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ABSTRACT 

DEFORMATION, SANDSTONE DETRITAL ZIRCON AGES, AND PROVENANCE 
IN AND NEAR THE EOCENE LEAVENWORTH FAULT ZONE, WASHINGTON. 

 
by Francesca I. Senes 

The North Cascades is an excellent area to study basins and strike-slip faults that 

formed during regional transtension. This structural, petrographic, and U-Pb 

geochronological study focuses on the Eocene Leavenworth fault (LVF), which separates 

Eocene non-marine clastic rocks of the Chumstick Formation and older Swauk 

Formation. The LVF has been interpreted as a dextral strike-slip fault active during 

Chumstick deposition and as a reverse fault. Poles to beds (n=207) in the Swauk 

Formation trend WNW, oblique to the ~320˚-striking LVF, and commonly dip SSW, 

defining a girdle and a fold axis plunging 4˚ toward 297˚. Beds (n=50) in the Chumstick 

Formation trend NW and generally dip NE, and poles to beds define a fold axis plunging 

13˚ towards 306˚. Overall, 70% of folds in the formations trend NW to WNW, <30˚ 

counter-clockwise to the main strand of the LVF, compatible with dextral transpression. 

Most faults in the Swauk and Chumstick formations strike >45˚ or <30˚ to the main 

strand of the LVF. Their movement sense is unknown. Source terranes for the Swauk 

Formation likely include the Cascades crystalline core to the N and NE and a 

combination of other relatively local sources to the N, NE, and SW. Detrital zircon 

maximum depositional ages in the Swauk Formation range from 67.2 ± 1.9 to 50.46 ± 

0.17 Ma, constraining the timing of deposition and early folding of the Swauk Formation. 

Distinctive ~91 Ma tonalitic clasts in Chumstick conglomerate were likely transported 

~20 km from their source by dextral slip of the Leavenworth fault zone.  
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INTRODUCTION 

The North Cascades of Washington is an excellent area to study basins and strike-slip 

faults that formed during regional transtension (Johnson, 1984; Evans, 1988). In this 

orogen, the Eocene collapse of the Cretaceous and Paleogene crystalline core of the 

North Cascades, a NW-striking plutonic and metamorphic complex that stretches from 

central Washington to southwestern British Columbia, overlapped rapid deposition in 

nonmarine, fault-bounded basins (Haugerud et al., 1991; Miller et al., 2016). Two of the 

major Eocene basins are the Swauk and the Chumstick basins. The thick clastic 

sediments of the Swauk basin were folded before these rocks were intruded by the 

Eocene (49.3 Ma) Teanaway dikes, which are associated with the basalt-dominated 

Teanaway Formation. The clastic sediments of the Chumstick Formation were deposited 

shortly following the intrusion of the Teanaway dikes (Tabor et al., 1982, 1984) (Fig. 1).   

Major Paleogene high-angle faults that formed during transtension in the region are, 

from east to west, the Ross Lake fault, Entiat fault, Leavenworth fault, and Straight Creek 

fault (Fig. 1). They mostly trend NW, but the Straight Creek fault strikes north-south 

(Misch, 1966; Tabor et al., 1982, 1987). The Ross Lake fault zone is a complex structure 

with both Eocene normal slip and dextral strike-slip (Miller, 1994). For the most part, this 

fault separates high-grade gneisses and plutons from low-grade rocks (Misch, 1966). The 

Entiat fault strikes NW and in part separates the Chumstick basin from crystalline rocks. 

The Entiat fault also divides the two blocks that comprise the North Cascades core. 

Southwest of the fault is the Wenatchee block, which contains 96-88 Ma plutons and host 

rocks, and to the northeast are the 96-45 Ma plutons of the Chelan block, which intrude 
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Figure 1. Simplified geologic map emphasizing major Eocene structures of the Cascades 
core and adjacent areas. Study area shown in red. MP= Mount Pilchuck, LFZ = 
Leavenworth fault zone, and RLFZ =Ross Lake fault zone. Cooling ages in the Cascades 
core also shown. Figure modified from Miller et al. (2016). 
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the Napeequa unit and Cascade River-Holden unit of the core (Tabor et al., 1987) (Fig. 

2). 

The Straight Creek fault is one of the most significant structures in the North 

Cascades (Fig. 1). It trends north-south and separates crystalline rocks to the east from 

low-grade, accreted oceanic and arc terranes to the west (Misch, 1966; Tabor et al., 

1984). The Straight Creek fault dextrally offsets pre-Cenozoic rocks 80 to 190 km, as 

well as the Eocene Swauk Formation from the Chuckanut Formation (e.g., Tabor et al., 

1989; Umhoefer and Miller, 1996). Offset began by 48 Ma in the south and ceased by 34 

Ma (Tabor et al., 1984; Umhoefer and Miller, 1996). 

East of the Straight Creek fault is the Leavenworth fault zone, a NW-striking fault 

with NW and N-S-striking segments (Fig. 1). The Leavenworth fault merges with the 

Entiat fault at the northern end of the Chumstick basin (Cater and Crowder, 1967). The 

Leavenworth fault zone is up to ~ 5 km wide, and separates clastic rocks of the 

Chumstick Formation from those of the Swauk Formation in the southeast, and 

Chumstick Formation rocks from plutonic and metamorphic rocks of the Wenatchee 

block in the northwest (Tabor et al., 1987). The movement history of the fault is complex 

and widely debated. It is the main focus of this study and is discussed in further detail 

below.  
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Figure 2. Map of North Cascades core with a polygon of the study area. LVFZ-
Leavenworth fault zone. Note crystallization ages of the plutons. Unit abbreviations 
include: BC-Buck Creek Pass pluton; BP-Beckler Peak stock; BR-Bearcat Ridge 
Orthogneiss; CH-Chaval pluton; CP-Cardinal Peak pluton; CS-Chiwaukum Schist; CZ-
Cenozoic undifferentiated (mid-Eocene to Quaternary); DF-Dirtyface pluton; HP-High 
Pass pluton; MC-Marble Creek pluton; NQ-Napeequa unit; RRC-Railroad Creek pluton; 
RP-Riddle Peaks pluton; SC-Sloan Creek plutons; SM-Sulphur Mountain pluton; SZ-
shear zone; WPT-Windy Pass thrust; WRG-Wenatchee Ridge Gneiss. Figure modified 
from Miller et al. (2009a). 
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OVERVIEW OF THE MAIN ROCK UNITS IN THE LEAVENWORTH FAULT 
ZONE 
 
Ingalls Complex 

The mostly Late Jurassic Ingalls Complex is located west of the Leavenworth fault 

(Fig. 2). It was thrust onto the Chiwaukum Schist of the Cascade core in the Cretaceous,  

and wraps around the south end of the 96-91 Ma Mt. Stuart batholith (Southwick, 1974; 

Tabor et al., 1982; Miller, 1985). The ophiolite consists of tectonized ultramafic rocks in 

fault contact with a large spectrum of mafic rocks, and is overlain by pelagic sedimentary 

rocks (Tabor et al., 1982; Miller, 1985; Metzger et al., 2002; MacDonald et al., 2008). 

Metamorphic grade ranges from prehnite-pumpellyite facies in the south, to amphibolite 

facies in the north (Southwick, 1974; Tabor et al., 1982, 1987; Miller, 1985).  Fine-

grained meta-sedimentary rocks are also present in the northeast (Tabor et al., 1982; 

Harper et al., 2003). Contacts within the Ingalls ophiolite strike east-west (Tabor et al., 

1982; Miller, 1985) and major internal structures are two east-west–striking zones of 

serpentinite mélange (Miller, 1985).    

Swauk Formation 

The early Eocene Swauk Formation is located southwest of the Leavenworth fault 

and south of the Ingalls Complex and Mt. Stuart batholith (Fig. 2). To the west, it is 

bounded by the dextral Straight Creek fault (Tabor et al., 1982).  

The Swauk Formation is estimated to be ~8,000 m in thickness (Tabor et al., 2000), 

and is separated from the Teanaway Formation by an angular unconformity. The 

stratigraphy in the western part has been poorly studied, but the upper ~2.5 km of the 

eastern part has been described in detail (Taylor, 1985). Deposits are of fluvial and 
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lacustrine origin, and the main criteria used to distinguish the members of the Swauk 

Formation are the interbeds of sandstone and shale, the amount of conglomerate in each 

unit, the thickness of the conglomerate beds, and the size of the clasts in the 

conglomerate (Tabor et al., 1982; Taylor et al., 1988). Other criteria used in the eastern 

part of the formation include the overall thickness of beds and relative stratigraphic 

positions (Cheney and Hayman, 2009). The facies of the Swauk Formation in the eastern 

part of the basin that are relevant to this study are summarized in Table 1 (Tabor et al., 

1982; Fraser, 1985; Taylor et al., 1988). 

Feldspathic to lithofeldspathic, fine- to medium-grained sandstone dominates the 

Formation (Tabor et al., 1982). In the eastern part of the Swauk Formation, directly west 

of Tronsen Ridge (Fig. 3), sandstones are thin- to thick-bedded, have cross-beds, and are 

interbedded with siltstones and shales (Tabor et al., 1982). Pebbly sandstone and 

conglomerate are also present (Taylor et al., 1988; Cheney and Hayman, 2009) (Fig. 4).  

The ≥1100-m-thick Tronsen Ridge Member is located in the eastern part of the upper 

Swauk Formation (Fig. 3), and is particularly relevant for this study. It is mainly  

composed of shale, lithofeldspathic sandstone, and pebble conglomerate. Cross-bedding 

suggests a fluvial depositional environment. The Tronsen Ridge Member is interbedded 

with thick- to very thick-bedded, white arkosic sandstone to the northeast, also known as 

the sandstone facies of Red Hill, which is thought to be the uppermost part of the Swauk 

Formation (Tabor et al., 1982; Taylor et al, 1988).  

The clastic rocks of the Swauk Formation interfinger with the 51.3 ± 0.029 Ma tuffs 

of the Silver Pass Member, a volcanic unit in the upper part of the Swauk Formation (Fig. 
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Table 1: Stratigraphy of the Eastern Part of the Swauk Formation. 
 

Note: Lithology descriptions from Tabor et al. (1982), Fraser (1985), and Taylor et al. 
(1988). 
  

 

 

 

 

 

 

 

 

Facies Thickness Lithology 
 
Arkosic Sandstone 
(sandstone facies of 
Red Hill) 

~390 m 

Poorly sorted, alternating coarse and fine members, 
thick- to very thick-bedded, white sandstone 
interbedded with darker shale of the Tronsen Ridge 
facies. 

 

Shale Facies of 
Tronsen Ridge ≥1100 m 

Thinly bedded, cross-bedded, dark grey or tan 
micaceous lithofeldspathic sandstone, dark siltstone 
and shale. Light-colored fine-grained sandstone and 
siltstone. Rare thick bedded and cross-bedded 
sandstone and pebble conglomerate.  

Conglomerate and 
Monolithic 
Fanglomerate 
Breccia 

≥900 m 

Lower and upper units separated by shale facies. 
Boulder to pebble conglomerate, crudely bedded, 
and trough cross-bedded. Clasts are predominately 
granitic and metamorphic rock. Pebble dominated 
debris-flow deposits. 



 

8 

 

 

Figure 3. Geologic map of the Tronsen Ridge area and surrounding area. Units, contacts, 
and folds are taken from Tabor et al. (1982). LVF=Leavenworth fault.  
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Figure 4. Schematic stratigraphic sections of the Swauk Formation and Chumstick 
Formation, and their respective members and ages. Modified from Eddy et al. (2016).  
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4) (Tabor et al., 1982, 2000; Eddy et al., 2016). This member consists of andesitic and  

rhyolitic tuffs interbedded with clastic rocks (Tabor et al., 1982). 

The eastern part of the Swauk Formation is openly to tightly folded, with fold 

wavelengths of 100 m to 2 km and steep axial planes (Tabor et al., 1982; Doran, 2009). 

Folds typically have N- to NW-trending axes (Tabor et al., 1984, 1989), at less than 45° 

to the Entiat-Leavenworth fault system. Close to Tronsen Ridge, E-W-trending folds in 

the Swauk Formation have sinuous axial traces (Cheney and Hayman, 2009). Mafic 

Teanaway dikes (49.3 Ma.) intrude the folds and help bracket the timing of the folding 

(Tabor et al., 1984; Eddy et al., 2016; Miller et al., 2016).   

Teanaway Formation and Dikes 

The Teanaway Formation is composed mostly of mafic lavas, but ranges to rhyolitic 

in composition (Clayton, 1973). These volcanic rocks accumulated after the Swauk 

Formation was deformed, uplifted and eroded, and their source may be a shield volcano 

in the southwestern part of the outcrop belt (Clayton, 1973; Tabor et al., 1982). A flow in 

the eastern part of the Teanaway outcrop belt is 49.341 ± 0.033 Ma (Eddy et al., 2016). 

The Teanaway dikes are a swarm of basaltic dikes that intrude the Swauk 

Formation and are presumably the same age as the Teanaway lavas (Foster, 1958; Tabor 

et al., 1982; Doran, 2009; Eddy et al., 2016) (Fig. 4). They extend over 75 km from east 

to west and 18 km from north to south (Foster, 1958). Their thickness averages between 

12 and 20 m (Doran, 2009). In the eastern part of the Swauk Formation, more than 85% 

of the dikes strike NE, with a mean orientation of 040°, a dip of 78°, and an average 

thickness of 14 m (Mendoza, 2008; Miller et al., 2016). The dike orientations in the east 
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indicate sub-horizontal extension towards 310°/130°, which is sub-parallel to slightly 

counter-clockwise of the regional strike. These orientations are broadly similar to those in 

the western and central parts of the Swauk basin, where dikes strike NNE (Doran et al., 

2009). 

Chumstick Formation 

The Chumstick Formation is bounded on the east by the high-angle Entiat fault and 

on the west by the Leavenworth fault (Tabor et al., 1982, 1987; Evans, 1994; Cheney and 

Hayman, 2009) (Fig. 4). High-precision U-Pb geochronology of the oldest tuff above the 

sediments constrains the depositional age of the western Chumstick Formation between ~ 

49.147– 47.847 Ma (Eddy et. al., 2016). The Formation is made up of perhaps as much as 

12 km of fluvial and lacustrine rocks, consisting of micaceous arkosic sandstone, shale, 

and conglomerate, as well as numerous tuffs that are interbedded with the clastic rocks. 

The Chumstick Formation is also intruded by felsic dikes, and is unconformably overlain 

by the gently folded, Oligocene Wenatchee Formation (Gresens et al., 1981; Tabor et al., 

1982; Evans, 1994). Sandstone in the Chumstick Formation is distinguished from that of 

the Swauk Formation, in that the Chumstick has generally coarser grains, is dominantly 

arkosic in composition, has abundant lags of pebbles in the sandstone, the presence of 

coal, numerous tuff layers, and the Devil’s Gulch Member (Evans, 1994; Cheney and 

Hayman, 2009).  

The Chumstick Formation is split into five stratigraphic members based on lithofacies 

associations, compositions, and sedimentological features: the Clark Canyon Member; 

Tumwater Mountain Member; which includes the Devil’s Gulch Member; Nahahum 
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Canyon Member; and Deadhorse Canyon Member (Evans, 1994). These are summarized 

in Table 2, and the Devil’s Gulch Member, which is critical for interpretation of the 

Leavenworth fault, is described in more detail below.   

The oldest part of the Chumstick Formation is the ~ 8-8.5-km-thick Clark Canyon  

Member, which extends to the eastern boundary of the Leavenworth fault zone (Evans, 

1994; Donaghy, 2015). It is composed of fluvial conglomerate, sandstone and mudrock, 

and contains numerous interstratified tuffs, measuring from 30 cm-2 m in thickness, 

which are dated as 49.1 - 47.9 Ma (Eddy et al., 2016). The upper part of the Clark 

Canyon Member interfingers with the Tumwater Mountain Member (Evans, 1994).  

The Tumwater Mountain Member is a narrow tabular body exposed directly east of 

the Leavenworth fault (Fig. 4). Its thickness measures up to 1 km, and it is thickest 

between two northwest-trending strands of the fault zone. The member is composed of 

conglomerate, sandstone, and mudrock, but lacks the tuffs of the Clark Canyon Member 

(Evans, 1994; Donaghy, 2015). Proximal facies are more evident than in the Clark 

Canyon Member, and there is more soft-sediment deformation (Evans, 1994). 

The Nahahum Canyon Member is ~1.2-1.5-km-thick, is restricted to the eastern part 

of the Chumstick basin, and is not considered further (Gresens et al., 1981; Tabor et al., 

1987) (Fig. 4). The ~2.2-km-thick, late Eocene Deadhorse Canyon Member is the 

youngest part of the Chumstick Formation. It is limited to the northernmost and 

southernmost parts of the basin (Fig. 4). It is finer-grained, lacks tuffs, and has a higher  

concentration of felsic volcanic clasts than the underlying members (Evans, 1994).  

The Devil’s Gulch Member is 185-m-thick and is exposed along the northern and 
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Table 2. Stratigraphy of the Chumstick Formation. 
 
 

Facies Thickness Lithology 

Deadhorse Canyon 
Member ~2.2 km 

Fine-grained sandstone and 
mudstone, lacks tuff, and contains 
distinctive felsic volcanic clasts.  

Nahahum Canyon 
Member ~1.2 – 1.5 km Sandstone and mudstone. 

Tumwater Mountain 
Member <1 km 

Conglomerate, sandstone, and 
mudrock; lacks tuffs, and is also 
characterized by a coarse-grained 
facies adjacent to the LVFZ.  

Devil's Gulch 
Member  185 m 

Unsorted and unstratified 
diamictite. Clasts are dominantly 
tonalite. Ultramafic and phyllite 
clasts are also found. 
 

Clark Canyon 
Member 8-8.5 km 

Conglomerate, sandstone, 
mudrocks, and 18 inter-stratified 
airfall and ash-flow tuffs. The 
lowest part is intruded by dikes, and 
the upper part interfingers with the 
Tumwater Mountain Member. It is 
restricted to the western subbasin of 
the Chumstick Formation.    

Note: Lithology descriptions from Gresens et al. (1981), Tabor et al. (1982, 1987), Evans 
(1994), and Donaghy (2015). 
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southern parts of the Leavenworth fault (Tabor et al., 1982; Taylor, 1988). The origin of 

the Devil’s Gulch Member is controversial. It is the most distinctive unit in the 

Leavenworth fault zone (Tabor et al., 1982) (Tcf on Fig. 3), consisting of conglomeratic 

sandstone and unsorted and unstratified diamictite, with rounded clasts up to 150 cm in 

diameter (Tabor et al., 1982; Taylor et al., 1988). Clasts are mostly porphyritic, tonalitic, 

and monolithic (Fig. 5), but in places, ultramafic clasts predominate, and phyllites are 

also found (Cashman and Whetten, 1974; Tabor et. al., 1982; Cheney and Hayman, 

2009). Zircons in clasts have been dated using laser ablation inductively coupled mass 

spectrometry, and are 91.7 ± 1.5 Ma to 90.6 ± 1.5 Ma (LaCasse, 2013). Potential sources 

for the coarse tonalitic clasts include the Mt. Stuart batholith, Tenpeak pluton, and 

Dirtyface pluton (Fig. 2). LaCasse (2013) concluded that, due to the closer proximity of 

the Mt. Stuart batholith, it is the most likely source.  

Taylor et al. (1988) proposed that the member was originally deposited in the Swauk 

basin during uplift of the east side of the Leavenworth fault. Following a reverse in 

motion to west-side-up, Devil’s Gulch blocks were downdropped into the Chumstick 

basin. In contrast, studies by Gresens (1981), Evans (1988), and Cheney and Hayman 

(2007) suggest that thick conglomerate sections of the Devil’s Gulch Member represent 

some of the first sediments deposited in the Chumstick basin. Donaghy (2015) and Eddy 

et al. (2016) also consider it to be a marginal facies of the Chumstick Formation. I utilize 

the more recent interpretations, and consider the member part of the Chumstick 

Formation.   
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Figure 5. Tonalitic clasts in the Devil’s Gulch Member, probably originating from the Mt. 
Stuart batholith. 
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STRUCTURAL SETTING  

Overview 

The structural and depositional history of the Swauk Formation has been interpreted 

in different ways. Taylor et al. (1988) proposed that the Swauk Formation was  

deposited within a regional network of right-lateral strike-slip faults, and that its  

sedimentation patterns were most likely governed by dextral offset on the Straight Creek 

and Leavenworth fault systems. Evans (1994) suggested that the Swauk Formation was 

deposited in an extensional half graben, which he called the Swauk basin. Eddy et al. 

(2016) proposed that Swauk deposition largely predated the Leavenworth fault. 

Restoration of 100-150 km of dextral motion on the Straight Creek-Fraser fault places the 

Chuckanut and Swauk formations adjacent to one another (Fig. 1), and Eddy et al. (2016) 

inferred that these formations accumulated within a single depositional system between ≤ 

59.9 and > 49.9 Ma. 

The Chumstick Formation was deposited in the Chumstick basin (Fig. 2), also 

referred to as the Chiwaukum graben (Evans, 1994) or the Chiwaukum structural low 

(Cheney and Heyman, 2009), which initiated prior to 49 Ma (Eddy et al., 2016). The 

Eagle Creek fault divides the Chumstick basin (Fig. 6), forming a younger subbasin to the 

east, and the basement of the Chumstick Formation is the Cretaceous Swakane Biotite 

Gneiss, which crops out in the Eagle Creek anticline (Fig. 2) (Tabor et al., 1982; Evans, 

1994). In the most recent model, the Chumstick basin formed as a strike-slip basin 

between the Leavenworth fault and the Entiat fault (Donaghy, 2015; Eddy et al., 2016). 

Evans (1994) proposed that the Chumstick basin was dominated by early extension and 
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Figures 6. Map of faults and folds between the Leavenworth fault zone and the Entiat 
fault zone. Study area is shown in red. Figure modified from Evans (1988). 
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later influenced by strike-slip motion. Folding during dextral transpression followed the 

deposition of the Chumstick Formation (Evans, 1994). In contrast, Cheney and Hayman 

(2009) contended that the structure of the Chumstrick rocks is dominated by high-angle 

reverse faults and that deposition was not influenced by strike-slip faulting. 

The lower part of the Chumstick Formation is exposed in a homocline that dips 40° 

west between the Leavenworth fault zone and the NW-striking Eagle Creek fault zone 

(Fig. 6). Northeast of the Eagle Creek fault zone is the doubly plunging Eagle Creek 

anticline (Tabor et al., 1982). The strata of the Clark Canyon Member, which lies 

between these fault zones, are also deformed into a series of small anticlines and 

synclines, which trend parallel to 40° counter-clockwise to the Leavenworth fault and the 

Eagle Creek fault (Fig. 6) (Donaghy, 2015). The Eagle Creek fault ends in a set of splays 

to the WNW, whereas to the southeast it is buried by the Miocene Columbia River Basalt 

(Evans, 1994). Its orientation parallel to the Entiat fault, NW-SE trends of fold axes, and 

data from sedimentary rocks between the Eagle Creek and Entiat faults, provide evidence 

that the Eagle Creek fault is a major dextral oblique-slip fault (Evans, 1994).  

Leavenworth Fault Zone: Geometry and Models 

The movement history of the Leavenworth fault is controversial, as some have 

interpreted the fault to record strike-slip and others inferred that it is a reverse fault (e.g. 

Taylor et al., 1988; Evans et al., 1989; Evans, 1994; Cheney and Hayman, 2009). The 

timing of offset is also debated. Some workers concluded that subsidence of the 

Chumstick basin initiated at ~48 Ma (Tabor et al., 1984). In this model, subsidence 

began, and motion along the Leavenworth fault changed from east-side-up to west-side-
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up, and the active trace of the Leavenworth fault shifted up to 1 km westward, according 

to Taylor et al. (1988) and Evans (1994).  Taylor et al. (1988) noted that alternating 

pulses of extension and deformation are common in strike-slip basins, and they proposed 

that the Swauk Formation formed in such a basin. Following deposition and folding, the 

Swauk Formation was intruded by the Teanaway dike swarm (Tabor et al., 1984). 

Evans (1994) and Tabor et al. (1982, 1984) concluded that initial movement was pre-

44 Ma, and proposed a second episode of tectonic partitioning, deformation, and uplift of 

the Swauk basin, causing the reversal of movement sense (west-side-down to east-side-

down) of the Leavenworth fault at 44-42 Ma. This episode is marked by dextral faulting 

and folding with fold orientations consistent with north-south dextral shear on the 

Straight Creek fault, and NW-trending fold axes in the Chumstick Formation (Taylor et 

al., 1988) (Fig. 6). This event was followed by another episode of tectonic quiescence 

from ~ 41-37 Ma, when deposition in the Chumstick Formation continued, and an 

episode of overtopping of the fault zone occurred. Between ~ 37-34 Ma, NW-striking en 

enchelon faults formed, which suggest dextral transpression (Cashman and Whetten, 

1974; Evans, 1988; Taylor et al., 1988).  

Evans (1988, 1994) and other workers (Gresens, 1981; Taylor et al., 1988; La Casse, 

2013) also proposed that offset of tonalitic fanglomerate deposits of the Devil’s Gulch  

Member by approximately 30 km from a likely source resulted from dextral strike-slip 

on the Leavenworth fault.   

In another model, the Leavenworth fault zone is a post-depositional, reverse fault 

(Cheney and Hayman, 2009). The evidence cited for this model is the northwest-trending 
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Miocene folds in the Columbia River Basalt that can be traced into older rocks. Cheney 

and Hayman (2009) contended that the outcrop pattern of the Chumstick Formation is 

controlled by a regional Micocene syncline, rather than restricted to an Eocene basin. 

Cheney and Hayman (2009) suggested that folds oriented parallel to the Leavenworth 

fault formed during reverse motion along the fault. They also reported that slickensides 

near the Camas Creek fault, a strand of the Leavenworth fault in their model, are 

consistent with reverse motion (Fig. 6) (Cheney and Hayman, 2009).  

Most recently, Eddy et al. (2016) determined high-precision zircon ages that 

supported the interpretation that the Straight Creek fault postdates the Swauk Formation. 

Accumulation on the then adjacent Swauk and Chuckanut formations occurred along W- 

or SW-flowing streams between ≤59.9 and 51.3 Ma, which was followed by a reversal in 

paleoflow direction to the NE between 51.3 and >49.9 Ma. Accumulation ended before 

49.9 and was followed by NNE-SSW-directed shortening and basin inversion attributed 

to the accretion of Siletzia (Eddy et al., 2016; Miller at al., 2016). The oldest tuff age of 

49.1 Ma in the Chumstick basin demonstrates that sediment accumulation there initiated 

close in time to the eruption of the lower Teanaway Formation (49.3 Ma.), and that the 

Chumstick rocks are younger than the Swauk Formation (Eddy et al., 2016). 

High sediment accumulation rates of 2-7 m/k.y. for the Clark Canyon Member, and 

the rapid lateral movement of depocenters, suggest that the Chumstick Formation was 

deposited in a strike-slip basin (Eddy et al., 2016). The Nahahum Canyon Member of the 

Chumstick Formation provides further evidence for syndepositional faulting between 

≤46.9 and >44.4 Ma, such as a coarse-grained facies adjacent to the Eagle Creek and 
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Entiat faults, basin axial paleoflow, and soft sediment deformation (Evans, 1994).  

METHODS 

Geologic mapping and collection of structural data were conducted for six weeks 

during the summer of 2014. This project utilized previous 1:100,000 mapping done by 

Tabor et al. (1982), as well as 7.5 minute topographic maps (1:24,000) to conduct 

structural mapping of ~ 50 km2 of both sides of the Leavenworth fault zone in more detail 

than had been previously done. Structures both outside and within the fault zone were 

mapped. I looked for systematic changes in strikes and dips of beds, rotation of beds, and 

orientations of faults and folds in both the Swauk and Chumstick formations. I also 

measured smaller brittle structures, such as slickensides, slickenside striae, small faults, 

and Riedel shears. Structural measurements were plotted on stereographic projections 

using Stereonet 9 (Allmendinger, 2017). 

The extent of the Leavenworth fault zone was determined by mapping bed strikes and 

fold hinge lines at various distances from the main fault and then comparing those to 

regional orientations to assess whether they have been rotated. On the west side of the 

fault, orientations and thicknesses were determined for the Teanaway basaltic dikes that 

intrude the Swauk Formation. These dikes help evaluate the regional strain field and the 

potential effects of the Leavenworth fault in modifying the strain field.  

Fourteen samples were made into thin sections at San Jose State University to 

determine their petrography. Nine of these are sandstones and were analyzed on the basis 

of mineral mode, grain size, sorting, rounding, sphericity, and microstructures, to 

determine their constituents and provenance. One low-grade metamorphic sample from 
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the Ingalls ophiolite complex (FS13) was also analyzed for texture, and four Teanaway 

dikes were analyzed for modal mineralogy. Point counting analysis was conducted on the 

sandstones and the metamorphic sample. Three hundred points were counted for each 

thin section and spaced in an even grid of 4.0 mm using a Point-counting stage. The 

sandstone samples were then plotted on a QFL ternary diagram (Dickinson and Suczek 

1979) comparing the relative amounts of quartz, feldspar, and lithic clasts for further 

classification and to determine provenance.  

Five samples were prepared for U/Pb detrital zircon geochronology using standard 

separation techniques. The equipment used at San Jose State University were a crushing 

mill and a steel disk mill (to reduce grain size). A Wilfley table was then used to separate 

the zircons from other minerals, followed by a Frantz magnetic separator, and two heavy 

liquid separations using Bromoform and Methyliodide. Finally, picking, mounting, and 

Back-Scattered Electron (BSE) imaging using Laser Ablation-Inductively Coupled 

Plasma Mass Spectrometry (LA-ICPMS) was performed at the LaserChron lab in 

Tucson, Arizona. Method YC2σ (3+) was used to determine maximum depositional ages 

(Dickinson and Gehrels, 2009). One sample (FS145) was re-evaluated by M.P. Eddy at 

the Massachusetts Institute of Technology by performing single zircon Chemical 

Abrasion-Isotope Dilution-Thermal Ionization Mass Spectrometry (CA-ID-TIMS)  

analysis in order to more precisely constrain the maximum depositional age of the Swauk 

deposition.   
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STRUCTURAL DATA 

Swauk Formation 

Structural mapping of the Swauk Formation was conducted in four main areas: Ruby 

Creek-Windmill Point, Tip-Top, Tronsen Ridge, and Mission Ridge. These areas extend 

discontinuously for ~25 km along the Leavenworth fault zone and as far as 5 km from the 

main trace of the fault, which has a general NW strike of ~320° in the study area (Fig. 1 

and Plate 1). 

The Ruby Creek-Windmill Point area (Fig. 7) is located east of the Ingalls Complex 

and is mostly bounded by two NW-striking strands of the Leavenworth fault, which are 

separated by ~ 2-4 km. In this area, the strike of the Leavenworth fault ranges from ~300-

320°. Bedding (n=119) has a general NW strike and SW dip, with some beds dipping NE. 

There is no systematic change in strike in the Ruby Creek-Windmill Point area. Strikes 

average 168°, and dips range from ~5-87°, with a mean of ~52° SW. Poles to beds 

(n=119) form a girdle indicating a fold axis plunging 004° towards 299°. There is a 

significant scatter indicating non-cylindrical folding, and a clear maximum of 121°, 60° 

SW reflecting the dominant SW dips (Fig. 8). Folds (n=6) of ~0.5- 2.5 km wavelength 

have average trends of 292°, defined by bedding reversals. Fold interlimb angles in the 

Ruby Creek-Windmill Point area range from ~33-60°, and line-length balancing 

assuming flexural-slip folding yields a total of ~0.6-1.1 km of shortening (Fig. 7). 

Faults in the Ruby Creek-Windmill point area (Figs. 9 and 10) have relatively 

inconsistent strikes. Forty-nine faults were separated into NW-striking and NE-striking 

sets, and forty-three out of those forty-nine faults had slickensides and measurable rakes.  
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Figure 7. Geologic map emphasizing bedding and foliation attitudes, and locations of 
cross sections in the Ruby Creek-Windmill Point and Tip-Top areas. Not all structural 
data are shown. Thin lines in cross sections indicate traces of bedding, thick lines 
represent faults, and red lines represent dikes. Inset shows the location of the Ruby 
Creek-Windmill Point and Tip-Top transects within the study area.  
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n=119 
 
Figure 8. Stereographic projection of poles to beds in the Ruby Creek-Windmill Point 
area. Contour interval of 2σ, using Kamb (1959) method. Π axis = 004°, 299°. Maximum 
of 121°, 60° SW.  
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Figure 9. Outcrop showing a fault and fracturing in the Ruby Creek-Windmill Point area. 
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Figure 10. Geologic map emphasizing orientations of faults in the Ruby Creek-Windmill 
Point and Tip-Top areas. Not all faults are shown.  
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NW-striking faults (n=21) are moderately to generally steeply dipping (average of 72°), 

have an average strike of 332°, and a maximum of 331°, 85° NE. NE-striking faults 

(n=28) are steeply dipping (average of 73°), have an average strike of 033°, and a 

maximum of 033°, 79° SE. In addition, 19 out of the 49 NW- and NE-striking faults 

strike >45° clockwise (005-045°) from the main strand of the Leavenworth fault. Six of 

the 49 faults strike 31-40° clockwise from the main fault (356°-360°). Sixteen of the 49 

faults strike <30° from the fault; half strike clockwise (324°-345°) and the other half 

strike parallel and counter-clockwise (301°- 320°) from the fault. 

Rakes of slickensides on the fault planes are scattered, but are mostly moderate to 

high (Fig. 11). Rakes in the NW-striking fault planes (n=19) average 81° with a 

maximum of 83° to the NW. Rakes in the NW quadrant are low to high and rakes in the 

SE quadrant are low to moderate. Overall, rakes on NW-striking faults show significant 

scatter, and 74% are >45°. Rakes in the NE-striking fault planes (n=24) are mostly 

scattered and moderate (average of 40°) with a maximum of 43°, 063° (Fig. 12). Rakes in 

the NE quadrant are low to moderate and form minor clusters, and rakes in the SW 

quadrant are moderate to high, and show significant scatter and no clusters. Overall, fifty-

four per cent of rakes on NE-striking faults are >45°.  

Dikes intruding the Swauk Formation are concentrated in the Ruby Creek–Windmill 

Point area (Fig. 13). From southwest to northeast, and approaching the Leavenworth fault 

zone, most dikes (n=19) appear to rotate by ~80° from NW-striking to NE-striking. Dikes  

have a mean strike of ~209°, and dips range from ~18-89°, with a mean dip of 75° NW. 

Dikes have a maximum of 179°, 87° W (Fig. 14). Dike thickness ranges from ~2-34 m,  
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n= 21 
 
Figure 11. Stereographic projection of NW-striking faults and rakes (dots) in the Ruby 
Creek-Windmill Point area. Two faults without rakes are also included. Maximum of 
faults is 331°, 85° NE. 
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n= 28 
 
Figure 12. Stereographic projection of NE-striking faults and rakes (dots) in the Ruby 
Creek-Windmill Point area. Faults without rakes (n=4) are also included. Maximum of 
faults is 033°, 79° SE. 
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Figure 13. Geologic map emphasizing dikes in the Ruby Creek-Windmill Point and Tip-
Top areas. Not all dikes are shown.  
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n= 19 
 
Figure 14. Stereographic projection of poles to dikes intruding the Swauk Formation.  
Maximum of 179°, 87° SW.   
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and averages ~15 m (Fig. 15). 

Tip-Top (Fig. 7) is located east and southeast of the Ruby Creek-Windmill Point area 

and lies within the ~3-km-wide Leavenworth fault zone. Measurements were taken on  

both sides of the Leavenworth fault, as far as 0.5 km from the main fault strand. Poles to  

beds (n=28) in the Swauk Formation (Fig. 16) show that most beds strike SE with a mean 

of ~122°, and dips are to the SW, ranging from ~0-90°, and have a mean of ~66°. There 

is a reversal in dip orientation from SW to NE, as the main strand of the Leavenworth 

fault is approached. Bed orientations in the Chumstick Formation are discussed below.    

Fault planes in the Tip-Top area (n=22) strike mostly NW and NE, and average 342° 

and 061°, respectively, and dip to the NE and SE with a range of ~5-90° and an average 

of 62° and 71°, respectively (Fig. 17). Fault planes have a maximum of 150°, 86° SW.  In 

addition, two out of 26 measured faults strike >45° clockwise (019°and 020°) from the 

main strand of the Leavenworth fault, eight faults strike 44-31° from the main fault, five 

of which strike clockwise (333°-003°) and 3 of which strike counter-clockwise (281°-

287°) to the main fault. Sixteen faults strike <30° to the main fault, 8 of which strike 

counter-clockwise (295°-317°) and 3 of which strike clockwise (330°-348°) to the main 

fault.  

Overall, rakes show significant scatter. Fault planes that strike NE have shallow to 

steep rakes, whereas fault planes that strike NW have mostly steep rakes. Shallow rakes 

show some clusters. All rakes average 51°, and 59% are >45°.  

Tronsen Ridge is located west of the main segment of the Leavenworth fault (Fig. 

18). Two transects southwestward across this ridge from U.S. Highway 97 (Fig. 19), 
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Figure 15. Outcrop exposing a contact of a Teanaway dike and Swauk sandstone in the 
Ruby Creek-Windmill Point area.  

 
 

 

 

 

 

 

 

 

 



 

35 

 

 

 

 

 

 

 

 

 

 

 

 
 
Swauk n= 28 
Chumstick n= 10 
 
Figure 16. Stereographic projection of poles to beds of the Swauk Formation (black) and 
Chumstick Formation (blue) in the Tip-Top area. The maximum for the Swauk beds is 
127°, 70° SW, and the maximum for the Chumstick beds is 304°, 61° NE. 
 
 
 
 

 

 

 

 

 



 

36 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 
 
 
 
n= 22 
  
Figure 17: Stereographic projection of faults and rakes (dots) in the Tip-Top area. 
Maximum of faults is 150°, 86° SW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

37 

 

 

Figure 18. Geologic map showing orientations of beds (n=24), and cross sections B-B’ 
and C-C’ in the Tronsen Ridge area. Not all data are shown. Thin lines in cross sections 
indicate traces of bedding. 



 

38 

 

 

 

Figure 19. Panoramic view looking east from U.S. Highway 97 of the lower and upper Tronsen Ridge members of the Swauk 
Formation. Modified from Eddy et al. (2017).  
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cross the ~5 km width of the fault zone. Here, the Leavenworth fault strikes ~330°. Beds 

(n=27) in the northern transect of the Tronsen Ridge transect strike NW with a mean of 

~300°, and dips range from ~33-79° to the NE, and have a mean of ~53° (Fig. 18). As a 

NW-trending syncline and a small NW-striking strand of the Leavenworth fault are 

approached, bed dips rotate from NE-dipping to SW-dipping. In the southern transect, 

beds strike WNW with a mean of ~300°, and dips range from ~67- 39° to the NE, with a 

mean of ~56°. Bed strikes overall on Tronsen Ridge have a maximum of 295°, 62° NE. 

The poles to beds define a girdle, and a fold axis plunging 008° towards 300° (Fig. 20). 

The significant scatter of poles indicates non-cylindrical folding (Fig. 20). Four fold axial 

traces mapped on Tronsen Ridge average 321°. Most fold interlimb angles are ~85°, and 

line-length balancing yields ~1.7-2.2 km of cumulative shortening (Fig. 18). 

The southernmost study area in the Swauk Formation was along Mission Ridge (Fig. 

21). Here, the fault zone is ~2 km wide, and the Leavenworth fault strikes ~ 310°. In the 

Swauk Formation, measurements were taken <1.5 km west of the Leavenworth fault. Bed 

strikes (n=33) are oblique to the strike of the Leavenworth fault zone, averaging ~291°, 

and have a predominant SW-SSW dip ranging from ~20-84°, and a mean of ~54°. Beds 

have a maximum of 289°, 59° SW. Three folds of ~200 m-1.3 km wavelength defined by 

bedding reversals have trends averaging 286°. Poles to beds in the Mission Ridge area in 

the Swauk Formation plot as a poorly defined girdle indicating a fold axis plunging 003°  

towards 287° (Fig. 22). The significant scatter indicates non-cylindrical folding. Bed 

orientations in the Chumstick Formation are discussed below. 

For the entire study area, poles to beds (n=207) in the Swauk Formation indicate a  
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n= 27 
 
Figure 20. Stereographic projection of poles to beds on Tronsen Ridge. Π = 08°, 300°. 
Maximum of 295°, 62° NE. 
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Figure 21. Geologic map emphasizing orientations of beds (n=27) on Mission Ridge. Not 
all data are shown. 
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Swauk n=33 
Chumstick n=5 
 
Figure 22. Stereographic projection of poles to beds in the Swauk Formation (black) and 
Chumstick Formation (blue) on Mission Ridge. Fold axis (π) and bed maximum for the 
Swauk Formation are 03°, 287° and 289°, 59° SW, respectively, and the maximum for 
the Chumstick Formation is 131°, 54 SW°.  
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maximum of 119°, 61° SSW. Dips of Swauk beds average 55°. They define a girdle and 

a fold axis plunging 4° toward 297° (Fig. 23). There is a significant scatter of attitudes  

indicating non-cylindrical folding. Folds mapped in the Swauk Formation (n=15) of ~0.5- 

2.5 km wavelength trend NW to WNW, and range from ~ 270-340°. Most folds trend 

~290-330°, and the average is ~ 298°, counter-clockwise from the main strand of the 

Leavenworth fault. 

Poles (n=65) to all fault planes in Swauk rocks have scattered strikes, with 

concentrations striking NE and NW, and dipping to the SE and NE. The maximum is 

359°, 84° E (Fig. 24). 

Chumstick Formation 

From north to south, mapping in the Chumstick Formation was conducted primarily 

in the Tip-Top area (Fig. 7), along Mission Ridge (Fig. 21), and in the Beehive Reservoir 

area (Fig. 25). These areas extend as far as ~3 km from the main trace of the 

Leavenworth fault.  

In the Tip-Top area of the Chumstick Formation (Fig. 7), beds (n= 10) strike NW 

with a mean of ~ 298°, have a predominant NE dip ranging from 30-86°, and have a 

mean dip of ~60° NE. Poles to beds indicate a maximum of 304°, 61° NE (Fig. 16). Fault 

strikes in the Tip-Top area are relatively consistent (Figs. 7 and 10); strikes are SSW with 

a mean of ~184°, and dips are steep to the SE and NW, with a mean of ~76° (Fig. 26). In 

addition, two out of the nine measured faults strike >45° counter-clockwise (052° and 

065°) from the main strand of the Leavenworth fault; one fault strikes 40° (280°) to the 

fault, and six strike <30° to the fault, five of which strike clockwise (322-350°), and one 



 

44 

 

 

 

 

 

 

 

 

 

 

 

 
n= 207 
  
Figure 23. Stereographic projection of all poles to beds in the Swauk Formation. Kamb 
(1959) method, contour interval of 2σ. Π = 4°, 297°. Maximum of 119°, 61° SSW. 
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n=65 
 
Figure 24. Stereographic projection of all poles to fault planes in the Swauk Formation. 
Kamb (1959) method, contour interval of 2σ. Maximum of 359°, 84° E. 
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Figure 25. Geologic map of orientations of beds (n=19) and faults (n=8), and cross  
section D-D’ in the Beehive Reservoir area. Not all data are shown. Thin lines in cross 
sections indicate traces of bedding.  
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n=9 
 
Figure 26. Stereographic projection of faults and rakes (dots) in the Tip-Top area of the 
Chumstick Formation.  
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of which strikes counter-clockwise (296°) to the Leavenworth fault. Fault strikes average 

264°. Rakes are scattered, vary from ~11-80°, and average 50°. Fifty-five per cent of 

rakes are >45° (Fig. 26). 

Mission Ridge extends as far as ~3 km east of the main segment of the Leavenworth 

fault (Fig. 21). The few beds (n=5) cluster and have a mean strike of ~131°, a SW dip 

that ranges from ~41-64°, and a mean of ~55° (Fig. 22). Broad folding is indicated by 

bedding rotation from NW strikes ~2 km from the fault to WNW strikes near the fault 

(Fig. 21). In addition, Tabor et al. (1982) mapped an anticline and two synclines in the 

Chumstick Formation on Mission Ridge (Fig. 21).   

The Beehive Reservoir study area (Fig. 25) extends as far as ~2 km east of the main 

fault. Here, the Leavenworth fault zone is ~1.5 km wide, and strikes ~315°. Beds (n=35) 

strike NW with a mean of ~301°; dips are to the NE, range from 33-90°, and have a mean 

of ~75°. Poles to beds (n=35) indicate a maximum of 302°, 76° NE (Fig. 27). 

In the Beehive Reservoir area, the 16 measured faults have >3 m displacement. Ten 

of these faults strike >45° from the main strand of the Leavenworth fault, eight of which 

strike clockwise (020- 031°), and two of which strike counter-clockwise (085° and 270°). 

Six out of the 16 measured faults strike <30° from the Leavenworth fault, five of which 

strike counter-clockwise (300-311°) to the fault, and one of which strikes clockwise 

(326°) to the fault. Fault planes with rakes strike NW and NE with a mean of ~001°, dip  

NE and NW with a mean of 71°, and have a maximum of 271°, 77° N. Rakes are  

primarily moderate to steep and range from 3-89°, with an average of 56° (Fig. 28). 

Overall, beds (n=50) in the study areas in the Chumstick Formation strike NW  
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n= 35 
 
Figure 27. Stereographic projection of poles to beds in the Beehive Reservoir area. Kamb 
(1959) method, contour interval of 2σ.  
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n= 16 
 
Figure 28. Stereographic projection of faults and rakes (dots) in the Beehive Reservoir 
area. Maximum = 271°, 77° NNE. 
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(averaging ~306°) and dip mostly to the NE (mean of 66°). On a stereographic projection, 

poles to beds (Fig. 29) define a girdle with a maximum (304°, 80° NE), and indicate a 

fold axis plunging 13° towards 306°. Six folds of ~200 m-1.3 km wavelength trend NW 

(~ 270°-360°), and average ~312°. 

PETROGRAPHY 

Swauk Formation  

The goal of the petrographic study is to analyze the constituents of each clastic 

sample and to gain a better understanding of the provenance of the grains and rock 

fragments. A total of 8 sandstones from the Swauk Formation were analyzed for 

petrographic and point counting analysis, and results were plotted on a QFL ternary 

diagram (Dickinson and Suczek, 1979, Dickinson et al., 1983). The samples are 

described in stratigraphic order, and they are from Ruby Creek-Windmill Point (FS280, 

FS151, FS149) and Tronsen Ridge and vicinity (FS140, FS145, FS147, FS224, FS224A) 

(Fig. 30).  

All Swauk sandstones consist dominantly of quartz, plagioclase (commonly 

fractured), lithics and micas. They are lithic arkose, subarkose, and feldspathic litharenite, 

plotting mostly in the transitional continental field, the recycled orogenic field, the 

dissected arc provenance field, and the mixed field on a QFL ternary diagram (Fig. 31). 

Secondary calcite and chlorite are abundant in some samples. Mineral modes for the set 

of samples before normalizing the data plotted in the QFL ternary diagrams (Appendix  

B) are as follows: quartz ranges from ~36-68% and averages ~49%; feldspars range from 

~14-32% and average ~23%; and biotite ranges from ~3-8% and averages ~5%. 
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n=50 
 
Figure 29. Stereographic projection of all poles to beds in the Chumstick Formation. 
Kamb (1959) method, contour interval of 2σ. Π = 306°, 13°. Maximum of 304°, 80° NE. 
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Figure 30. Map of the field area showing the location of dated samples and samples petrographically analyzed. Maximum 
depositional ages (MDA) are also listed. See Appendix A for list of UTM locations of dated samples.
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Figure 31. Ternary plots for Swauk Formation sandstones and FS253 of the Chumstick 
Formation. Samples plot primarily as lithic arkoses and feldspathic litharenites and in the 
transitional continental, dissected arc, mixed, and quartzoze recycled provenance fields 
(Dickinson et al., 1983). Q-F-Lt values were normalized to equal 100%. See Appendix B 
for detailed point counting data. 
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Miscellaneous and unidentified components include muscovite, oxides, and cement. 

Chert, unidentified metamorphic clasts, and/or volcanic rock fragments are common in 

most samples (Appendix B) and are described in more detail below.  

Sample FS280 (MDA = 67.2 ± 1.9 Ma.) was collected at the northwestern end of the 

Ruby Creek-Windmill Point transect (Fig. 30). The sandstone is clast supported and 

mostly coarse grained. On a QFL ternary diagram, this sample is a lithic arkose (Fig. 31). 

In addition to the typical minerals, minor minerals include hornblende, oxides, 

microcline, clinozoisite, and epidote. Overall, this sample contains ~6% metamorphic 

fragments, including phyllite, serpentinite, well-foliated, fine-grained chlorite-muscovite-

schist, biotite schist, ~4% mafic volcanic fragments, ~3% felsic volcanic fragments, and 

~4% chert fragments. Volcanic fragments are too small to further classify using a 

petrographic microscope. There are clasts with myrmekitic texture, and quartz grains 

have minor Boehm lamellae. Grains are poorly sorted, sub-angular to angular, and have a 

low sphericity (Fig. 32). 

Sample FS151 was collected ~ 6 km south of FS280, between the Ruby Creek- 

Windmill Point area and Tronsen Ridge (Fig. 30), and the outcrop is composed of 50% 

fine-grained sandstone and 50% shale interbeds (Fig. 33A). This sample was mapped as 

micaceous feldspathic to lithofeldspathic sandstone by Tabor et al. (1982); however, on a 

QFL diagram, the sample is a fine-grained subarkose (Fig. 31). In addition to the typical 

minerals, this sample has sericitized plagioclase, and folded biotite is common between  

quartz grains. Clinozoisite occurs in minor amounts. Overall, this sample contains ~7% 

mafic volcanic rock fragments, ~1% metamorphic fragments, including fine-grained 
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Figure 32. Sample FS280 of the Swauk Formation in the Ruby Creek-Windmill Point 
area. A) Hand sample. B) Fractured plagioclase in crossed polars. C) and D) Well-
foliated phyllite in crossed polars and plane light, respectively. E) and F) Fine-grained, 
well-foliated chloritic schist in crossed polars and plane light, respectively.  
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Figure 32 (continued). G) and H) Fine-grained, well-foliated biotite schist in crossed 
polars and plane light, respectively. I) and J) Fine-grained, mafic volcanic rock in crossed 
polars and plane light, respectively. K) and L) Serpentinite in crossed polars and plane 
light, respectively.  
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Figure 33: Sample FS151of the Swauk Formation between the Ruby Creek-Windmill 
Point area and Tronsen Ridge. A) Outcrop of sandstone and shale interbeds. B) Sample 
FS151 under crossed polars showing well-sorted grains.  
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micaceous quartzite with elongate quartz and fine-grained, well-foliated phyllite, and 0% 

felsic volcanic fragments. This fine-grained (~ 1/4–1/8 mm) sandstone is very well sorted 

and clast supported, and grains are angular with a high sphericity (Fig. 33B).  

Sample FS149 was collected ~1 km south of FS151, between Ruby Creek and 

Tronsen Ridge (Fig. 30) from an outcrop of fine-grained, thinly bedded, grey sandstone. 

Common minerals are present as well as minor clinozoisite. Overall, rock fragments 

average ~22% of this sample, and include chert and two types of metamorphic rock 

fragments: fine-grained micaceous quartzite with elongate quartz and fine-grained, well-

foliated phyllite. This sandstone is clast supported and very poorly sorted to poorly 

sorted; grains have low sphericity, and the sandstone is mostly fine to medium grained 

with some coarse grains (Fig. 34).  

Sample FS147 was collected ~ 1 km south of FS149 (Fig. 30) from an outcrop of  

thinly bedded, fine-grained sandstone. On a QFL diagram, this sample is a lithic arkose 

(Fig. 31). In addition to the typical minerals, muscovite, folded chlorite, epidote, and 

minor clinozoisite are also present. Quartz and biotite grains are moderately aligned (Fig. 

35). Overall, this sample contains ~8% metamorphic rock fragments, including phyllite, 

~2 % mafic volcanic clasts, ~2% felsic volcanic clasts, some of which are altered by 

chlorite, and even smaller amounts of chert (~1%). This sandstone is matrix supported or 

supported by rock fragments compacted between the grains. Grains are very well sorted, 

equigranular, subrounded, and have a moderate to high sphericity (Fig. 35). 

Sample FS140 (MDA = 51.6 ± 1.3 Ma.) of the upper Tronsen Ridge Member (Fig.  

30) was collected ~3 km south of FS149, from an outcrop of 50% medium-grained 
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Figure 34. Sample FS149 of the Swauk Formation between the Ruby Creek-Windmill 
Point area and Tronsen Ridge. A) Hand sample. B) Folded biotite and chloritized biotite 
in crossed polars. C) and D) Mafic volcanic fragment in crossed polars and plane light, 
respectively. E) and F) Fine-grained micaceous quartzite with elongate quartz in crossed 
polars and plane light, respectively. G) and H) Muscovite-bearing phyllite in crossed 
polars and plane light, respectively.   
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Figure 35. Sample FS147 of the Swauk Formation between the Ruby Creek-Windmill 
Point area and Tronsen Ridge. A) and B) Alignment of grains in crossed-polars, indicated 
by the red arrows.  
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sandstone and 50% shale interbeds. On a QFL diagram, this sample is a feldspathic 

litharenite (Fig. 31). In addition to the typical minerals, microcline, hornblende, and 

minor clinozoisite are present. Plagioclase is sericitized and fractured, and myrmekitic 

texture is common. A cataclastic band cuts through the sample. Overall, this sample 

contains ~7% felsic rock fragments, ~5% mafic rock fragments, ~5% metamorphic rock 

fragments, ~5% chert, and ~5% unidentified lithics. Volcanic fragments are extensively 

altered by chlorite. This sandstone is clast supported and has a clay matrix; grains are 

poorly sorted and angular with moderate sphericity (Fig. 36).  

Sample FS145 (MDA = 50.46 ± 0.17 Ma) of the upper Tronsen Ridge Member was 

collected ~ 1 km south of FS147 (Fig. 30) from an outcrop of medium-grained sandstone. 

On a QFL diagram, this sample is a lithic arkose (Fig. 31). In addition to the typical 

minerals, apatite and tourmaline are present in minor amounts. Plagioclase albite law 

twinning, minor strain lamellae in feldspars, and sericitized plagioclase are present. 

Overall, this sample contains ~5% metamorphic fragments, including graphitic biotite 

phyllite, and quartz-muscovite-biotite-phyllite, ~4% felsic volcanic fragments, ~3% 

sedimentary fragments, and ~2% mafic volcanic fragments. Many volcanic fragments 

have porphyritic texture. This sandstone is clay supported and moderately sorted, and 

grains are sub-angular to sub-rounded with low sphericity (Fig. 37).  

Sample FS224 of the lower Tronsen Ridge Member was collected ~4 km SE of 

FS140 (Fig. 30) from an outcrop of coarse-grained, cross-bedded sandstone. On a QFL  

diagram, this sample is a lithic arkose (Fig. 31). In addition to the typical minerals, 

clinozoisite and epidote occur and myrmekitic texture is present. Secondary calcite 
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Figure 36. Sample FS140 of the upper Tronsen Ridge Member of the Swauk Formation. 
A) Hand sample. B) and C) Mafic volcanic rock fragments altered by chlorite in crossed 
polars and plane light, respectively. D) and E) Felsic volcanic rock fragment altered by 
chlorite in crossed polars and plane light, respectively. 
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Figure 37. Sample FS145 of the upper Tronsen Ridge Member of the Swauk Formation. 
A) Hand sample. B) A kink fold of a plagioclase crystal. C) and D) Graphitic biotite 
phyllite in cross polars and plane light, respectively. E) and F) A low grade, foliated, 
metamorphic rock (unable to differentiate further) fragment with biotite in crossed polars 
and plane light, respectively.    
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occurs in some rock fragments and some plagioclase grains are fractured. This sample 

contains ~10% felsic volcanic rock fragments, ~6% mafic volcanic rock fragments, ~6% 

chert, and ~3% metamorphic rock fragments. Diabase is also present in minor amounts 

and volcanic fragments are commonly altered by chlorite. This sandstone is clast 

supported and mostly coarse grained. Grains are well to moderately sorted, and angular 

with moderate sphericity (Fig. 38). 

Sample FS224A of the lower Tronsen Ridge Member is a coarse-grained sandstone  

concretion collected in the same outcrop as sample FS224 (Fig. 30). On a QFL diagram, 

this sample is a lithic arkose (Fig. 31). In addition to the typical minerals, minor 

muscovite, and rare clinozoisite are also present. Fractured grains are common. Overall, 

this sample contains ~5% chert, ~6% mafic volcanic fragments, ~5% felsic volcanic 

fragments rich in biotite and quartz, and ~2% metamorphic rock fragments, including 

graphitic schist and biotite-bearing phyllite. Diabase is also present in minor amounts. 

This sample contains 7% less rock fragments than sample FS224. This difference can be 

attributed to the removal of these fragments due to replacement by carbonates, or the 

compaction of rock fragments between grains in sample 224A. Sample 224A has calcite 

cement and is matrix supported. Grains are poorly sorted, and angular with low sphericity 

(Fig. 39). 

Chumstick Formation   

Two samples were point counted from the Devil’s Gulch Member of the Chumstick 

Formation, including a sample from the northern segment of the member near Camas  

Creek (FS13) and another southwest of Beehive Reservoir (FS253) (Fig. 30). These  
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Figure 38. Sample FS224 of the lower Tronsen Ridge Member of the Swauk Formation. 
A) Hand sample. B) Chloritized biotite. C) and D) Felsic volcanic rock fragment altered 
by chlorite in crossed polars and plane light, respectively. E) and F) A diabase fragment 
in crossed polars and plane light, respectively. 
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Figure 39. Sample FS224A of the lower Tronsen Ridge Member of the Swauk 
Formation. A) Outcrop FS224 and concretions FS224A. B) Hand sample of sandstone 
concretion. C) and D) Fine-grained graphitic schist in crossed polars and plane light, 
respectively. E) and F) Mafic volcanic rock fragments in crossed polars and plane light, 
respectively. G) and H) Fine-grained, metamorphic rock fragment rich in biotite (upper) 
and a chert fragment (lower) in crossed polars and plane light, respectively. 
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samples consist dominantly of quartz, plagioclase, and micas. Mineral modes for quartz 

range from ~34-80% and average ~57%, plagioclase ranges from ~8-35% with an 

average of ~22%, and biotite ranges from ~6-10% with an average of ~8%. Biotite is 

commonly folded. These two samples are described individually in detail below.  

Sample FS13 was collected ~0.5 km east of the Ingalls Complex (Fig. 30) and is a 

siltstone interbed within the conglomerate of the Devil’s Gulch Member. The outcrop is 

fine-grained and dips west. This sample contains recrystallized and moderately elongate 

quartz with sutured boundaries, and smaller amounts (6%) of detrital muscovite between 

the quartz grains. Granoblastic texture is present in some quartz grains and bedding is 

evident by a change from fine to medium grain size (Fig. 40). There are no visible rock 

fragments. 

Sample FS253 (MDA = 86.9 ± 2.0 Ma.) was collected ~ 3 km SW of Beehive 

Reservoir within the Leavenworth fault zone (Fig. 30) and is conglomerate of the Devil’s  

Gulch Member (Tabor et al., 1982). This sample contains biotite crystals ranging in 

length from ~ 1-5 mm, and quartz crystals ranging in length from ~ 1 mm - 1 cm. In 

addition to the typical minerals, minor tremolite, muscovite, and clinozoisite are present. 

The rock contains abundant folded biotite, minor clasts with myrmekite texture, 

sericitized plagioclase, and calcite replacement of feldspar. Overall, this sample contains 

~ 5% chert, ~3% felsic volcanic fragments, ~1% mafic volcanic fragments, and ~4%  

metamorphic rock fragments. Volcanic fragments are commonly altered by chlorite. This  

sample is framework supported and lacks porosity; grains are very poorly sorted to  
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Figure 40. Sample FS13 of Devil’s Gulch Member of the Chumstick Formation near 
Camas Creek. A) Bedding defined by difference in grain size is roughly marked by the 
dashed red line; in crossed polars. B) Detrital muscovite between sutured, recrystallized 
quartz marked by the red arrow; in crossed polars.   
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poorly sorted, very fine to very coarse grained, and are very angular with low sphericity  

(Fig. 41).    

Teanaway Dikes 

The early Eocene (~ 49.3 Ma; Eddy et al., 2016) Teanaway Formation consists of  

basaltic flows, breccias and tuffs, and minor rhyolites and fluvial sedimentary rocks 

(Tabor et al., 1984, 2000). Abundant dikes intruding the Swauk Formation are referred to 

as Teanaway dikes (Foster, 1958; Tabor et al., 1982, 1984) and are interpreted to be 

synchronous with the volcanic rocks of the Teanaway Formation. In the study area, 

Teanaway dikes are common in the northern transects, such as in the Ruby Creek-

Windmill Point area, and are rare in the Tronsen Ridge area. 

Four dike samples were collected in the Ruby Creek-Windmill Point area at stations 

FS56, FS58, FS105, and FS107 (Fig. 30). In hand sample, the dikes are aphanitic 

and equigranular, with the exception of FS107, which is mildly porphyritic, displaying 

~0.5 mm long plagioclase crystals. Colors range from tan, to purplish-gray, to dark gray.  

In thin-section (Fig. 42), dikes consist dominantly of plagioclase laths, and secondary 

biotite and chlorite; minor quartz occurs in some dikes. Clinopyroxene and hornblende 

are the dominant primary mafic minerals. In addition, FS56 contains oxides, FS105 has 

apatite needles (Fig. 42D), suggesting quenching, and FS107 has sizable (~0.7 mm) and  

abundant (~15%) quartz, and hornblende replaced by biotite. Extensive low-temperature 

alteration prevents further analysis (Fig. 42). These observations are in accordance with 

those of Doran (2009) and Foster (1958).   
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Figure 41. Sample FS253 of the Chumstick Formation southwest of Beehive Reservoir. 
A) Hand sample. B) and C)  Felsic volcanic rock fragment altered by chlorite in crossed 
polars and plane light, respectively. D) and E) Chert in crossed polars and plane light, 
respectively.   
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Figure 42. Photomicrographs of Teanaway dikes. A) and B) Dike showing common 
minerals under cross polars and plane light, respectively. C) Clinopyroxene in sample 
FS56. D) Apatite needles in sample FS105. 
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GEOCHRONOLOGY AND PROVENANCE OF UNITS 

The goal of the detrital zircon geochronology carried out for this study is to determine  

maximum depositional age and rock provenance of sandstones in and near the 

Leavenworth fault zone. Dating sandstone samples from different stratigraphic locations 

was conducted using Back-Scattered Electron (BSE) imaging and LA-ICPMS at the 

LaserChron lab in Tucson, Arizona. Four Swauk samples (FS280, FS140, FS145, FS147) 

and one Chumstick sample (FS253) were processed. One zircon from sample FS145 was 

re-evaluated using high precision CA-ID-TIMS (see methods) by M. Eddy (Fig. 30). See 

Appendix A for a list of UTM locations of dated samples. 

The geochronological data from this study, along with paleocurrent data (Fraser,  

1985; Taylor et al., 1988), imply that the dated detritus reflects a local provenance. 

Paleocurrent data and ages from tuffs suggest that Swauk sediment was predominantly 

derived from the north and northeast between ≤59.9 and ~51.3 Ma, and was followed by 

a reversal in paleoflow direction from the southwest between ~51.3 and 49.9 Ma 

(Frizzell, 1979; Tabor et al., 1984; Eddy et al., 2016). 

The potential sources for the Swauk Formation to the north and northeast are largely 

rocks of the Cascades crystalline core and the Okanogan Range batholith (Figs. 2 and 

43). The adjacent Wenatchee block of the core is characterized by 96-86 Ma plutons that 

intrude the Early Cretaceous Chiwaukum Schist of the Nason terrane and Jurassic Ingalls 

Ophiolite (Figs. 2 and 43; Table 3) (Tabor et al., 1982, 1989; Miller, 1985; Miller et al., 

2009a, 2016). The Chelan block of the Cascades crystalline core (Figs. 2 and 43; Table 3) 

consists mainly of 96-45 Ma plutons and meta-supracrustal rocks, including the Late  
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Figure 43. Geologic map emphasizing potential sources for Eocene clastic rocks and 
rocks in the Cascades core and adjacent units. Note location of study area (in red). 
Dextral strike-slip motion on the Straight Creek fault is restored to the maximum offset 
estimate (~170 km). NWCS=Northwest Cascades System, RLFZ=Ross Lake fault zone, 
WMB=western mélange belt. Figure modified from Gordon et al. (2017). 
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Table 3. Overview of the crystallization ages of plutons in the Cascades core.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Ages from Misch (1966), Miller and Bowring (1990), Walker and Brown (1991) 
Hurlow (1992), Matzel (2004), Matzel et al. (2006), Miller et al. (2009a, 2016), and Shea 
et al. (2017). 
 

  
  
  
  

Chelan Block Plutons Age (Ma) 
Oval Peak 65 
Entiat  73-71 
Jordan Lakes 74 
Hidden Lake 75 
Cardinal Peak 78-72 
High Pass 88 
Bearcat Ridge 89 
Eldorado 90 
Black Peak 92-87 
Seven-Fingered-Jack 92 
Sulphur Mountain 96 
Chelan Complex Early Cretaceous 
 
Wenatchee Block Plutons  

 
Age (Ma) 

Sloan Creek 90 
Mount Stuart   96-91 
Beckler Peak 91 
Dirtyface 91 
Tenpeak 92-89 
Wenatchee Ridge 93 

  Unfocused Magmas  Age (Ma) 
Napeequa Sheets 88-71 
Cascade River Sheets 90-72 
Nason Terrane Sheets 90 
Skagit Orthogneiss 76-48 



 

76 

 

Cretaceous Swakane Biotite Gneiss, the Paleozoic-Jurassic Napeequa unit, the Triassic-

Late Cretaceous Cascade River Schist-Holden unit, and orthogneisses of various ages 

(Table 4). Some of these units also occur in the northern part of the Wenatchee block  

(Tabor et al., 1989, 2003; Brown et al., 1994; Miller et al., 1994). Other sources to the 

east of the Cascades core include the Jurassic-Late Cretaceous clastic rocks of the 

Methow terrane (e.g., Barksdale, 1975; DeGraaff-Surpless et al., 2003; Surpless et al., 

2014). Potential sources to the west of the Cascades core for the southwest-derived 

detritus are the Late Cretaceous sedimentary rocks of the Nanaimo Group, sandstones 

and plutonic rocks of the Cretaceous western mélange belt, and the Late Paleozoic-Early 

Cretaceous Northwest Cascades system (Misch, 1966; Brandon, 1988; Brown et al., 

1994; Mustard, 1994; Brown and Gehrels, 2007) (Fig. 43). Age clusters and sources for 

each sample are discussed below. 

Swauk Formation 

Detrital zircons (n=108) were dated from sample FS280 from the Ruby Creek-

Windmill Point area located in the northeastern part of the Swauk Formation (Fig. 30). 

This sample has a MDA of 67.2 ± 1.9 Ma. The youngest and most prominent peak is ~73 

Ma, followed by peaks of ~88 Ma and ~110 Ma, and a few ~168 Ma and ~208 Ma grains 

(Fig. 44).  

The youngest, ~73 Ma peak probably has a local source in the Chelan block. Potential 

sources of this age in the block include the Entiat pluton, Cardinal Peak pluton, and 

orthogneiss in the Skagit Gneiss Complex (Haugerud et al., 1991; Miller et al., 2016) 

(Tables 3 and 4). The Cretaceous peaks (~88 Ma, ~110 Ma) could be derived from a  
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Table 4. Overview of detrital zircon ages of metamorphic units in the Cascades core.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Ages from Haugerud et al. (1991), Walker and Brown (1991), Hurlow (1992), Matzel (2004), Brown and Gehrels 
(2007), Miller et al. (2009a, 2016), and Gordon et al. (2017). 
 

Host Rock Depositional Age (Ma) Detrital Zircon Age Peaks (Ma) 

Swakane Biotite Gneiss Late Cretaceous, MDAs: ~91-87 
Ma, ~82-78 Ma.   

1.8-1.6 Ga, 1.4-1.3 Ga, 100-90, 
160-150 Ma, 120 Ma. 

Skagit Gneiss Complex 
Early Cretaceous- Paleocene, 
MDAs: ~134, ~124, ~121, ~115, 
~112, ~108, ~96 Ma.  

Proterozoic-Late Cretaceous 

   
Chiwaukum Schist Early Cretaceous, MDA: 125 

Ma. 152, 125 

Cascade River Schist and 
Holden unit 

Triassic-Late Cretaceous, 
MDAs: ~107, ~97, ~91 Ma.  

230, 205, 190, 165, 150, 120, 
115, 107, 96, 93 

Ingalls Complex sediments Late Jurassic 155-164, 150  

Napeequa Schist Paleozoic-Jurassic 245-225 
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Figure 44. Relative probability plot of detrital zircon ages with MDAs for all dated 
samples. Swauk samples are arranged in stratigraphic order. 
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combination of sources in the Wenatchee block and Chelan block to the northeast (Miller 

at al., 2009a) (Table 3). The ~110 Ma peak also has a potential source in the ~120-110  

Ma Okanogan Range batholith (Hurlow, 1993), or represent reworked zircons from the  

Winthrop Formation and Jackass Mountain Group in the Methow basin (Surpless et al.,  

2014) (Fig. 43). The Middle Jurassic, ~168 Ma grains have a potential Cascade River 

Schist source, with a detrital zircon age peak at 165 Ma (Gordon et al., 2017) (Table 4). 

The ~208 Ma grains reflect numerous potential sources, including the Cascade River 

Schist and Holden unit, Little Jack unit, Dumbell Mountain plutons, and the Late Triassic 

Leecher metamorphics (Barksdale, 1975; Cater, 1982; Tabor et al., 1989, 2003; Miller et 

al., 1994; Gordon et al., 2017; Sauer et al., 2017) (Figs. 2 and 43; Table 4). 

Detrital zircons (n=109) from sample FS140 of the Swauk sandstone from the lower 

part of the Tronsen Ridge Member (Fig. 30) have peaks at ~50 Ma, ~60-70 Ma and ~90 

Ma, a broad spread with small peaks at ~127 Ma, ~150 Ma, and ~192 Ma, scattered 

~304-420 Ma grains, and a MDA of 51.6 ± 1.3 Ma (Fig. 44).  

The youngest ~51 Ma peak can be attributed to 51-43 Ma Challis magmatism in 

northeastern Washington to Idaho (Dumitru et al., 2013), but is more likely sourced from 

the local ~51.3 Ma Silver Pass tuff to the west (Eddy et al., 2016). The ~61-70 Ma cluster 

has a potential Chelan block source, such as the 76-59 Ma orthogneisses in the Skagit 

Gneiss Complex and the 65 Ma Oval Peak pluton (Miller at al., 2009a, 2016) (Tables 3  

and 4). A number of plutons in the Wenatchee and Chelan blocks are possible sources for 

the ~90 Ma detrital zircons (See Fig. 2 and Table 3). The Cretaceous and Jurassic, ~100- 

200 Ma grains may be derived from a combination of sources listed in Table 4, including: 
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Mesozoic detrital zircons of the western mélange belt (Sauer et al., 2017), Late Jurassic 

Ingalls Ophiolite Complex of the Northwest Cascades system (NWCS) (Miller, 1985), 

the Late Cretaceous Nanaimo Group (Mustard, 1994; Matthews et al., 2017), the 

Okanogan Range batholith (Hurlow, 1993), and the Jurassic-Cretaceous strata of the 

Methow terrane (Surpless et al., 2014; Gordon et al., 2017) (Figs. 2, 43, and 44). The 

source for the Paleozoic, ~300-360 Ma and ~400-420 Ma grains is poorly constrained; 

these grains may have been derived from nappes of the NWCS (Brandon et al., 1988; 

Brown and Gehrels, 2007) (Fig. 43). 

Detrital zircons (n=110) for sample FS145, from the upper part of the Tronsen Ridge 

Member (Fig. 30), have peaks at ~51 Ma, ~90 Ma, a broad spread between ~150-240 Ma 

with peaks at ~164.8 Ma and ~240 Ma, and a single grain at ~360 Ma. This sample had a 

MDA of 49.7 ± 1.2 Ma from the LA-ICPMS dates. The youngest dated zircon was later 

picked and re-evaluated by CA-ID-TIMS, providing a more precise MDA of 50.46 ± 0.17 

Ma (M. Eddy, written communication).  

The magmatic rocks from the 51.36 ± 0.03 Ma Silver Pass Member are likely 

responsible for the ~50 Ma grains, whereas plutonic rocks in the Wenatchee and Chelan 

blocks, and the sheets in the Nason terrane and in the Holden unit, may be the source of 

the ~90 Ma grains (Table 3). The Middle Triassic to Late Jurassic grains of ~150-240 Ma 

can be attributed to contributions from a number of sources included in Table 4 and other  

ones to the west and east of the Straight Creek fault, such as the Early Jurassic Little Jack 

unit (Sauer et al., 2017), Late Jurassic detrital zircons of the Nanaimo Group (Mustard,  

1994), Jurassic detrital zircons of the western mélange belt and the Northwest Cascades 
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system to the southwest, and Late Jurassic rocks of the Methow basin to the northeast 

(Surpless et al., 2014; Sauer, 2017) (Figs. 2 and 43).  

Detrital zircons (n=45) were dated from sample FS147, from the upper Swauk 

sandstone, north of the Tronsen Ridge Member (Fig. 30). This sample has age peaks at 

~64 Ma, ~75 Ma, and ~96 Ma, clusters at ~128-147 Ma and ~197 Ma, one grain at ~220 

Ma, one at ~284 Ma, and two earliest Cambrian to Proterozoic grains at 540-580 Ma. The 

MDA is 75.8 ± 2.0 Ma (Fig. 44). Given the evidence for local derivation the MDA is 

probably significantly older than the actual depositional age. 

The ~64-75 Ma zircons have a probable Chelan block signature (Tables 3 and 4). The 

~95 Ma grains are most likely derived from plutons in the Wenatchee block and from 

some plutons in the Chelan block (Table 3), whereas the smaller Early Cretaceous ~128-

147 Ma cluster could have various potential sources (Table 4), including the Okanogan 

Range batholith (Hurlow, 1993), Northwest Cascades System (Brandon et al., 1988), and 

Methow terrane (Surpless et al., 2014, 2017; Sauer, 2017). The ~147-197 Ma cluster may 

have multiple sources listed in Table 4, including the Ingalls Ophiolite Complex (Miller, 

1985), Nanaimo Group (Mustard, 1994; Matthews et al., 2017), western mélange belt 

(Tabor et al., 2002), and the Methow terrane (Surpless et al., 2014; Sauer, 2017). The 

~220 Ma grain, has potential sources in the Cascade River Schist-Holden unit, Little Jack 

unit, and reworked zircons from sedimentary rocks in the Ingalls Complex (Figs. 2, 43 

and 44; Table 4). The latter is compatible with field and petrographic evidence for an  

Ingalls source (Johnson and Miller, 1987; Harper et al., 2003) The few Paleozoic and 

Proterozoic (~284-580 Ma) grains (n=3) are also compatible with the detrital zircons in 
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the Lookout Mountain Formation south of the Swauk Formation (Brown and Gehrels, 

2007; LaMaskin, 2012; MacDonald et al., 2017) (Fig. 43). 

Chumstick Formation 

Detrital zircons (n=110) from sample FS253 from a sandstone interbed of the Devil’s 

Gulch Member of the Chumstick Formation in the Beehive Reservoir area (Fig. 30) plot 

in a single cluster. They peak at ~91.8 Ma, and have a MDA of 86. 9 ± 2.0 Ma (Fig. 44).  

Late Cretaceous ages are widespread in the Cascades core in the Wenatchee and 

Chelan blocks, and a ~91 Ma pluton is a presumed source (Table 3). LA-ICP-MS U-Pb 

dating of zircons from Devil’s Gulch conglomerate clasts by LaCasse et al. (2013) 

indicated ages of 91.0 ± 2.3 Ma, 90.6 ± 1.5 Ma, and 91.7 ± 1.8 Ma, which are consistent 

with crystallization ages of the Tenpeak pluton and Mount Stuart batholith in the 

Wenatchee block (Fig. 2). Considering the proximity of the Mount Stuart batholith to the 

Swauk Formation and that it is cut by the Leavenworth fault, it seems likely that the 

clasts were derived from this intrusion (Taylor et al., 1988; LaCasse et al., 2003).      

DISCUSSION 

The main focus of this research is to further understand the widely debated movement 

history of the Leavenworth fault. Different workers have interpreted the structure as 

either a dextral strike-slip fault or a reverse-slip fault. In addition, they have proposed 

contrasting ages of movement on the fault zone, and different hypotheses for the 

formation and depositional history of the Swauk basin (Taylor et al., 1988; Evans et al.,  

1989; Evans, 1994; Cheney and Hayman, 2009; Eddy et al., 2016). These interpretations 

are briefly reviewed before I discuss the implications of my data. 
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Taylor et al. (1988) argued that alternating pulses of extensional and compressional 

deformation were the main controls of sedimentation of the Swauk Formation, a common 

occurrence in strike-slip basins. Evans (1994) suggested uplift along the fault zone due to 

transpression. Fold orientations, en enchelon faults, offset of conglomerate beds, and NE-

trending dikes intruding the Swauk Formation are consistent with dextral shear (Evans, 

1994). In contrast, Cheney and Hayman (2009) suggested that the Leavenworth fault 

zone is a post-depositional reverse fault. Most recently, geochronological data of Eddy et 

al. (2016) combined with paleocurrent data of Taylor et al. (1988) indicate that the Swauk 

basin accumulated along W- or SW-flowing streams between ≤59.9 and 51.3 Ma, and 

along NE-flowing streams between 51.3 and >49.9 Ma. Tuff ages of 49.1 Ma in the lower 

part of the Chumstick Formation demonstrate that sediment accumulation initiated close 

in time to the eruption of the lower part of the Teanaway Formation (49.3 Ma) (Eddy et 

al., 2016), and support previous interpretations that the Chumstick Formation is younger 

than the Swauk Formation (e.g., Tabor et al., 1984). Eddy et al. (2016) argued that the 

rapid sediment accumulation rates in the Chumstick Formation are consistent with strike-

slip basins, as are distinctive plutonic clasts separated dextrally from their likely sources. 

Summary and Analysis of Structural Data from the Swauk Formation 

The main strand of the Leavenworth fault in the study area has a NW strike of ~320° 

(Figs. 2 and 43). The fault zone is approximately 5 km wide in its southernmost segment, 

where this study was conducted. Overall, poles to beds (n=207) in the Swauk Formation  

indicate a WNW-striking and SSW-dipping maximum of 119°, 61° SSW °. Dips of 

Swauk beds range from 0°-90° to the NNE and SSW, and average 55° SSW. Beds define  
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a girdle and a fold axis plunging 4° toward 297° (Fig. 23). There is significant scatter in 

the girdle indicating non-cylindrical folding.  

Most of the mapped folds (n=15) in the Swauk Formation trend NW to WNW, 

averaging ~298, and nearly 70% are counter-clockwise from the main strand of the 

Leavenworth fault. Of 15 measured folds, six trend between 0°-10° from the fault, two of 

which trend clockwise (330° and 340°) to the fault, and four of which trend counter-

clockwise (315-320°) to the main fault. One fold trends between 11°-20° (300°), two 

folds trend between 21°-30° (292° and 296°), and six folds trend >30° (249-290°), 3 of 

which trend 31°-44° (276°-284°) from the fault. In a dextral transpression wrench model, 

compressional features are oriented <30° counter-clockwise from the main fault, whereas 

in a dextral simple shear strike-slip model, they are oriented at ~45°, and in a dextral 

transtension wrench model, they are oriented at >45° (Sanderson and Marchini, 1984). 

The seven folds that trend <30° counter-clockwise and the three folds that trend 31°-45° 

counter-clockwise from the main fault segment are compatible with a dextral 

transpression wrench model (Fig. 45). The folds that trend >10° from the main fault, are 

not compatible with a reverse fault, and only 6 folds oriented 0°-10° from the main fault 

are compatible with a reverse fault. Folds of the Swauk Formation in the study area 

mapped by Tabor et al. (1982) have a general NW trend, parallel to the main 

Leavenworth fault.   

In the Ruby Creek-Windmill Point and Tip-Top areas of the Swauk Formation, where 

the most faults were measured, fault strikes were separated into those >45°, 31-44°, and 
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Figure 45. Geologic map of the study area highlighting folds. Diagram depicts secondary structures predicted for 
transpressional wrench fault systems. Diagram is oriented so that major fault is parallel to the Leavenworth fault zone. C = 
compression; E = extension; F = folds; N = normal faults; P = P-shears; R = Riedel shears; R’ = Riedel prime shears; T = 
thrust faults; V = veins and dikes. Diagram modified from Sanderson and Marchini (1984).
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<30°, clockwise and counter-clockwise to the main strand of the Leavenworth fault. Of 

25 NW-striking faults, 19 faults strike <30° to the main Leavenworth fault, 11 of which 

strike parallel and counter-clockwise to the fault (290°-320°), and 8 of which strike 

clockwise to the Leavenworth fault (321°-351°). Six of the faults strike 31-44° to the 

Leavenworth fault, 4 of which are clockwise (333°-003°), and 2 of which are counter-

clockwise (281°-305°). Nineteen out of 28 NE-striking faults strike >45° clockwise 

(005°-039°) to the main Leavenworth fault, and nine faults strike >45° counter-clockwise 

(054°-082°) to the fault. In a dextral transpression wrench model, normal faults are 

oriented >60°, and thrust faults are oriented <30° from the main fault. In a dextral simple 

shear strike-slip model, both normal and thrust faults are oriented at ~45°, and in a 

dextral transtension wrench model, normal faults are oriented <30°, and thrust faults are 

oriented >60° from the main fault (Sanderson and Marchini, 1984). Due to a lack of 

exposure and kinematic indicators, the movement sense of these faults is unknown. If the 

faults that strike <30° counter-clockwise to the main fault are reverse, then these data 

could fit dextral transpression. In contrast, if the faults that strike <30°clockwise to the 

main fault are normal, then these data could fit dextral transtension (Fig. 46).  

Of 22 NW-striking faults with measurable rakes in the Ruby Creek-Windmill Point 

and Tip-Top areas, 17 faults have rakes of >45° suggesting dip slip, and only 5 faults, 

which are not considered further, have rakes of <30° suggesting strike-slip movement. 

Nine of the 17 rakes that are >45° are on fault planes that strike clockwise to the 

Leavenworth fault and could be normal faults in dextral shear, and 8 are on fault planes 

that strike counter-clockwise to the Leavenworth fault and could be reverse faults in 
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Figure 46. Geologic map of the Ruby Creek-Windmill Point and Tip-Top areas highlighting faults. Diagram depicts secondary 
structures predicted for transpressional wrench fault systems. Diagram is oriented so that the major fault is parallel to the 
Leavenworth fault zone. C = compression; E = extension; F = folds; N = normal faults; P = P-shears; R = Riedel shears; R’ = 
Riedel prime shears; T = thrust faults; V = veins and dikes. Modified from Sanderson and Marchini (1984). 
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dextral shear. Of 24 NE-striking faults with measurable rakes, 9 faults have rakes of 

<30°, suggesting strike-slip movement, and are on fault planes that strike clockwise to the 

Leavenworth fault and could be R’-shears. Thirteen of the 24 faults have rakes of >45° 

suggesting dip slip, all of which are on fault planes that strike clockwise to the 

Leavenworth fault and could be normal faults in dextral shear. The remaining 2 faults 

have rakes between 31-44°, and are on fault planes that strike clockwise to the 

Leavenworth fault. These faults presumably have significant components of both strike-

slip and dip-slip.  

Gundersen’s (2017) structural analysis of the eastern Swauk Formation, which she 

called domain 7, extends from ~6 to ~20 km southwest of my study area and does not 

include the Leavenworth fault zone. Her data were in large part based on the map of 

Tabor et al. (1982), and she noted that from south to north, folds mapped by Tabor et al. 

(1982) trend east-west and rotate to northwest-southeast approximately 12 km southwest 

of the Leavenworth fault, and continue this trend, as the fault zone is approached. 

Gundersen (2017) inferred that these folds, which as far as ~18 km SW from the 

Leavenworth fault, were rotated clockwise by dextral movement on the fault. 

Gundersen’s (2017) interpretation of dextral shear generally agrees with my 

interpretation of dextral transpression. 

Faults mapped by Tabor et al. (1982) strike 010°-015° and also fit a pure dextral 

strike-slip model if they are normal faults. Normal faults striking 50-55° clockwise from 

the Leavenworth fault are compatible with dextral transpression. In contrast, if the system 

is transtensional, these faults may correspond to left-lateral R’ shears (Fig. 46). It is 
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plausible that these faults predate movement on the Leavenworth fault zone and are 

outside of the wrenching zone (Gundersen, 2017). This is in partial agreement with my 

data, in which faults strike mostly >45° and <30° from the Leavenworth fault, fitting a  

dextral transpression model or a dextral transtension model, depending on whether the 

movement along the faults is normal or reverse (Fig. 47). 

Summary and Analysis of Structural Data of the Teanaway Dikes 

Teanaway dikes rotate from NW-striking in the Ruby Creek-Windmill Point area, to 

NE-striking in the Tip-Top area, as the main strand of the Leavenworth fault is 

approached. This change implies that there is a rotation in the strain field related to the 

fault, or clockwise vertical axis rotation due to the fault.  

Dikes in the SW part of the Ruby Creek-Windmill Point area strike perpendicular 

to the general strike of beds and trend of folds, whereas in the NE part of the Ruby 

Creek-Windmill Point area, dikes strike within ~20° of beds (Fig. 13). As the fault is 

approached, beds and dikes strike perpendicular to each other, suggesting a rotation in 

dike orientation, rather than in bedding. 

Of the 19 measured dikes, seven dikes strike >45° clockwise (006°-045°) to the main 

strand of the Leavenworth fault, and one dike strikes >45° counter-clockwise (073°) from 

the Leavenworth fault. Five dikes strike 22-40° to the fault, four of which strike 

clockwise (342°-000°) to the fault and one of which strikes counter-clockwise (282°) to 

the fault. Six dikes strike <30° to the fault, five of which strike clockwise (329°-346°) 

and one of which strikes counter-clockwise (316°). In summary, most dikes strike >45° 

clockwise or <30° clockwise to the fault. This direction of extension could fit with the  
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Figure 47. A) Geologic map of Gundersen’s (2017) Domain 7 with respect to the study area and the Leavenworth fault zone. 
B) Geologic map highlighting the structures and bedding attitudes of Domain 7. Black lines are folds and red lines are faults. 
Synoptic diagrams modified from Sanderson and Marchini (1984) show secondary structures predicted for right-lateral strike-
slip faults, which are oriented parallel to the Leavenworth fault zone (see caption for Fig. 46 for details). C) Stereographic 
projection showing poles to bedding with Kamb contouring (contour interval= 2 sigma) and best fit great circle. Pi-axis=115°, 
00°. Figure modified from Gundersen (2017).
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transpression model for the dikes that strike >45°, or the transtension model for the eight  

clockwise dikes that strike <30° to the Leavenworth fault. A transtension model is more 

compatible with diking, but the potential rotation of dikes in the fault zone hampers  

interpretation.  

Mendoza (2008) concluded that more than 85% of Teanaway dikes intruding the 

eastern part of Swauk Formation strike NE, with a mean strike of 040°NE and a dip of 

78°SE. Dike strikes and steep dips indicate sub-horizontal extension towards N50°W-

S50°E, which is sub-parallel to slightly counter-clockwise of the regional strike. These 

data are broadly similar to those of Doran (2008) from the western and central parts of 

the Swauk basin, where the mean dike strike is 203° and dip is 67 NW°. Dikes show a 

systematic rotation of 13° from west to east. Mendoza’s (2008) and Doran’s (2008) data 

are in agreement with the NE-striking dikes in my study, fitting a transtension model.  

Summary and Analysis of Structural Data from the Chumstick Formation 

The Chumstick Formation was studied in the Tip-Top, Mission Ridge, and Beehive 

Reservoir areas (Plate 1). In the Tip-Top and Beehive Reservoir areas, beds strike NW 

and dip predominantly NE (Figs. 7 and 25). On Mission Ridge, beds to the north strike 

NW and show a predominant SW dip, and over a distance of ~5.6 km as the fault is 

approached, folds are indicated by the rotation of beds to WNW-striking (Fig. 21). These 

beds are oriented oblique to the main strand of the Leavenworth fault.   

Overall, beds in the Chumstick Formation strike NW and dip mostly to the NE. There 

is significantly less folding and rotation of strikes in the Chumstick Formation compared 

to the Swauk Formation. Most folds are within 1 km of the main strand of the 
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Leavenworth fault. Poles to beds in the Chumstick Formation form a bimodal distribution 

and define a weak girdle and a fold axis plunging 13° towards 306° (Fig. 29). Folds (n=6) 

of ~200 m wavelength trend ~ 270°-360°; almost all (n=5) of these folds trend ~ 270°-

330°, and the average is ~312°. There are equal numbers of folds trending counter-

clockwise (270°-312°) and clockwise (325°-360°) to the main segment of the 

Leavenworth fault. These observations are in agreement with Tabor et al. (1982), who 

mapped NW-trending folds that trend clockwise and counter-clockwise to the main 

strand of the Leavenworth fault. The few fault planes (n=9) measured in the Tip-Top area 

of the Chumstick Formation strike mainly NW and dip steeply to the NE and SW. Two 

faults strike NE, at >45° clockwise (52° and 65°) from the main strand of the 

Leavenworth fault. Five of the NW-striking faults are clockwise (322°-350°) from the 

main fault, and 2 faults strike WNW (280°-296°), counter-clockwise from the main fault. 

NW-and NE-striking faults average 326° and 076°, and dips average 59° NE and 77° SE, 

respectively. In addition, rakes are mostly concentrated in the NW quadrant, are moderate 

to high, and average 61°. Five faults strike <30° clockwise from the main Leavenworth 

fault, compatible with a transpressional model if they were reverse faults, or a 

transtensional model if they were normal faults, whereas rakes suggest oblique slip with a 

component of dip slip (Fig. 26).  

In the Tip-Top area, of 7 NW-striking fault planes, 5 have rakes of >45°; only 2 have 

rakes of <45°, and will not be considered further. Four of the 5 rakes that are >°45, are on 

fault planes that strike clockwise to the Leavenworth fault and could be normal faults, 

and 1 rake is on a fault plane that strikes counter-clockwise to the Leavenworth fault and 
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could be a reverse fault. Two NE-striking fault planes have rakes of <30°, and both are 

on fault planes that strike >45° clockwise to the Leavenworth fault and are most likely R’ 

shears if related to the LF.  

In the Beehive Reservoir area, fault strikes average 071° and fault displacements 

measure <3 m. Fault planes without rakes strike NE and dip mostly to the NW, whereas 

fault planes with rakes show varying NW and SE dips. Of 5 NW-striking faults with 

measurable rakes, 4 have rakes of >45°, 3 of which are on fault planes that strike counter-

clockwise to the Leavenworth fault and could be reverse faults, and 1 of which is on a 

fault plane that strikes clockwise to the Leavenworth fault and could be a normal fault. 

The 7 NE-striking fault planes with measurable rakes, strike >60° to the Leavenworth 

fault and are not compatible with a transpression or a transtension model. Overall, the 

rakes average 56° (Fig. 28). 

Summary and Analysis of Structural Data from the Swauk and Chumstick 

Formations 

In summary, fold trends in the Swauk and Chumstick formations are relatively 

consistent, trending mostly WNW to NW, and commonly <30° counter-clockwise to the 

main strand of the Leavenworth fault. Thus, these orientations are most compatible with a 

dextral transpressional wrench model. Folds are tighter in the Swauk Formation and bed 

strikes have a greater range than those in the Chumstick Formation, suggesting that there 

is more folding of the Swauk rocks, and that some folding near the Leavenworth fault 

predates folding of the Chumstick Formation.   

Faults in the two formations have a similar strike and are oriented >45°or <30° 



 

94 

 

clockwise and counter-clockwise to the main strand of the Leavenworth fault. In a 

transpression model, normal faults are oriented >45° clockwise to the main fault, and 

reverse faults are oriented <30°counter-clockwise to the main fault, whereas in a 

transtensional model, normal faults are oriented <30° clockwise to the main fault, and 

reverse faults are oriented >45° counter-clockwise to the main fault. Measured rakes for 

the small-scale faults suggest oblique slip with a higher component of dip-slip. However, 

because the sense of slip on the small faults is unknown, it is difficult to evaluate which 

model they fit best.  

Summary and Analysis of Petrography of the Swauk and Chumstick Formations 

The clastic samples collected in the Swauk and Chumstick formations are mostly 

fine-to coarse-grained sandstones. Most of them classify as lithic arkoses and feldspathic 

litharenites, and the modal data analyzed in this study plot mostly within the transitional 

continental, dissected arc, mixed, and quartzose recycled fields on a QFL diagram. 

All Swauk samples consist dominantly of quartz, plagioclase, and micas. 

Approximate mineral mode averages are as follows: 49% quartz, 24% feldspars, and 5% 

biotite. Rock fragments vary by sample and range as follows: 1-10% metamorphic, 0-7% 

mafic volcanic, 0-10% felsic volcanic, and 0-9% sedimentary (mostly chert) rock.  

Metamorphic clasts in the Swauk sandstones include micaceous quartzite, chlorite- 

muscovite schist, graphitic biotite phyllite, graphitic schist, biotite schist, serpentinite, 

and quartz-muscovite-biotite schist. Mafic and felsic volcanic fragments, which are too  

fine-grained to further classify using a petrographic microscope, chert, and small 

quantities of diabase are also present.  
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The two samples from the Chumstick Formation were collected from near the 

northern and southern ends of the Devil’s Gulch Member. Approximate average mineral 

modes are: 57% quartz, 22% plagioclase, and 8% biotite. Sample FS13 from the northern 

Devil’s Gulch Member is a siltstone, whereas sample FS253 (MDA = 86.9 ± 2.0 Ma)  

from the southern Devil’s Gulch Member in the Beehive Reservoir area is a  

conglomerate. The conglomerate contains dominantly tonalite clasts and small amounts 

of chert, felsic and mafic volcanic fragments, and phyllite.  

Swauk sandstone samples in this study plot in the transitional continental, dissected 

arc, mixed, and quartzose recycled orogenic fields. According to Dickinson and Suzcek 

(1979), sandstones in the transitional continental block provenance are derived from 

fault-bounded basement blocks and are quartz rich due to multiple episodes of recycling 

and extensive transport. According to Maynard et al. (1982), sandstones derived from 

dissected arc provenances contain mixed plutonic and volcanic fragments, lesser amounts 

of metamorphic and sedimentary rock fragments, and abundant feldspars.  

Taylor et al.’s (1988) sandstones of the conglomerate facies of Tronsen Creek, 

equivalent to my conglomerate facies (Plate 1), are medium-grained and arkosic, 

consisting predominantly of monocrystalline quartz, plagioclase, and lithic fragments. 

Tabor et al. (1987) reported QFL percentages of 38%, 43%, and 19%, respectively, 

whereas my QFL percentages range between 40-76%, 16-34%, and 8-28%, indicating 

more quartz and less feldspar in the samples I analyzed from the conglomerate facies 

(Table 5). Tabor et al. (1987) also analyzed sandstones from the shale facies of Tronsen 

Ridge, which are fine-grained and arkosic, predominately consisting of monocrystalline
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Table 5. QFL percentages based on point counts for sandstone samples in the Swauk and Chumstick formations.  
 

Note: Q-F-Lt percentages were normalized to equal 100%. Method of Folk (1974) was used in this study and the Gazzi-
Dickinson method (Ingersoll et al., 1984) was used in Taylor et al.’s (1988) and Gundersen’s (2017) study.  
 
 

 
Unit Samples from this study Q F L 

Swauk Conglomerate facies   FS280 54 27 19 

 

Micaceous feldspathic/ 
lithofeldspathic sandstone  FS151 76 16 8 

Micaceous feldspathic/ 
lithofeldspathic sandstone FS149 60 18 22 

Micaceous feldspathic/ 
lithofeldspathic sandstone  FS147 66 24 12 

Shale facies of Tronsen Ridge FS140 46 29 25 
Shale facies of Tronsen Ridge  FS145 51 34 15 
Shale facies of Tronsen Ridge  FS224 40 31 28 
Shale facies of Tronsen Ridge  FS224A 50 29 21 

Chumstick  Conglomerate of Devil's Gulch FS13 91 9 0 

 

Conglomerate of Devil's Gulch  FS253 41 43 16 
  Samples Tabor et al. (1987)   

Swauk Conglomerate of Tronsen Creek  N/A 38 43 19 

 

Shale facies of Tronsen Ridge  N/A 34 51 15 
Breccia faces of Devil's Gulch N/A 30 69 1 
  Samples of Gundersen (2017)   

Swauk  Conglomerate facies MG-047 25 48 27 
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quartz and plagioclase. Their QFL percentages for these sandstones are 34%, 51%, and 

15%, respectively, whereas my QFL percentages for the same sandstones range between 

40-51%, 29-34%, and 15-28%, resulting in a greater amount of quartz and less feldspar 

than determined by Tabor et al. (1987) (Table 5).   

Sandstone samples analyzed by Gundersen (2017) from across the Swauk basin (Fig. 

48) consist of quartz, potassium feldspar, plagioclase, mica, and rock fragments. The 

most abundant lithic clasts are metamorphic, and include quartz- and mica-rich phyllite, 

schist, and gneiss. Other lithic fragments include siltstone, sandstone, chert, and volcanic 

rock. The sandstones plot predominately as arkoses and lithic arkoses. The QFL 

percentages for Gundersen’s (2017) sample MG-047 (Fig. 47; Table 5), from the 

conglomerate facies of the Swauk Formation ~5 km west of the study area, are 25%, 

48%, and 27%, respectively (Table 5). Gundersen (2017) documents an increase in modal 

percentages of biotite and plagioclase from west to east across the basin, in which biotite 

has percentages of up to 15%. Gundersen’s (2017) data are consistent with studies by 

Frizzell (1979) and Taylor et al. (1988), where sandstones plot within the dissected arc 

and continental-block provenance fields. In contrast, my sandstones mostly plot in the 

transitional continental, dissected arc, mixed, and quartzose recycled orogenic fields, and 

the biotite modal percentages only reach 8%, plagioclase percentages reach 32%, and 

quartz percentages reach 68% (Appendix B). Some of the sandstones analyzed in this 

study were collected from strata that may be stratigraphically higher than sandstones 

analyzed by Tabor et al. (1987) and Gundersen (2017). This change in mineral modes, 

from less quartz-rich sandstones in the lower Swauk Formation to more quartz-rich 



 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Geologic map showing detrital zircon sample locations in western, central, and eastern transects of Gundersen 
(2017) and this study. Gundersen’s (2017) samples are labeled MG and this studies’ samples are labeled FS. LVF – 
Leavenworth fault zone. Figure modified from Gundersen (2017).
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sandstones in the upper Swauk Formation, may suggest a change of source.  

Tabor et al.’s (1987) sample from the breccia facies of Devil’s Gulch (Tsd), 

equivalent to my conglomerate (Tcf) of the Chumstick Formation (Plate 1), has QFL 

modal percentages of 30%, 69%, and 1%, respectively, whereas my modal percentages 

are 41%, 43%, and 16% (Table 5). Tabor et al.’s (1987) and my data are different, 

however, the modes for feldspars are both the highest, followed by quartz, and lithics. 

These differences may reflect variations in grain size in the local source for these 

sediments, which were likely only transported a short distance (Cashman and Whetten, 

1974).   

Geochronology and Provenance of Units 

The detrital mineralogy analysis of the Swauk and Chumstick Formation samples 

suggests that sediment was derived from plutonic and metamorphic sources (Fraser,  

1985; Taylor et al., 1988). In addition, the geochronological data from this study coupled 

with Eddy et al.’s (2016) data, strongly imply that the Swauk Formation detritus in this 

study has a local provenance, and that sediment was transported by paleocurrents 

draining into the basins from the north and northeast between ≤59.9 and ~51.3 Ma, and 

from the southwest between ~51.3 and 49.9 Ma (Frizzell, 1979; Tabor et al., 1984; 

Fraser, 1985; Taylor et al., 1988; Evans, 1994; Eddy et al., 2016).   

Potential sources north and northeast of the Swauk Formation are 96-86 Ma and 96- 

65 Ma plutons of the Wenatchee and Chelan blocks of the Cascades crystalline core, 

respectively (Fig. 2; Table 3) (Tabor et al., 1989; Miller et al., 2009a). These plutons 

intrude host rocks of the Early Cretaceous Chiwaukum Schist of the Nason terrane, 
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Jurassic Ingalls Ophiolite, Cretaceous Swakane Biotite Gneiss, Paleozoic to Jurassic 

Napeequa unit, and the Triassic and Late Cretaceous Cascade River Schist-Holden unit 

(Miller, 1985; Tabor et al., 1989, 2003; Miller et al., 1994, 2009a; Gordon et al., 2017), 

which are also potential sources for detritus (Figs. 2 and 43; Table 4). Other potential 

sources farther to the north include the 120-110 Ma Okanogan Range batholith (Hurlow, 

1993), and the Methow terrane (DeGraaff-Surpless et al., 2003; Surpless et al., 2014; 

Gordon et al., 2017; Sauer et al., 2017). Likely sources of west-and southwest-derived 

detritus include the Nanaimo Group (Mustard, 1994), western mélange belt, and NW 

Cascades system (Fig. 43).  

Sample FS280 (MDA of 67.2 ± 1.9 Ma) from the Ruby Creek-Windmill Point area 

(Figs. 30 and 44) consists primarily of detrital zircons that may be derived from a 

combination of the Wenatchee and Chelan blocks, in particular alluvial fan deposits from 

the Ingalls ophiolite complex. These deposits likely reflect early motion on the 

Leavenworth fault (Johnson and Miller, 1987) and indicate a local southwest source.  

Sample FS147 (MDA of 75.8 ± 2.0 Ma) from north of the Tronsen Ridge Member 

(Figs. 30 and 44) consists of detrital zircons from a combination of sources, such as the 

Wenatchee and Chelan blocks, sources to the north including the Methow terrane and 

Okanogan Range batholith, to the west including the Nanaimo Group, and to the 

southwest including the Lookout Mountain Formation.  

Sample FS140 (MDA of 51.6 ± 1.3 Ma) from the lower Tronsen Ridge Member 

(Figs. 30 and 44) consists primarily of ~70-90 Ma detrital zircons that may have been 

derived from the Chelan and Wenatchee blocks. This sample has a ~50 Ma peak, which 
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probably reflects a Silver Pass tuff source. These sources and the MDA are in accordance 

with east and southwest-directed paleocurrents. 

Sample FS145 (MDA of 50.46 ± 0.17 Ma) (M. Eddy, written communication) from 

the upper Tronsen Ridge Member (Figs. 30 and 44) consists of detrital zircons that were 

perhaps derived from a combination of sources, including: the ~ 51.3 Ma Silver Pass tuff; 

the Chelan and Wenatchee blocks to the north and northeast, the Nanaimo Group to the 

west, and the western mélange belt to the southwest. The changes inferred in paleoflow 

from the SW at ~51.3- 49.9 Ma, and the MDA of 50.46 ± 0.17 Ma, indicate that the most 

probable source is the Nanaimo Group or the western mélange belt. 

Detrital zircon geochronology by Gundersen (2017) in the Swauk Formation and the 

geochronology conducted in this study show a similar age trend (Fig. 49). Relative 

probability plots of detrital zircon ages in the Swauk Formation display an increase in 

older grains moving up section. The dominant age peaks in the lower Swauk Formation 

cluster around ~80-65 Ma, whereas farther up section, the ~70-60 Ma peaks decrease and 

the dominant peaks are ~100-90 Ma. This pattern could be due to the gradual exhumation 

of the nearby Mount Stuart batholith and host rocks of the Wenatchee block at ca. 55 Ma, 

thus adding to the Swauk detritus from the Chelan block.  

Detrital zircons for sample FS253 (MDA of 86. 9 ± 2.0 Ma), from the sandstone of 

the Devil’s Gulch Member of the Chumstick Formation in the Beehive Reservoir area, 

have a similar age to that of Mount Stuart batholith. The large tonalitic clasts in the 

conglomerate, which coupled with the MDA, suggest that the main source of the clasts in  

the Devil’s Gulch Member is the Mount Stuart batholith. The size of these clasts implies 
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Figure 49. Kernal density plots of detrital zircon ages from 0-200 Ma in the western, central, and eastern transects through the 
Swauk Formation. Combined data from Gundersen (2017) and this study. Figure modified from Gundersen (2017).
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that they did not travel far, and their location 20-30 km to the SE of the Mount Stuart 

batholith (Fig. 2), suggests dextral offset of this magnitude along the Leavenworth fault.  

CONCLUSIONS 

The fold (π) axes defined by all beds in the Swauk Formation and Chumstick 

Formation are 297°, 4° and 306 °, 13°, respectively, which are orientations expected for 

dextral transpression related to the LFZ. Smaller folds are somewhat variable in 

orientation, which for the Swauk Formation probably reflects the earlier folding inferred 

to result from the collision of Siletzia.  

Approximately 40% of the folds in the Swauk and Chumstick formations trend <30° 

counter-clockwise from the main strand of the Leavenworth fault, and another 22% trend 

31-44° counter-clockwise from the fault, compatible with dextral transpression. Nineteen 

percent of the folds trend <30° clockwise from the main strand of the Leavenworth fault, 

and another 19% of the folds trend >45° clockwise from the fault. These orientations are 

not compatible with a dextral wrench model.  

Line-length balancing of folded beds, assuming flexural slip, yields ~0.6-1.1 km of 

shortening in the Ruby Creek-Windmill Point area and ~1.7-2.2 km of shortening in the 

Tronsen Ridge area. Folds in the Swauk Formation are tighter and more common than in 

the Chumstick Formation and in the Teanaway Formation, which unconformably overlies 

the Swauk Formation. Thus, early folding of the Swauk Formation occurred between the 

youngest MDA of a Swauk sandstone at 50.46 ± 1.7 and the oldest tuff date in the lower  

part of the Chumstick Formation at 49.147 ± 0.041 Ma. Movement on an early strand of  

the Leavenworth fault may have been responsible for the alluvial fan deposits containing   
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abundant clasts from the Ingalls Ophiolite in the Swauk Formation in the northern Ruby 

Creek area.  

The time constraints of folding in the Swauk Formation also give insight into the 

timing of the collision of the Siletzia oceanic plateau with the Pacific Northwest margin. 

The accretion of Siletzia generated a shift in tectonics to transtension and right-lateral,  

strike-slip on the Leavenworth and the Straight Creek faults. The switch to transtension 

facilitated the intrusion of the Teanaway dikes at 49.3 Ma, and the rapid rates of 

subsidence and deposition of the Chumstick Formation in what has been interpreted as a 

strike-slip basin. Subsequent transpression on the Leavenworth fault led to further folding 

of the Swauk Formation and Chumstick Formation. 

Faults in the Swauk and Chumstick formations strike >45° clockwise, or <30° 

counter-clockwise, from the main strand of the Leavenworth fault. The slip along these 

faults is unknown and thus, it is difficult to evaluate them in a kinematic model. 

However, slickenside striations on fault planes range from shallow to steep, and most 

slickensides in the study area rake >45°. Assuming normal slip on the faults that are >45° 

clockwise to the Leavenworth fault, and have rakes of >45°, then this orientation fits 

dextral transpression. Teanaway dikes rotate from NW- to NE-striking as the main 

Leavenworth fault is approached, implying that there is a rotation in the strain field, most 

likely related to the fault.  

Petrographic studies and detrital zircon geochronology suggest that sediment in the 

Swauk Formation is locally derived from sources to the north, northwest, northeast, and 

southwest, such as the 96-86 Ma and 96-45 Ma plutons of the Wenatchee and Chelan 
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blocks, respectively, the western mélange belt, the Northwest Cascades system, and the 

Nanaimo Group. Detrital zircon MDAs in the Swauk Formation range from 67.2 ± 1.9 to 

50.46 ± 0.17 Ma, and support interpretations that Swauk deposition ended before 

deposition of the Chumstick Formation at ~ 49.147 ± 0.041 Ma.  

The tonalitic composition of the large clasts in the breccia facies of the Devil’s Gulch 

of the Chumstick Formation, coupled with the MDA of ~86.9 ± 2.0 Ma and an age peak 

of 91.8 Ma, suggest that these clasts were likely derived from the Mount Stuart batholith, 

and support evidence for 20-30 km of dextral displacement along the Leavenworth fault. 

Collectively, the data presented in this study indicate that folding near the Leavenworth 

fault zone better fits a dextral transpressional wrench model than a reverse fault model. 
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APPENDICES 
 
Appendix A: Geochronology Sample UTM Locations 
 
Table A. 1: UTM locations of dated samples taken from the Swauk and 
Chumstick formations. UTM’s are in zone 10, NAD83. 
 
 

Sample Area UTM Elevation (ft) 
FS147 upper Tronsen Ridge 0682311, 5252088 4486 
FS145 upper Tronsen Ridge 0682523, 5251113 3985 
FS140 lower Tronsen Ridge 0682827, 5250378 3789 

FS280 Ruby Creek-Windmill 
Point 0676993, 5257382 2420 

FS253 Beehive Reservoir 0696865, 5241401 4510 
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Appendix B: Sample point counting data 
 
Table B. 1: Detailed mineral percentage modes based on point counts for all samples in the Swauk and Chumstick 
formations. Three hundred grains were counted and normalized to 100%.  
 
 

          
Miscelaneous/ 
Unidentified/ 
Cement (%) 

 

 

Sample 
FS 

Quartz 
(%) 

Feldspar 
(%) 

Biotite 
(%) 

Muscovite 
(%) 

Sedimentary-
Chert (%) 

Metamorphic 
(%) 

Mafic 
Volcanic (%) 

Felsic Volcanic 
(%) 

Total 
(%) 

Swauk 280 49 25 4 0 4 6 4 3 5 100 

 
151 68 14 7 0 0 1 7 0 3 100 

 
149 52 16 7 0 9 10 0 0 6 100 

 
147 57 22 4 1 1 8 2 2 3 100 

 
140 40 25 8 0 5 5 5 7 5 100 

 
145 47 32 3 0 3 5 2 4 4 100 

 
224 36 28 5 0 6 3 6 10 6 100 

 
224A 42 24 4 0 5 2 6 5 12 100 

Chumstick 13 80 8 6 6 0 0 0 0 0 100 

 
253 34 35 10 1 5 4 1 3 7 100 
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