a classical

computer only take one hour to solve on a quantum computer.

The other way to generate entanglement other than through the CNOT gate is through

the process called measurement. Let us illustrate through an example. Suppose we want

to do a function evaluation using two registers: Register 1 for x, and Register 2 for f(x).

For example, function f(x) has a period of four, and register 1 has 7 qubits. We start off

with a quantum parallelism or equal superposition of when x=0, 1, 2, 3…127. So that we

25

have the state:  )127(,127...)2(,2)1(,1)0(,0
128

1
ffff  . If we perform a

measurement on the second register and we obtain a single value m, in doing this we have

deleted all options except the ones for x=0,4,8,12,16…124, which are the values of x for

which f(x) = m. Now we have:

 )124(,124...)8(,8)4(,4)0(,0
32

1
ffff  . In the case of quantum

parallelism, we had a tensor product of the seven qubits in the first register, but after

measurement we have deleted all entries that are not multiples of 4. Now entanglement

exists in the first register, that is, the first register can no longer be written as a tensor

product of its constituent single qubits anymore.

A restriction on measurements is that you can measure along only one axis at a time.

The result of the measurement will either be an up along that axis or a down along the

axis. After the measurement the quantum state will lose its probabilistic characteristic

and cannot be used again. On the one hand, this is bad because you might need more

than one copy of the qubit during computation, but on the other hand this is good because

this means measurement is a powerful tool that can be used in information processing, in

which we narrow down the states that will be useful to us for solving our problem. In

measurement, you collapse the value of the wave function of your qubit register to just a

single value. But measurement is a random process, and you never know exactly which

one in a set of values you will collapse your wave function to. So this is done with the

assumption that all values lead to the same result, finding the period of the function is one

example of such applications. The Shor’s algorithm itself is a period finding algorithm,

and it is based on the idea that all measurements lead to the same period and are therefore

26

equally welcomed. After measuring register 1 of the Shor’s algorithm in the final step of

computation, we obtain a random integer multiple of Q/r which means we still have some

data processing to do before we can actually extract r. The quantum computer cannot

operate alone—it needs a classical computer for processing the solutions.

Measurement appears to be one way we can change the state of a qubit other than

passing it through a quantum gate. For a quantum programmer who wants to adjust the

qubits in a quantum computer, however, this may not be a good choice. After all, the

results are random! Although some quantum algorithms, such as the Shor’s algorithm,

use measurement in the middle of a computation, most of the time measurement is

reserved for the end, when the programmer learns the final result of the computation.

2.6 Shor’s Algorithm

To factor a number N we need q qubits; we find the number of qubits in register 1, q,

by finding a q such that 22 22 NN q  . In the Figure 2 below, we have q=5, this means

the number we are factoring is actually only N=5; as you can see this is a trivial example,

but from Figure 2, it is possible to infer what a larger circuit looks like. We find the

number of qubits in register 2 via the equation  )(log 2 Nn  . Thus, in the above

example we have q=5, N=5, n=3. To anyone interested in quantum computing, one of

the most interesting quantum algorithms is the Shor’s algorithm, which can solve

factoring in polynomial time. Many cryptography systems on the web rely on factoring

being hard, so if quantum computers can be realized, this algorithm will impact how

information is secured. The Shor’s Algorithm is an example of a quantum Hamiltonian.

Below is an outline of the Shor’s Algorithm (Wikipedia, 2017):

1. Pick a random number a < N.

27

2. Compute),gcd(Na . This may be done using the Euclidean algorithm.

3. If 1),gcd(Na , then this number is a nontrivial factor of N, so we are done.

4. Otherwise use the period finding subroutine to find the period r of

function Naxf x mod)( . We note that the function)(xf is a periodic function of

period r. Thus, if given 1mod)0(0  Naf , we can deduce 1mod)( Narf r ,

1mod)2(2  Narf r and so on. For any integer multiple of r, this means, if

1mod Na r , then :

1mod)(22/ Na r

0mod]1)[(22/  Nar

0mod]1][1[2/2/  Naa rr

That is, at least one of 12/ ra and 12/ ra is a multiple of N.

5. If r is odd, go back to step 1.

6. If 1mod2/ Nar go back to step 1.

7.),1gcd(2/ Nar  and),1gcd(2/ Na r  are both nontrivial factors of N. We are done.

For example: 15N , 7a , 4r ,)15,17gcd(2  =)15,149gcd() where

3)15,48gcd( and 5)15,50gcd( . We will use this example in our discussion of

the Shor’s Algorithm.

28

Figure 2. Shor’s Circuit

Classical algorithms such as Newton’s method are guaranteed to converge, unlike

quantum algorithms. For the quantum algorithm, there is high chance of the algorithm

converging, but it does not happen for certain. The idea is that you keep amplifying the

probability by repeating the computation, allowing you to finally reach the ground state.

Each time you run the algorithm is independent of the time before, but you have made

adjustments to your boundary condition so that there is a smaller set of solutions for you

to look at, thus enhancing the probability of achieving the correct solution.

The Shor algorithm circuit is used to factor numbers into their prime factorization.

This circuit consists of two registers, the first register is called the period register, and the

second register is called the computational register. To accomplish computation, we need

q qubits in a first register and n qubits in a second register. q qubits can be used to

express numbers in the range 0 to q2 -1. We call the number q2 as Q. To factor N, in the

first register, we need a Q value that is in the range 22 2NQN  . We also need a n

value, for the second register, that is equal to  Nn 2log . The function

Naxf x mod)( is periodic and it is contained in the second register. This means if

1mod)( Narf r then 1mod)( Nakrf kr for k equal to integers. The largest a

29

period r can be is N, since the function M mod N will always equal zero when M=kN,

meaning N is the largest period for any modular function, including the modular

exponentiation function defined here denoted as f(x). Which leads us to why we pick

22 2NQN  --so that we have at least N to 2N periods to work with when we perform

our period finding subroutine; we definitely need more than one period of data for the

purpose of finding the period. In fact, when we apply Shor’s algorithm to encryption-

breaking or factoring problems, this assumption will automatically be satisfied since

Nr  .

Register 1 must have enough qubits q to represent integers as large as Q-1. Register 2

must have enough qubits n to represent integers as large as N-1. Load register 1 with all

zeros, and register 2 with all zeros as well, and we are ready to perform a computation.

The Hadamard gates create equally weighted superpositions of all states represented by

integers from 0 to Q-1.

For our next example with q=7, how the computational register works is as follows.

First it takes the highest digit (the digit representing the 62 digit), and finds the modulus

N of this digit. Let us call this number a1. Then it multiplies the number a1 by the next

highest digit (the digit representing the 52 digit) and finds the modulus N of this number,

Let us call the result a2. Then we multiply a2 by the next highest digit (the digit

representing the 42 digit), and so on until we get to the lowest digit. By the end, it has

calculated the function Naxf x mod)( , where x is a number between 0 and 127, and a

is, for the example here, the number 7. In this particular example a = q but in general,

they can be different.

In our example we have the following function values:

30

1315mod7

415mod7

715mod7

115mod7

3

2

1

0









115mod7

115mod7

115mod7

115mod7

115mod7

64

32

16

8

4











To help illustrate this example, we go through the following procedure when we want

to find the function 15mod715mod7)23(12401623 f :

1315mod2815mod74

415mod71

115mod71

115mod71

115mod7

1

2

4

0

16











As can be seen, when the computational register is measured, the result will be one of

the four values: 7, 4, 13 and 1. So after measurement, the wave function is collapsed to

one of these four options. However, no matter which option results, the period r will be 4.

At this point, the computational register is 




1

0

15mod7,
1 Q

x

xx
Q

. Measuring the

computational register, gives a value 15mod7x =k, and the state is:


 Axkxf

kx
A ,)(

,'
||||

1

31

So all the states yx, that do not have y=k from the superposition will be deleted.

The next part of Shor’s algorithm to understand is the Inverse Quantum Fourier

Transform. Initially, the binary number njjjjj ..321 , where n denotes the lowest bit and

j is represented by the quantum state njj1 . Applying the Hadamard gate, which is

also called the 1R gate, to the first qubit produces the state:

  n

ji
jje n10

2

1
2

.02

2/1



.

After the entire quantum Fourier transform algorithm, we have:

     
2/

....02.02.02

2

10....1010 211

n

jjjijjiji nnnn eee


 

In the above equation, the lowest qubit is the left most qubit. The next term from the

right is the second highest qubit, and so on. The lowest qubit will be passed through a

Hadamard gate. The next will passed through a Hadamard gate and a 2R gate. The next

lowest qubit will be passed through Hadamard, 2R and 4R . The next lowest qubit will be

passed through Hadamard, 2R , 4R and 8R . And so on. All the rotation gates R are

controlled gates.

After the discrete Inverse Quantum Fourier Transform on register 1 has been

computed, if a measurement is performed, the result of this measurement has a very high

probability of being a multiple of Q/r, m = a Q/r, where r is the desired period. The

32

last step is to take the value measurement m, and on a classical computer do some

processing to calculate r based on the knowledge of m and Q. Unfortunately there is no

known way to access all the amplitudes after the Inverse Quantum Fourier Transform

from a quantum computer by measurement, but with one measurement, the correct

solution can be obtained with high probability. The Inverse Quantum Fourier Transform

is the key to a general procedure known as phase estimation, which in turn is the key for

Shor’s algorithm. It is obtained by reversing the circuit for the QFT. This provides a

pretty good estimation of the phase or period r. Even though the wave function has all

the phase for all the qubits and all the probabilities, you cannot extract them from the

computer, because in measurement the quantum state is collapsed. After the Inverse

Quantum Fourier Transform we have:

 







Ax

Qyix
Q

y

eky
QA

m
'

/'2
1

0

,
1

||||

1 

Each term in the summation contains iae 2 where
Q

yx
a

'
 . Q is the period of the

function after the Inverse Quantum Fourier Transform, x’ is the independent variable of

the function and y is the index of summation running from 0 to Q-1. iae 2 is largest when

a is an integer, and a is most likely to be an integer when x’=r. Thus, when we measure

the period register at the end of the Shor’s algorithm, we get a value for y such

that 









r

Q
amy , where a is an integer. This is because by inspection of the

33

probability formula we extract from the coefficient of our final quantum state we see that

that the probability is greatest when yr/Q is an integer a.

2.7 Grover’s Algorithm

To introduce Grover's algorithm, we can describe it as a database search algorithm

that requires a "quantum oracle" operator which can recognize solutions to the problems

and give them a negative sign. Shor’s algorithm provides an example of the power of

quantum computing, but Grover’s Algorithm shows a way in which a quantum computer

can solve problems more quickly than a classical algorithm but less quickly than the

Shor’s algorithm. The Grover’s algorithm can be described as finding a needle in a

haystack in just)(NO queries. The Grover’s algorithm makes use of another example

of a quantum Hamiltonian. Below is an outline of the Grover’s Algorithm (Wikipedia,

2017):

1. Initialize the system to the state 





1

0

1 N

x

x
N

s .

2. Perform the Grover iteration r(N) times, The function r(N) is described below

1. Apply the Oracle operator U .

2. Apply the Diffusion operator sU .

3. Perform the measurement. The measurement result will be eigenvalue  with

probability approaching 1 for N>>1. From  ,  may be obtained.

34

Figure 2. Grover’s Circuit

To describe the algorithm in detail, it is convenient to start by describing two vectors

u and v , which are composed of quantum states within the haystack. u is the equal

superposition of all possible states in the haystack, j ; whereas, v is the equal

superposition of all states in the haystack, except the solution state, i . Then as described

on the previous page, there are two operators that operates on the qubits, the Oracle and

Diffusion operators, or U and sU . The Diffusion operator reflects the quantum state 

about the vector u , while the Oracle operator reflects the quantum state  about the

vector v . Another way to describe what the Oracle operator does is that it multiplies a

constant of -1 to the solution state i which is a component of  , and leaves the other

components of  unaltered. By successively multiplying the quantum state by the

Oracle then Diffusion operators, which is equivalent to rotating about the fixed v then

u for an angle of  , we cause the quantum state  to gradually approach the state

that is perpendicular to v , also known as the needle’s location, i (Moore, Mertens,

2011).

35

At the beginning of the computation, we start with u , which means the

density matrix of the haystack is uu , with 



N

j

ju
1

; at the end of the

computation the haystack is NI /ˆ . What happened in between is the process, called

decoherence, which removed all quantum phase information until only classical

probability remains. In other words, as entanglement increased, all off diagonal elements

of the density matrix became zero, leaving only the diagonal entries nonzero. A simple

measurement of entanglement S is the sum of all the entries in the density matrix. We

saw that at the beginning of the algorithm, S=N, while at the end, S=1; giving us a

change of N-1 in S. It can be derived mathematically that each Oracle operator changes S

by a maximum of 2 N . Thus for very large values of N, the number of steps the

Grover’s algorithm takes to search a data base is approximately 2/Nt  . To make this

value more precise, how many iterations of Oracle and Diffusion operators we need is

calculated via the formula Nt
4


 . In fact, it was shown by in source (Moore,

Mertens, 2011) that no other operator allows us to find the needle more quickly than the

Oracle operator, since the Oracle operator imposes the largest possible phase shift or an

angle of , thus we say: the Grover’s algorithm is optimal.

Grover’s algorithm allows us to find, with high probability, the unique input to a

black box function that produces a particular output value. The Grover’s algorithm we

discussed above solves a problem in N steps whereas a classical algorithm cannot solve

the problem in N steps or fewer. It was shown later (Nielsen & Chuang, 2010) that some

variants of the Grover’s algorithm can search an N-item database at most in 3 N steps.

36

Neither search method will allow quantum computers to solve NP-Complete problems in

polynomial time, but Grover's algorithm does provide a quadratic or cubic speedup. Even

a quadratic speedup is considerable when N is large. If we are given y=f(x), Grover’s

algorithm allows us to calculate x when given y. Grover's algorithm can also be used for

estimating the mean and median of a set of numbers, and for solving the collision

problem. A modification of Grover's algorithm called quantum partial search is one in

which we are not interested in finding the exact address of the target item, instead only

the first few digits of the address are of interest. As mentioned earlier, it is known that

Grover's algorithm is optimal. That is, any algorithm that accesses the database only by

using the operator U must apply U at least as many times as Grover’s Algorithm.

Reading a full database item by item and converting it into such a representation may

take a lot longer than Grover's search. To account for such effects, Grover's algorithm can

be viewed as solving an equation or satisfying a constraint. In such applications, the

oracle is a way to check the constraint and is not related to the search algorithm. This

separation of checking and finding usually prevents algorithmic optimizations, whereas

conventional search algorithms often rely on such optimizations and avoid an exhaustive

search.

2.8 Ion trap

We conclude our preliminary discussion of quantum computation, k-local

Hamiltonians and complexity theory with a brief introduction to research being

conducted to physically implement a quantum computer. Although this topic is not

strictly necessary to understanding the rest of this paper, it is useful to know how the

quantum techniques discussed in this paper may be physically implemented. Right now,

37

there are three or four different types of quantum computers being researched, including

the ion trap, the quantum annealer and the Josephson junction. The most promising

model is the ion trap. To understand ion traps, recall that quantum Hamiltonians are

constructed from physical observables. In the ion trap, we manipulate vibrational and

electronic states with lasers to achieve computation. Electrons exist in orbitals. Orbitals

describe where you are most likely to find an electron with an energy given in the energy

level shown in your atomic energy level diagram. Orbitals have fixed characteristic

energies that can be described abstractly as “energy levels” on an atomic energy level

diagram. When photons of frequency that matches the gap in energy levels shine on the

atom or ion, an electron is promoted into the upper energy level, an orbital with a higher

energy; the electron can then drop back with a non-zero probability to the lower energy

level, emitting fluorescence. These toggling of states are used by an ion trap computer to

perform quantum computations.

The ion trap is currently the best model for quantum computers because of its

negligible loss rate of the ions themselves, and of the coherence of the stored quantum

information. Trapping the ions with electromagnetic forces in a vacuum isolates them

almost perfectly from their environment and thus permits extremely long storage times of

the fragile quantum information. Ion traps are also popular because the states can be

initialized and measured with high accuracy. Lasers are used to initialize, do

computation, and finally measure the states of the qubits. The Hamiltonian for a single

trapped ion has both a simple mechanical oscillator component and an internal energy

component; so that the energy spectrums involve the coupling of photonic and

mechanical effects.

38

Designing the gates for the ion trap involves designing the lasers’ effect on the ions

and finding the perfect combination of mechanical movement and electronic energy

transition of the Hamiltonian, to make the needed rotation of the quantum state in a

certain amount of time. This Hamiltonian is basically what the laser does, in other words

it is our quantum gate, and will “rotate” our qubit by any angle we wish. The quotes on

“rotate” are because, it is not a physical spin that we are rotating, but a conceptual spin

that is represented by two energy levels in an atom.

In the ion trap setting, both initialization and measurement can be implemented with a

very high accuracy. Single and two qubit gates are implemented via one photon or two

photon transitions. In choosing atoms to use for our qubits, the following requirements

need to be met: 1) The electronic level structure should be simple to allow the realization

of a closed two level system without the need for too many lasers. 2) The levels used for

the qubit transition should have a negligible spontaneous decay. 3) The levels should

allow for efficient laser cooling and detection. Most of the experiments have been done

with: Be9+, Ca40+, Ba138+, Mg25+, Hg199+, and Yb171+. We will use the Ca40+ ion

in our discussion.

The ions used in an ion trap are all positive ions, which means they repel one another.

The only way to get them close together so that they are coupled is by freezing. As the

temperature is lowered, the charge due to the nucleus becomes very strong and induces a

dipole on a nearby ion of the same type, so that bounds are formed. For Ca40+, this

freezing point is actually much lower than room temperature. With laser cooling,

temperatures that are far beyond reach of cryostats can be realized. Because the laser

freezes the ions, we end up with what is called the “icy model,” which basically means

39

the ions are coupled, and the coupling coefficient J of the model allows every ion to talk

to every other ion. Through freezing, 30 to 40 qubits can be coupled so as one can do

quantum computation with them. The reason why one currently can only do about 20

qubits for quantum computation rather than 100 is that our ability to make a vacuum is

limited and the trapped ions collide with the molecules of the residue gas, causing the

crystal to melt in about one minute, so the system needs to be re-cooled, which takes

about 1 or 2 minutes to recover. So far the longest they can keep the crystal frozen by

lowering residue gas pressure is for a month.

Besides freezing, another problem encountered is that when the number of ions in the

trap increases, it gets more and more difficult to kick the ion string with a single photon

(or in the Raman approach, two photons). In the mathematical description, the Lamb-

Dick parameter gets smaller and slows down the operations on the sideband, causing

further problems to arise due to the more complex normal mode spectrum, and decreasing

ion-ion spacing with increasing ion number. Mathematically, these restrictions do not

change exponentially with the number of qubits, but they do prohibit scaling to large

numbers of ions for practical reasons. There are at least five ideas regarding how to

overcome these problems: 1) Split up the ion string in small portions and move the ions

around. 2) Couple the ions via cavities and photons. 3) Prepare entanglement via joint

florescence photon detection and use this entanglement as a resource to teleport

information between two traps. 4) Wire up ion traps, and use the image charges induced

by the ion motions to couple the ions in different traps. 5) Use the radial modes of the ion

string. One of the problems in the cavity QED-systems introduced was the unwanted

occurrence of flying qubits. In order to solve this problem there are now attempts to use

40

stored ions in combination with optical cavities. Researchers have now proved that they

can place a single trapped Ca40+ ion at will inside an optical resonator (Haffner, 2008).

An ion trap can be built using a Ca40+ ion in which two such orbitals or energy levels

are used to make the quantum states 0 and 1 . When you shine laser light onto the

Ca40+ ion, the electron starts in two possible energy levels, and only one of these states

glows—this is how we can detect whether the atom is in state 0 or 1 . The upper

energy level that corresponds to the state 1 in the Ca40+ trap is the P(1/2) level; and is

the state that glows. The lower energy level corresponding to the state 0 in the Ca40+

trap is the D(5/2) state, and it is the state that remains dark.

Figure 3. Ion Trap

41

The Ca40+ ion fluoresces when radiated on the S(1/2) to P(1/2) transition only when

it is projected into the P(1/2) state. To avoid pumping into the metatstable D(3/2) level,

one uses additional light on the D(3/2) to P(1/2) transition, so that an electron in D(3/2)

actually ends up in P(1/2). If the ion was projected into the D(5/2) level, it remains dark.

The absence of photon detection events signals projection onto the D(5/2) level.

Knowing the arrival times of the photons allows one to take into account the decay of the

D(5/2) level. In a single-qubit operation, the electric field of the laser builds up a

quadrupole moment that is oscillating in phase at the laser frequencies corresponding to

P(1/2) and D(5/2) to S(1/2) energy gaps (Haeffner, 2008). When all the population is

transferred to the excited D(5/2) level, the phase reference is lost and changing the phase

of the excitation field has no effect.

42

Figure 4. Energy Level Diagram

The lifetime of the metastable D-levels, that is both D(5/2) and D(3/2), are on the

order of a second, thus allowing for long coherence times of the qubit. For sideband

cooling, the ion is irradiated with S(1/2) to D(5/2) transition. The lifetime of the

metastable D(3/2) level is artificially shortened by a laser coupling the D(5/2) to P(3/2)

from 1.2s to 7 ns. In order to suppress heating during the excitation on the D(5/2) to

P(3/2) transition and the subsequent decay process, it is advantageous that the ion string

is already in the Lamb-Dicke limit.

43

Figure 5. Laser-Ion Interaction

   ..exp)(cheaaeieH
tititi tt  



 

Above is the quantum Hamiltonian for a single trapped ion interacting with near resonant

laser light. Below is the Lamb-Dicke approximation for this quantum Hamiltonian.

   titititititi tt eaaeeeieeH
  













 )()()()(

When we use the Lamb-Dicke approximation, we can rewrite the Hamiltonian by

expanding the exponential. The Lamb-Dicke approximation is good for when there is

suppressed heating of the ion crystal.

Three cases of laser detuning delta are of particular interest:

   ii

car eeH 

  :0

   ii

t aeeaiH 





  :

   ii

t aeeaiH 



  :

Using the above Hamiltonian for detuning with =0, we directly find single qubit

operations to be:

44

 )(2/),(  ii eeiR 

 

The angle  specifies the axis of rotation in the equatorial plane, and  is the size of the

rotation (Haeffner, 2008).

Figure 6. Stretch Mode Excitation

The single-qubit gates are implemented by the rotation gates described above. We

now describe three implementations of two-qubit gates that have been realized for the ion

trap. The first of these is the Cirac-Zoller gate, which is a controlled phase flip gate, and

it can be adapted to perform CNOT operations. This two-qubit gate uses the motion of

the ion crystal to couple ions to each other. For N ions, there are 3N motional modes.

Typically only one of these modes is used as the “quantum bus,” and the other modes are

all spectators. The operation of this gate is as follows. First use laser to flip the target

ion based on the information of the bus mode, which acts as the control bit. Finally the

45

bus mode and control ions are reset to their initial value. We now describe the problem

of performing a controlled phase flip gate on a single ion with the motional bus mode as

the control bit. A controlled phase gate flip can be constructed with the help of an

auxiliary atomic level. We first assume one qubit is stored in an ion internal state (0 or 1)

another qubit is stored in the phonon state, or the quantum bus (also 0 or 1). Both qubits

can be in any arbitrary superposition so we have: 11 , 10 , 01 , 00 . A laser is tuned

to the frequency of the sum of the auxiliary and phonon levels, zaux   , to cause the

transition between the auxiliary state 0,2 (out of 0,2 and 1,2)and only the state, 1,1 .

Because of the uniqueness of the tuned frequency, there are no other transitions. The

phase and duration of the pulse is chosen to make a 2 pulse so that the result is a

negative sign multiplied to the 11 state. In order to decode both qubits in ions, a swap

gate is required which maps an internal qubit state to a phonon qubit state. This can be

done by tuning the laser to the frequency z 0 , and arranging the phase and pulse

duration such that a  -pulse is established.

Another two-qubit gate that has been implemented is the geometric phase gate. Two

laser beams with different frequencies are used. This difference in frequency is a

necessary design parameter for our purpose. During the gate operation, both ions are

illuminated simultaneously. Also the ion-ion distance is adjusted to a multiple of optical

lattice constant. A force oscillating with the frequency difference between the two laser

beams act on each ion. If the two ions are in different electronic states, the wave function

picks up a phase— it might acquire a phase of  /2 in cases where the two ions are in

different electronic states, or no phase in case where the ions are in the same electronic

46

state. This modulation allows us to do interesting things like multiplying a sinusoidal

phase to the middle two terms of our two-qubit quantum state. Then we can use a swap

gate to further process our information. The magnitude of the phase in our phase gate

depends on light intensity. Finally, due to detuning, the ion string returns to the original

motional state after a period of time.

The last two-qubit gate we will describe is the Molmer-Sorensen gate, which is a gate

that is somewhat related to the geometric phase gate. The main idea is to drive the

collective spin flips of the involved ions using two laser fields, one tuned to the red

sideband, the other tuned to the blue sideband. We drive the two-photon transitions on

neengg ,,  as well as negnge ,,  ; stopping halfway entangles the two ions in

the states  neeingg ,,
2

1
 or  neginge ,,

2

1
 . As a last remark, this gate is

universal, but it is very difficult to keep the lasers interferometrically stable for use. A

detailed discussion of the Ca40+ ion trap is available in (Haeffner, 2008). Compared to

single-qubit gates, 2-qubit gates take longer runtime and have higher error rates.

Single-qubit operations are achieved through Rabi oscillations. Two-qubit operations

are achieved through Cirac-Zoller gates, geometric phase gates and Molmer-Sorensen

gates. Qubit measurement is achieved through individual ion fluorescence. We use

flying qubits to achieve two-qubit operations. Converting qubits to flying qubits is done

through the CQED bad cavity limit. Faithfully transmitting desired flying qubits is

achieved through coupling pulse sequences (Haeffner, 2008).

47

Figure 7. Experiment Set Up

We conclude this section by briefly mentioning that to make larger scale quantum

circuits possible, we need to exploit quantum error correction protocol. The largest

obstacle to perform a successful quantum error correction protocol seems to be the

limited fidelity of the operations. In order to achieve universal quantum computing, the

algorithms have to be implemented in a fault-tolerant way. It is commonly accepted that

this requires quantum error correction. One of the most important goals currently is to

implement quantum error correction repeatedly with high fidelity to stall decoherence

and to correct for errors induced by the gate operations. The largest obstacle to perform a

successful quantum error correction seems to be the limited fidelity of the operations

(Haeffner 2008). In particular, the two qubit gate operations seem to be the main limiting

factor. Currently, the read-out of a single qubit can be performed with a fidelity of up to

48

0.9999. We will skip further discussion of the fault-tolerant layer, as it is not within the

scope of this paper. The different stages of ion trap research are structured so as to best

assist with the overall optimization while taking into account numerous optimization

criteria, including minimizing the number of expensive two-qubit gates, minimizing the

number of single qubit gates, optimizing the runtime, minimizing the overall circuit error,

and optimizing the classical control sequences. To map a quantum algorithm into an

optimized physical-level experiment, we break down all the gates into two qubit

controlled rotations of Pauli and other single-qubit gates. Then we map logical qubits

into physical qubits. Next we perform further balancing of runtime errors versus other

errors until the desired balance is found. So far, the Grover’s algorithm, Shor’s algorithm

and teleportation have been successfully demonstrated on the ion trap.

49

Figure 8. Laboratory

50

Chapter 3

Implementation of Quantum Simulators

To get an understanding of quantum computation in general and to test the

capabilities of current quantum simulation tools, we implemented Shor’s and Grover’s

algorithm using a popular quantum simulator, jQuantum. We will describe these

simulator experiments and how they influenced our decisions regarding how to

implement our own k-QSAT solver in Java. We will then describe our implementation of

the SolveQ, a 2-QSAT algorithm. Finally, we describe our implementation of a general

“brute force” k-QSAT solver.

3.1 jQuantum

jQuantum is a quantum simulator developed by de Vries (de Veries, 2004). It is

written in Java using the Java Swing library. On a small scale, quantum simulators allow

us to simulate the behavior of a quantum computer on a classical computer. For our own

research, we built the Shor’s algorithm and Grover’s algorithms using this software to

learn about current quantum simulators before we developed our own algorithm for

solving k-local Hamiltonian problems. We built two versions of the Shor’s algorithm for

factoring, with N=15 and a=7, and with N=21 and a=5, where N is the number that we

want to factor and a is an integer that is used, and correctly found the corresponding

periods. For the Grover’s algorithm, we were able to view how the algorithm searches

the database for a given value and gradually collapsed to the correct result. We saw that

after the first iteration, one state is already more preferred than all the rest; the rest of the

iterations amplify the probability of getting this state, until at the end of the cycles we

will have found the desired output for certain.

51

Figure 10. jQuantum Screen

How jQuantum affected us in our writing of our own quantum simulators is that we

observed that jQuantum source code keeps track of its quantum states in two 1-D arrays

of size 2n. The first array is for the real coefficients, and the second one is for the

imaginary coefficients. In the simulator GUI, the ratios of the imaginary components to

the real components of the coefficients are depicted using bright colors, in a

representation in which each quantum state is represented by a colored square, as you can

see, at the lower portion of the jQuantum screen in Figure 10. In our own quantum

simulators we did not use two arrays to keep track of the real and imaginary coefficients

like in jQuantum. However, we did use one array to keep track of the probabilities for

each of those states. In doing this, we have applied the idea that each quantum state is

associated with a number containing information about that state.

jQuantum has many limitations. It does not contain enough rotation gates to build an

Inverse Quantum Fourier Transform, which greatly limits its potential for doing real

work. Also the fact that jQuantum can handle no more than 15 qubits total limits the

kinds of problems it can be used for. Still, the use of colors to illustrate the concept of

52

quantum information processing was laudable. Despite its merits, jQuantum cannot be

used to conduct our k-local Hamiltonian experiments and after failing to find such a

quantum simulator, we decided to write our own quantum simulators.

3.2 SolveQ

The first quantum simulator we wrote was the algorithm SolveQ written by Bravyi.

The SolveQ algorithm (Beaudrap & Gharibian, 2015) is a quantum algorithm for solving

2-QSAT problems. We implemented this algorithm in Java in about 800 lines of code.

We tested how well this 2-QSAT algorithm solves 2-SAT problems, especially compared

to the brute force classical algorithms of solving k-SAT problems. Since the quantum

algorithm also has to work for non-classical inputs, it solves problems by a much more

complicated method than the classical algorithm to find just a single solution let alone all

of the solutions like in the classical algorithm. For the rest of our discussion, we shall

call the constraint matrix, the matrix . Each constraint is represented by a matrix like

the following: 1100  

A 2-SAT clause or a constraint containing two variables is described using the

following definitions:

For the OR clause (21 xx ), the  is 00 

For the OR clause (21 xx ), the  is 01 

For the OR clause (21 xx ), the  is 10 

For the OR clause (21 xx ), the  is 11 

53

The solutions to one clause include all combinations of 1 and 0 on the chosen

variables that are not exactly the same as the ones in  . Take an example, for a

constraint on particles 3 and 5, if we have  = 01  , then we can get a solution for

particles 1 through 7 as a 7 digit binary strings, as long as particle 3 is not 1 and particle 5

is not 0. In other words, the solutions to the single clause (53 xx ), can be 01, 00, 11,

but not 10. Solutions 01, 11, and 00 are called null vectors of the forbidden matrix or

matrix- , while 10 is called the forbidden vector. Similarly, to find the solution of

(53 xx ))(53 xx  , you exclude the forbidden vectors 00 and 01, and are left with 10

and 11. As you can see, the more clauses there are, the fewer solutions, which is why a

clause is also often referred to as a “constraint.” It should be noted that if all four of the

clauses with  = {00, 01, 10, 11} are in the problem, then the rank of the matrix will

be four and there will be no solutions to the entire problem, since there is no null space to

the matrix. In other words, the existence of solutions or null vectors depends on the

existence of fewer than the maximum number of constraints. Furthermore, the solutions

to two clauses, like (53 xx ))(53 xx  , must satisfy both clauses simultaneously. By

the same logic if there are 15 clauses, the solution set is the intersection of the solution

sets of all 15 clauses when considered independently. Solutions that satisfy all 15 clauses

simultaneously satisfy the sum of the fifteen  matrices. We shall make use of this fact

later; this method of directly looking for all the null vectors is called the brute force way

of solving a problem. But, as one can see, the algorithm we are currently talking about,

SolveQ uses a more elegant method of figuring out the solutions, it uses a “chain

reaction” built from “transfer matrices.” The drawback of this method is that it figures

54

out only one solution and not all possible solutions, and like most other quantum

algorithms, the probability of getting the correct answer is greater than ½ but less than

one.

For 2-SAT problems, each clause or constraint operates on two variables, and each

variable can be either negated or not negated. If the variable is negated, it is represented

by 1 , and if not, it is represented by 0 in the vector  . The solutions to the clause lie

in the null space of the matrix , which is found by analyzing the matrix =  .

Now that we have the vector  , we can find the transfer matrix T based off of this

vector, which is given by the equation from the paper (Beaudrap & Gharibian, 2015), and

which we will define in a moment. There are actually two such transfer matrices for each

matrix described by the vector  , one to represent the edge that goes from i to j, and the

other from j to i. We use whichever one is necessary to make our chain reaction. A

chain reaction is a sequence of matrix multiplications of these transfer matrices, which

when applied to our starting variable state i allows us to obtain successive solutions j.

This process only works if there are no “conflicts” in the chain reaction, which has two

indications: First, the same variable or qubit cannot take on two different values. Second,

after the chain of multiplication with the transfer matrices, the qubit cannot be the zero

vector 








0

0
, which would indicate the chain reaction has ended.

The transfer matrix is used for traversing a chain reaction, starting with some

arbitrary variable that has either 0 or 1 as its initial state. To determine whether the

initial state is 0 or 1 , we do the following: If the  component for variable i is 0 ,

55

then we use the state 0 , and if the  component for variable i is 1 , we use the state

1 as our input going from i to j. Given below is how to obtain the transfer matrix based

on the vector  .

As you will see later, our implementation of this algorithm SolveQ differs from our

implementation of the brute force k-QSAT solvers in labeling conventions. In SolveQ

the left ket is the first particle, or particle i, while for the k-QSAT solver, the leftmost ket

is the last or nth particle. This is just a note about how we labeled the parameters. You

can label them some other way, but you will have to stay consistent to get the correct

answer. The transfer matrices derived from the phi vector, ji  , are listed

below, and allow one to fix variable j given variable i as input.

For  is 00  ijT 01 , jiT 01

For  is 01  , ijT 11 , jiT 00

For  is 10  , ijT 00 , jiT 11

For  is 11  , ijT 10 , jiT 10

In the transfer matrices above, for ijT , you operate on state of i to get output state of j.

For the  , the left element is i and the right element is j. Using these transfer matrices,

you can either traverse forward from 2 to 3, or you can traverse backwards from 3 to 2

using the other transfer matrix. If you successfully found a chain reaction, or CR, then

you have found the solutions to the variables contained in the CR. Sometimes it takes

56

more than one CR to find the entire solution. To know when the CR terminates, you

apply the transfer matrix to your variable state (0 or 1), if you get the zero vector 








0

0
,

then the CR has terminated, and if you do not have the entire solution, you need to start a

new CR.

There are two types of CRs. The first is the normal kind with no repeating vertex.

The second has a repeating vertex, and it is called a discretizing cycle. As mentioned

earlier, even though you traverse a vertex twice, you are supposed to get the same state

both times for a single particle. If this is not the case, then the CR is invalid and it is said

to have a “conflict” (Moore & Mertens, 2011). When you detect such a conflict, you

know that there is no solution to the entire problem. Allow me to illustrate how the

SolveQ solves a specific problem. For the problem:

)()()()()(6554433221 xxxxxxxxxx  , we have the “chain reaction”

built from multiplication of 5 of these transfer matrices, 00 , since there are 5 clauses in

the problem. In this example, the solutions are all 0 or false for all of the six variables.

This algorithm is really nice and easy to play with on piece of scratch paper; you can

find solutions easily just by avoiding conflicts in your CR. However, it is very difficult

and involves knowledge of tree traversals to program. Thus we traversed the list of

constraints destructively as we fixed our solutions, by removing each constraint after we

are done using it. We used multiple copies of the list of constraints because more than

one was needed. The CR example given at the end of the previous paragraph only

uses ijT and never jiT , where i is the first variable in your OR clause, and j is the second

variable in your OR clause. This is only a special case, most CRs use both ijT and jiT .

57

The preliminaries that happen before the body of the algorithm are also easy to

understand but hard to program, in which you make sure rank-4 constraints prints

“Unsolvable,” and shuts down the program, and then you have to go through the long and

arduous task of processing the rank-2 and 3 constraints; only rank-1 constraints do not

need processing, you will take care of them in the last step of the algorithm that happens

after the preliminaries.

So far, we have only considered how this 2-QSAT algorithm solve 2-SAT problems,

but we have not considered how it solves 2-QSAT problems. To do this we basically add

another term to the  vectors as well as to the transfer matrices as shown below. This

extra term allows some unsolvable 2-SAT problems to become solvable, but you have to

set a threshold, and so long as your current product is greater than your threshold, the

solution you got is still valid, otherwise an “Unsolvable” message will be printed just

like in the earlier 2-SAT version of the program.

For  = 1100   we have, ijT 0110   , jiT 0110  

For  = 1001   we have, ijT 1100   , jiT 0011  

For  = 0110   we have, ijT 0011   , jiT 1100  

For  = 0011   we have, ijT 1001   , jiT 1001  

On classical inputs, this algorithm is very poor in quality. First of all, the transfer

matrices only give you one assignment out of every three possible assignments, so it

ignores a large part of the possible solution set. As a result, many of the problems that

58

are solvable will be labeled as unsolvable by the algorithm even if you performed the

correct steps. There are also many extraneous rules you have to follow to get a valid

assignment. For example, the order you add your constraints to the constraints list

influences what solutions you will get. So to properly use our program for your purpose,

you have to set fixed rules regarding the order in which the constraints must be added to

the list based on rank of constraint or the probabilities in your OR clauses. Also our

convention was that the first variable number must be less than the second variable

number, so that constraints on the same two variables can be easily found.

3.3 The Random Generator

The purpose of this experiment section is actually not just to solve 2-SAT or 3-SAT

problems, but to see how difficult it is to simulate quantum algorithms on a classical

computer; and to gauge the difference between a classical and a quantum algorithm. We

want to explore the boundary between problems that are solvable and non-solvable using

a classical algorithm and compare it with the boundary between solvable and non-

solvable using a quantum algorithm. Our experiments involve running our k-QSAT

solvers on random problem instances and observing the number of problems that were

satisfiable; again, this number is dynamic depending on the number of clauses in the

problem. We now describe how we generated random problem instances. In both the

quantum and classical cases we know that as the number of clauses to number of

variables ratio increases, the probability that a random instance will have a satisfying

assignment decreases from 1 to 0. For the classical case, this ratio is approximately

between 3.5 and 4.5. In order to conduct our experiments we did 50 trials and recorded

the number of satisfied trials for a given number of clauses. We wanted to conduct our

59

experiment so that we could better understand this transition zone or “freezing point”

zone.

To write the random instance generator, first we need a clause-size to determine how

many variables we are acting on in one clause. Then we need to define the total number

of variables in the problem, this number needs to be greater than or equal to the clause-

size. We also need the number of clauses to determine how many constraints there are in

each problem. Lastly, we need the number of instances, which determines how many

problems we want in our research, so that we get a more statistically average view using

an average problem. Once we know we need these four numbers, we generate all other

numbers randomly using Java’s Math.random() function.

3.4 What is a k-SAT problem?

A k-SAT problem consists of a set of clauses where each clause has k Boolean

variables or their negations joined by disjunction signs. The clauses are then further

joined by conjunction signs. The problem is an AND clause of these OR clauses. In the

quantum way of solving problems, each OR clause is represented by a tensor product of

outer products. For k-SAT, there are a maximum of k such outer products joined in

tensor product. The AND symbol joining the clauses means simultaneously satisfaction

of the individual OR clauses is required.

Any k-SAT formula can be converted to a 3-SAT formula that is satisfiable only if

the original formula is. If a clause has just one or two variables, we can add dummy

variables, padding it to a set of 3-variable clauses. A k-SAT clause becomes k-2, 3-SAT

clauses linked together by k-3 dummy variables z. The following is an example of how a

60

5-SAT clause can be reduced to 3-SAT form:

)()()()(54223112154321 xxzxxzzxxxxxxx 

This is the argument that all k-SAT problems can be efficiently reduced to 3-SAT

problems.

3.5 Random k-SAT solver: Version 1

(Classical Brute Force Solver, Repeating Variables)

The second program we implemented was a brute force solver for classical k-SAT

problems with n=7 variables. Below is the pseudo-code for what was implemented.

For each problem instance: (For example, each problem contains 15 clauses)

I. Make each clause:

1. Generate k non-repeating particles numbers for each k-SAT clause.

2. For a 3-SAT clause, generate an integer 0-7 that when converted to

binary represent the forbidden vector, phi or  .

II. Sort each clause by ascending variable numbers, the matching bits in

the OR clause are attached to the variable numbers and must be swapped

as well during the sort so that it remains matched up with particle numbers.

Example: 2,1,3 is sorted to 1,2,3. If the phi vector was originally 011, it is

now 101.

III. Generate binary strings that represent the integers 0-127, and add them

to a solutions list.

IV. Take one clause. Cycle through the recent solutions list to find the

elements that needs to be deleted. The elements that needs to be deleted

are the n-digit strings that match the k-digit forbidden vector at all the k

given particle number locations.

V. Repeat IV for all the rest of the clauses in a problem.

 END

Allow us to illustrate the example when each constraint operates on k=3 variables. A

fourth parameter is needed that is a decimal number equivalent of one of the eight binary

strings, 000, 001, 010, 011, 100, 101, 110, 111. Thus, the fourth parameter is an integer

from 0 to7. This parameter together with the k variables make up each constraint or

clause. Again, like mentioned in the SolveQ section, if the variable is negated, it is

61

represented by 1 and if not, it is represented by 0. So, for example, the clause (1,2,3,7) is

a constraint operating on variables 1, 2, and 3, and the phi vector is represented by 111 or

1  1  1 . Again, our convention was the leftmost ket corresponds to variable 3.

First, we generated all the possible assignments for a 7-variable problem. How we

did this was by taking all the integers counting from 0 to 72 -1 , and converting them each

to a seven digit binary strings. Because it is a 3-SAT problem, each constraint operates

on 3 of the 7 variables. Furthermore, the 3-SAT clauses are OR clauses, so for the

example given at the end of the last paragraph, 000, 001, or 110, matched to (1, 2, 3), so

all would solve the clause perfectly. But 111 matches to (1, 2, 3) is definitely wrong,

because 1  1  1 is a forbidden vector and cannot be a null vector. Notice that we

are given a 7-variable problem and we only consider 3-variable clauses, the rest of the

variables—4 of them— can take on either 0 or 1, and would not influence decision of

whether that particular string is a solution.

Continuing with the same example, we next eliminate the wrong solutions from the

original set containing 0 to 127  in binary. We cannot have 7 variable combinations,

where variable 1 is 1, variable 2 is 1, and variable 3 is 1, simultaneously. That is why we

need to remove these possibilities from our solution set. After we successfully find a

solution to our problem, we can interpret the 0 and 1 to mean the Booleans: false and true.

After processing one clause we repeat what we just did for the other 14 clauses, or

however many we had in our problem. A solution to our problem must satisfy all 15

clauses at once. It is obvious that some clauses are tautologies and do not constrain the

assignments of the variables, which is why we wrote Version 1 so as to not allow

repeating particles, to prevent ever generating these tautologies in the first place. Also

62

because of the nature of random number generation in Java, it was much too easy to get

problem instances with only one or two solution strings out of the original 128 possible

strings. To ignore these cases, we set 6 or less solution strings as being equal to no

solution strings. Doing this allowed us to get a freezing point ratio within the expected

range based on article (Bravyi, Moore & Russel, 2014).

3.6 Random k-QSAT Solver: Version 2

 ( ArrayList and 2number of variables -1 null vectors)

For each problem: (For example, each problem contains 15 clauses)

I. Make each clause:

1. Generate k non-repeating particles numbers for each k-QSAT

clause.

2. Generate k2 coefficients for a k-QSAT clause. For 3-QSAT,

generate 8 coefficients.

3. Normalize the k-QSAT clause, so that the sum of the coefficients

adds up to 1.

4. Make forbidden matrix:

1. Generate the k-bit and n-k bit strings. Insert the k bits into

the n-k bits to get a row in the forbidden matrix after. First

sort the k variables and bits by ascending variable number

which is necessary for inserting correctly. After this

insertion, we have a row. Coefficients go along with each

row. This is accomplished through an inner class: State,

which is a package of a binary string and a coefficient.

2. Sort the States by converting each n-bit String to its

decimal number. This is the number of leading zeros in

each row of the forbidden matrix.

3. The resulting forbidden matrix should be a diagonal matrix.

II. Add up all the forbidden matrices in one problem

III. Generate 12 n d null vectors then orthogonalize and normalize them.

IV. Find Solution and verify Solution.

1. Find the solution by taking the term in the sum of null vectors with

largest probability.

2. Find the term in the k2 term clause with largest probability and add

to a list.

3. Verify that the solution satisfy each of the k-SAT clause in the list.

Each clause is a forbidden vector; the solution mustn’t match

exactly with the forbidden vector.

END

63

We now look at different variants of the k-QSAT solver. Version 2 is our first

quantum algorithm for solving k-QSAT problems. It was not used for our freezing point

experiment because it used a faulty way of quantum information processing but it had

some usable sections of code that were reused later, in Version 5. Unlike in the classical

way of solving problems where the fourth constraint parameter is just one term such as

010, the quantum constraint is composed of all 2k (for 3-SAT it is 8) such terms with a

complex coefficient multiplied to each term. For the two-particle, or 2-SAT case, we

have  = a 0000  +b 1100  +c 0011  +d 1111  (taking the

outer product of phi with itself will give us the constraint matrix-). Also note that the

vector (a,b,c,d) must be normalized by a+b+c+d=1. This is one constraint on the two

particles. To get another constraint on these same two particles, we have to get another

such  like this one and add the two matrices. We must be careful that if the two

constraints are not operating on the same list of particles, we cannot add them. Because

we cannot add together clauses that operate on different particles, we first have to convert

each k-SAT constraint to a n-variable matrix- , so that they can be added. Version 2

does this through the cut and paste of strings, and then sorting to get the net seven-

particle matrix- at the end. When we calculate the solutions, we have to find the

vectors that are in the null space of all of these constraints. The coefficients a, b, c, d are

decimals that are randomly generated. The solution to the problem lies in the null space

of the net matrix. For 15 different constraints, the solutions need to lie in the null

space of all 15 constraints simultaneously. To make sure of this, we added up all 15 n-

particle matrices together, then we found the null space of the sum of all 15 of them.

64

Let us next discuss how this algorithm is special. Basically, when you measure, each

of the 127 null vectors has same chance of being measured. Each null vector is further

composed of 128 variable assignments. The 127 null vectors are found as follows:

Each of the single assignment states has a coefficient that represents its probability.

Using nested for-loops, we cycle through the null vector stack, and through each null

vector single assignment state, to find the single assignment state with the net largest

probability, after we summed together the probabilities of the 127 null vectors. We took

our solutions to be the ones with variable assignments out of 128 possible variable

assignments with the largest coefficient after summing the 127 normalized null vectors.

Next, we retrieved our clauses list. Each clause used to be a superposition of 8 (3-SAT)

possible forbidden vectors; now we reduce it to just one possibility—the one with the

largest probability. Finally, we checked if our solution satisfies all the single-term

clauses. And it is rarely ever satisfied. So we never got this algorithm, Version 2, to

work, because our solution never satisfies the all the list of single-term clauses. From our

)..0,0,0,0,(

.............

............

............

)0...,.........,0,0,0,0,(

)0..0,0,0,0,(

)0...0,0,,0,0(

)0...0,0,0,,0,(

)0..0,0,0,0,,(

)...,,,,,(

0127127

055

044

0,33

022

011

127543210

aan

aan

aan

aan

aan

aan

aaaaaaa















65

mistake we have learned that the important lesson that the solution does not have to

satisfy a k-SAT problem, to satisfy a k-QSAT problem.

3.7 Random k-QSAT Solver: Version 3

 (Permutator Matrix P, Threshold, Non-repeating variables)

For each problem: (For example, each problem contains 15 clauses)

I. Make each clause:

1. Generate k non-repeating particles numbers for each k-QSAT

clause.

2. Generate coefficients for a k-QSAT clause. For 3-QSAT, generate

8 coefficients, and add them to a coefficients list.

3. Normalize the k-QSAT clause, so that the sum of the coefficients

adds up to 1.

4. Make forbidden matrix:

a. Make a 1-D array, with the first k terms containing the

particle numbers for that clause, and the rest of n-k terms

containing the remaining particle numbers.

b. Use this 1-D array to make the permutator matrix, and add

to permutator list.

c. Use this 1-D array and the k coefficients list to make each

constraint matrix, and add to constraints list.

II. Use a loop to cycle through the permutator list and the constraints list,

and find the matrix product 1PAP , where P is a permutator and A is a

constraint matrix.

III. Sum together all the constraint matrices in one problem

IV. Do Gaussian elimination on this sum, to get the net forbidden matrix.

V. Look on the diagonal of the net forbidden matrix to check for values

below 0.0055, the threshold for null vector.

END

First we generate three random particle numbers, and we use these three integers to

make the permutator matrix P. The matrix P is a permutation matrix that permutes the

rows of the identity matrix, the size of which is 2n. Next we use the three particle

numbers for 3-SAT clause to construct the forbidden matrix. For a clause of size k, we

generate 2k random decimals for the probability of each term in the forbidden matrix. We

normalize the 2k numbers to total length of one; then we use these values to generate the

66

forbidden matrix. The forbidden matrix is a tensor product of the particle numbers we

are acting on with the particles we are leaving alone. For the particles we are leaving

alone, we simply use the two-by-two identity matrix. Next, we multiply them together: P

times the forbidden matrix times the inverse of P. So far what we have described is one

k-QSAT clause. If a single problem has more than one clause, we simply add together

each element of the matrices for all the clauses, we find 1 ii

i

i PAP . Next we do a

Gaussian elimination routine on this matrix, the net forbidden matrix to get it into

diagonal form. In the last step we see if there are any null vectors by checking the

diagonal of the matrix for numbers equal to 0 or below a threshold of say 0.0055. If there

are any such numbers, then we have successfully solved the problem, but if there are not,

the problem is unsolvable.

3.8 Random k-QSAT Solver: Version 4 (Permutator Matrix P, Fewer than k2 terms,

Non-repeating variables)

For each problem: (For example each problem contains 15 clauses)

I. Make each clause:

1. Generate k non-repeating particles numbers for each k-QSAT clause.

2. Generate coefficients for a k-QSAT clause. For 3-QSAT, generate 8

coefficients. Do a coin flipping using Math.random() to determine that

each of the 8 coefficients is either 0 or a decimal.

3. Normalize the k-QSAT clause, so that the sum of the coefficients

adds up to 1.

4. Make forbidden matrix for each clause, the way it was done in

Version 3.

II. Add up all the forbidden matrices in one problem, to get the net

forbidden matrix.

III. Do Gaussain elimination on the net forbidden matrix.

IV. Find solutions by looking for 0 on the diagonal of the net forbidden

matrix.

END

Why we wrote this version is that we realized that Version 3 will never have true null

vectors. Version 3 can never have true null vectors, since it is mathematically predictable

67

as having a full diagonal. To fix this problem, we wrote Version 4 so that the only

difference between Version 4 and Version 3 is that Version 4 uses single clauses with a

variable number of terms with non-zero coefficients— ranging anywhere between 0 and

8 inclusive for a 3-QSAT case, while for Version 3 we used a linear superposition of all 8

terms with all non-zero probabilities. In other words, Version 3 uses a threshold; whereas,

Version 4 only uses true null vectors with 0-energy.

3.9 Random k-QSAT Solver: Version 5 (ArrayList, Fewer than k2 terms, Non-

repeating variables)

For each problem: (For example, each problem contains 15 clauses)

I. Make each clause:

1. Generate k non-repeating particles numbers for each k-

QSAT clause.

2. Generate coefficients for a k-QSAT clause. For 3-

QSAT, generate 8 coefficients. The coefficients are

either 0 or a decimal.

3. Normalize the k-QSAT clause, so that the sum of the

coefficients adds up to 1.

4. Make forbidden matrix for each clause, the way it was

done in Version 2, using the cut and paste of strings.

II. Add up all the forbidden matrices in one problem, to get the net

forbidden matrix.

III. Find solutions by looking for 0 on the diagonal of the net forbidden

matrix.

END

Although Version 2 did not work, the cut and paste of strings idea can be readapted to

a working version. The 127 null vectors idea is discarded because we do not need null

vectors with more than one term out of the 128 single assignment states; we want a single

assignment written in the 7 qubits that satisfy our 3-SAT problem, not a superposition of

more than one assignment. However using the cut-and-paste of strings to build the

forbidden matrix is still a valid idea. Version 4 and Version 5 works approximately the

same because both involve forbidden matrices built by zeroing some of the total of 2k

68

terms. The only difference between Version 4 and Version 5, is that Version 5 uses a

cut-and-paste of strings technique; whereas Version 4 uses 2-D arrays and permutators.

The cut-and-paste of strings is a method for converting a 3-SAT clause, to a 7-particle

forbidden matrix; we take the 3 bits in the binary string representing the phi vector, for

example 011, and insert these 3 bits into the other 4 bits at the correct locations,

determined by the k particle numbers that we have set for that 3-SAT clause.

3.10 Random k-QSAT Solver: Version 6 and 7 (Permutator Matrix P, Threshold,

Repeating variables)

For each problem: (For example, each problem contains 15 clauses)

I. Make each clause:

1. Generate k particles numbers for each k-QSAT clause that allows

for repeating particles.

2. Find the number of unique elements, u, in a k-QSAT clause, and

generate u2 coefficients.

3. Normalize the k-QSAT clause, so that the sum of the coefficients

adds up to 1.

4. Make forbidden matrix:

1. Make a 1-D array, with the first k terms containing the

particle numbers for that clause, and the rest of n-k terms

containing the remaining particle numbers.

2. Use this 1-D array to make the permutator matrix, and add to

permutator list.

3. Use this 1-D array and the k coefficients list to make each

constraint matrix, and add to constraints list.

II. Use a loop to cycle through the permutator list and the constraints list,

and find the matrix product 1PAP , where P is a permutator and A is the

constraint matrix.

III. Sum together all the constraint matrices in one problem

IV. Do Gaussian elimination on this sum, to get the net forbidden matrix.

V. Look on the diagonal of the net forbidden matrix to check for values

below 0.0055, the threshold for null vector.

 END

Before this version of the k-QSAT solver, the best version was Version 3. Originally

the idea of Version 6 was motivated by the fact that Version 3 was not working—it had

69

no freezing point because it was coded wrong. But we did not find this out until much

later; at first we thought that Version 3 did not work, because it did not use repeating

variables. So we made the appropriate changes to Version 3 to make a new version,

Version 6, and concluded that Version 6 was best for solving k-QSAT problems. Then

we went through a brief phase of doubt and tried to write a Version 7, because Version 6

does not factor in "empty" clauses that do not put any new constraints on a repeated

variable because it is of the form:)(11  xx . Later we abandoned this idea because

these tautologies lead to inflated number of clauses when we calculate the freezing point

ratio and should therefore be omitted. So for a long time the “best” version was Version

6. In the end, Version 3 and Version 6 work approximately the same, as we expected,

because the matrix with or without repeating particle should have a full diagonal and

therefore operates about equally well.

3.11 The Antiferromagnetic Heisenberg Model and the Ising Model

The matrices used to solve k-SAT problems are only one type of k-Local

Hamiltonians, there are other existing Hamiltonians such as the Ising Model and the

Aniferromagnetic Heisenberg Model, shown below.

Anitferromagnetic Heisenberg Model:   
ji

z

j

z

i

y

j

y

i

x

j

x

iH
,



Ising Model:    
i

x

i

ji

z

j

z

i gJH 
,

To understand where the Ising Model comes from, consider how a block of iron put

in a magnetic field becomes a magnet; it can even magnetize itself spontaneously without

an external magnetic field. However, memory of the magnetic field decreases as its

temperature increases, and at the critical temperature it loses its memory completely. The

70

model for this type of magnetism is the Ising Model, in which neighboring spins interact.

The first term in the Ising Model is called the “energy” term. If the J constant is greater

than 0, the model is ferromagnetic and the spins of the particles are in the same direction.

If the J constant is less than 0, the model is antiferromagnetic and the spins of the particle

tend to align in opposite directions. If the J constant is 0, the spins are randomly up or

down. The second term in the Ising Model is the magnetization term, and it is affected

by temperature change. At low temperature, energy tends to be minimized, and

magnetization is high. At high temperature, entropy tends to be maximized, so spins tend

to disalign and the magnetization tends to be low. The critical temperature for

determining whether the temperature is high or low is T=2.269 J/k-boltzman. If g is

negative, spin aligns in positive direction. If g is positive, spin align in negative direction.

If g is 0, there is no external influence on the spin site. For 9 spin sites, the ground state

is J
N

E
)9/12(0  . When there are a very large number for spin sites, this value gets

closer and closer to J
N

E
20  . The next step in exploring with these models is to wrap

the sheet of spin sites into exotic shapes such as tubes, toruses and twisted toruses. We

actually attempted to program a nine spin-site tube, torus and twisted torus, but

unfortunately, when we ran the program the computer crashed, due to large matrix size.

A maximum of 6 particles in the tube configuration was workable.

As the last part of research, we experimented with these models in a random way so

we get a more statistically averaged view of how they behave. First we built the

Hamiltonian matrices for the models. We do this according to the following plan:

1. Specify how many particles are there in one interaction.

71

2. Specify how many neighbors the central atom has.

3. Specify how many interactions there are in one problem.

4. For each interaction, generate random values for the neighbors that are currently

interacting with the central atom.

5. Build the Hamiltonian for the interaction using tensor product.

The Hamiltonian we get is for one clause or one interaction. If we have more than

one interaction, we simply sum up the matrices for all the interactions. Next we see if

there are any null vectors. It turns out that there are not. So next we want to see if there

are any low energy solutions or solutions with small eigenvalues. Such eigenvalues need

to be below a certain threshold. One way to do this is checking a determinant to see if it

is close enough to zero, or a better way is to use the Gaussian elimination.

3.12 Freezing Point Experiment

After having written the code discussed above, I used these codes to conduct a

“freezing point” experiment. The theory behind this experiment is that when there are

too many constraints in a problem, the problem will have no solution. Usually, this

occurs when the number of clauses to number of variables is around 3.5 to 4.5. As you

will see in the data tables below, if the problem is solvable, the number of successes is

incremented by one. If the problem is unsolvable, the number of successes will not be

incremented. Most of my experiments on k-SAT problems used 50 instances; while for

the Ising and Heisenberg models, I used 3 to 5 instances, because any higher will cause

the computer to crash.

72

Chapter 4

Experiments and Results

4.1 Data and Analysis

In this chapter, we describe the freezing point ratio experiments for our quantum and

classical algorithms when running on a classical computer and compare them. The

freezing point ratio is a ratio between the maximum number of clauses for each instance

of k-SAT problem to be solvable, and the total number of particles or variables in the

problem. The reason that an instance is likely to become unsolvable is that as the number

of clauses increases, and more terms are added together is that, it becomes more and

more likely that the resulting matrix will not have null vectors. Null vectors exist

because there are “empty slots” in the matrix diagonal; when there are too many matrices

being added, the empty slots get filled up, so there are fewer and fewer null vectors. In

other words, this is because the more terms there are, the more forbidden vectors or non-

zero-energy eigenvectors there are, leaving no room for zero-energy eigenvectors. For

quantum algorithms, the freezing point ratio should be between 0.818 and 3.594. For

classical algorithms, the freezing point ratio should be between 3.52 and 4.490 (Bravyi,

Moore & Russel, 2014). The data that we collected were slightly different from our

expectations. First of all, there was no sudden drop to 0 in the null vector count—the

drop is very slow and gradual instead. Also, it takes more clauses for the freezing point

to decrease to zero for the classical algorithm than for the quantum algorithm. Secondly,

we had some difficulty fitting our data to the required ranges from paper (Bravyi, Moore

& Russel, 2014); it appears that our result always falls on the boundaries of these ranges.

Clausesize =3

of variable=7

73

of clauses=5-31

of instances=50

Table 1.

Version 1 Success Count

#Clauses 5 10 15 20 25 31

#Success 50 50 49 36 13 1

Figure 11. Version 1 Freezing Zone

Version 1 is our classical algorithm for solving k-SAT problems. The data is

collected using quantum clauses that are determined by Java’s random number-

generating feature, Math.random(). Therefore, there exists a fluctuation of about 1 to

5 counts in the number of satisfiable problems each time the program is run.

Sometimes the curve for the freezing zone will reflect data that are above or below

the statistical average portrayed by the steady decline like the one shown in Figure

4.1. Initially, in our results, the freezing point was found to be 10.0 for 7-variable

problems, while the freezing point ratio is supposed to be between 3.52 and 4.490

74

according to paper (Bravyi, Moore & Russel, 2014). So the correct result was

apparently not supported by my data, in which the satisfaction curve declines very

gradually to 0, at a much slower rate. At first we did not know why this happened,

but after a while, we realized that we should use non-repeating particles, because a

large percentage of repeating particle constraints are tautologies. By “non-repeating”

we mean that the quantum clause can act on variables 1, 2, 3 but not 2, 2, 3, or 3, 3, 3;

so all three variable have to be different for the 3-SAT clause the program generated.

We also know that Java uses pseudorandomness rather than true randomness, and it

eventually repeats itself. Both of these factors combined cause the program to be

more likely to get solvable instances than if we use repeating particles. There are,

after all, 128 choices for our solutions to begin with, and to have them all crossed out

after the algorithm, is a very difficult task that truly depends on coincidence. There

are different possible ways we could define the threshold from our data. The way we

described above is to use the perfect 0 success out of 50. Another way is to use the

beginning of the decline from 50, when we have 49 or 48 out of 50; in this case the

freezing point ratio would be 2.857. To summarize, at first we were using repeating

particles, and it took 70 clauses to zero our success count, which was too high, so to

decrease the success count, we then used non-repeating particles only, which took 55

clauses to zero the success count for certain. Then because 55 is still too high, we

decided to set the rule that 6 or less solutions count as no solutions. We did this so

that we could further decrease the number of clauses to reach zero success count at 31

clauses, which barely satisfies the bounds given in paper (Bravyi, Moore & Russel,

2014). Since we could find no other errors in my program, we were satisfied that 6

75

was still a reasonably small number compared to 128. In doing this, the freezing

point ratio we ended up with was 4.429. The freezing zone is from 20 clauses to 31

clauses corresponding to the ratio range 2.857 to 4.429.

Clausesize =3

of variable=7

of clauses=1-5

of instances=50

Threshold=0.0065

Table 2.

Version 3 Success Count

of Clause 1 2 3 4 5

Satisfied 50 32 10 1 0

Figure 12. Version 3 Freezing Zone

Version 3 is our second quantum algorithm for solving k-QSAT problems—it uses

permutators. It also has no null vectors, because it only has potential for low energy

solutions, which are also of interest to us because they are approximately null vectors.

Version 3 was actually the most correct version, until its twin version, Version 6. This is

76

because, as we found out later, we were actually supposed to keep all 8 terms, rather than

throw out some terms just to get null vectors, when we generated the forbidden matrix.

We picked the 0.0055 threshold by trial runs, since all 50 one-clause problems are

suppose to be all solvable. As mentioned earlier, our original algorithm was wrong, and

we were really surprised because the number of solvable instances never dropped to 0,

indicating that there was no freezing point. But in the end we found that this error was

due to faulty implementation of the permutators. After fixing this error and conducting

new experiment, the resulting data no longer oscillates in a sinusoid that refuses to

decline. Version 3 turns out to work approximately as well as Version 6, even though at

first we thought Version 6 was much better. At first we were concerned that the random

number generating feature of Java might depend on disk space, but actually the data used

in this experiment does not depend on the memory space of the computer used. We tried

running our programs on both desktop and laptop computers and we obtained pretty

much the same results. Our desktop is just slower than our laptop, because it has less

memory, but it produces the same data. Our ratio for Version 3 was found to be 0.714.

Table 3.

Version 4 Success Count

of Clause 1 2 3 4 5 6 7 8 9 10

Satisfied 49 49 41 39 23 17 8 7 7 4

of Clause 11 12

Satisfied 1 0

77

Figure 13. Version 4 Freezing Zone

Table 4.

Version 5 Success Count

of Clause 1 2 3 4 5 6 7 8 9 10

Satisfied 50 50 48 41 32 28 21 13 7 3

of Clause 11 12

Satisfied 1 0

Figure 14. Version 5 Freezing Zone

78

Version 4 is a quantum algorithm for finding null vectors; it is adapted from Version

3 as Version 5 is a quantum algorithm adapted from Version 2. Version 4 and 5 both

seem to work about the same for finding null vectors, after fixing the permutators and

division by zero problems. The bumpiness of the Version 4 graph is due to randomness

of the algorithm and data instability. We know for a fact that Version 4 has potential to

generate a smooth-looking curve just like Version 5, and we believe that it is pure

coincidence that it turned out not smooth-looking instead in Figure 13. As one would

expect, Version 4 should ideally give the same exact data as Version 5, since there is no

difference in the forbidden matrices that were used for the two versions. Based on the

freezing point ratio that was observed, Version 4 and 5 are legitimate quantum algorithms

according to (Bravyi, Moore & Russel, 2014). At the time of writing these two

algorithms, we did not realize that we were supposed to keep all 8 terms, and not

randomly throw out a few of the terms; we should use a threshold to get approximate null

vectors, rather than try to find true mathematical null vectors. The point of these two

versions is to compare the function of the permutators to the function of the “cut-and-

paste of strings method” (See sections 3.6 and 3.9) because both methods should give us

the same results. It is also good for comparing the freezing point with true 0-energy

solutions, as in Version 4 and 5, with low energy threshold solutions as in Version 3 and

6 which had ratios 0.714 and 0.571 respectively. For both Version 4 and Version 5, the

ratio was 1.714.

Table 5

Version 6 Success Count

of Clause 1 2 3 4 5

79

Satisfied 48 34 6 0 0

Figure 15. Version 6 Freezing Zone

Version 6 is adapted from Version 3; the only difference is that it allows repeating

variables in the random generation process of clauses. Version 6 has a freezing point

of 0.571, which is actually slightly less than 0.818, but if we set a slightly higher

threshold, we can probably get the ratio to be 0.818. As we can see by testing out

different thresholds, the larger the threshold, the more null vectors there will be, so to

get the freezing point, you should use as small a threshold as possible. But 0.003 was

too small because some one-clause problems were unsolvable. We used a threshold

of 0.0055 instead, which was found using the idea that all one-clause problems are

barely all solvable. To conclude, our Version 6 is the closest to our classical

algorithm for solving k-SAT problems. In comparing Version 6 and Version 3, the

only difference is that Version 6 uses repeating particles and Version 3 does not. We

were satisfied to note that both versions work approximately equally well, because

quantum clauses with repeating particles have same type of matrix representations as

quantum clauses without repeating particles. Both types of clauses do not have any

80

true null vectors in the forbidden matrix and only have potential for low-energy

solutions. The slight difference in the freezing point ratio of Versions 3 and 6, given

in the data is likely due to randomness of the algorithm, and data instability.

Table 6.

Models Success Count

Type of Physical Quantum Model Data

Quantum Ising Model Clausesize =2

of variable=5 (crashes for >5)

of clauses=3(crashes for >3)

of instances=5(crashes for >5)

J = 0.5

G= 0.35

Threshold=0.06 (0.66)

success=0-3

Quantum Antiferromagnetic Heisenberg

Model

Clausesize =2

of variable=6 (crashes for >6)

of clauses=4 (crashes for >4)

of instances=3 (crashes for >3)

Threshold=1.5

success=2 or 3

We now describe our Ising and Antiferomagnetic Heisenberg Models experiments

documented in Table 6. For the first of these experiments we used a very rough and

inaccurate way to determine whether there are low energy eigenvalues. We just used the

determinant, because the determinant is the product of all the eigenvalues. This is

81

imprecise at treating the case where some elements in diagonal are much larger than the

threshold while others are much smaller than the threshold; it results often in the answer

that there are no null vectors, when there are null vectors. So we gave up on this method,

and used a threshold, and a Gaussian elimination algorithm instead. As we noted in our

data table for the two physical models, above a certain number in number of variables,

number of clauses, and number of instances, the computer used to conduct the

experiment always crashed. As a result, our experiments on the tube, torus and twisted

torus configurations were mostly unsuccessful. We are able to get it to work for 6-

particle tube configuration but not for 9-particle tube, torus and twisted torus

configurations.

For Versions 3 and 6, Ising Model, and Antiferromagnetic Heisenberg Model, we

used thresholds. The key to setting the appropriate threshold is: the bigger the threshold,

the more null vectors we get, which is confirmed by our data. For the Ising Model and

Antiferromagnetic Heisenberg Model, when there is only one clause, there are no null

vectors, but when two or more clauses add together, it is possible to enhance and degrade

some of the terms so that there are null vectors, because there are negative elements in

the Aniferromagnetic Heisenberg Model forbidden matrix. This basically explains why

more clauses sometimes do not always mean less success count at finding a null vector

for the Antiferromagnetic Heisenberg Model.

82

 Chapter 5

 Conclusion

Based on this experiment, we have seen that it takes much fewer clauses to get no

solution to a k-QSAT problem on n variables than it is to get no solution for a k-SAT

problem on n variables. For the classical algorithm, it took about 70 clauses to freeze,

while for the quantum algorithm it took about 4 clauses to freeze (ratio 0.571). We

have also seen that this kind of simulation, using the classical computer to simulate a

quantum system is inefficient and can only be done for small register sizes. It is open

to future work to find a better way to understand the quantum computer with or

without the classical computer.

We had to overcome a lot of errors in our thinking to develop our quantum

simulator codes. We determined a freezing point value for all of our classical and

quantum algorithms for solving SAT problems. We discovered that the oscillation

and lack of freezing point in our original data were due to faulty permutator matrices.

We confirmed the fact that Version 4 and Version 5 work in exactly the same manner.

Lastly, we verified that repeating particle (allow clauses on 2,2,3 or 3, 3, 3) clauses

are equally constraining as non-repeating particle clauses (only clauses where all k

variables are different). We found out why the freezing point for the classical

algorithm, Version 1, did not fall between 3.52 and 4.49. We found out that the Ising

and Antiferromagnetic Heisenberg Models are hard to simulate well on classical

computers. Based on our experiments, the boundary between almost surely

satisfiable k-QSAT instances and almost surely unsatisfiable k-QSAT instances in

terms of clause to variable numbers ratio seems more complicated than in the

83

classical case. Of course, simulating what is supposed to happen is different than

getting correct results in an actual lab. We expect Quantum Hamiltonian Complexity

to be a fruitful area of future research.

84

References

Aaronson, S. (2013). Quantum Computing Since Democritus. New York, USA:

 Cambridge University Press.

Beaudrap N. & Gharibian, S. (2015). A linear time algorithm for quantum 2- SAT. USA:

 31st Conference on Computational Complexity.

Bravyi, S., Moore C. & Russel, A. (2014). Bounds on the quantum satisfiablility

threshold. Santa Fe Institute.

Gharibian, S., Huang, Y., Landau, Z., & Shin S.W. (2014) Quantum Hamiltonian

 complexity USA: Foundations and Trends in Theoretical Computer Science.

Wikipedia. (2017, August 10) Grover’s algorithm. Retrieved from

https://en.wikipedia.org/wiki/Grover%27s_algorithm

Haeffner, H. Ion Trap. Retrieved from

https://qudev.phys.ethz.ch/content/courses/QSIT07/qsit21_v1_2page.pdf

Haeffner, H. (September 25, 2008). Quantum computing with trapped ions. University of

 California Berkeley: Physics Reports 469.

deVries.(2004) jQuantum-Quantum Computer Simulator. Retrieved from

http://jquantum.sourceforge.net/

Maslov, D. (2017). Basic circuit compilation techniques for an ion-trap quantum machine.

 IOP Publishing Ltd.

Moore, C., & Mertens, S. (2011) The Nature of Computation. Oxford University Press.

Nielsen, M., & Chuang, I. (2010) Quantum Computation and Quantum Information.

 New York, USA: Cambridge University Press.

Wikipedia. (2017, August 10) Shor’s algorithm. Retrieved from

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://en.wikipedia.org/wiki/Grover%27s_algorithm
https://qudev.phys.ethz.ch/content/courses/QSIT07/qsit21_v1_2page.pdf
http://jquantum.sourceforge.net/
https://en.wikipedia.org/wiki/Shor%27s_algorithm

	San Jose State University
	SJSU ScholarWorks
	Spring 2019

	Zero and Low Energy Thresholds in Quantum Simulation
	Yun Xuan Shi
	Recommended Citation

	ZERO AND LOW ENERGY THRESHOLDS IN QUANTUM SIMULATION

