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ABSTRACT

CLASSIFICATION OF HYPERSPECTRAL COLON CANCER IMAGES USING
CONVOLUTIONAL NEURAL NETWORKS

by Sean J. Mobilia

Hyperspectral images are 3-D images, which contain data in hundreds of spectral

bands as opposed to 2-D images, which contain data in at most 3 bands (red, green, and

blue). Hyperspectral imagery was initially developed for remote sensing; however,

recently, researchers have started to see its potential in medical diagnosis and cancer

detection. Hyperspectral images provide massive amounts of data about the objects they

are studying, and this causes challenges during information processing. Machine learning

tools, such as convolutional neural networks (CNNs), are known to be successful in

extracting features and classifying traditional 2-D images. This thesis proposes CNN

architectures for processing hyperspectral data for colon cancer detection. Using data

taken from a limited number of colon tissue samples, this thesis shows that the proposed

CNN architecture can classify cancerous and noncancerous tissue samples utilizing

hyperspectral information. The obtained results are compared to grayscale images of the

same tissue samples, looking both at grayscales of the individual hyperspectral bands and

panchromatic grayscale images in which the spectral bands are merged together. The

CNN using the hyperspectral data shows advantages over the grayscale data, with a 5.6%

improvement in accuracy and a 0.037 improvement in F1 score over the individual band

grayscale images and a 21.7% improvement in accuracy and a 0.178 improvement in F1

score over the panchromatic grayscale images. The results are also compared to a

K-nearest neighbor (KNN) classifier and a logistic regression (LR) classifier using the

hyperspectral data, and the CNN shows advantages over both. The CNN has a 17.9%

improvement in accuracy and a 0.141 improvement in F1 score over the KNN classifier

and a 5% improvement in accuracy and a 0.061 improvement in F1 score over the LR

classifier.
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1 INTRODUCTION

Across the globe, cancer is one of the leading causes of death among all age groups. It

can affect anyone, and just about every person has either had it, or known someone who

has had it. Among people in the United States, colon cancer is the second largest cause of

cancer deaths [1]. Colon cancer symptoms can be difficult to detect at first, as many of the

early symptoms may seem like common ailments. Colon cancer is diagnosed in the

localized stage, the earliest stage in which the cancer is smallest, 38% of the time. It is

diagnosed in the regional stage, in which the cancer has spread throughout the organ, 36%

of the time. And it is diagnosed in the distant stage, in which the cancer has spread

throughout the body into other organs, 22% of the time [2]. Fig. 1 shows the stages of

colon cancer when it is first diagnosed.

Fig. 1. Colon cancer stage at diagnosis. Data are provided by Siegel et al. [2].

As with many forms of cancer, early screening and diagnosis significantly increase the

patient’s chance of survival. Fig. 2 shows colon cancer survival rates at different stages of

diagnosis. If caught early, the 5-year survival rate for colon cancer can be as high as

91.1%; however as the cancer spreads, the rate drops significantly. If cancer is diagnosed

in the distant stage, the survival rate falls to 13.3% [2]. Current screening methods are

missing too many cases until the cancer has spread into other parts of the body, so an
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improvement to these methods is needed. One of the areas being explored is the use of

hyperspectral imaging to aid in early cancer detection and research [3].

Fig. 2. Colon cancer survival rates by stage detected. Data are provided by Siegel et al.
[2].

Hyperspectral imaging involves imaging data that take a detailed look at the

electromagnetic spectrum in order to learn more detail about the subject being studied.

Initially developed for remote sensing satellite instruments, hyperspectral imaging

provides a wealth of information about the material composition of the subject being

studied [4]. With advancements in sensor size and computation power, this imaging is

finding more applications in laboratory research and commercial industries.

Hyperspectral images contain a tremendous amount of information. Many typical

hyperspectral imagers create hundreds of spectral bands with each image. This huge

amount of data can be difficult to process and examine with traditional image processing

tools. Artificial neural networks (ANNs) can be used to extract the relevant information

from this complex dataset. First developed in the 1940s, ANNs are programs modeled

after brains [5]. ANNs involve the use of hidden computational layers to extract deeper

features and relationships between different inputs. These hidden layers allow ANNs to

move beyond basic tasks [6]. ANNs that have two or more of these hidden layers are

2



known as deep neural networks (DNNs). The popularity of these networks has been

growing recently due to the DNN’s ability to handle increasingly complex tasks, such as

speech recognition, prediction of molecule interaction, image segmentation, and

classification, thanks to the advances in computational tools [6], [7]. Convolutional neural

networks (CNNs) are special kinds of DNNs that make use of discrete convolutions to

process large datasets and extract features from them. These networks are especially

useful when it comes to image classification, due to the convolutional layers picking out

abstract features independently of where they are located in the image.

The purpose of this thesis is to demonstrate the use of CNNs in processing

hyperspectral imaging data for classifying colon cancer images. This will be accomplished

by training a CNN to classify hyperspectral colon tissue samples and then comparing the

results to a similar CNN trained on grayscale images generated by the same test samples.

The output from the CNN will also be compared to the output from simple classifiers, to

show that deep learning tools were beneficial in classifying the data. The remainder of

this thesis is structured as follows. Chapter 2 will cover some necessary background

related to hyperspectral imaging and CNNs. Chapter 3 will introduce some of the latest

trends in cancer detection, including some applications making use of hyperspectral

technology. Chapter 4 will discuss how the data used in this study were collected.

Chapter 5 will present how the CNN was developed and implemented. Chapter 6 will

present the results of the study and discuss the performance of the CNN. In Chapter 7, we

will discuss the future work. Finally, in Chapter 8, we will present the conclusions.
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2 BACKGROUND

This chapter presents the necessary background for hyperspectral imaging, beginning

with an overview and explanation of what hyperspectral imaging is. The chapter will then

discuss some of the methods for processing hyperspectral imaging data that are available,

and then it will discuss some of the applications of hyperspectral imaging data and why

they are relevant. This chapter also presents the relevant background on CNNs, discussing

their development, key features, and implementation.

2.1 What is a Hyperspectral Image?

Humans are able to visualize only a small part of the electromagnetic spectrum. The

light emitted by different objects and materials has its own electromagnetic signature, and

since the 1960s, sensors have been used that simultaneously gather information on both

the visible and invisible parts of the spectrum to better collect these signatures.

Hyperspectral imaging involves sensors that look at several narrow bands of the

electromagnetic spectrum [8]. This allows the sensor to catch subtle shifts that are not

noticed by traditional imaging systems. These bands can range between 2 – 10 nm each

and can cover the ultraviolet, visual, near-infrared and short-wave infrared portions of the

spectrum. These images tend to be both spectrally and spatially smooth (the neighboring

pixels and the neighboring bands tend to be highly correlated) [4]. A visual representation

of these bands, called a hypercube, is shown in Fig. 3 using the colon cancer imaging data

discussed in Chapter 4. The light captured by a hyperspectral imager is usually made up

of a collection of constituent spectra, called endmembers. These spectra get mixed

together by a combination of atmospheric effects, spatial resolution of the imager, or the

presence of gaseous mixtures in the medium [4]. The endmembers represent the pure

materials captured in the image [9]. The materials considered a pure material in an image

may vary based on the subject being studied. Highly reflective materials can also change
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what proportions of endmembers are actually being measured. This can add to the

challenge and complexity of analyzing hyperspectral data.

Fig. 3. Color representation of hyperspectral cube.

2.1.1 Processing of Hyperspectral Images

The high dimensionality and large amounts of data associated with hyperspectral

images create a unique set of challenges for processing and analysis. This section will

discuss some of the methods that have been developed to handle hyperspectral images,

such as hyperspectral data fusion, spectral unmixing, and classification.

Data fusion is the processing technique in which spatial and spectral information is

fused with one or more sources [4]. These techniques are generally implemented in order

to improve the spatial resolution of an image (or at least clear up the noise). Data fusion

techniques tends to be used more with hyperspectral satellite imagery, as there would be

other available datasets to merge with.

There are three main types of hyperspectral data fusion: restoration, spectral data

fusion, and spatial data fusion. Restoration involves the extension of traditional image

de-noising techniques by taking advantage of the high spectral redundancy in the spectral

bands. This merely preserves the original spatial and spectral resolutions and does not
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improve upon them. Spectral data fusion involves fusing together hyperspectral bands, in

order to reduce some of the inherent redundancy in the system. Spatial data fusion

involves methods of improving the spatial resolution of an image by inferring information

at the subpixel level [4]. This can be done by either subsampling the pixels in the image

or by fusing the image with another image of higher spatial resolution.

Hyperspectral unmixing refers to process in which the pixel spectra are separated into

endmember signatures [9]. These processes are trying to untangle different collected

spectra into their pure components. Unmixing methods are often dependent on

assumptions about the object or area being imaged. The linear unmixing model assumes

that endmember abundances are associated with a percentage of the material the

endmember represents. This tends to hold when the system being monitored is

macroscopic. Linear mixing tends to occur in the hyperspectral instrument due to low

spatial resolution. Nonlinear mixing tends to occur due to interactions in the atmosphere,

occurring when light is reflected off of an object [9].

Hyperspectral classification is another common way to process hyperspectral imagery.

One of the key aspects of hyperspectral classification is feature mining, the ability to

extract features from the fine details. Some typical classification tools for hyperspectral

imagery involve principal components analysis (PCA), support vector machines, linear

discriminant analysis and quadratic discriminant analysis [4].

2.1.2 Applications of Hyperspectral Images

Advancements in technology have allowed hyperspectral imaging to expand beyond

remote sensing satellites. Smaller camera sizes and more efficient storage have opened up

the potential of unmanned aerial vehicle (UAV) and ground based commercial and

research opportunities involving hyperspectral imaging. Precision agriculture is one of the

potential applications hyperspectral imaging. With access to UAVs, farmers can use

hyperspectral images to better monitor their crops. Hyperspectral images can help detect

6



disease, water stress levels, crop nutrients and invasive insects, as well as nutrient

deficiencies and soil contaminants. This allows farmers to catch these problems well

before the first obvious visual symptoms appear [8]. Fresh water resource management is

another potential application of hyperspectral imaging. Hyperspectral imaging can help

provide accurate estimates of the available ground water and can help provide accurate

early warning and flood monitoring. It can also provide information on the quality of

water available. Hyperspectral imaging can be used to catch any biological or biochemical

contaminant and can measure the chemical oxygen and concentration of chlorophyll in

the water [8].

Hyperspectral imaging also has many defense and homeland security related

applications. Hyperspectral anomaly detection methods can easily distinguish between

targets and the background. On the ground, hyperspectral imaging can be used as a tool

for facial recognition, using a combination of classification techniques such as support

vector machines and linear unmixing [8]. It also can be used in facial stress detection, by

detecting changing blood oxygen levels in a subject.

Hyperspectral imaging is also finding more use on the ground, in applications

involving food safety and quality. The rich amount of spatial and spectral information

present in these images make them ideal for analyzing food quality and detecting spoilage

and contaminants. Hyperspectral imaging has been used to assess the firmness of

blueberries and the fat content of pork chops [8]. Hyperspectral imaging also has art and

forensic applications. The spectral signatures can be helpful in detecting forgeries and can

help to authenticate the value of certain pieces [8]. Hyperspectral imaging also has many

medical diagnostic based applications, such as bruise and burn detection, cancer

screening, and surgery assistance [10]. Hyperspectral imaging has also been shown to be

useful in detecting bleeding, diabetes, and several forms of cancer. It is being tested as a

potential alternative to computed tomography and magnetic resonance imaging [8].
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2.2 A Brief Overview of CNNs

The development of CNNs was inspired based on studies of the visual cortex of

mammals [7]. These studies showed that each of the visual cortex neurons reacted to only

a limited portion of the animal’s field of vision. These neurons would react differently to

different visual features. These studies paved the way for the architecture of LeNet-5,

developed in LeCun et al. [11]. This architecture is implemented by using a combination

of convolution layers, which extract features from the input, and pooling layers, which

subsample the input. A visual representation of a CNN architecture is shown in Fig. 4.

From left to right in the figure, the input is shown having the features extracted by the

various layers of the network.

Fig. 4. Visualization of CNN architecture for proposed hyperspectral classifier.

CNN architecture makes use of the properties of sparse interactions, local receptive

fields, parameter sharing, equivarient representation, and sub-sampling to create these

powerful models [6], [11]. The property of sparse interactions means that the weights of

each convolution layer are not fully connected to the layers being fed into them. CNNs

employ sparse interactions by making use of kernels with smaller sizes than the inputs.

This leads to fewer weights and allows the networks to be programmed more efficiently.

Sparse interactions tie into the property of local receptive fields, in which each output

receives inputs from a small portion of neighboring inputs. This allows the subsequent

layers to extract deeper and more abstract features from the input. Another useful property

of CNNs is parameter sharing. Typically, in ANNs, each weight is used by one element of
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the input. For large images, this would lead to rather costly networks. However, for CNNs,

the weights related to one portion of the input are reused for each of the other inputs.

Combined with sparse interactions, these two properties help reduce the size of CNNs and

make them into a valuable tool for learning larger inputs. The property of equivarient

representation, in which changes to the input lead to similar changes in the output, is also

an important property of CNNs. This property is useful for extracting certain features,

such as edges in an image [6]. Sub-sampling helps to further reduce the size of the feature

maps and makes CNNs much more efficient [11].

As CNNs are based on the visual cortex, they naturally excel at visual tasks. As well

as being used for self-driving cars, image classification, and other visual tasks, CNNs

have been also used in voice recognition and natural language processing applications [7].

CNNs are made up of a number of convolutional layers, which are sparsely connected

to the previous layer by a kernel. This limited connection over a local field is what allows

CNNs to extract features from the input data [7]. This kernel sweeps over the input to the

convolution layer, and in doing so, the convolution layer implements 2-D convolution on

the input layer. This is given as

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n). (1)

Many machine learning algorithms actually implement a related function, the

cross-correlation function, to avoid having to flip the kernel. The cross-correlation

function is given as

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n). (2)

In practice this is acceptable because the machine learning algorithm will just learn the

values of the flipped kernel [6]. The Python module Tensorflow uses cross-correlation to

implement convolution in its functions.
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The convolution layer is generally followed by an activation function. Some common

activation functions are shown in Fig. 3. Typically the relu function is the most popularly

used activation function; however some networks such as LeNet-5 have been known to

use the tanh function [11].

Fig. 5. Common activation functions used in CNNs.

The other main part of a CNN is the pooling layer. The goal of these layers is to

shrink the input down to prevent overfitting on the network. The kernel on these layers
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has no weights and uses an aggregation function to shrink the size of the input. Most

CNNs make use of max pool layers, which take the maximum value at the kernel as it

passes over the input. The remaining inputs are dropped [7].
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3 LITERATURE REVIEW

This chapter will provide a background of previous work done in hyperspectral

imagery and machine learning tools related to cancer detection. First, the chapter will

discuss machine learning tools and their use in cancer detection. The chapter will then

discuss hyperspectral imagery and machine learning tools used in tandem to detect cancer

cells.

3.1 Machine Learning and Cancer Detection

The most popular machine learning tools for cancer detection are support vector

machines, random forests, Bayesian networks, and CNNs. Bazazeh and Shubair [12]

showed that mammogram images can be used with support vector machines and random

forests to detect breast cancer. Alam et al. [13] used computerized tomography scans with

support vector machines to classify lung cancer.

CNNs have recently been applied as a tool in cancer diagnosis. Tan et al. [14]

discussed using CNNs to help detect breast cancer using grayscale mammogram images.

Godkhindi and Gowda [15] developed colon cancer detection methods with K-nearest

neighbor (KNN) algorithms, random forests, and CNNs for use with grayscale computed

tomography colonography images. Chiang et al. [16] used 3-D ultrasound images to

improve breast cancer detection using a 3-D CNN.

3.2 Hyperspectral Imaging and Cancer Detection

As hyperspectral imaging is becoming more widespread in commercial and research

applications, it is finding new uses as a tool for medical diagnosis. Lu and Fei [10] have

discussed the use of hyperspectral imagery and its role in medical diagnostics and as a

tool for image-guided surgery. They also discussed several hyperspectral systems that

have been develop to detect and screen for different types of cancer, such as skin, breast,

gastric, cervical, and prostate cancers. Many of these cancer detection applications focus
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on the visible parts of the spectrum, especially focusing on the blue and green

wavelengths. It has been shown in Leavesley et al. [17] that for colon cancer, the

blue-violet portion of the spectrum (390 nm – 450 nm) has the highest correlation with

instances of cancer.

Machine learning and hyperspectral images have been combined to create a system of

new, noninvasive forms of cancer detection [3], [10], [17]–[23]. Support vector machines

and minimum spanning forests have been used to analyze hyperspectral data [19]–[21]

with PCA having been used for feature reduction to improve the algorithms [19]. Rathore

et al. [3] discussed methods for hyperspectral colon cancer detection using support vector

machines, PCAs, and linear discriminant analysis. Lu et al. [18] used a combination of

spatial and spectral data to improve non-invasive head and neck cancer detection

techniques, using support vector machines and PCAs. Pike et al. [20] used tumor-bearing

mice to test out the hyperspectral classification of head and neck cancer using minimum

spanning forests. Gopi and Reshmi [21] developed a method combining minimum

spanning forests with support vector machines, and applied it in order to detect cancer on

various animals.

Hyperspectral imaging has also been increasingly used in conjunction with neural

network models to improve forms of cancer detection. Along with using support vector

machines, Leavesley et al. [22] has used an ANN to classify colon cancer images using

hyperspectral fluorescence. Nathan et al. [19] has also explored using an ANN with

hyperspectral imagery to classify cancer data. Ma et al. [23] have used CNNs in the pixel

classification of hyperspectral images in order to detect head and neck cancer. They turned

the spectra of the image from each pixel into a 16 × 16 patch and fed this into a CNN.
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4 HYPERSPECTRAL COLON CANCER DATA

In this chapter we discuss the hyperspectral data that are used in this research. In the

first section, we discuss how the colon tissue samples were gathered. In the next section,

we discuss the imager that was used to gather the data. In the final section of the chapter,

we discuss the distribution of the data that were collected.

The colon cancer tissues samples that are used in this research were gathered as

previously described in Deal et al. [24] from the University of South Alabama Medical

Center Department of Surgery. This dataset is not publicly available and is used as part of

a collaboration with researchers at the University of South Alabama. During the surgery,

the tumorous growth was removed along with a section of normal tissue. The samples

were then taken to pathology where they were bisected, with one half frozen and analyzed

and the other half stored for imaging. The half stored for imaging were returned in cups

marked “lesional” and “normal” and then rinsed and cut into 2 cm cubes. Each of the

samples was imaged within 8 hours of being resectioned. An example of one of these

tissue samples is shown in Fig. 6. Each tissue sample had images taken from at least two

fields of view at the lab.

Fig. 6. Example of tissue sample studied with the hyperspectral imager. Image provided
by University of South Alabama researchers.

The collected colon tissue samples were imaged with QImaging Corporation’s Rolera

EM-C2 camera at the laboratory, using the excitation wavelength tuning method described
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in Deal et al. [24]. The camera has a 14-bit digital output, outputting a unitless spectral

intensity at each pixel with a range between 0 and 16383 (214-1). Each pixel has a size of

8 µm × 8 µm. The hyperspectral filters were tuned to the wavelengths from 360 nm to

550 nm, with a spectral resolution of 5 nm. The band corresponding to the 385 nm

window was not present for each dataset, and has been excluded in this research. The total

number of spectral bands in each hypercube is 38.

The University of Southern Alabama was able to provide 175 hyperspectral tissue

sample images, taken from 13 patients, for this thesis. These images all have a size of

501 × 502 × 38 (for a total of 9,557,076 pixels or features per image). There are 88

images labeled as lesional tissue samples and there are 87 images labeled as nonlesional

tissue samples. The breakdown of these sample hyperspectral tissue images is shown in

Table 1.

Table 1

Breakdown of Tissue Sample Images by Patient

Patient ID Number of Lesional Images Number of Nonlesional Images Total
1 3 2 5
2 5 4 9
3 3 5 8
4 8 6 14
5 9 9 18
6 4 6 10
7 15 6 21
8 9 6 15
9 7 8 15

10 8 12 20
12 10 9 19
13 5 6 11
14 2 8 10

Total 88 87 175

As can be seen from the table, there is a lot of variation in the number of images provided

for each patient, with some patients having as few as 5 images, and others as many as 21.
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And while the proportion of cancerous to noncancerous images varies from patient to

patient, the total data are split almost evenly between the cancerous and noncancerous

images.

There appears to be considerable spectral variation between patients as well. Fig. 7

shows the spectral distribution from lesional samples, with spectra of the same color

coming from the same patient.

Fig. 7. Spectral distribution of lesional images, taken at random pixels.

Fig. 8 shows the spectral distribution of some nonlesional samples, again with spectra

of the same color coming from the same patients. The dotted lines in these figures

correspond to the wavelengths associated with blue, green, and red light. From these

images, it can be seen that the spectral values of tissue samples tend to be highly

correlated between patients, but also differ from patient to patient.
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Fig. 8. Spectral distribution of nonlesional images, taken at random pixels.
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5 PROPOSED CONVOLUTIONAL NEURAL NETWORK

This chapter discusses the development and implementation of the hyperspectral

classifier. First the datasets being compared are discussed. The preprocessing of the data

is then presented. The system architecture is presented, and finally the chapter discusses

the classifier implementation.

5.1 Data Augmentation and Data Deduction

Three schemes have been developed with the hyperspectral data in order to test the

advantages of the hyperspectral information in classifying these images. The first of these

schemes involves merging all 38 of the 5 nm bands into one grayscale image. These are

the panchromatic (PC) images, and this results in 175 single-channel images. The second

scheme involves each of hyperspectral bands being treated as its own individual grayscale

image. These are the individual band (IB) images, and this results in 6650 single-channel

images. The third scheme involves the complete hypercube (Hyper) images. This group

has 175 hyperspectral images, each with 38 channels. These schemes result in a large

difference in the number of images between them. The PC and Hyper schemes use only

the 175 images, while the IB scheme has 6650 images to train with.

One key assumption is made regarding the tissue samples and these schemes. The

tissue samples were sent to the lab in dishes that were only labeled either “lesional” or

“nonlesional.” From this it is assumed that each tissue sample is homogeneous. It is either

completely ”lesional” or completely ”nonlesional.” Based on this assumption, the PC and

Hyper schemes are each divided into two smaller sets. The first sets are the segmented

hypercubes (SH) and the segmented panchromatic (SPC) schemes, each with 100 × 100

pixel images (4375 images total). The second of these sets are the smaller segmented

hypercubes (SSH) and the smaller segmented panchromatic (SSPC) schemes, with 50 ×

50 pixel images (17500 images total). These five schemes are summarized in Table 2, and

these are used to test the proposed architecture.
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Table 2
Feature Summary of Tissue Sample Schemes

Scheme Total Number of Images Image Dimensions Number of Features
IB 6650 501 × 502 × 1 251502
PC 175 501 × 502 × 1 251502

Hyper 175 501 × 502 × 38 9557076
SPC 4375 100 × 100 × 1 10000
SH 4375 100 × 100 × 38 380000

SSPC 17500 50 × 50 × 1 2500
SSH 17500 50 × 50 × 38 95000

5.2 Data Preprocessing

The preprocessing of the image involves shuffling the dataset, normalizing the dataset,

and flattening and storing the data in an hdf5 file. The patient order is shuffled by a

random seed, and the images are grouped together by patient so the images training the

network are from different patients than the ones validating the network. The patients are

shuffled as shown in Table 3.

Table 3

Patient Order

Validation Fold Patient ID
1 7
2 4
3 12
4 8
5 5
6 14
7 2
8 3
9 6

10 9
11 1
12 10
13 13
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The dataset is then normalized by dividing all of the pixels by the maximum possible

value of the dataset (determined by the maximum possible output of the 14-bit camera

specifications, which is 16383 or 214−1). These images are then flattened and stored in an

hdf5 file before being loaded and trained to the CNN. The lesional images are labeled 0

and the nonlesional images are labeled 1.

5.3 CNN Architecture

These schemes are tested on a CNN made up of three alternating sets of 2-dimensional

convolution layers and max pooling layers. These sets are followed by a fully connected

layer which is connected to the output. This network uses L2 regularization and the

convolutional layers carry out 2-dimensional convolutions (the convolution is only carried

out along the x-axis and y-axis of the image). Each kernel has the same depth as the input

to the convolution layer. The outputs of the convolution and fully connected layer all use

tanh as the activation function. The basic CNN architecture is shown in Table 4.

Table 4

Basic CNN Architecture

CNN Layer Kernel Window Size Stride Feature Maps
Conv+tanh+Drop 5 X 5 X d 3 24

Max Pool 2 X 2 X d 2 24
Conv+tanh+Drop 3 X 3 X d 1 48

Max Pool 2 X 2 X d 2 48
Conv+tanh+Drop 2 X 2 X d 1 64

Max Pool 2 X 2 X d 2 64
FC Layer 24 - -

The first convolutional layer in the table is connected to the input and the fully connected

layer is connected to the output of the network. The table also shows the two-dimensional

filter size and the stride of the filter. Each of the convolutional layers uses zero padding on

the inputs while the max pool layers uses no zero padding.
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5.4 CNN Implementation

This CNN is implemented in Python using Tensorflow with an NVIDIA Tesla K40C

GPU. Since the images from each patient are all from the same tissue sample, there is

high correlation between the images from each patient and each segment. Before being

fed to the network, the images are separated into 13 training and validation folds, and a

variation of the leave one out model evaluation method is used. Leave one patient out

(LOPO) uses the images from 12 of the 13 patients to train a CNN and then tests the

model on the remaining patient’s data.

These models are trained for a set number of epochs, which is determined by an

initial test run for each scheme. The models are trained for enough epochs to ensure that

the network has converged to a stable point. An example of the SSH scheme converging

is shown in Fig. 9.

Fig. 9. Training accuracy per epoch trained for the SSH scheme.

The number of epochs each scheme is trained for is shown in Table 5. These models are

evaluated on the basis of their accuracy, precision, recall, and F1 score. Accuracy

measures the number of correct predictions over the total predictions made. Precision

measures the number of true positives over the total number of positive predictions made.
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Table 5
Training Epochs for Each Scheme

Scheme Training Epochs Run
IB 30
PC 100

Hyper 80
SPC 120
SH 90

SSPC 120
SSH 60

For this dataset, a high precision means that fewer of the cancerous samples are predicted

as noncancerous. Recall measures the number of true positives over the total number of

positives. For this dataset, a high recall means that fewer noncancerous images are being

classified as cancerous. The F1 score is the combination of the precision and recall, using

the harmonic mean.

The performances of the last 20 epochs are averaged together and this is the metric

used to evaluate each model. For the segmented schemes, the validation set segments are

also grouped by the original image, and a final image prediction is made based on the

majority of the segments from that image. A similar method is used for the IB scheme, in

which each image has its bands grouped together and a final prediction is made based on

the majority of the bands.
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6 HYPERSPECTRAL CLASSIFIER PERFORMANCE

This chapter covers the performance of the CNN trained to classify the hyperspectral

colon cancer images. The first section compares the different spectral schemes that have

been used to determine the contribution of the hyperspectral data in classifying the

lesional tissue samples. The next section compares the results from the CNN to different

simple classifiers in order to determine the usefulness of the CNN in classifying the

hyperspectral data. Then the chapter looks at the efforts to fine tune the hyperparameters

of the CNN. The final section further discusses the classifier results.

6.1 Spectral Data Comparison Results

The goal of this thesis is to determine whether the hyperspectral data have been useful

in classifying the colon cancer tissue samples. For this reason, the PC, IB, and Hyper

images and their segmented counterparts (see Section 5.1 for details) are trained on the

CNN architecture discussed in Section 5.3. The results of these models are shown in

Table 6.

Table 6

LOPO Validation Set Results

Models Acceleration Precision Recall F1 Score
IB 0.603 0.609 0.575 0.590
PC 0.530 0.529 0.515 0.521

SPC 0.485 0.480 0.473 0.476
SSPC 0.442 0.439 0.460 0.449
Hyper 0.476 0.467 0.403 0.431

SH 0.630 0.640 0.588 0.612
SSH 0.659 0.689 0.577 0.627

Training using full-sized hyperspectral images does not perform better than the other sets

of networks. However, in this case, the PC and Hyper schemes have a much smaller

number of available images than the IB scheme. Once the images are segmented, then the

hyperspectral data are an improvement when they are compared to the other data schemes.
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The SSH scheme outperforms each of the other datasets with 65.9% accuracy and an F1

score of 0.627. We believe the overall poor performance of the classifiers is due to the

small number of patients available for this study. Despite this limitation, the SSH scheme

still outperforms the IB scheme by 5.6% (and by a 0.037 F1 score). This shows that the

spectral information present in the hypercube helps determine whether or not the tissue is

cancerous. Table 7 takes a look at the breakdown of the SSH classifier performance by

patient.

Table 7

SSH Performance by Patient

Patient Acceleration Precision Recall F1 Score
1 0.510 0.092 0.125 0.105
2 0.811 0.936 0.588 0.708
3 0.375 0.000 0.000 0.000
4 0.814 0.990 0.575 0.721
5 0.650 0.890 0.339 0.473
6 0.880 1.000 0.800 0.887
7 0.295 0.209 0.642 0.315
8 0.600 0.000 0.000 0.000
9 0.870 0.880 0.875 0.873

10 0.778 0.990 0.638 0.772
12 0.584 0.655 0.639 0.606
13 0.672 0.638 0.958 0.763
14 0.830 1.000 0.788 0.879

Overall 0.659 0.689 0.577 0.627
µ 0.667 0.637 0.536 0.546
σ 0.181 0.394 0.309 0.321

As shown in the table, there is a lot of variation between patients. Some of this is caused

by the number of images the tissue samples from each patient have provided. Another

factor that affects the patient performance is the small number of patients available in the

study. For two patients (patient 3 and patient 8), the model predicts that each image is

lesional.
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The model performs best on patient 6’s data, with 88% accuracy and 0.887 F1 score.

The model accuracies for the data for patients 2, 4, 9, and 14 are over 80%. On the other

hand, the model accuracies for the data for patients 3 and 7 are below 50%. The results of

these models vary highly from patient to patient. This is due to the small number of

patients available for the study and the high variation between the spectra from each

patient.

The confusion matrix from the SSH LOPO validation set is shown in Table 8. This

classifier tends to misclassify slightly more nonlesional tissue samples than lesional ones.

This observation is similar to the results shown in Leavesley et al. [22]. This might make

the network more useful as a preliminary cancer screening, as the model tends to

misclassify fewer cancerous samples.

Table 8
Confusion Matrix for the SSH LOPO Validation Set

SSH
Predicted Labels

True Labels Lesional Nonlesional
Lesional 65 23

Nonlesional 37 50

6.2 Classifier Data Comparison

One of the goals of this thesis is to determine whether or not the CNN is beneficial in

classifying hyperspectral imaging data. To demonstrate this, the CNN classifier is

compared to a KNN classifier and a logistic regression (LR) classifier, both using the SSH

dataset. The KNN classifier makes predictions based on the K-nearest inputs trained on

the classifier. For this classifier, K=5 is used as the number of nearest neighbors and

Euclidean distance is used when classifying its results. The LR classifier uses the logistic

function to determine the probability that each input belongs to the positive class (the

nonlesional images, in this case).
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The results of this comparison are shown in Table 9. The CNN outperforms the two

simple classifiers, although the LR model is close to the CNN’s performance, with 60.9%

accuracy and a 0.566 F1 score.

Table 9

Simple Classifier Comparison

Models Acceleration Precision Recall F1 Score
KNN (K=5) 0.480 0.478 0.494 0.486

Logistic Regression 0.609 0.631 0.515 0.566
CNN 0.659 0.689 0.577 0.627

The CNN outperforms the KNN model by 17.9% in accuracy and by 0.141 in F1 score.

The CNN outperforms the LR model by 5.0% in accuracy and by 0.061 in F1 score. The

confusion matrix for the LR classifier is shown in Table 10. From this table, we see that

the LR model is still classifying more lesional samples correctly compared to nonlesional

samples.

Table 10
Confusion Matrix for the LR LOPO Validation Set

LR
Predicted Labels

True Labels Lesional Nonlesional
Lesional 62 26

Nonlesional 42 45

6.3 Fine Tuning of CNN

In this section, the CNN fine tuning is presented and the results of the tuning are

discussed. The SSH network is chosen as a baseline and tuned in the several ways.

Models are evaluated on the basis of the activation function used, on the normalization

method used, on the performance of 3-D convolution, on the number of convolution

layers used, on the number of feature maps used, and on the number and size of the of

fully connected layers used. Models using different activation functions, such as tanh,
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relu, elu, and leaky relu are evaluated and the results of these evaluations are shown in

Table 11. While the model using the elu activation function come the closest to matching

the performance of the tanh activation function, it only performs as well as than the LR

classifier from the previous set of models.

Table 11
Activation Function Tuning

Models Acceleration Precision Recall F1 Score
relu 0.546 0.550 0.486 0.515

leaky relu (α=0.3) 0.569 0.574 0.515 0.542
leaky relu (α=0.4) 0.560 0.564 0.509 0.535
leaky relu (α=0.5) 0.571 0.577 0.510 0.541

elu 0.615 0.636 0.534 0.579
tanh 0.659 0.689 0.577 0.627

Models using different methods of data normalizing are also examined. The baseline

network normalizes the images based on the values of the camera output. Since this was a

14-bit camera, the maximum value of 16383 is used normalize each pixel to a value

between 0 and 1. For these evaluations, we compare our original normalization method to

a method normalizing each image based on the values of the image (min-max

normalization) and to a method dividing each image by the maximum value for each

image. The results of these evaluations are shown in Table 12.

Table 12

Normalization Tuning

Models Acceleration Precision Recall F1 Score
Image Max 0.525 0.525 0.468 0.494

Image Normalization 0.535 0.536 0.475 0.503
Dataset Normalization 0.659 0.689 0.577 0.627

Neither of the two image-based normalization methods perform well on the SSH dataset,

with the Image Max model having an accuracy of 52.5% and the Image Normalization

model having an accuracy of 53.6%.
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The baseline model using 2-D convolution layers is compared to two models using

3-D convolution. The first model uses fewer feature maps in the second and third

convolution-max pool layer pair. The second 3-D model keeps the same number of feature

maps as the baseline model. The results of these evaluations are shown in Table 13.

Table 13

3-D Convolution Comparison

Models Acceleration Precision Recall F1 Score
2-D Convolution 0.659 0.689 0.577 0.627

3-D Convolution 1 0.507 0.508 0.288 0.367
3-D Convolution 2 0.488 0.483 0.408 0.436

Neither of the 3-D convolution layer models fare well, with the first 3-D convolution

model having an accuracy of 50.7% and the second 3-D convolution model having an

accuracy of 48.8%. More work will need to be done to properly evaluate the performance

of the 3-D convolution layers.

The number of convolution layers for this classifier is also examined, with a

comparison of the baseline model to models using 2 convolution-max pool layer pairs and

4 convolution-max pool layer pairs. The 4-layer model creates the extra pair by

duplicating the third layer and the 2-layer model deletes the second pair of layers. The

results of these evaluations are shown in Table 14.

Table 14

Convolution Layer Comparison

Models Acceleration Precision Recall F1 Score
2 Convolution and Max Pool Layers 0.569 0.586 0.453 0.509
3 Convolution and Max Pool Layers 0.659 0.689 0.577 0.627
4 Convolution and Max Pool Layers 0.578 0.577 0.566 0.571
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Changing the number of convolution layers does little to help the classifier performance.

The model built with two convolution-max pool layers has an accuracy of 56.9%. The

model built with four convolution-max pool layers has an accuracy of 57.8%.

Models are also developed to determine the optimal number of feature maps, and the

results of these evaluations are shown in Table 15. Tuning the feature maps does little to

the CNN performance. The model with half the feature maps had a 64.2% accuracy,

underperforming the baseline model by 1.7%. The model with twice the feature maps had

a 61.2% accuracy, underperforming the baseline model by 4.7%.

Table 15
Feature Map Comparison

Models Acceleration Precision Recall F1 Score
1/2 Baseline 0.642 0.665 0.563 0.609

Baseline 0.659 0.689 0.577 0.627
2 × Baseline 0.612 0.630 0.539 0.580

The last set of evaluations compare the number fully connected layers (FC) at the

output of the network. The model with two FC has 36 neurons in the first layer and 24 in

the second. The model with the bigger FC has 36 neurons, while the model with the

smaller FC has 12 neurons. The results of this evaluation are shown in Table 16.

Table 16

Fully Connected Layer Comparison

Models Acceleration Precision Recall F1 Score
Smaller FC 0.658 0.683 0.588 0.630

Baseline 0.659 0.689 0.577 0.627
Bigger FC 0.653 0.671 0.596 0.630

2 FC 0.645 0.667 0.574 0.615

The model with the smaller FC comes closest to the baseline model, with an accuracy of

65.8%, but has a slightly higher F1 score, with a score of 0.630. This model seems to be

slightly more fair than the baseline model. The model with the bigger FC had an accuracy
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of 65.3%, with an F1 score of 0.630. The model with the second FC layer has an accuracy

of 64.5%, with an F1 score of 0.615.

None of these methods for fine tuning the model have done much to improve the

model. Again, this is due to the model being at the limits of what can be done with the

current small patient set. More data will be needed to build a better, more accurate

network.

6.4 Further Discussion

This section looks at some of the spectra of the classified and misclassified images

and takes a deeper look at the best and worst performing patient data from the classifier.

Here are some of the spectra from the correctly classified and the misclassified images.

Fig. 10 and Fig. 11 both show spectra from tissue samples that were correctly identified

by the baseline SSH classifier.

Fig. 10. Spectra from correctly identified lesional tissue samples.

Each color spectra represents spectra from the same patient. The dotted lines correspond

to the wavelengths associated with blue, green, and red light. These two figures both
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appear similar, except for a small spike in the blue wavelength range in the nonlesional

spectra. We believe that this similarity may explain some of the difficulty in classifying

hyperspectral data. This also demonstrates the challenge in processing hyperspectral data

and why machine learning tools such as CNNs are needed to dig deeper into the data.

Fig. 11. Spectra from correctly identified nonlesional tissue samples.

We take a look at some of the errors in the network to better understand the CNN’s

performance. Fig. 12 and Fig. 13 both show spectra from tissue samples that were

misclassified by the baseline SSH classifier. Again, each color spectra represents spectra

from the same patient and the dotted lines correspond to the color of light for that

wavelength. The spectra from the misclassified lesional images appear to share some of

the same blue wavelength spike as the nonlesional spectra. The spectra misclassified as

nonlesional appear to be flatter, except for two spectra that are much higher than the

others. Still, it is hard to draw meaningful conclusions from these errors.
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Fig. 12. Spectra from misidentified lesional tissue samples.

Fig. 13. Spectra from misidentified nonlesional tissue samples.

The model performs the worst against patient 3’s data (Validation fold 8) when

compared to each of the other patients’ data. The model classifies every image segment of

patient 3’s data as lesional. To examine this, Fig. 14 looks at spectra from every
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nonlesional image in patient 3’s data. The spectra from the same image are represented as

the same color. This figure shows spectra from each of the 5 nonlesional images from

patient 3’s data. Next this is compared to the lesional spectra from patient 3’s data, shown

in Fig. 15.

Fig. 14. Spectra from patient 3’s nonlesional images (Validation fold 8).

Fig. 15. Spectra from patient 3’s lesional images (Validation fold 8).
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The data for patient 3 have 3 lesional images, and spectra from each image is shown as a

different color. There appears to be little differentiating the two sets, which may explain

why they are all classified one way. The spectra from both these sets of data seem to have

much higher spectral intensities in the 350 nm to 400 nm range than the other spectra

shown in this section. It is possible that the data from patient 3 are an outlier and the

extremely high spectral values in the ultraviolet portion of the spectrum are causing

problems for the CNN.

Next we examine the data that fit the best to our model. The model performs best with

the data for patient 6 compared to the data for the other patients. Not only does this fold

have 88% accuracy, but its precision is 1, meaning no lesional samples are mistakenly

classified as nonlesional. Fig. 16 shows spectra from the 6 nonlesional images in patient

6’s data, color coded by the different images.

Fig. 16. Spectra from Patient 6 (Validation fold 9) nonlesional sample.

This is compared to Fig. 17, which shows spectra from the 4 lesional images in patient 6’s

data.
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Fig. 17. Spectra from Patient 6 (Validation fold 9) lesional sample.

Both of these sets of images for patient 6’s data contain much lower spectral intensities

than the images for patient 3’s data. These are closer to the typical spectra that were

shown before. The images show that the cancerous images have a higher spike in the blue

portion of the spectrum. However, the lesional images from patient 6’s data seem to have

lower intensities overall.
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7 FUTURE WORK

One of the main problems with this dataset is the small number of patients. The two

main paths of future work involve ways that could improve the usefulness of the CNN

classifier if a larger pool of patient images becomes available, and the paths that could

improve the usefulness of the model if the number of patients remains small.

If more patients can be studied, then the first major area of exploration would involve

developing 3-D convolution layers to better tease out the differences in the spectra.

Current exploration into these convolutional networks did not yield much success, but

further study would be required to know whether or not they can improve the

classification process. There is reason to believe with the importance of the spectral

information that the 3-D kernel may ultimately be better attuned to capturing these

changes. The second major area of exploration would be the use of PCAs with the

hyperspectral images. PCAs are often useful in indicating which features contribute most

to an output, and they could be useful for indicating which bands tend be more active in

the cancerous cells. PCAs could also be used in tandem with CNNs in order to reduce the

number of features of a hyperspectral image. In addition to these ideas, further data

augmentation might be feasible. While the current use of image segmentation may have

been pushed to its limits, with an increased patient pool, other data augmentation methods

may be worth exploring.

If the number of patients in the hyperspectral dataset remains small, a different set of

paths will need to be explored. In the case of small datasets like the one available for this

thesis, transfer learning can be a useful tool for building new models. While most of the

publicly available datasets involve typical 3-channel images, if used in conjunction with

other machine learning tools like PCAs, the hyperspectral images might be applicable to

those networks as well. There may be possible ways to combine the hyperspectral

information with information found in common grayscale colonoscopy images and other
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common medical tools. These could be used with PCAs and other current hyperspectral

fusion methods to build up a better network for the classifier with the limited information

available.

37



8 CONCLUSIONS

This thesis demonstrated that information from hyperspectral data were able to

increase the performance of the developed colon cancer sample classifier. It was shown

that the SSH dataset had a 5.6% improvement in accuracy and a 0.037 F1 score

improvement over models using grayscale images. It also showed how CNNs were useful

in better classifying the hyperspectral data, as the CNN showed a 5% accuracy

improvement and a 0.061 F1 score improvement over the simpler classifiers such as KNN

and LR classifiers.

One of the factors limiting the performance of this system is the current number of

patients available for this study. With the high variability between patients, one the most

important things to do to improve the system would be to get more patients into the study,

either through more hyperspectral studies or through data fusion with current colonoscopy

methods.

Once further researched, hyperspectral imaging could become a critical tool in

catching colon cancer in its earlier stages. In the future, understanding the spectral

makeup of these tumorous cells could make it easier to detect cancer before it grows to

the point that it becomes life-threatening.
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