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A B S T R A C T

This Dissertation is about Markov chains and their role in economics
and in econometrics theory. Four essays on the Markov chain ap-
proach are presented.

We start by illustrating the analytical potential of multivariate Markov
chains in the field of economic history, in particular with regard to a
test of the Schumpeterian hypothesis of creative destruction.

Then, we ilustrate the flexibility of Markov chains, and their per-
tinence to situations that go beyond their traditional applicability: i)
how can a Markov chain play the role of covariates; ii) how can a
Markov chain representation be useful to compute expected hitting
times.

Finally, we present a new methodology for testing and detecting
multiple structural breaks in multivariate Markov chains, where the
dates at which the structural breaks occur are unknown.
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1
I N T R O D U C T I O N

This Thesis consists of four essays on Markov chains and its poten-
tial for furthering economic understanding on a variety of empirical
issues and analytical challenges. Over recent decades both linear and
non-linear time series models have played a crucial role, not only
in Economics but also in related fields such as Finance and the So-
cial Sciences. During the early 1970s the linear Box-Jenkins ARMA
methodology enjoyed enormous acceptance. Since then, non-linear
models have become increasingly popular, such as threshold model
[93, 94], Markov-switching model [40] and (G)ARCH models [15, 30],
see also Nicolau [63]. All these models share a common feature: the
dependent variable is continuous; notwithstanding, in some circum-
stances the dependent variable may be categorical. Categorical time
series arise frequently in economics and other sciences, e.g. interna-
tional debt ratings, labour market flows, variables that are charac-
terised by state transitions or path-dependence in general. From an-
other perspective, a discrete reconstruction of a continuous stochas-
tic process may be particularly useful since it allows us to extract
some apparently imperceptible patterns from the data. Qualitative
variables allow us to model structural changes in the processes, to
focus on the frequency and length of certain events (such as bear and
bull markets), and to isolate some characteristics of the processes: an
interaction between a qualitative variable and a continuous one may
point out some patterns, e.g. in business cycles, such as velocities
of the transition between states over time. Thus, modelling qualita-
tive events is extremely important in Economics, in order to estab-
lish accurate policy guidelines to promote economic growth, employ-
ment and to guarantee the sustainability of the welfare state. How-
ever, the aforementioned linear and non-linear models designed for
continuous variables are not applicable when the dependent vari-
able is categorical. The multivariate dynamic probit models are a
class of meaningful models, but these models can only deal with two
state processes and Economics often entails situations where we have
more than two states. A logical option could be multivariate Markov
chain models. However the huge number of parameters, when the
dynamic of the model is of higher order and the number of states
and series is large, make the estimation impossible due to lack of
degrees of freedom. The mixture transition distribution probit model
(MTD-Probit) solves this problem by modelling through discrete time
Markov chains with arbitrary large domains, [64]. The model has
some advantages over the Raftery’s MTD [75] due to the absence
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2 introduction

of constraints, thus facilitating the estimation procedure. Therefore,
this methodology allows us to efficiently estimate multivariate dis-
crete processes, and in particular multivariate Markov chains, based
on reducing the number of parameters. In general, the Markov chain
approach has some advantages over alternative approaches: it is a
non-parametric approach and can capture non-linear relationships
between variables, unlike INAR family models [54]. Consequently, it
calls for an extension of the literature regarding the estimation meth-
ods of discrete and categorical variables.

The main objective of this Thesis is to extend the literature con-
cerning the treatment of discrete time series, mainly through the im-
provement of the Markov chains estimation framework. As such, this
Dissertation has three main goals.

First, we demonstrate the relevance of considering multivariate
Markov chains, even when the phenomenon under study is of a con-
tinuous nature (Chapter 2). We show that Markov chains can be a
valuable tool to detect Patterns of causality in the presence of a non-
linear relationship, in the situation where standard VAR models fail
to reject the hypothesis of absence of linear Granger causality. An ex-
ample of the model applied in economic history is presented, more
precisely the revolution of two commercial sea carriage technologies
in the early 19th century: British steam and sail merchant vessels.

In this Chapter, Modelling insurgent-incumbent dynamics: Vector au-
toregressions, multivariate Markov chains, and the nature of technologi-
cal competition, we find that while a vector autoregression approach
would be an obvious choice for modelling structural relationships in
multivariate processes, the results might be unsatisfactory, as no trace
of Granger causality is found. One reason for these failures to iden-
tify interactions may be linked to the presence of nonlinear dynamics.
Next, we show that a reconstruction of a former continuous process
into a discrete one allows a multivariate Markov chain analysis to
check whether density functions, and not only first moments, are
time-dependent among variables. This modelling strategy succeeds
in picking up directional powers between the historical paths of sail
and steam technologies. In particular, we detect that while the insur-
gent (steam) does not impact the incumbent (sail) some effects are
produced from the incumbent (sail) to the insurgent (steam) technol-
ogy. We argue that this finding makes sense in the light of the existing
literature on technological change in maritime history.

Second (Chapters 3 and 4), we demonstrate the potential and the
flexibility of a Markov chain model using two different approaches.
In fact, usually Markov chains are considered as an end in itself. This
means that the main goal of an application with Markov chains is usu-
ally the computation of the predicted states probabilities. We showed
that we could go further, by, for example, computing expected hitting
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times (Chapter 3); or use the predicted state probabilities to predict a
certain continuous variable in a forecasting problem (Chapter 4).

More specifically, in Chapter 3, Combining a regression model with
a multivariate Markov chain in a forecasting problem, a new concept is
presented: the MMC usage as covariates in a regression model in or-
der to improve the forecast error of a certain dependent variable. We
assume causality from the latter to the former. In this context, of an
endogenous variable that depends on some time-dependent categor-
ical variables, we argue that a multivariate Markov chain approach,
that takes advantage of the information about the past state interac-
tions between the categorical variables, may lead to a substantial fore-
casting improvement of that endogenous variable, confirmed through
Diebold-Mariano tests and a Monte Carlo experiment.

In Chapter 4, The changing economic regimes and expected time to re-
cover of the peripheral countries under the euro: a nonparametric approach,
we focus on an important concept in stochastic analysis, the expected
time to cross a given threshold. Moreover, we apply a new method
to compute the expected time to recover from a negative (or positive)
shock. The method relies on a Markov chain representation of a con-
tinuous variable of interest. We apply this method to assess the im-
pact of the monetary regime change that occurred from 1999 onwards
on the dynamics of the economies of Europe’s peripheral countries.

Third, Chapter 5, Time inhomogeneous multivariate Markov chains: de-
tecting and testing multiple structural breaks occurring at unknown dates,
proposes a methodology for testing multiple structural breaks occur-
ring at unknown date intervals in Markov chains, that can also be
applied to multivariate Markov chains. This is a topic that has re-
ceived little attention in the literature, despite its great relevance. The
research on discrete time Markov chains often assumes homogene-
ity of the process in the sense that the stochastic transition prob-
ability matrix is assumed to be time invariant. However, ignoring
the nonhomogeneous nature of a stochastic process by disregarding
the presence of structural breaks can lead to misleading conclusions.
Markov chains are not an exception and it is relevant to have ac-
cess to mechanisms that allow testing for inhomogeneities. Indeed,
structural breaks are a common issue in Economic phenomena due
to their intrinsic complexity and interdependence between variables.
However, despite several studies involving Markov chains, few stud-
ies involved the issue of inhomogeneity. Two examples are Tan and
Yılmaz [91], who used a likelihood ratio statistic to test one single
break in the Markov chain that occurs at a known date and Polansky
[72], who presented a method to detect and estimate change-points in
Markov chains, although the limiting distribution of the test statistic
is unknown so the p-values were computed through bootstrapping.
Moreover, the method is restricted to first-order univariate Markov
chains. This chapter proposes a new methodology for estimating and
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testing for several structural breaks occurring at an unknown date
time in Markov chains. More precisely, this essay proposes a method
to: 1) estimate the break dates; 2) test for structural breaks using
nonstandard but known distributions (whereas bootstrap techniques
are useless). Our methodology can also be extended to multivariate
Markov chains and to higher order Markov chains, provided that the
sample size is sufficiently large.



2
M O D E L L I N G I N S U R G E N T- I N C U M B E N T
D Y N A M I C S : V E C T O R A U T O R E G R E S S I O N S ,
M U LT I VA R I AT E M A R K O V C H A I N S , A N D T H E
N AT U R E O F T E C H N O L O G I C A L C O M P E T I T I O N

Note: This article
has been published
in co-authorship
with Sandro
Mendonça in
Applied Economics
Letters.

At least since Schumpeter, modernisation carries the connotation of
"creative destruction". The superior newcomer technology makes the
old one redundant. In economic history technological competition
has been epitomised by the replacement of sail by steam (see, e.g.,
Craig [23] and Geels [35]). This momentous change in the profile of
mercantile marine paved the way to the rise of the west and the tri-
umph of industrial progress.

Most studies, however, have covered the process of transformation
of sea-related activity in the late 19th century, when the steamer was
already a stand-alone fully viable alternative (see Pollard and Robert-
son [73], Mohammed and Williamson [60]). Since the classic findings
of North [68], through the insights of Harley [43] to the most recent
work by Pascali [69], steam navigation has been taken to be a major
driving force behind the sharp reduction of transport times and costs
that ushered the first era of globalisation.

Less known is the period before machinery and metallurgy reined
supreme, when accommodation was the main feature of a maritime
world in transition. This paper looks into this earlier period so as
to unpack the dynamics of technological co-existence between the
two alternatives until the time in which they became clear substitutes
(1860s onwards). This empirical work assesses the first five decades
of ascendancy of the insurgent, but still experimental technology of
steam when sail dominance was overwhelming and yet advancing its
performance.

We find that while a vector autoregression approach would be an
obvious choice for modelling structural relationships in multivariate
processes the results are quite unsatisfactory. Additionally, there is no
trace of Granger causality. One reason for these failures to identify in-
teractions may have to do with the presence of non-linear dynamics.
To investigate this hypothesis a multivariate Markov chain approach
is applied, to check if density functions (not only first moments) are
time-dependent between variables. This modelling strategy succeeds
in picking up directional powers between the historical paths of sail
and steam. In particular, we detect that while the insurgent (steam)
does not impact the incumbent (sail) some effects are produced from
the incumbent (sail) to the insurgent (steam) technology. However

5



6 vector autoregressions and multivariate markov chains

paradoxical, this finding makes sense in the light of the existing liter-
ature on technical change in maritime history.

2.1 argument and approach

The industrial revolution at sea is a relatively little explored issue.
Clearly, it was a slow process at first. On the one hand, the old tech-
nology was more efficient than is usually assumed: sailing ships were
pushing ahead in terms of speed and strength comparing with their
immediate predecessors [45, 85]. On the other hand, steamships were
not competing on established trades and routes as they were handi-
capped by difficulties of range and efficiency [1], see also Mendonça
[56].

Surely both technologies advanced over time; what is less clear is
how they influenced each other in this early period in which sail was
a dynamic incumbent and steam was still an uncertain insurgent. One
way to investigate this issue is by applying conventional time-series
techniques that inquire causality and interdependencies between vari-
ables, and by taking into consideration a proxy of economically useful
ship sophistication (average tonnage). Here we focus on the British
merchant sail and steam fleets between 1814 (the earliest datapoint)
and 1865 (a cut-off point generally taken to mark the beginning of
the end of sail and the end of the beginning of steam; see, e.g. Harley
[43]).

2.2 modelling the interactions between old and new

technologies

2.2.1 Metrics and materials

In this paper, we start by proposing a vector-autoregression approach
to model the evolution of the two technologies between 1814 and 1865.
We then try to get extra leverage through a multivariate Markov chain
approach. The aim is to characterise the key features of sail-steam
dynamic interdependencies.

The dataset is taken from Mitchell [58], a source that makes avail-
able for historians long series of economic and technological statistics.
Although providing yearly information about number and tonnage
for both British-built sail and steamships, this source has remained
under-exploited. This study takes the average net tonnage of the sail
and steam fleets as a comparative indicator of economically useful
technical progress and monitors growth rates over time. As shipbuild-
ing is highly sensitive to the business cycle and to the expansion of
trading opportunities British real GDP is taken as a control variable
(the Maddison Project is the source here).
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It should be pointed out that, given the non-stationary nature of the
processes, we considered the log-difference of series (growth rates) of
the average tonnage of sail and steam vessels. This is intended to
enforce stationarity (both in mean and in variance) as it is confirmed
by augmented Dickey-Fuller tests.

2.2.2 A Vector Autorregression Approach

In applied econometrics the joint dynamics of variables invites the
development of a vector autoregression (VAR) methodology. Since
the Sims critique [83] that modelling K−dimensional multivariate
stochastic process {(yt) , t = 1, 2, 3, · · · } in the VAR framework has es-
tablished itself as a standard tool in econometrics.

VAR models explain a multivariate set of endogenous variables
uniquely by their own history, exploring the dynamics of the linear in-
teractions between such variables. Therefore, this approach provides
a systematic way to capture linear dynamics in multivariate processes.
Past shocks to the growth rate in the average tonnage of one type
of ship may impact the performance of the other, and/or vice-versa,
with years of delay. It may be that Granger-type causality flows from
one sort of technology to the other, but not the other way around. In
many respects, impulse-response analysis seems an apt perspective
through which to conduct causal inference. In order to investigate
the dynamics of the relationship between sail and steam in the ear-
lier part of the 19th century, we consider the standard detection and
modelling procedures.

Mathematically speaking, a VAR model of order p can be defined
as

yt = c+

p∑
j=1

Φjyt−j + εt (1)

where yt = [y1t, · · · ,ykt]
′ is a K−dimensional vector of random

variables; c is a fixed K−dimensional vector of intercepts controlling
for a non-zero mean possibility;Φj are K×K coefficient matrices (for
j = 1, · · · ,p) and εt is a K−dimensional white noise process such
that E [εt] = 0k,E [εtε′t] = Σ (a nonsingular matrix), and, for v 6= s

E [εvε
′
s] = 0

In order to deploy this linear estimation apparatus on the first mo-
ments of the time-series we start by establishing the length of the time-
lag. Lag length is usually selected using formal statistical criteria like
the likelihood ratio (LR), log-likelihood (LogL), Akaike’s information
criterion (AIC), Schwarz’s information criterion (SIC), Hannan-Quinn
(HQ), or the Final Prediction Error (FPE). The diagnostic tests point to
a restricted model using a minimally-lagged VAR since the LR, FPE,
AIC and HQ tests suggest just one time period (1 year) as lag. It is
reassuring that many criteria are convergent, as a single criterion is a
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weak basis from which to judge a model, and that the AIC and the
FPE, which are more appropriate when observations are small (60 or
less), point in the same direction. LogL and SIC provide conflicting re-
sults, but not convergent. Table 1 displays the conventional lag length
criteria tests.

Lag LogL LR FPE AIC SIC HQ

0 147.6038 NA 9.87e-06 -3.012579 -2.932443* -2.980187

1 162.9642 29.44080* 8.64e-06* -3.145088* -2.824544 -3.015519*

2 170.9529 14.81242 8.83e-06 -3.124020 -2.563068 -2.897274

3 177.7178 12.12040 9.27e-06 -3.077455 -2.276096 -2.753532

4 185.2677 13.05495 9.58e-06 -3.047243 -2.005477 -2.626144

Table 1: Lag Lenght Criteria

Table 2 reports the Granger linear causality tests. We find that no
causality is detected in either direction. That is, no pattern of cross-
influence emerges: the null hypothesis of "no Granger causation" is
not rejected either for steam being influenced by events in sail in
the previous period or vice-versa. This lack of statistical success in
picking up the effect the past technological events of one technology
on the other may be due to two reasons. First, no connection exists
and hence it is not detected. Second, it does exist but is not being
modelled correctly.

Finally, Table 3 summarises the VAR estimation results. The devel-
opment of steamship technology, i.e. the growth is ship size, is highly
correlated with itself but nothing else. Results for the other variables
are void. Overall, little is learnt from these (linear) exercises. The stage
is now set for proposing another (non-linear) probabilistic approach
to capture and model a latent structure of interdependencies as a
stochastic process.

2.2.3 Multivariate Markov Chain Methodology

A Markov chain is a sequence of random variables St,St−1, ...,S0, de-
fined into a countable space state E = {1, 2, ...,m}, that is characterised
by the Markov property that given the present, the future does not
depend on the past as follows:

P(St = k0| Ft−1) = P(St = k0|St−1 = k1) (2)

Where Ft−1 is the σ−algebra generated by the available information
until t− 1. The multivariate stochastic process

{(S1t, · · · ,Sst) ; t = 0, 1, 2, ...} (3)
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H0 : does not Granger Cause

Variable Steam Sail GDP

Steam − 0.9421 0.0149

Sail 0.5934 − 0.7915

GDP 0.2456 0.4891 −

Joint Wald 0.4732 0.7851 0.0514

p-values are reported

Table 2: Granger Linear Causality Tests

Variable Coefficient (Std. Err.)

Equation 1: Steam

Steam(-1) -0.395
∗∗ (0.127)

Sail(-1) 0.489 (0.404)

GDP(-1) 0.643 (1.155)

Intercept 3.473 (4.856)

Equation 2: Sail

Steam(-1) -0.003 (0.046)

Sail(-1) -0.081 (0.146)

GDP(-1) -0.301 (0.418)

Intercept 2.028 (1.756)

Estimates are presented, se’s between parentheses.

∗∗ denotes statistical significance at the 5% level

Table 3: VAR Model
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is said to be a multivariate Markov chain process (MMC) if an only if

P
(
Sjt = k

∣∣Ft−1) = P (Sjt = k∣∣S1t−1 = i1, · · · ,Sst−1 = is
)

(4)

Despite its limited usage, this approach configures a substantial ad-
vantage with respect to alternative econometric methods; estimating
a MMC tout court is an impossible task because the total number of
independent parameters grows exponentially with the number of cat-
egorical series (followingms(s− 1)). To address this issue the mixture
transition distribution model (MTD) [75] has been proposed. Some
improvements to this model have been proposed in the literature, no-
tably by Chen and Lio [20], Ching, Fung, and Ng [21], Ching and Ng
[22], Lèbre and Bourguignon [47], Raftery and Tavaré [76], and Zhu
and Ching [99].

A salient model is the MTD-Probit model [26, 64]. The quantity
P
(
Sjt = io

∣∣S1t−1 = i1, · · · ,Sst−1 = is
)

is taken as a nonlinear com-
bination of bivariate conditional probabilities as follows:

P
(
Sjt = io

∣∣S1t−1 = i1, · · · ,Sst−1 = is
)Φ ≡

Φ
[
ηj0 + ηj1P

(
Sjt = io

∣∣S1t−1 = i1)+ · · ·+∑m
k=1Φ

[
ηj0 + ηj1P

(
Sjt = k

∣∣S1t−1 = i1)+ · · ·+
+ηjsP

(
Sjt = io

∣∣Sst−1 = is)]
+ηjsP

(
Sjt = k

∣∣Sst−1 = is)] (5)

where
m∑
k=1

Φ
[
ηj0 + ηj1P

(
Sjt = k

∣∣S1t−1 = i1)+ · · ·+
+ηjsP

(
Sjt = k

∣∣Sst−1 = is)]
is a normalising constant.

The estimation technique is a two-step procedure. The quantities
Pjk ( i0| i1) , k = 1, ..., s are estimated nonparametrically through the
consistent estimators P̂jk ( i0| i1) =

ni1i0∑n
i0=1

ni1i0
where ni1i0 represents

the number of transitions from Sk,t−1 = i1 to Sjt = i0. The pa-
rameters ηjk are thereafter estimated using the maximum likelihood
method. For the variable Sjt the MLE is

logL =
∑

i1i2...iisi0

ni1i2...iisi0 log
(
PΦj ( i0| i1, ..., is)

)
. (6)

It can easily be proved that P̂jk is a consistent estimator of Pjk and
then it is straightforward to show that η̂jk

p→ ηjk.
The parameters ηjk represent the weights of the nonlinear combi-

nation: the higher the coefficient, in absolute value, the higher the im-
portance of the respective variable P

(
Sjt−1 = k

)
. As the model is esti-

mated through the ML estimator the inference problem is addressed.
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This means that the relevance of a specific bivariate probability, that
depicts a concrete variable, can be tested from a statistical point of
view.

As we will show in the next sub-section, the multivariate Markov
chain methodology and the MTD-Probit specification can be used to
capture the multivariate relationships and dependences between two
technologies. In fact, unlike some traditional parametric econometric
techniques, such as vector autorregressions that only capture linear
relationships between variables, the purpose of nonlinear method-
ologies is to capture complex relationships that go beyond the first
moment (conditional mean) or even the second moment (conditional
variance) as in multivariate GARCH family models. Notice that the
absence of parametric assumptions and constraints (the MTD-Probit
model is completely free of super-imposed restrictions) underlying
the model allows us to capture a wide range of associations between
a set of variables that can only be captured using nonparametric ap-
proaches.

2.2.4 Modelling the dynamic relationship between incumbent and insur-
gent technologies in the early days of steam

Let y1t and y2t denote respectively the yearly growth rates of the av-
erage tonnage (the ratio tonnage/number of ships) of sail and steam.
Let also y3t represent the UK gdp annual growth rate. The MMC
process was reconstructed according to the following rule:

Sjt =



1 if yjt 6 qj,20

2 if qj,20 < yjt 6 qj,40

3 if qj,40 < yjt 6 qj,60

4 if qj,60 < yjt 6 qj,80

5 if yjt > qj,80

where qj,l represents the l− th percentile of the process yjt, j =
1, 2, 3. Regarding the two technologies, the rationale behind this trans-
formation is as follows. Each technology is labeled into five categories
or states of innovation accordingly to its development prowess: 1-
very slow movement, 2 - slow movement, 3 - standard movement,
4 - fast movement, 5 - very fast movement. The same rationale can
be applied to the GDP to economic contraction (state 1 and 2), eco-
nomic stabilisation (state 3) or economic expansion (states 4 and 5).
The main interest here is to analyse the relationships between these
two technologies: sail and steam. Information regarding GDP was
considered as control and to accommodate the forces that give con-
text to the interdependence pattern that governs the bivariate dynam-
ics under scrutiny. Therefore, Ft−1, the σ−algebra generated by the
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available information until period t− 1 was expanded. For each pe-
riod the model for the j− th, j = 1, 2, 3 category is

P
(
Sjt = io

∣∣S1t−1 = i1,S2t−1 = i2,S3t−1 = i3
)Φ ≡

Φ
[
ηj0 + ηj1P

(
Sjt = io

∣∣S1t−1 = i1)+∑5
k=1Φ

[
ηj0 + ηj1P

(
Sjt = k

∣∣S1t−1 = i1)+
ηj2 P

(
Sjt = io

∣∣S2t−1 = i2)+ ηj3P (Sjt = io∣∣S3t−1 = i3)]
ηj2 P

(
Sjt = k

∣∣S2t−1 = i2)+ ηj3P (Sjt = k∣∣S3t−1 = i3)] (7)

Therefore, the space state is E = {1, 2, ..., 5}, m = 5 and s = 3. It
should be pointed out the fact that, here, a fully parameterised MMC
involves ms(s− 1) independent parameters, circumstance which, in
our case, leads to 250 independent parameters which is an untractable
problem due to our data span.

The quantities ηjl, j = 1, 2, 3; l = 1, 2, 3 represent the contribution of
each past variable for the j− th variable current state. For instance,
suppose that we are analysing sail technology. The dependent vari-
able

P (S1t = io|S1t−1 = i1,S2t−1 = i2,S3t−1 = i3) (8)

is a nonlinear function of sail, steam and gdp past states:

ηj1P
(
Sjt = io

∣∣S1t−1 = i1) +ηj2P
(
Sjt = io

∣∣S3t−1 = i2) +

ηj3P
(
Sjt = io

∣∣S3t−1 = i3) (9)

If we fail to reject the null H0 : η12 = 0 but we reject H0 : η11 = 0

this means that sail does not depend on steam and, moreover, the
current power of sail is not determined by steam’s power and thus
sail is a dominant technology, given that the current performance of
sail only depends on its own past performance. The intercepts ηj0,
although they have no interpretation, are included in the model as
they have been shown to improve fit [64, p.1127], so the respective
estimates η̂j0 are reported.

2.3 estimation results

This section depicts the estimation results of the equation 7 for the
period 1814-1865. Table 4 points out that the estimates η̂j1 and η̂j2
measure, respectively, the impact of sail’s and steam’s past power on
the technology j current power.

On the one hand, it can be noticed that the dynamics that gov-
erns sail technology is characterised by a dependence on its own past
states (η̂11=6.7794, significant at the 5% significance level, indicating
a strong persistent behaviour) and an absence of influence by what
has been going on before in steam (η̂12 not significant at any of the
traditional significance levels). On the other hand, steam technology
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Equation η̂j0 (Intercept) η̂j1 (Sail) η̂j2 (Steam) η̂j3 (GDP) Mean LL

1 Sail −4.6688∗∗∗
(1.6422)

6.7794∗∗
(3.3522)

7.9404
(4.9772)

5.2054∗∗
(2.3467)

−0.0864

2 Steam −5.7473∗∗∗
(1.8180)

10.2751∗∗
(4.7123)

5.8173∗
(3.1724)

9.3844∗∗
(3.9230)

−0.0901

Estimates are presented, se’s between parentheses;Mean LL represents the mean of the log-likelihood function.

∗∗∗ ,∗∗ and ∗ indicates the statistical significance level, respectively, for 1%, 5% and 10%

Table 4: MTD Probit Estimation

is strongly shaped by prior events in sail (η̂21 is high and significant).
This effect happens to be even stronger (both statistically and substan-
tially) than the influence of steam’s own past dynamics on itself (η̂22
is lower and only significant at the 10% level). Both sail and steam
dynamics appear to be coordinated with the general economic envi-
ronment.

Therefore, one may infer an asymmetrical technological relation-
ship. Against heroic or linear representations of innovation, leader-
ship during the rise of the "insurgent" technology was on the side of
"incumbent", that is, the vintage solution of sail. Sail’s performance
does predict steam’s, and this circumstance implies a (statistical) dom-
inant influence of the old on the newcomer. The transfer of leadership
to steam, in the sense of the impact of the new technology on the
old technology, would only occur beyond the period under analy-
sis, and with devastating consequences for sail [23, 56]. At the core
of the transformation of transport there was a complex relationship
between contending technologies, a switch later amplified by the con-
tinuous investment in invention (see Ferreiro and Pollara [32]) and
deployment of new infrastructures (see Gray [38]).

2.4 conclusions

This paper addresses, analyses and comments the intriguing relation-
ship between sail and steam at the dawn of globalising industrial capi-
talism. This paper presents evidence that improvements in the incum-
bent and insurgent technologies appear interrelated. Statistical results
suggest that the mix of technologies in the British merchant marine
had co-evolutionary characteristics from early on. That a multivariate
Markov chain approach brings some fresh and history-friendly in-
sight is testimony to the need for experimenting with new empirical
approaches and for keeping the methodological toolbox plural.

Contrary to explanations that would see sail technology reacting
to the competing threat posed by steam, we see that technological
relations do not simply appear to be zero-sum. Positive, synergic
relationships emerge with the arrival of steam to a maritime world
dominated by sail. Moreover, the dynamics was not symmetrical. Ev-
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idence is somewhat elusive but tentatively points to a major influ-
ence from sail to steamship performance (as measured by average
carrying capacity). That steam received an indirect payoff from its
co-existence with sail resonates with maritime economic history and
systemic visions of technical change. These views have emphasised
the importance of technological complementarities: the old/incum-
bent technology, which was in fact quite alive in terms of innova-
tion, re-invigorated the possibilities of the new/insurgent technology
(see, e.g. Madureira [51], Mendonça [56], and Rosenberg [78]. Such a
stylised fact should be remembered by industrial policy analysts.



3
C O M B I N I N G A R E G R E S S I O N M O D E L W I T H A
M U LT I VA R I AT E M A R K O V C H A I N I N A
F O R E C A S T I N G P R O B L E M

Note: This article
has been published
in co-authorship
with João Nicolau in
Statistics and
Probability Letters.

3.1 introduction

Consider a simple regime-switching model

yt = βxt + δzt + ut (10)

where zt is a latent dummy variable that evolves over time according
to a homogeneous Markov chain (i.e. P (zt = i0| zt−1 = i1) , i0, i1 =

0, 1). This model and further refinements have been extensively stud-
ied in the literature (see Hamilton [39]). In some circumstances the
zt variable may be observable, and in this case standard methods
of estimation of β and δ apply. However, forecasting yt may raise
some difficulties because zt (which is assumed to be a random vari-
able) is not observable in the forecasting period (to simplify one as-
sumes that xt is a dynamic term, e.g. AR(1), or a a simple trend).
In this case a probabilistic structure is needed for zt, for example a
Markov chain, as in regime-switching models. In this paper we ana-
lyze the forecasting problem when the yt variable depends on s > 1
discrete or categorical variables (observable during the estimation pe-
riod), whose dependencies are governed by a multivariate Markov
chain. This approach is new in the literature and the closest model
to ours is perhaps the regime-switching one cited above. However, in
contrast to regime-switching models which only deal with univariate
Markov chains, usually with few states (in most cases with two or
three states), given the complexity of the estimation procedures, our
model is able to involve many “zt” variables, with multiple states,
thanks to the MTD-probit specification as we explain later on.

To be more precise, this paper considers the forecasting of a time
series (yt) that depends on quantitative variable(s) (xt) and on s dis-
crete or categorical variables, (S1t, ...,Sst) where Sjt (j = 1, ..., s) can
take on values in the finite set {1, 2, ...,m} . We assume that Sjt de-
pends on the previous values of S1t−1, ...,Sjt−1, ...,Sst−1, and this
dependence is well modeled by a first-order MMC. However, Sjt can
also depend on some explanatory variables lagged over more than
one period - our approach may in fact be viewed as a higher-order
MMC (e.g. we may take Sjt−1 as St−j, and in this case we would have
an s-order Markov chain). We propose using MMC as covariates in a
regression model in order to improve the forecast error of a certain
dependent variable, provided it is caused, in the Granger sense, by

15
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the MMC. Traditionally, and so far, the published literature only ad-
dresses the MMC as an end in itself. Here we take advantage of the
information about the past state interactions between the MMC cat-
egories to forecast the dependent variable more accurately. As far as
we know this forecasting problem has not yet been analyzed in the
literature.

To form a regression model relating yt to the categorical variables,
we convert the Sjt categories into a set of dummy variables as follows:

zjkt = 1
{
Sjt = k

}
(11)

Where 1{�} is the indicator function, 1
{
Sjt = k

}
= 1 if Sjt = k and 0

otherwise. The proposed methodology also supports the event where
Sjt is a discrete variable with state space {1, 2, ...,m} (say), in which
case no dummy variables are needed.

Let us now assume, without any loss of generality, a linear specifi-
cation like:

yt = x
′
tβ+ z ′tδ+ ut (12)

where:

• x ′t may be a vector of both deterministic and stochastic compo-
nents, like AR(1) or other Ft−1 or Ft measurable predetermined
terms. Here Ft represents the information available at time t, i.e.
the σ-algebra generated by all events up to time t.

• z ′t is a vector of dummy variables zkjt , concerning the MMC,
defined in (11).

• {ut} is a white noise process mean independent of x ′t and z ′t.

To forecast yt+h we use the best predictor according to the expected
squared forecast error:

E [yt+h| Ft] = E
[
x ′t+h

∣∣Ft]β+ E
[
z ′t+h

∣∣Ft]δ (13)

given the exogeneity of the disturbance term, i.e. E [ut| Ft−1] = 0 ∀t.
To illustrate, suppose that we have two categorical variables (s = 2)

and each categorical datum takes on values in the set {1, 2, 3} , i.e.
m = 3. Unwinding the vector z ′t and the vector δ it follows that

yt+h = x ′t+hβ+ δ111{S1t = 1}+ δ121{S1t = 2}

+ δ211{S2t = 1}+ δ221{S2t = 2}+ ut (14)

where Sjt represents the j− th categorical series of the MMC (notice
that the dummy variable trap is avoided with this specification). Since
the values of Sjt+h are unknown in the forecasting periods, i.e. for
h > 1, we explore possible dependencies between Sjt+h and past
values of S1t+h and S2t+h using a MMC approach, to predict Sjt+h,
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and consequently, yt+h. If both S1tand S2t are discrete variables, the
regression equation is simpler:

yt+h = x ′t+hβ+ δ1S1t+h + δ2S2t+h + ut. (15)

From equations (14) or (15), it is clear that to forecast yt+h one
needs to evaluate P

(
Sjt+h = k

∣∣Ft), for k = 1, 2, ..., s. To keep these
expressions simple, we make the following assumptions:

Assumption A1. First order MMC.

P
(
Sjt = k

∣∣Ft−1) = P (Sjt = k∣∣S1t−1 = i1, · · · ,Sst−1 = is
)

. (16)

That is, Sjt given {S1t−1, · · · ,Sst−1} is independent of any other
variables in Ft−1.

Assumption A2. Homogeneous MMC.

We have a homogeneous MMC in the sense that

P
(
Sjt = k

∣∣S1t−1, · · · ,Sst−1
)
= P

(
Sjt+h = k

∣∣S1t+h−1, · · · ,Sst+h−1
)

.

(17)

Assumption A3. Contemporaneous needless terms.

Sjt is independent of{
S1t, · · · ,Sj−1t,Sj+1t, · · · ,Sst

}
given {S1t−1, · · · ,Sst−1}, i.e.

P
(
Sjt = k

∣∣S1t = i1, · · · ,Sj−1t = ij−1,Sj+1t = ij+1, · · · ,

Sst = is,S1t−1, · · · ,Sst−1) =

= P
(
Sjt = k

∣∣S1t−1, · · · ,Sst−1
)

(18)

To obtain the forecast of yt+h we need to calculate E
[
x ′t+h

∣∣Ft] and
E
[
z ′t+h

∣∣Ft]. It is assumed the former expression is known, hence we
focus on the latter expression. A generic element of E

[
z ′t+h

∣∣Ft] is
E
[
zkj,t+h

∣∣Ft] which, by Assumption A1, can be written as

E
[
zkj,t+h

∣∣Ft] = P (zkj,t+h = 1
∣∣Ft) = P (Sj,t+h = k

∣∣Ft)
= P

(
Sj,t+h = k

∣∣S1t = i1, · · · ,Sst = is
)

. (19)

We use the MMC theory to estimate the expression (19), which
ultimately leads to the expressions E

[
z ′t+h

∣∣Ft] and E [yt+h| Ft]. We
briefly cover the main aspects of MMC estimation theory in the next
section.
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3.2 multivariate markov chains as regressors : model

estimation

In this section we explain our strategy to estimate the parameters de-
fined in equation (12), ψ=(β,δ) and the parameters associated with
the multivariate Markov chain, which we denote by η. Let θ =(ψ,η)
be the complete vector of parameters, and B and D the parameter
space of ψ=(β,δ) and η, respectively. Given the structure of our
model and by construction, ψ and η are variation free (see Engle,
Hendry, and Richard [31]), since (ψ,η) ∈ B×D, i.e. ψ and η are not
subject to cross restrictions so that for any specific admissible value
in B for ψ, η can take any value in D. In these circumstances, the
conditional distribution of yt|St,Ft−1 depends on ψ only, and the
conditional distribution of St| Ft−1 depends on η only. In this way
the joint density of the complete sample can be sequentially factor-
ized as follows:

f (y0,y1, ...,yn;S10, · · · ,S1n, · · · ,Ss0, · · · , ,Ssn;θ) =

=

n∏
t=1

f (yt, St| Ft−1;θ) =
n∏
t=1

f (yt|St,Ft−1;ψ)
n∏
t=1

P (St| Ft−1;η)

(20)

Let us focus on P (St| Ft−1;η) = P (S1t, ...,Sst| Ft−1;η) . This ex-
pression may be written as:

P (S1t, ...,Sst| Ft−1;η) = P (S1t, ...,Sst|S1t−1, ...,Sst−1;η) (21)

=

s∏
j=1

P
(
Sjt
∣∣S1t−1, ...,Sst−1;η

)
(22)

=

s∏
j=1

P
(
Sjt
∣∣S1t−1, ...,Sst−1;ηj

)
(23)

where (21) and (22) follow from assumptions A1 and A3, respec-
tively. In equation (23) we decomposed η as η =(η1, ...,ηs) , where
ηj are the parameters associated with the conditional distribution
Sjt
∣∣S1t−1, ...,Sst−1. As previously with ψ and η, the vector param-

eters η1, ...,ηs are variation free, as will become clear later on. Rear-
ranging all terms one has

f
(
y0,y1, ...,yn;Sj0,Sj1, ...,Sjn;θ

)
=

n∏
t=1

f (yt|St,Ft−1;ψ)
n∏
t=1

s∏
j=1

P
(
Sjt
∣∣S1t−1, ...,Sst−1;ηj

)
=

n∏
t=1

f (yt|St,Ft−1;ψ)
n∏
t=1

P (S1t|S1t−1, ...,Sst−1;η1)

...
n∏
t=1

P (Sst|S1t−1, ...,Sst−1;ηs) (24)
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and the log likelihood is

log f
(
y0,y1, ...,yn;Sj0,Sj1, ...,Sjn;θ

)
=

n∑
t=1

log f (yt|St,Ft−1;ψ)+

n∑
t=1

logP (S1t|S1t−1, ...,Sst−1;η1) + ...+

n∑
t=1

logP (Sst|S1t−1, ...,Sst−1;ηs) (25)

This decomposition shows that the parameters can be estimated
separately, by maximizing the various expressions in the previous
equation, without any loss of consistency or efficiency. Consequently,
ψ=(β,δ) is estimated, for example, using the ML in equation (12),
and ηj (j = 1, ..., s) are estimated taking each conditional distribu-
tion Sjt

∣∣S1t−1, ...,Sst−1 one at a time, as we will describe in the next
section (see for example equation (27)).

3.3 multivariate markov chain estimation

The purpose of this section is to describe a method to estimate the pa-
rameters ηj defined in the log-likelihood expression (25). As proved
in the previous section, the expression

n∑
t=1

logP
(
Sjt
∣∣S1t−1, ...,Sst−1;ηj

)
can be maximized independently of the other terms contained in

the log-likelihood function (25). Let

Pj ( i0| i1, ..., is) ≡ P
(
Sjt = i0

∣∣S1,t−1 = i1, ...,Ss,t−1 = is
)

where j ∈ {1, 2, ..., s} and i1, ..., is ∈ {1, 2, ...,m} . It is well known that
modelling these probabilities when s and m are relatively large and
the sample size is small or even moderate, is unfeasible because the
total number of parameters is ms (m− 1), as can be shown. To over-
come this problem Raftery [75] considered a simplifying hypothesis
for modelling high-order Markov chains (HOMC). Recently, Nico-
lau [64] proposed an alternative specification, called the MTD-Probit
model:

Pj ( i0| i1, ..., is) = PΦj ( i0| i1, ..., is) (26)

≡
Φ
(
ηj0 + ηj1Pj1 ( i0| i1) + ... + ηjsPjs ( i0| is)

)∑m
k=1Φ

(
ηj0 + ηj1Pj1 (k| i1) + ... + ηjsPjs (k| is)

)
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where ηji ∈ R (j = 1, ..., s; i = 1, ...,m) and Φ is the (cumulative)
standard normal distribution function. When Sjt is the dependent
variable the likelihood is

logL =
∑

i1i2...isi0

ni1i2...isi0 log
(
PΦj ( i0| i1, ..., is)

)
. (27)

and the maximum likelihood estimator is defined, as usual, as η̂j =
arg maxηj1,...,ηjs logL. The parameters Pjk ( i0| i1) , k = 1, , ..., s can be
estimated in advance, through the consistent estimators P̂jk ( i0| i1) =
ni1i0∑n
i0=1

ni1i0
where ni1i0 is the number of transitions from Sk,t−1 =

i1 to Sjt = i0. This procedure greatly simplifies the estimation proce-
dure and does not alter the consistency of the MLE η̂j estimator, as
P̂jk is a consistent estimator of Pjk.

3.4 multi-step forecast model

The previous section described how the probabilities

P
(
Sjt = i0

∣∣S1,t−1 = i1, ...,Ss,t−1 = is
)

can be estimated. In this section we introduce the h-step-ahead MMC
forecast problem, i.e. P

(
Sj,t+h = k

∣∣S1t = i1, · · · ,Sst = is
)
. Since we

have a homogeneous MMC, the one-step-ahead forecast expression
is straightforward, given assumption A2: P

(
Sjt+1 = k|S1t, · · · ,Sst

)
=

P
(
Sjt = k|S1t−1, · · · ,Sst−1

)
.

To obtain the h-step-ahead MMC forecast, we consider two proce-
dures. In the first we start to deduce a general formula for the h-step-
ahead MMC forecast that can be recursively computed from the pre-
vious forecast. Using the discrete version of Chapman-Kolmogorov
equations, the formula of total probability, and assumptions A1-A3,
we have

P
(
Sjt+h = k|S1t, · · · ,Sst

)
=

m∑
i1

m∑
i2

· · ·
m∑
is

P
(
Sjt+h = k

∣∣ S1t+h−1 = i1, · · · ,Sst+h−1 = is,

S1t, · · · ,Sst)

=

m∑
i1

m∑
i2

· · ·
m∑
is

P
(
Sjt+h = k

∣∣S1t+h−1 = i1, · · · ,Sst+h−1 = is
)

× P (S1t+h−1 = i1|S1t, · · · ,Sst)︸ ︷︷ ︸
fromh−1

P (S2t+h−1 = i2|S1t, · · · ,Sst)︸ ︷︷ ︸
fromh−1

× · · · × P (Sst+h−1 = is|S1t, · · · ,Sst) .︸ ︷︷ ︸
fromh−1

(28)
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This formula is calculated recursively (notice that it depends on
P
(
Sjt+h−1 = i1|S1t, · · · ,Sst

)
, j = 1, 2, · · · , s.). The second procedure

is based on the assumption that

P
(
Sjt+h = i0

∣∣S1,t = i1, ...,Ss,t = is
)
=

Φ
[
ηj0 + ηj1P

(
Sjt+h = i0

∣∣S1t = i1)+∑m
k=1Φ

[
ηj0 + ηj1P

(
Sjt+h = k

∣∣S1t = i1)+
+... + ηjsP

(
Sjt+h = i0

∣∣Sst = is)]
+... + ηjsP

(
Sjt+h = k

∣∣Sst = is)] (29)

which is clearly a natural extension of equation (40). This expression
requires that P

(
Sjt+h = i0

∣∣Skt = ik) be computed in advance. From
the Chapman-Kolmogorov equations and the formula of total proba-
bility, it can be easily seen that

P
(
Sjt+h = i0

∣∣Skt = ik) =
m∑
α=1

P
(
Sjt+h = i0

∣∣Sk,t+h−1 = α
)
P (Sk,t+h−1 = α|Skt = ik) .

(30)

This expression is equal to the element (i0, ik) of the matrix product
P(jk)

(
P(kk)

)h−1
where P(jk)is a matrix with elements

P
(
Sjt = i0

∣∣Skt−1 = ik) .

We found formula (29) computationally easier to implement than (28).
We may now establish the algorithm behind the forecast of yt+h :

1. Run the regression model yt = x ′tβ+ z ′tδ+ ut and estimate β
and δ using the OLS method or any other method.

2. Obtain η̂j = arg maxηj1,...,ηjs logL where the log-likelihood refers
to equation (27).

3. From the estimates η̂j calculate P
(
Sjt+1 = k|S1t, · · · ,Sst

)
, and

derive the expressions P
(
Sjt+h = k|S1t, · · · ,Sst

)
, either recur-

sively from formula (28) or from formula (29).

4. Finally, obtain the forecast yt+h by calculating

E [yt+h| Ft] = E
[
x ′t+h

∣∣Ft]β+ E
[
z ′t+h

∣∣Ft]δ (31)

3.5 monte carlo simulation study

3.5.1 Monte Carlo Simulation Study: Procedure and Design

In this section we evaluate the MMC predictive potential through a
Monte Carlo simulation problem. The goal is to construct a model
where the MMC, transformed into s× (m− 1) dummy variables (one
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dummy for each state minus one, for each category), play the role of
covariates, seeking to gauge how they help forecast a certain depen-
dent variable.

We consider here a simple process with two categories (s = 2) with
each one taking values of 1, 2 or 3 (m = 3). We simulate the MMC in
accordance with the following algorithm:

1. Initialize the process {(S1t, S2t)} by assigning arbitrary values
for S10 and for S20.

2. Define two ms ×m TPMs whose elements are, respectively, the
following probabilities

P (S1t = io|S1t−1 = i1,S2t−1 = i2)

P (S2t = io|S1t−1 = i1,S2t−1 = i2)
(32)

(see the definition of the data-generation process below)

3. Given the initial values S10 and S20 (step 1), simulate the multi-
variate process {(S1t, S2t)} , t = 1, .., T as follows:

a) simulate U1, uniformly distributed on [0, 1];

b) let us define p[1]i ≡ P (S1t = i|S1t−1 = i1,S2t−1 = i2);
c) assign a value to S1t according to the rule:

S1t =


1 if 0 6 U1 < p

[1]
1

2 if p1 6 U1 < p
[1]
1 + p

[1]
2

3 if p1 + p2 6 U1 < 1

d) repeat this procedure for S2t (using U2 ∼ U (0, 1), indepen-
dent of U1) .

4. Repeat the steps 1-4 until t = T .

Thus, we construct our 4 dummy variables, as in (11), such that:
zjk,t = 1

{
Sjt = k

}
, k = 1, · · · ,m− 1.

We consider the following linear data-generation process (DGP)
where

• z ′t ≡
(
z11 z12 z21 z22

)
, δ =

(
1 1 1 1

) ′
, for simplic-

ity,

• x ′t =
(
1 xt

)
and xt (such as ut) is i.i.d.N (0, 1), β =

(
1 1

) ′
.

To fully define the DGP, we arbitrarily construct the TPM as follows:
For convenience, we assume that S1t and S2t have the same tran-

sition probabilities, i. e. that P (S2t = i0|S1t−1 = i1,S2t−1 = i2) =

P (S1t = i0|S1t−1 = i1,S2t−1 = i2).
We aim to compare the dependent variable h-step-ahead forecast

errors produced by four different hypotheses:

• Case 1: The values of dummy variables at t+ h are known,

ẑ
(1)
jkt+h = zjkt+h (33)
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S1t−1 1 1 1 2 2 2 3 3 3

S2t−1 1 2 3 1 2 3 1 2 3

S1t 1 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1

2 0.1 0.4 0.1 0.4 0.8 0.1 0.1 0.4 0.1

3 0.8 0.1 0.8 0.1 0.1 0.4 0.8 0.1 0.8

Table 5: Transition Probability Matrix

• Case 2: The values of dummy variables at t + h are predicted
using the following proposed methodology

ẑ
(2)
jkt+h = P̂

(
Sjt+h = k

∣∣S1t = i1,S2t = i2
)

(34)

where P̂
(
Sjt+h = k

∣∣S1t = i1,S2t = i2
)

is obtained according to
expression (30).

• Case 3: The values of dummy variables at t + h are predicted
using marginal means

ẑ
(3)
jkt+h = T−1

T∑
t=1

zjkt. (35)

Note that we estimate the event I{Sjt=k} using a consistent esti-

mator for the marginal probability, P
(
Sjt+h = k

)
.

• Case 4: The dummies are omitted, i.e ẑ(4)jkt+h≡0.
Out-of-sample forecasts were generated by the so-called recursive
(expanding windows) forecasts. An initial sample using data from
t = 1 to T = 1000 is used to estimate the models, and h-step ahead
out-of-sample forecasts are produced starting at time T = 1000. The
sample is increased by one, the models are re-estimated, and h-step
ahead forecasts are produced starting at T + 1. This procedure is re-
peated 1000 times, i.e. we considered 1000 out-of-sample forecasts,
and the forecasting time horizon was defined as h = 1, 2, 3, 4, 5 .
Lastly, we assessed the quality of the forecast using the statistics

MSElh = N−1
T+999∑
t=T

ê2l,t+h where N = 1000 is the number of repli-

cas considered in the experiment and el,t+h is the forecast error pro-
duced by model l (l = 1, 2, 3, 4) at the h− th forecast step, i.e.

el,t+h ≡ yt+h − ŷ
(l)
t+h (36)

where

ŷ
(l)
t+h ≡ x

′
t+hβ̂+ ẑ

(l) ′

t+hδ̂

and ẑ(l)
′

t+h ≡
(
z
(l)
11t+h z

(l)
12t+h z

(l)
21t+h z

(l)
22t+h

)
, for l = 1, 2, 3, 4.
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3.5.2 Monte Carlo Simulation Study: Discussion of Results

In this section we report the results of the Monte Carlo study pre-
sented in the previous section, investigating the potential forecast
gains of a dependent variable, derived by processing categorical in-
terrelated regressors as a MMC, i.e. by exploiting intra and inter-
transition probabilities between categorical regressors. Figure 1 presents
the MSElh for l = 1, 2, 3, 4 and h = 1, 2, 3, 4.
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Figure 1: Results of the forecast errors MSElh

As expected, case 1 presents the best results, since the forecast of
yt+h is based on the actual values zjkt+h, and case 4 the worst re-
sult, since the dummies zjkt+h were simply ignored. Case 2 uses
the proposed methodology, and hence explores the intra and inter-
transition probabilities between categorical regressors; it clearly pro-
duces better results than case 3, in which the forecasts are based on
the estimate of the marginal probabilities P

(
Sjt+h = k

)
. To confirm

the advantage of the proposed method over the marginal probabil-
ities we carried out the Diebold and Mariano [28] (DM) test, that
allows us to assess the significance of the MSE difference between
those models. As is known, the DM can be trivially calculated by re-
gression ê23,t+h− ê

2
2,t+h on an intercept, using heteroskedasticity and

autocorrelation robust (HAC) standard errors. Our results (available
upon request) show that the proposed model outperforms the fore-
casts based on the marginal mean for h = 1 and h = 2 (p-value zero),
and possibly h = 3 (p-value 0.08). When h increases, the advantage
of using our model dissipates, which is to be expected taking into
account that in stationarity and weak dependence assumptions, the
conditional probabilities converge into the stationary probabilities, i.e.
P
(
Sjt+h = i0

∣∣S1t = i1,S2t = i2
)
→ P

(
Sjt = i0

)
as h→∞.
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3.6 conclusions

This paper proposed a new concept by using MMC as covariates in
a regression model in order to improve the forecast error of a certain
dependent variable, provided it is caused by the MMC. Traditionally,
the published literature only addresses the MMC as an end in itself.
In a context of an endogenous variable that depends on some time-
dependent categorical or discrete variables, we show that taking ad-
vantage of the information about the past state interactions between
the categorical variables through a MMC specification via modelling
the intra and inter-transition probabilities within and between data
categories, may lead to a substantial forecasting improvement of that
endogenous variable, as the Monte Carlo experiment has shown.
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4.1 introduction

The expected time to cross a given threshold is an important concept
in stochastic analysis, although not commonly used in economic in-
vestigations. In the case of this paper, we develop a new method [65]
to compute the expected time to recover or to adapt from a negative
or positive shock or change. Independently of considerations on the
endogenous or exogenous nature of perturbations in the dynamics of
the aggregate measure of economic activity, the GDP, and accepting
for the purpose of the computation the approximation provided by
the required two assumtpions (Markovian property and transforma-
tion for stationarization of data), we apply this method to appreciate
the impact of the monetary regime change occurring from 1999 on
the dynamics of the economies of the peripheral countries in Europe.
Section 2 summarizes the methodology and Section 3 the empirical
results, whereas Section 4 presents a conclusion.

4.2 methodology : a nonparametric method to estimate

the expected time

The expected time for the economy to recover after a slump is an
important indicator on how robust the economy is to shocks and how
effective the policies and institutions are to regain the path of normal
growth.

The econometric literature offers few alternative approaches to anal-
yse this issue. A possible measure, commonly related to the level of
persistence of a time series, is the half-life which is usually defined
as the number of periods required for the impulse response to a unit
shock of a time series to dissipate by half. However, empirical studies
of half-lives have documented some issues related to the precision
and unbiasedness of the estimates [61]. Most of the problems are re-
lated to incorrect model specification (apart from other sources such
as temporal aggregation, structural breaks, etc.). Furthermore, half-
life implies that a positive and negative shock of equal magnitude
has the same impact on the impulse response function; however, the
reversion to a fixed point (e.g. stationary mean) may display different

27
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behaviour depending on whether the process is below or above that
point.

Another way to discuss the time to recover can be based on the
concept of expected time (ET) to cross some thresholds. For example,
suppose that the GDP growth rate crosses some negative value say
x0, indicating that the economy is in recession; then define a higher
level or threshold that the process eventually reaches in the future,
say x1. The expected time for the process to go from x0 to x1 is an
indication of how resilient and robust the economy is to recover from
recession. The ET concept has received little attention in economics.
One of the reasons is probably the difficulty in obtaining a simple pro-
cedure to calculate, for example, the ET to reach a threshold. In fact,
analytical results on first hitting time problems (from which expected
time may be calculated) are mostly based on stochastic processes of
diffusion type or Markov chains where explicit analytical expressions
are usually available. First hitting times are often used in mathemati-
cal finance, biology and other life sciences, where Markov chains and
stochastic differential equations are more commonly used, for exam-
ple, to study time to extinction or default (in finance). Nonetheless, ET
may also be a very useful tool in economics to discuss topics such as
the speed of mean-reversion, the time to equilibrium, and especially
in the current case the time to recovery.

In this paper, we use a new estimator by Nicolau [65] to estimate
the expected time to cross some thresholds. This estimator is formu-
lated in a completely nonparametric framework and uses only two
assumptions: Markovian property and stationarity. Standard errors
can also be computed. We sketched the main ideas of the method
here.

Let y be the GDP growth process with state space R. We assume
that:

Assumption A4. y is a Markov process of order r (1 6 r <∞),

and

Assumption A5. y is a strictly stationary process.

Under assumption A5, it can be proved that starting the process
from a level a not belonging to the generic set A, the process y visits
A an infinite number of times as t→∞, almost surely, see Meyn and
Tweedie [57, chap. 9]. This property is of course crucial for (pointwise)
identification.

We consider the hitting time T ≡ Tx1 = min {t > 0 : yt > x1} and
suppose that the process starts at value x0 < x1. The case x0 > x1
with Tx1 = min {t > 0 : yt 6 x1} is almost analogous. A brief remark
on this case will be made later on. The distribution of T is usually
difficult to deduce for general non-linear processes. However, there
is a simple nonparametric method to estimate these quantities. Set
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S0 = 1 if y0 = x0 (note that the process starts at y0 = x0). Now define
the following transformation for k > 0

St =


1 if yt < x1,yt−1 < x1, ...,yt−k+1 < x1,yt−k 6 x0
2 if x0 < yt 6 x1, x0 < yt−1 6 x1, ..., x0 < yt−k+1 6 x1,yt−k > x1
3 otherwise.

(37)

Figure 2 illustrates the map (37) for a hypothetical trajectory of y.

Figure 2: Illustrating map (37), where x0 = 1, x1 = 2. Thick line: St = 1; thin
line: St = 2; dot line: St = 3

The probabilities of T , which can be difficult or impossible to obtain
from y, may be easily calculated from process St. It can be proved that

P (T = t) = (1− pt)

t−1∏
i=1

pi = (1− pt)pt−1pt−2....p1 (38)

where pt = P (St = 1|St−1 = 1,St−2 = 1, ...,S0 = 1) . Our strategy is
to treat St as a Markov chain with state space {1, 2, 3} from which we
then estimate the relevant parameters. The following result supports
our approach.

Propositon 1. Suppose that y is a rth order Markov process. Then S is a
rth order Markov chain.

From the A4 assumption and previous proposition, one has pt =

P(St = 1|St−1 = 1,St−2 = 1, ...,St−r = 1). The probabilities pt can
be estimated from standard Markov chain inference theory.
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We first analyse the case r = 1. To emphasise the dependence
of St on the thresholds x0, x1, we write the transition probability
matrix as P (x0, x1) =

[
Pij (x0, x1)

]
3×3 where Pij = Pij (x0, x1) ≡

P (St = j|St−1 = i). The only parameter of interest is P11. If S is a first
order Markov chain, i.e. r = 1, then pt = P (St = 1|St−1 = 1) = P11
and

E [T ] =

∞∑
t=1

tpt = (1− P11)

∞∑
t=1

tPt−111 =
1

1− P11
. (39)

This quantity can be easily estimated from the maximum likelihood
estimate P̂11 = n11/n1 where n11 is the number of transitions of type
St−1 = 1, St = 1 and n1 counts the number of ones (i.e. St = 1) in
the sample.

Propositon 2. We have P̂11 = n11/n1
p−→ P11 and

√
n
(
P̂11 − P11

) d−→
N (0,P11 (1− P11) /π1) where π1 is such that n1/n

p−→ π1.

It is interesting to observe that the process y has to visit (or cross)
the threshold x1 an infinite number of times over time, in order to
achieve consistency, and this follows from A5, and in particular from
positive Harris recurrence of y and also of S. This prevents, for exam-
ple, having only ones in the sequence of S (which represents the case
where y never visits x1) and consequently E [T ] =∞.

Propositon 3. Let Ê [T ] = 1/
(
1− P̂11

)
. We have in the case r = 1

Ê [T ]
p−→ E [T ] ,

√
n
(

Ê [T ] − E [T ]
)

d−→ N

(
0,

P11

(1− P11)
3 π1

)
,

0 < P11 < 1.

Propositon 4. Let us now focus on the case r > 1. We saw previously that

P (T = t) = (1− pt)

t−1∏
i=1

pi

where pt = P (St = 1|St−1 = 1,St−2 = 1, ...,S0 = 1) . Given that pt =

pr if t > r, in view of the Markovian property, we have

P (T = t) =

 (1− pt)
∏t−1
i=1 pi t 6 r(

(1− pr)
∏r−1
i=1 pi

)
pt−rr t > r.
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Consequently, we have

E [T ] =

r∑
t=1

t (1− pt)

t−1∏
i=1

pi +

(
(1− pr)

r−1∏
i=1

pi

) ∞∑
t=r+1

tpt−rr

=

r∑
t=1

t (1− pt)

t−1∏
i=1

pi +

(
(1− pr)

r−1∏
i=1

pi

)
×

× pr (1+ r− rpr)

(1− pr)
2

. (40)

This expression simplifies to the following formulas:

r = 1⇒ E [T ] =
1

1− p1
=

1

1− P11
(see equation 39),

r = 2⇒ E [T ] =
1+ p1 − p2
1− p2

, etc.

Since the Markov chain is homogeneous, it follows that

pk = P (Sk = 1|Sk−1 = 1, ...,S0 = 1)

= P (St = 1|St−1 = 1, ...,St−k = 1) ,

k < r, and in particular, p1 ≡ P (S1 = 1|S0 = 1) = P11. To estimate
pk we use the maximum likelihood estimate p̂k = A/B, where A
is the number of transitions from St−1 = 1, ...,St−k = 1 to St = 1

and B is the number of cases where St−1 = 1, ...,St−k = 1. However,
modelling these probabilities may be problematic when k is relatively
large and the sample size is small. Therefore k should be no than 4 or
5 (say), depending on the sample size, the level of persistence of y and
the thresholds x0 and x1. Nevertheless, the literature provides meth-
ods to deal with higher k, for example by using the Mixture Transition
Distribution [75] or the probit-Mixture Transmodellingition Distribu-
tion [26, 65].

We must also make a few observations on the statistical inference in
the case r > 1. The estimate of E [T ] is straightforward: one needs only
to replace the unknown parameters with the corresponding ML esti-
mates. The estimator thus obtained is obviously consistent for E [T ].
However, as it is evident from (40), an exact asymptotic expression for
the distribution of Ê [T ] is difficult to obtain. To overcome this issue,
we consider the regeneration-based bootstrap procedure of Athreya
and Fuh [5] (see also Nicolau [65] for more details).

4.3 empirical illustration : the changing economic regimes

of the peripheral countries under the euro

4.3.1 The economic problem

The investigation on economic fluctuations dominated macroeconomics
through the first half of the twentieth century but was thereafter de-
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clared obsolete by an over-reaching confidence in stabilization poli-
cies. In this sense, Paul Samuelson joked at the fiftieth anniversary
conference of the U.S. National Bureau of Economic Research, a ma-
jor center for business cycle research, that its success was putting the
organization out of a job. Nevertheless, the major recessions of the
end of the century and that ignited by the subprime crash demon-
strated major fragilities both in the economic structure of the devel-
oped countries and in their economic prescriptions and models.

The revival of business cycle analysis is built on different theoret-
ical contributions, from the traditional approaches by Mitchell [59]
and Schumpeter [80] to the literature on long term processes of match
and mismatch between the techno-economic paradigm and the insti-
tutional framework [33], to the historic analysis of different epochs
[3, 97], to the interpretation of the articulation among different insti-
tutional and economic factors [16, 17, 49], the convergence of general
purpose technologies [50] and, finally, to the discussion on secular
stagnation [16, 29, 46, 90].

Although considering these contributions, we concentrate in this
paper in an empirically oriented investigation in order to detect major
structural changes in the schedule of quarterly GDP for some Euro-
pean countries (namely on Belgium, Denmark, Finland, France, Ger-
many, Greece, Iceland, Italy, Luxembourg, Netherlands, Norway, Por-
tugal, Spain, Sweden, Switzerland and UK) through the long period
of 1962-2016, suggesting that they indicate a regime change for the
economies under scrutiny after the creation of the Monetary Union.
In this case, therefore, the analysis of business cycles and long term
dynamics is combined with the interpretation of the effect of a crucial
change in the monetary regime of these economies.

Instead, the prediction suggesting that the Euro would imply the
real convergence of the different economies has been canonical among
the proponents of the single currency. Following the theory of an op-
timal currency zone, the deregulation procedures and the free move-
ment of goods, capital and labor would allow for leveling the inter-
est and the implicit exchange rates and to the convergence of factor
prices in the different economies. As expressed by the then governor
of the Bank of Portugal and current vice-president of the ECB, Vitor
Constâncio, in a sworning-in 2000 speech, without a currency of our
own, we shall never again face the same balance of payments problems of the
past. There is no macroeconomic monetary problem and no restrictive mea-
sures need to be taken for balance of payments reasons. No one analyses the
macro size of the external account of the Mississippi or of any other region be-
longing to a large monetary union.1 Recently, many authors challenged
this view, considering the experience [2, 46, 86, 87].

1 Available at:https://www.bportugal.pt/en-US/OBancoeoEurosistema/IntervencoesPublicas/Pages/intervpub20000223.aspx
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1962-1998 1999-2016

σ(ȳik−σ̂yik)
2.27 4.00

σ(ȳik+σ̂yik)
1.70 4.23

σEM
(ȳik−σyik)

2.49 4.68

σEM
(ȳik+σyik)

1.96 4.96

Table 6: Sample Standard Deviation of Expected Reversion Time

4.3.2 Empirical estimation

From a practical perspective, we estimate ET for the different starting
points x0, but the same threshold x1. We call these estimates the ET
curve or ETC. The value x1 is defined as x1 = ȳ (empirical mean of y)
which is the best estimate of the stationary mean. Therefore, the ETC
measures the expected time for the process to revert to its stationary
mean.

It should be point out the fact that, given the nonstationary nature
of GDP process, we considered log-differenciated series in order to
achieve stationarity (Assumption A5) as it is confirmed by the au-
mented Dickey-Fuller tests.

To obtain the ETC we generate different values for x0 equally spaced
between ȳ− δσ̂y and ȳ+ δσ̂y, where σ̂y is the sample standard de-
viation of y and δ is a parameter that controls the amplitude of the
interval (ȳ− δσ̂y, ȳ+ δσ̂y). In our analysis we set δ = 1. In order to
compare the different ETC we standardize our data, so that all the
standardized GDP will have zero mean and unit variance (hence, the
point x1 turns out to be zero). We have considered a second order
Markov process (i.e. r = 2) based on the partial autocorrelation of
y (we have analyzed seasonal adjusted series). However, it should
be mentioned that other values of r lead to approximately the same
results.

Figures 3a and 3b display the Expected Time Curves for the 1962-
1998 period and Figures 4a and 4b show the ETC for the 1999-2016

period on the GDP growth rates for 16 European countries. It is in-
teresting to note that the dispersion of the mean expected reversion
time among countries is much higher in 1999-2016 than in the previ-
ous period (1962-1998), both for negative and positive deviations, as
we shall see next.

Figure 5 displays the scatter plot of the average growth rates against
the expected mean reversion time given a positive deviation of

(ȳik + σyik) ,
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Figure 3: ETC for the 1962-1998 period

where ȳik is the average growth rate of the i− th country at period
k (i = 1, 2, ..., 16 and k = 1, 2), for each subsample, and Figure 6 is
similar to Figure 5 but represents the expected mean reversion time
given a negative deviation of (ȳik − σyik). Reference red lines denote
the medians (considering the entire sample), therefore the Figure is
divided into 4 quadrants. Regarding Figure 6, while the second quad-
rant (top left) represents the best possible situation (high growth rates
and small mean reversion time given negative deviations) the fourth
quadrant (bottom right) depicts the worst case scenario (small growth
rates and high mean reversion time given negative deviations). On
the one hand, after 1999, all the southern countries, notably, Portugal,
Italy, Greece and Spain have moved form first or second quadrant to
the fourth one. This circumstance is confirmed by the dendograms
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Figure 4: ETC for the 1999-2016 period

(Figures 8 and 12) where the southern European countries form a
well defined cluster after 1999 onwards, whilst before 1999 (Figures
7 and 11) the southern countries integrate different clusters among
themselves. Nevertheless, one can observe a generalized mass migra-
tion of countries to the third and fourth quadrants of the scatter plots
motivated by higher ET and lower growth rates.

However, the generality of the non Euro member states occupied
the first quadrant until 1999 and moved to the third one quadrant
after 1999 (there are no non Euro member states in the fourth quad-
rant) which means low recovery times after negative deviations in
comparison with the Euro states. Moreover, the ET of the non Euro
economies had not change a great deal from the 1962-1998 period to
the 1999-2016.
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Figure 5: Scatter plot for positive deviations from the mean
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Figure 6: Scatter plot for negative deviations from the mean
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Figure 7: Dendogram: average growth rates for the 1962-1998 period
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Figure 8: Dendogram: average growth rates for the 1999-2016 period
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Figure 9: Dendogram: positive deviations from the mean 1962-1998 period
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Figure 10: Dendogram: positive deviations from the mean 1999-2016 period
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Figure 11: Dendogram: negative deviations from the mean 1962-1998 period
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Figure 12: Dendogram: negative deviations from the mean 1999-2016 period
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On the other hand, after 1999 the behavior of the countries is much
asymmetrical, both in terms of growth rates and in terms of (positive
and negative) mean reversion time, with respect to the Euro mem-
ber countries, and in particular regarding the Southern economies. In
fact, unlike the 1962-1998 period, from 1999 countries exhibits a high
degree of dispersion since the points are substantially diffuse over the
clouds (Figures 5 and 6 and Table 6).

The two extreme points of the ETC represent the expected rever-
sion time when x0 = −1 and x0 = 1, that is to say, the mean ET to
recovery given a deviation of ȳik − σ̂yik . Table 6 displays the stan-
dard deviation of the ET for positive deviations (x0 = 1) and for
negative deviations (x0 = −1) between countries, for the whole set
of countries - σ(ȳik−σ̂yik)

. In fact, the standard deviation of expected
reversion time given negative deviations raised more than 76% from
2.27 to 4.00 while the positive counterpart more than doubled (raised
form 1.70 to 4.23) highlighting the overdispersion behaviour of the
recovery ET after 1999.

In order to analyse the Euro effect, let σEM
(ȳik−σ̂yik)

and σEM
(ȳik+σ̂yik)

denote, respectively, the mean reversion time given negative and posi-
tive deviations form the mean of one standard deviation for the Euro
member countries only (excluding Denmark, Norway, Switzerland,
UK and Sweden). This asymmetrical overdispersion pattern of the
mean expected reversion time among countries is also much higher
from 1999-2016 than in 1962-1998 for the Euro member countries com-
paring with the whole set of countries. Considering only Euro mem-
ber states, the relative dispersion (1999-2016 vs 1962-1998) of the ex-
pected reversion times over extreme negative deviations raised from
2.49 to 4.68 ( 88%) and given positive deviations from 1.96 to 4.96

(more than 154%).
This Euro effect related with recovery times can be isolated consid-

ering the ratios (ȳik−σyik)EM
(ȳik−σyik)

and (ȳik+σyik)EM
(ȳik+σyik)

for the two periods -

before and after the introduction of the Euro. For negative deviations,
the ratio raised from 1.10 in 1962-1998 to 1.17 in 1999-2016 suggest-
ing an increase in the regional imbalances given recessions and, more
precisely, that the gap between the European countries after the intro-
duction of the euro is higher inside than outside the Eurozone.

4.4 conclusions

Our findings favor the hypothesis that the Euro generated a regime
change in the macrodynamics of the economic space we consider and
that this change impacted on the growth of the economies, imposing
a process of divergence instead of convergence. For 1999-2016 we de-
tect higher dispersion of the performances of the different economies
than in the previous period, both for positive and negative deviations



4.4 conclusions 41

from the mean but also, in particular, we find that low growth rates
correlate with high mean reversion time given negative deviations.
High persistence or low speed mean reversion indicates divergence
either through successive shocks or through endogenous economic
changes. This can signify the presence of self-reinforcing mechanisms
or political choices consistent with the formation of this new regime
for the Euro period. As expected, the results of clusterization anal-
ysis for the period after 1999 confirm these results and we find the
Southern countries of Europe forming a well defined cluster for that
period, unlike in the past.





5
T I M E I N H O M O G E N E O U S M U LT I VA R I AT E M A R K O V
C H A I N S : D E T E C T I N G A N D T E S T I N G M U LT I P L E
S T R U C T U R A L B R E A K S O C C U R R I N G AT U N K N O W N
D AT E S

5.1 introduction

Let {St, t = 0, 1, 2 · · · ,∞}, hereinafter {St}, be a stochastic process that
involves a sequence of discrete random variables with domain E =

{1, · · · ,q}. Furthermore, {St} is a first order Markov chain in the sense
that:

P (St = i0 | Ft−1) = P (St = i0 | St−1 = i1) ≡ Pi1i0 , (41)

where Ft−1 is the σ-field generated by all available information until
the period t− 1.

Given an initial condition and once the domain E is known, St
can be fully characterized with the associated transition probability
matrix (TPM) P. This matrix contains all possible one step ahead tran-
sitions generated in the space E = {1, · · · ,q}, such that, for the generic
period t, may be written as:

Pt =


Pt,11 Pt,12 · · · Pt,1q

Pt,21
. . .

...
...

. . .
...

Pt,q1 · · · · · · Pt,qq

 (42)

Markov chain models have shown to be proficiently and interdisci-
plinary used. Notably in Economics [55], Finance [34, 84], Financial
Markets [53, 64, 67], Biology [12, 37, 76], Environmental Sciences [79,
82, 96], Physics [14, 36], Linguistics1[52], Medicine [48], Forecasting
[26], Management [44], Sports [18], the estimation of expected hitting
times [24, 66], Operational Research [4, 19, 95], Economic History [25],
among others; see, e.g. [22, 81].

Notwithstanding the common denominator of this research depicts
the assumption about the homogeneous nature of the Markov chain.
In fact, in all of the aforementioned studies the Markov chain as-
sumed to be homogeneous in the sense that Pt,i1i0 = Pi1i0 and Pt = P.
In other words, the transition probability matrix does not depend on
time.

1 In 1913 A. A. Markov illustrated his chains for the first time with an example taken
from literature. He investigated a sequence of 20,000 letters in Pushkin’s text Eugeny
Onegin to model probability transitions between consonants and vowels, [52]

43
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Ignoring the nonhomogeneous nature of a stochastic process by
disregarding the presence of structural breaks can lead to misleading
conclusions.2 As concluded by Hansen [41] Structural change is perva-
sive in economic time series relationships, and it can be quite perilous to
ignore. Inferences about economic relationships can go astray, forecasts can
be inaccurate, and policy recommendations can be misleading or worse [41,
p. 237]. Structural breaks are, then again, a common issue in econom-
ical environments. In fact, the economic dynamics is characterised by
deep complex, and mutating, patterns of interdependence between
variables and aggregates. For this reason, it is of great relevance to
investigate whether the quantities Pt,i1i0 for ik ∈ E,k = 0, · · · ,q are
time invariant or, in contrast, time dependent.

Even though several studies approached Markov chains, few stud-
ies approached the issue of non homogeneity. Among these we high-
light here Tan and Yılmaz [91] and Polansky [72]. On the one hand,
Tan and Yılmaz [91] used a likelihood ratio test to investigate homo-
geneity in Markov chains. The method can only test for one single
break occurring at a known date. On the other hand, Polansky [72]
presented a method to detect and estimate change-points in Markov
chains. However, the limiting distribution of the test statistic is un-
known so the p-values were computed through bootstrapping. More-
over, the method is restricted to first order univariate Markov chains.

In conclusion, these studies have globally the following limitations:

1. Only one break is allowed;

2. Or the break is assumed to occur at a known date or the limiting
distribution is unknown (bootstrap techniques are mandatory);

This paper proposes a new methodology for estimating and testing
while allowing for several structural breaks occurring at unknown
dates in Markov chains. More precisely, this paper proposes a method
to:

1. Estimate the breaks dates;

2. Test for structural breaks using nonstandard but known distri-
butions, whereas bootstrap techniques are useless.

The rest of this article is organized as follows. Section 2 exposes
our the theoretical framework, enumerating the assumptions that
allow a VAR representation of a Markov chain and discussing the
main results of inhomogeneity detection in a Markov chain. Section
3 presents a Monte Carlo simulation where the power and the size of
the proposed method is analysed. Section 4 discusses some possible
extensions of this methodology. Finally, Section 5 elaborates on the
summary of the main results and concludes.

2 The consequences of ignoring a structural break are widely documented in the liter-
ature, namely in the unit root tests, see, e.g. Perron [70] and Rappoport and Reichlin
[77]
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5.2 the model and assumptions

In this section, we present the basic econometric context upon which
our analysis will be elaborated. Furthermore a new method for de-
tecting and testing multiple structural breaks occuring at unknown
dates in non homogeneous Markov chains is proposed. Our strategy,
which consists of representing a Markov chain in the form of a VAR
model3, comprises three distinct phases, namely:

1. To identify the conditions under which a Markov chain admits
a stable VAR representation;

2. To represent a Markov chain into a VAR form;

3. To propose a theoretical econometric framework within which
it is possible to detect and test for multiple structural breaks
occurring at unknown dates.

5.2.1 A vectorial autoregressive representation of a stationary Markov chain

Consider the following random q-dimensional vector

yt =
(
y1t · · · ykt · · · yqt

)′
(43)

whose k-th element ykt equals 1 {St = k}, (here 1 {·} denotes the indi-
cator function, such that ykt = 1 if St = k and 0 otherwise).

Moreover, when St = i then k-th element of yt+1, yk,t+1, is a r.v.
such that

P (St+1 = k | St = i) = P (yk,t+1 = 1 | yit = 1) = Pik (44)

and, by Markovian property and, without any loss of generality, as-
suming a first order MC it follows that E [yt+1|St = i] = Pi•, the i-th
row of P.

Given this result it follows that an ergodic MC with domain E =

{1, · · · ,q} admits the following system representation:



y1t = P11y1,t−1 + P21y2,t−1 + · · ·+ Pq1yq,t−1 + ε1t

y2t = P12y1,t−1 + P22y2,t−1 + · · ·+ Pq2yq,t−1 + ε2t
...

...

yq−1,t = P1,q−1y1,t−1 + P2,q−1y2,t−1 + · · ·+ Pq,q−1yq,t−1 + εq−1,t.

(45)

3 Markov chains have also proven to be a valuable tool when it comes to the approxi-
mation of VAR models, see e.g. Tauchen [92]. The estimated transition probabilities
might be relevant to find numerical solutions to integral equations in the absence of
integration.
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Or, equivalently,


y1t = z′tP•1 + ε1t
...

...

yq−1,t = z′tP•q−1 + εq−1,t

, (46)

where z′t =
(
y1,t−1, · · · ,yq,t−1

)
; εit ≡ yit − E [yit | Ft−1] for

i = 1, · · · ,q− 1; and P•k is the k-th column of P,k = 1, · · ·q.

Furthermore let the sufficient statistics for P, nik, ∀i,k ∈ E, denote
the number of transition frequencies of the type i→ k in the sample,
i.e.

nik =

n∑
t=1

1 {St = k,St−1 = i} , (47)

it can be shown that the likelihood function (the distribution is multi-
nomial) is

l (Pik) ∝
∑
i

∑
k

niklog (Pik) (48)

and the maximum likelihood estimator for Pik is

P̂ik =

∑n
t=1 1 {St = k,St−1 = i}∑q

k=1

∑n
t=1 1 {St = k,St−1 = i}

=
nik
ni

(49)

see Basawa [11] and Billingsley [13].
It is useful to represent models (45) and (46) in the following matrix

form:
y1t

y2t
...

yq−1t

 =


z′t 0 · · · 0

0 z′t
...

...
. . . 0

0 0 · · · z′t




P•1

P•2
...

P•q−1

+


ε1t

ε2t
...

εq−1t

 (50)

or equivalently,

yt
(q−1)×1

=

(
I

(q−1)×(q−1)
⊗ z′
1×q

)
vec (P∗)

q(q−1)×q(q−1)
+ εt

(q−1)×1
(51)

= x′t
(q−1)×q(q−1)

× p
q(q−1)×1

+ εt
(q−1)×1
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where

P∗ =


P11 P12 P1q−1

P21 P22 P2q−1
...

...
...

Pq1 Pq2 Pqq−1

 (52)

=
(
P•1 P•2 · · · P•q−1

)
, (53)

p ≡ vec (P∗) =


P•1

P•2
...

P•q−1

 , (54)

and εt is a martingale difference sequence with covariance matrix
Σ ≡ E [εtε

′
t] given by

Σ =


π1 −

∑q
k=1 πkP

2
k1 −

∑q
k=1 Pk1Pk2πk · · · −

∑q
k=1 Pk1Pkqπk

−
∑q
k=1 Pk1Pk2πk π2 −

∑q
k=1 πkP

2
k2 · · · −

∑q
k=1 Pk2Pkqπk

...
...

. . .
...

−
∑q
k=1 Pk1Pkqπk −

∑q
k=1 Pk2Pkqπk πq −

∑q
k=1 πkP

2
kq

 ,

(55)

where πk, k = 1, · · · ,q denote the the stationary state k probability,
see Lemma (1), Mathematical Appendix.

Expression (51) suggests that, under certain conditions, a Markov
chain may assume a stable VAR representation.4 A clear implication
of this circumstance is that detecting, and testing, non homogeneities
in a Markov chain stochastic process can be can be treated as a prob-
lem of testing for structural breaks in linear systems of equations.

In this sense, the final model may be written as VAR model (subject
to m breaks) with m+ 1 distinct regimes, or segments, such that:

yt =



x′tp1 + ε1, for t = T0 + 1, · · · , T1

x′tp2 + ε2, for t = T1 + 1, · · · , T2
...

...

x′tpm + εm, for t = Tm−1 + 1, · · · , Tm

x′tpm+1 + εm+1, for t = Tm + 1, · · · , Tm+1

(56)

4 We will explain such conditions later
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or

yt = x
′
tpj + εj (57)

where εj is a martingale difference sequence with covariance matrix
Σj; T0 = 0 and Tm+1 = T ; for Tj−1 + 1 6 t 6 Tj, j = 1, · · · ,m+ 1.

The main objective of this article is to consistently estimate the
stacked vectors of parameters θ ≡ (p1, · · · ,pm+1;Σ1, · · · ,Σm+1),
and the m− dimensional break dates vector T = (T1, · · · , Tm).

With regard to estimating and testing for multiple structural breaks
in systems of linear equations, Bai, Lumsdaine, and Stock [7] pro-
posed a method for testing one single break and Hansen [42] con-
sidered multiple breaks occurring at known dates in a cointegrated
system. Bai [6] considered a problem of testing multiple breaks oc-
curring at unknown dates but, as far as we know, the most general
theoretical framework for testing the presence of structural breaks
occurring at unknown dates is the one proposed by Qu and Perron
[74]. In truth, as noted by Perron [71], the latter method has several
advantages over the former. Namely, the possibility of testing within-
and cross-equation restrictions of the type g (p?, vec (Σ?)) = 0, where
p? ≡

(
p′1,p′2, · · · ,p′m+1

)′ and Σ? ≡ (Σ1,Σ2, · · · ,Σm+1). This is rele-
vant in the sense that several interesting special cases can be dealt
within the framework of Qu and Perron [74]: i) partial structural
change models (only a subset of the parameters are subject to change),
ii) block partial structural change models (only a subset of the equa-
tions are subject to change); iii) ordered break models (the breaks can
occur in a particular order across subsets of equations); among oth-
ers. Additionally, the problem of structural breaks in Markov chain
models for panel data can be addressed. See Perron [71] for a discus-
sion of some methodological issues related to estimation and testing
of structural changes in the linear models.

5.2.2 The model: main assumptions

In this subsection we present the main econometric theory that sup-
ports our strategy. For this purpose, the following assumptions on the
Markov chain are imposed.

Assumption A6. {St} is a first order, possibly, m-inhomogeneous Markov
chain.

Remark 1. A Markov chain is said to be m-inhomogeneous if and only if
the maximum number of distinctive transition probability matrices is m -
the number of segments is m+ 1. Or, in other words, the number of breaks
is m.

Assumption A7. {St} is a positive recurrent MC and aperiodic in the sense
that its states are positive recurrent aperiodic, in each potential segment
j = 1, · · · ,m+ 1.
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Remark 2. A positive recurrent and aperiodic MC is said to be ergodic or ir-
reducible. In these circumstances the process {St} admits a unique stationary
distribution in each segment given by Πj, by the Perron-Frobenius theorem
and given that each Pt, for Tj−1 + 1 6 t 6 Tj, j = 1, · · · ,m+ 1 matrix has
an eigenvalue λjt equal to one and all of them have roots outside the unity
circle, see Suhov and Kelbert [89].

Assumption A8. ∃`0 : the minimum eigenvalues of

(1/`)

T0j +`∑
j=T0j +1

xtx
′
t

and of

(1/`)

T0j∑
j=T0j −`

xtx
′
t

are bounded away from zero, for j = 1, · · · ,m; ∀` > `0.

Assumption A9. The matrices
∑`
t=k xtx

′
t are invertible ∀ `− k > k0, for

some 0 < k0 <∞.

Assumption A8 requires that there is no local perfect collinearity in
the regressors near the break dates. This ensures that the break dates
are identifiable. Assumption A9 is a standard invertibility condition.

These assumptions are plausible given that the Markov chain is
positive recurrent and aperiodic for each segment.

Within our theoretical framework the following propositions arise.

Propositon 5. Under Assumptions A6 and A7, the OLS estimator for
(51) is, regardless of the sample size, numerically equal to the one obtained
through the ML that assumes a multinomial distribution in (49)

Proof. See Mathematical Appendix

Henceforth we will use the superscript 0 to denote the true val-
ues of model parameters, such that

(
p01, · · · ,p0m+1

)
,
(
Σ01, · · · ,Σ0m+1

)
,

and T0 =
(
T01 , · · · , T0m

)
denotes, respectively, the true value of the

mean equations parameters, the true values of the error covariance
matrix and the true break dates. Furthermore let

θ0 ≡
(
p01, · · · ,p0m+1;Σ01, · · · ,Σ0m+1

)
(58)

represent the stacked value of the true parameters of the model.

Propositon 6. Under Assumptions A6 and A7 we have

`−1j

T0j−1+`j∑
t=T0j−1+1

xtx
′
t
a.s.→ Qj, (59)

a non random positive definite matrix, as `j →∞, for each j = 1, · · · ,m+ 1

and `j 6 T0j − T0j−1 + 1.
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Proof. See Mathematical Appendix

This proposition ensures the verification of all necessary conditions
for the application of the central limit theorem.

Propositon 7. Under Assumptions A6 and A7:

1. {xtεt,Ft} forms a martingale difference sequence;

2. E [xtεt] = 0;

Proof. See Mathematical Appendix

Proposition 7 naturally holds if xt is replaced by εt (or by εtε′t −
Σj).

5.2.3 The estimation procedure

The main objective of this section is to discuss the estimation pro-
cedure, as well as to expose the limiting distribution of parameter
estimators. Let us focus now on the estimation of the parameters θ,
we will elaborate on the estimation and inference of the break frac-
tions latter on. Assuming that the transition probabilities change in
known periods5, conditioning on a partition of the sample T, the pa-
rameters of the model (57) can be consistently estimated through the
quasi-maximum likelihood method. The quasi-likelihood function is:

L (p,Σ) =
m+1∏
j=1

Tj∏
t=Tj−1+1

f
(
yt | xt;pj,Σj

)
(60)

and the the quasi-likelihood ratio may be written as:

LR =

∏m+1
j=1

∏Tj
t=Tj−1+1

f
(
yt | xt;pj,Σj

)
∏m+1
j=1

∏T0j
t=T0j−1+1

f
(
yt | xt;p0j ,Σ0j

) (61)

with

f
(
yt | xt;pj,Σj

)
=

1

(2π)
(q−1)/2

∣∣Σj∣∣1/2
exp
{
−
1

2

(
yt − x

′
tpj
)′
Σ−1
j

(
yt − x

′
tpj
)}

(62)

The estimators for pj and Σj are obtained as(
p̂j, Σ̂j

)
≡ argmax

(T,pj,Σj)
log (LR (p,Σ)) (63)

5 Or that we have consistent estimators for T.
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resulting in the following joint closed solutions

p̂j =

 Tj∑
t=Tj−1+1

xtx
′
t

−1
Tj∑

t=Tj−1+1

xtyt (64)

Σ̂j =
1

Tj − Tj−1

Tj∑
t=Tj−1+1

(
yt − x

′
tp̂j
) (
yt − x

′
tp̂j
)′ (65)

with this maximization being taken over some set of admissible par-
titions T in the set:

Λε =
{
(Tλ1, ..., Tλm));

∣∣λj+1 − λj∣∣ > ε, λ1 > ε, λm 6 1− ε} , (66)

where ε is a trimming parameter that imposes a minimal length for
each segment and λj denotes the break fractions in such a way that
Tj = Tλj.

The consistency and asymptotic normality of p̂j can easily be shown
for the reason p̂j can be seen as an M-estimator. In fact, the as-
sociated objective function might be written as a sample average
T−1
∑T
t=1m (w,θ). Furthermore, the log likelihood ratio (61) can be

decomposed as follows:

logLR = log

 ∏m+1
j=1

∏Tj
t=Tj−1+1

f
(
yt | xt;pj,Σj

)
∏m+1
j=1

∏T0j
t=T0j−1+1

f
(
yt | xt;p0j ,Σ0j

)


=

m+1∑
j=1

Tj∑
t=Tj−1+1

log f
(
yt | xt;pj,Σj

)
−

m+1∑
j=1

T0j∑
t=T0j−1+1

log f
(
yt | xt;p

0
j ,Σ0j

)

=

T∑
t=1

[{
1 {t ∈ seg1} l (wt;θ1) − 1

{
t ∈ seg01

}
l
(
wt;θ01

)}
+ · · ·+

+
{
1 {t ∈ segm+1} l (wt;θm+1) − 1

{
t ∈ seg0m+1

}
l
(
wt;θ0m+1

)}]
=

T∑
t=1

m+1∑
j=1

{
1
{
t ∈ segj

}
l
(
wt;θj

)
− 1
{
t ∈ seg0j

}
l
(
wt;θ0j

)}
=

T∑
t=1

m (wt,θ) (67)

where l
(
wt;θj

)
≡ log f

(
yt | xt; pj,Σj

)
, and 1

{
t ∈ segj

}
means that

we are in the j-th segment or, in other words, that Tj−1+1 6 t 6 Tj for
j = 1, · · · ,m, and maximizing the objective function

∑T
t=1m (w,θ)

is equivalent to maximizing T−1
∑T
t=1m (w,θ).
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As the parameter set is compact (θ involves only the transition
probabilities Pij which are obviously bounded between 0 and 1) and
the identification condition automatically holds by Proposition 6, we
just need to assume the standard dominance condition

E
[
supθ∈Θ

∣∣l (wt,θj)∣∣] <∞, j = 1, · · · ,m+ 1

and Newey and McFadden [62] Theorem 2.5 is verified, hence we
have p̂j

p→ p0j .
Moreover, assuming that for each j = 1, · · · ,m, the standard mild

conditions for the asymptotic normality of an M-Estimator6 and Newey
and McFadden [62] Theorem 3.3 is automatically verified and we
have, in these circumstances,√

Tj − Tj−1
(
p̂j −p

0
) d→ N

(
0,Avar

(
p̂j
))

, (68)

where Avar
(
p̂j
)
=

[
plim

(
1

Tj−Tj−1

∑Tj
t=Tj−1+1

ztz
′
t

)−1
⊗Σj

]
, for j =

1, · · · ,m.
Let us know focus on the estimation of the break dates

(T̂1, · · · , T̂m) = (Tλ̂1, ..., Tλ̂m)

elaborating on the estimation of the parameters in a very general
setup such that (within and cross-equation) restrictions of the type
g (p?, vec (Σ?)) = 0 are allowed7. We will follow the Qu and Perron
[74] strategy adapted to our model.

To establish theoretical results about the consistency and limit dis-
tribution of the estimates of the break dates, some standard condi-
tions on the asymptotic framework and on the break dates must be
adopted. We also assume here that the break dates are asymptoti-
cally distinct (A10); and some conditions under which the breaks are
asymptotic nonnegletable (A11). More precisely we consider the fol-
lowing Assumptions.

Assumption A10. The following inequalities hold 0 < λ01 < · · · < λ0m < 1

and T0i =
[
Tλ0i

]
, where [·] denotes the greatest integer for i = 0, · · · ,m+ 1.

Assumption A11. The magnitudes of the shifts satisfy∆p0j = p
0
j −p

0
j−1 =

vδj, ∆Σ0j = Σ0j − Σ
0
j−1 = vΦj, for

(
δj,Φj

)
6= 0, and do not depend

on T . v is a positive quantity independent of T ; or we have v → 0 but√
Tv/ (logT)2 →∞, being v is a sequence of positive numbers.

6 More precisely, that θ0 is in the interior of Θ; f
(
yt | xt;θj

)
is twice continu-

ously differentiable in θj for all (yt, xt); E [s (wt,θ0)] = 0 and −E [H (wt,θ0)] =
E
[
s (wt,θ0) s (wt,θ0)

′] is non singular; and local dominance condition for the Hes-

sian; where s (wt,θ) =
∂m(wt,θ)

∂θ and H (wt,θ0) =
∂s(wt,θ)
∂θ′

7 Those restrictions might play an important role because, among other cases, they
permit the generation of partial change models (only a subset of coefficients are al-
lowed to change). This class of models allows inhomogeneities to be tested in just
a few lines of the matrix of transition probabilities, while the rest remain homoge-
neous. Furthermore, the imposition of relevant restrictions in the parameters of the
model might also contribute to power increments.
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Assumption A11 states that the magnitudes of the shifts can be ei-
ther fixed (v is a positive number independent of T ) capturing large
shifts asymptotically or shrinking (v shrinks and

√
Tv/ (logT)2 →∞)

corresponding to small shifts in finite samples. It is worth noting that
the assumption on the nature of the magnitudes does not impact
the test itself or its asymptotic distribution, as we will show later.8

Research by Perron [71] discusses in length the implications of con-
sidering fixed shifts or shrinking shifts.

As noted by Qu and Perron [74] these Assumptions ensure four
important results regarding the estimation process of the break dates.
First, Tj being unknown does not change the distribution of the esti-
mators. Formally, under Assumptions A6 to A11 the limiting distri-
bution of

√
T
(
p̂j −p

0
j

)
is the same regardless of whether the breaks

occur at known or at unknown dates, hence the asymptotic normality
and consistency of the estimator of the probabilities is established.

Second, the convergence rates of the estimators are as follows:

Tv2
(
T̂j − T

0
)

= Op (1) , for j = 1, · · · ,m (69)
√
T
(
p̂j −p

0
j

)
= Op (1) , for j = 1, · · · ,m+ 1 (70)

√
T
(
Σ̂j −Σ

0
j

)
= Op (1) , for j = 1, · · · ,m+ 1 (71)

which means that the break dates (or the break fractions) converge
faster than p̂j, such that the asymptotic distribution of the latter is
not affected by the former.

Third. As a consequence of the last result, that the maximazation
of the likelihood function might be done in a subset of the parameter
set CM and in a neighbourhood of the respective true values, such
that:

CM =
{(

T,pj,Σj
)
: v2

∣∣Tj − T0j ∣∣ 6M for j = 1, · · · ,m, (72)∣∣∣√T (pj −p0j )∣∣∣ 6M,
∣∣∣√T (Σj −Σ0j )∣∣∣ 6M for j = 1, · · · ,m+ 1

}
where M, which can be set to be arbitrarily large, denotes the maxi-
mum number of breaks allowed.

Finally, the log-likelihood ratio might be decomposed into two asymp-
totically independent components - one that concerns the estimation
of the break dates and another one that refers to the estimation of the
stacked vector of parameters θ. Let lr and rlr denote, respectively, the
log likelihood ratio and the restricted likelihood ratio, such that the
objective function is:

rlr = lr+ λ′g (p?, vec (Σ?)) (73)

Under Assumptions A6 to A11, rlr may be decomposed as follows:

8 On the contrary, this assumption only influences some minor technical issues related
to the distribution of the break dates.
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max
(T,p,Σ)∈CM

rlr = max
T∈CM,p0,Σ0

m∑
j=1

lr
(1)
j

(
Tj − T

0
j

)
(74)

+ max
(p,Σ)∈CM,T0

m+1∑
j=1

lr
(2)
j + λ′g (p,Σ)

 (75)

+ op (1)

where,

lr
(1)
j (0) = 0,

lr
(1)
j (r) =

1

2

T0j∑
t=T0j +r

ε′t

[(
Σ0j

)−1
−
(
Σ0j+1

)−1]
εt −

r

2

(
log
∣∣∣Σ0j ∣∣∣− log

∣∣∣Σ0j+1∣∣∣)

−
1

2

T0j∑
t=T0j +r

(
p0j −p

0
j+1

)′
xt

(
Σ0j+1

)−1
x′t
(
p0j −p

0
j+1

)

−

T0j∑
t=T0j +r

(
p0j −p

0
j+1

)′
xt

(
Σ0j+1

)−1
εt

for r = −1,−2, · · · ,

lr
(1)
j (r) = −

1

2

T0j +r∑
t=T0j +1

ε′t

[(
Σ0j

)−1
−
(
Σ0j+1

)−1]
εt −

r

2

(
log
∣∣∣Σ0j ∣∣∣− log

∣∣∣Σ0j+1∣∣∣)

−
1

2

T0j +r∑
t=T0j +1

(
p0j −p

0
j+1

)′
xt

(
Σ0j+1

)−1
x′t
(
p0j −p

0
j+1

)

−

T0j +r∑
t=T0j +1

(
p0j −p

0
j+1

)′
xt

(
Σ0j+1

)−1
εt

for r = 1, 2, · · · , and

lr
(2)
j =

1

2

T0j∑
t=T0j +1

(
yt − x

′
tpj
)′
Σ−1
j

(
yt − x

′
tpj
)
−
T0j − T0j−1

2
log
∣∣Σj∣∣

+
1

2

T0j∑
t=T0j +1

(
yt − x

′
tpj
)′ (
Σ0j

)−1 (
yt − x

′
tpj
)
+
T0j − T0j−1

2
log
∣∣∣Σ0j ∣∣∣ .

This result implies that the estimator of the break dates are asymp-
totic independent of the estimator of θ. Additionally, eventual restric-
tions on the parameters do not affect the distribution of the break
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dates. Moreover, the estimation procedure is bietapic. Firstly, the break
dates are consistently estimated assuming that we know the true val-
ues of the parameters θ0, then the mean parameters are estimated,
possibly subject to restrictions of the type g (p?, vec (Σ?)) = 0, keep-
ing the break dates fixed at their true values T0. Thus, under fixed
magnitudes of shifts, it is straightforward to derive the asymptotic
distribution of the estimates on the break dates.9

Propositon 8. Under Assumptions A6 to A11, assuming a fixed v, we have:

T̂j − T
0
j
d→ argmaxrlr

(1)
j (r) for j = 1, · · · ,m (76)

Proof. See Qu and Perron [74].

It is worth noting some considerations about the computational
procedure underlying the estimation of the model parameters. A stan-
dard grid search procedure would require the computation of a num-
ber of QMLE of an order of magnitude of Tm, which would be vir-
tually impossible with m > 2. However, the maximum number of
possible segments is actually

∑T
t=1 t = 1+ 2+ · · ·+ T = T(1+T)

2 and
therefore of an order of magnitude of T2, no matter the number of
breaks m. Thus, a method is required to select which combination of
segments leads to a minimum value of the objective function. Here,
we follow the dynamic programming algorithm, based on a iterative
GLS approach to evaluate the likelihood functions for all segments,
proposed by Bai and Perron [9] and extended by Qu and Perron [74,
pp 476-478].

5.2.4 Testing for multiple and endogenous inhomogeneities in Markov chains

In this section we consider the problem of testing for inhomogeneities
in a Markov chain. Put otherwise, testing structural changes in the
one-step transition probabilities occurring at unknown periods. With-
out any lost of generality we assume a pure structural change model,
such that all parameters are allowed to vary over time. In a first mo-
ment we will expose the standard likelihood ratio test. This statistic
intends to determine a presence of at least one structural break. Next,
we discuss the potential of two possible extensions concerning confir-
matory analysis. A sequential test that allows us to select the number
of changes, given that, sequentially, we test a null of l breaks against
l+ 1 breaks - the Seq (`+ 1| `); and the WDmax for testing no breaks
against an unknown (up to some pre-specified maximum) number of
breaks. These procedures are interesting because they do not require

9 For the derivation of the asymptotic distribution of the break dates estimator under
shrinking magnitudes of shifts see, e.g. Qu and Perron [74, pp 471-472] or Bai [6,
p312]
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the prespecification of the number of breaks under the alternative
hypothesis, unlike the supLR test.

Nevertheless, the following two Assumptions, on the regressors
and on the errors, must be adopted to obtain theoretical results about
limiting distribution of the tests, under the null hypothesis of no
breaks, m = 0.

Assumption A12. We have T−1
∑[Ts]
t=1 xtx

′
t
p→ sQ uniformly in s ∈ [0, 1]

for some Q positive definite.

Assumption A12 imposes that the limit moment matrix of the re-
gressors is homogeneous over all sample.

Assumption A13. We have E [εtε
′
t] = Σ

0 ∀t; T−1/2
∑[Ts]
t=1 xtεt

d→Φ
1/2W (s)

where W (s) is a vector of independent Wiener processes, and
Φ = plimT−1

∑T
t=1 xt

(
I(q−1) ⊗Σ0

)
x′t.

Also we have, T−1/2
∑[Ts]
t=1

(
ηtη

′
t − I(q−1)

) d→ ξ (s), where ξ (s) is a
(q−1) square matrix of Brownian motion processes withΩ = var (vec (ξ (1)));

and ηt ≡
(
ηt1, · · · ,ηt,q−1

)′
=
(
Σ0
)−1/2

εt. In addition we assume that
E [ηtkηtlηtm] = 0 ∀k, l,m, t;k 6= m∨ k 6= l.

Assumption A13 states that the functional central limit theorem
might be employed. This is a mild weak condition, given that, by con-
struction, under null the hypothesis of homogeneity, xtεt is a mar-
tingale difference sequence with respect to Ft. Moreover, xt and εt
are bounded which ensures the existence of all moments of xtεt, in
particular, the Corollary 29.19 of Davidson [27] can be immediately
applied. Both Assumption A12 and A13 are crucial to the derivation
of the limiting distribution of the tests under H0.

Regarding the limiting distribution of the supLR(m,q, ε) test, let

p̃ =

(
T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtyt (77)

denote the transition probabilities estimator under the null hypothe-
sis of homogeneity (absence of structural breaks) and let L̃ denote the
associated likelihood, where

log L̃ = −
T (q− 1)

2
(log 2π+ 1) −

T

2
log
∣∣Σ̃∣∣ , (78)

being Σ̃ the error covariance matrix under homogeneity, verifying

Σ̃ =
1

T

T∑
t=1

(
yt − x

′
tp̃
) (
yt − x

′
tp̃
)′ . (79)

Let additionaly log L̂ (T1, · · · , Tm,) denote the log likelihood function
for a given partition T associated with the QML (60).
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The observable value for this test is the supremum of the likelihood
ratio:

2
[
log L̂ (T1, · · · , Tm,) − log L̃

]
(80)

evaluated over all possible partitions Λε (expression 66). Formally, we
have

supLR(m,q, ε) = sup
(λ1,··· ,λm)∈Λε

2
[
log L̂ (T1, · · · , Tm) − log L̃

]
= 2

[
log L̂

(
T̂1, · · · , T̂m

)
− log L̃

]
, (81)

where T̂1, · · · , T̂m results from the maximization (74). This statistic de-
pends on three parameters: i) the number of breaks allowed, m ; ii)
the trimming parameter, ε; and iii) the dimension of the space state of
the Markov chain (the number of states). The critical values are pre-
sented in Bai and Perron [8, 9]. Regarding the limiting distribution of
the supLR(m,q, ε) statistic under the null hypothesis of homogeneity,
Proposition 9 holds.

Propositon 9. Under Assumptions A6 to A13 the limiting distirbution of
the supLR statistic is as follows.

supLR d→ sup
m∑
j=1

∥∥λjWq (λj+1)− λj+1Wq (λj+1)∥∥2(
λj+1 − λj

)
λjλj+1

(82)

where Wq (·) denote a q-dimensional vector of independent Wiener pro-
cesses.

Proof. See Qu and Perron [74, p. 487].

We extend our analysis to a sequential test procedure. Actually, the
Seq (`+ 1| `) statistic proposed by Bai and Perron [8] to the univari-
ate case and adapted by Qu and Perron [74] to the multivariate case,
can be used to select the number of different segments in an inho-
mogeneous Markov chain. Let us consider a model with ` breaks,
whose estimates, (T̂1, · · · , T̂`), were obtained by a global maximiza-
tion procedure. This statistic tests, sequentially, H0 : ` breaks against
H1 : `+ 1 breaks by performing a single-break test for for each one of
the segments (T̂1, · · · , T̂`) and then evaluating the significance of the
maximum of the tests. Formally we have:

Seq (`+ 1 | `) =

max
t6j6`+1

sup
τ∈Λj,ε

lr
(
T̂1, · · · , T̂j−1, τ, T̂j, · · · T̂`

)
− lr

(
T̂1, · · · , T̂`

)
,

(83)

where

Λj,ε =
{
T̂j−1 +

(
T̂j − T̂j−1

)
ε 6 τ 6 T̂j −

(
T̂j − T̂j−1

)
ε
}

. (84)
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The limiting distribution of this statistic under the null of ` breaks can
be found in Qu and Perron [74] and the critical values were tabulated
in Bai and Perron [8, 9].

An important feature concerning the supLR(m,q, ε) statistic relates
to the need to specify a priori the number of breaks to be tested, m,
under the alternative hypothesis. That is frequently not the case and
one may still not want to specify the number of breaks under the
alternative hypothesis. For this purpose, Bai and Perron [8] suggested
a class of tests called double maximum tests. One of these statistics
is the WDmaxLR(M), that tests for a null of no breaks against an
unknown number of breaks between 1 and some upper limit M. The
mechanic of this test consists on the evaluation of the maximum of the
supremum of the supLR(m,q, ε) over the number of possible breaks
from 1 to M, as follows

WDmaxLR(m,q, ε) (M,q) =

max
16m6M

am × supLR(m,q, ε)
(λ1,··· ,λm)∈Λε

. (85)

The terms am are the weights of the test,10

am ≡
c (q,α, 1)
c (q,α,m)

, (86)

the ratio between the asymptotic critical values of the supLR(m,q, ε)
for m = 1 (c (q,α, 1)) and for m = 1, · · · ,M (c (q,α,m)), so that
a1 = 1. Critical values might be found in Bai and Perron [8, 10].

5.3 monte carlo experiments

In this section we evaluate the size the the power of the tests through
a Monte Carlo experiment. We consider a simple process with two
categories St with three states (q = 3). The Markov chain is simulated,
using the GAUSS package, according to the algorithm:

1. Definem+1 q-dimensional transition probability matrices whose
elements are the probabilities

Pj,i1i0 ≡ Pj (St = i0|St−1 = i1) (87)

(see the definition of the DGPs below);

2. Initialize the process {St} by assigning values to STj−1 , for j =
1, · · · ,m accordingly to the stationary distributions Πj;

3. Simulate a continuous random variableW uniformly distributed,
W ∼ U (0, 1);

4. Given the initial values STj−1 (step 2), simulate the process {St} , t =
Tj−1 + 1, .., Tj, for j = 1, · · · ,m+ 1 as follows:

10 An unweighted version of this test, the UDmaxLR(m,q, ε), reported poor power,
mainly as m increases [7, 10].
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a) Let Pi,j ≡ Pj (St = i|S1t−1 = i1), t = Tj−1+1, .., Tj; j = 1, · · · ,m+

1;

b) St =


1 if 0 6W < P1,j

2 if P1,j 6W < P1,j + P2,j

3 if P1,j + P2,j 6W < 1;

5. Repeat the steps 1-4 until t = Tm+1.

In all simulations, computed with 5000 replications, a trimming pa-
rameter is set to be ε = 0.15. Sample sizes of 250, 500 and 1000 were
considered. The proportion of times when the null hypothesis was
rejected is reported in Figures 13 to 24 (Appendix 2). Several levels
of persistency of the regimes of the Markov chain are analysed. The
analysis is also extended to the situation where the regimes are inde-
pendent.

5.3.1 Size Analysis

We now examine three different DGP (i.e. three different cases) for
homogeneous Markov chains, m = 1, so that T0 = 1 and T1 = T

as follows. In Case 1 the regimes of the process are generated with-
out any persistency, while in Case 2 one can see highly persistent
regimes. Finally, Case 3 depicts the situation were the regimes are
independent.

Case 1:

P11 = 0.4,P12 = 0.3,P13 = 0.3,

P21 = 0.2,P22 = 0.4,P23 = 0.4,

P31 = 0.6,P32 = 0.2,P33 = 0.2.

Case 2:

P11 = 0.55,P12 = 0.25,P13 = 0.2,

P21 = 0.25,P22 = 0.55,P23 = 0.2,

P31 = 0.2,P32 = 0.25,P33 = 0.55.

Case 3:

P11 = 0.5,P12 = 0.3,P13 = 0.2,

P21 = 0.5,P22 = 0.3,P23 = 0.2,

P31 = 0.5,P32 = 0.3,P33 = 0.2.

Next, we consider two cases: (1) one break is allowed, (2) two
breaks are allowed. In the first case both the supLR and the WDmax
tests 0 breaks against 1 break. To simplify the notation we consider
supLR(0 | 1) and WDmax(0 | 1). In the second situation the supLR
tests 0 breaks against 2, supLR(0 | 1), and the WDmax 0 against an
undetermined number of breaks up to 2, WDmax(0 | 1, 2). We also
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consider results for the three standard significance levels, 1%, 5%, and
10%. Notwithstanding, we report here results for 5%, while the rest
can be found in the Appendix section. Figures 13 and 14 display the
results. In general, there appear to be no size distortions of the tests,
as expected. The exception is the supLR(0 | 2) for the Case 2, where
the regimes of the Markov exhibit some persistency, that tends to be
slightly oversized (Figure 14b). It should also be noted that WDmax
tends to present an undersize behaviour in all situations, in that it
tends to under-reject the null hypothesis.
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Figure 13: Homogeneous Markov chain, one break is allowed (nominal size:
5%)
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5.3.2 Power Analysis

To assess the power of the tests either in finite samples and asymp-
totically, our analysis includes six cases for inhomogeneous Markov
chains. Cases 4, 5, 6 correspond to Markov chains generated with
one structural break m = 1, so that T0 = 1 , T1 = [T/2] and T2 = T .
Cases 7, 8, 9 concern chains generated subject to three breaks ( T0 = 1,
T1 = [T/3], T2 = [2T/3] and T3 = T ).

Case 4 (regime 1):

P1,11 = 0.40,P1,12 = 0.30,P1,13 = 0.30,

P1,21 = 0.20,P1,22 = 0.40,P1,23 = 0.40,

P1,31 = 0.60,P1,32 = 0.20,P1,33 = 0.20.

Case 4 (regime 2):

P2,11 = 0.20,P2,12 = 0.40,P2,13 = 0.40,

P2,21 = 0.20,P2,22 = 0.60,P2,23 = 0.60,

P2,31 = 0.30,P2,32 = 0.40,P2,33 = 0.40.

Case 5 (regime 1):

P1,11 = 0.55,P1,12 = 0.25,P1,13 = 0.20,

P1,21 = 0.25,P1,22 = 0.55,P1,23 = 0.20,

P1,31 = 0.20,P1,32 = 0.25,P1,33 = 0.55.

Case 5 (regime 2):

P2,11 = 0.45,P2,12 = 0.20,P2,13 = 0.35,

P2,21 = 0.30,P2,22 = 0.45,P2,23 = 0.25,

P2,31 = 0.15,P2,32 = 0.40,P2,33 = 0.45.

Case 6 (regime 1):

P1,11 = 0.50,P1,12 = 0.30,P1,13 = 0.20,

P1,21 = 0.50,P1,22 = 0.30,P1,23 = 0.20,

P1,31 = 0.50,P1,32 = 0.30,P1,33 = 0.20.

Case 6 (regime 2):

P2,11 = 0.30,P2,12 = 0.40,P2,13 = 0.30,

P2,21 = 0.30,P2,22 = 0.40,P2,23 = 0.30,

P2,31 = 0.30,P2,32 = 0.40,P2,33 = 0.30.
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Case 7 (regime 1):

P1,11 = 0.40,P1,12 = 0.30,P1,13 = 0.30,

P1,21 = 0.20,P1,22 = 0.40,P1,23 = 0.40,

P1,31 = 0.60,P1,32 = 0.20,P1,33 = 0.20.

Case 7 (regime 2):

P2,11 = 0.20,P2,12 = 0.40,P2,13 = 0.40,

P2,21 = 0.20,P2,22 = 0.60,P2,23 = 0.60,

P2,31 = 0.30,P2,13 = 0.40,P2,33 = 0.40.

Case 7 (regime 3):

P3,11 = 0.40,P3,12 = 0.30,P3,13 = 0.30,

P3,21 = 0.20,P3,22 = 0.40,P3,23 = 0.40,

P3,31 = 0.60,P3,32 = 0.20,P3,33 = 0.20.

Case 8 (regime 1):

P1,11 = 0.55,P1,12 = 0.25,P1,13 = 0.20,

P1,21 = 0.25,P1,22 = 0.55,P1,23 = 0.20,

P1,31 = 0.20,P1,32 = 0.25,P1,33 = 0.55.

Case 8 (regime 2):

P2,11 = 0.45,P2,12 = 0.20,P2,13 = 0.35,

P2,21 = 0.30,P2,22 = 0.45,P2,23 = 0.25,

P2,31 = 0.15,P2,32 = 0.40,P2,33 = 0.45.

Case 8 (regime 3):

P3,11 = 0.55,P3,12 = 0.25,P3,13 = 0.20,

P3,21 = 0.25,P3,22 = 0.55,P3,23 = 0.20,

P3,31 = 0.20,P3,32 = 0.25,P3,33 = 0.55.

Case 9 (regime 1):

P1,11 = 0.50,P1,12 = 0.30,P1,13 = 0.20,

P1,21 = 0.50,P1,22 = 0.30,P1,32 = 0.20,

P1,31 = 0.50,P1,32 = 0.30,P1,33 = 0.20.
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Case 9 (regime 2):

P2,11 = 0.30,P2,12 = 0.40,P2,13 = 0.30,

P2,21 = 0.30,P2,22 = 0.40,P2,23 = 0.30,

P2,31 = 0.30,P2,32 = 0.40,P2,33 = 0.30.

Case 9 (regime 3):

P3,11 = 0.50,P3,12 = 0.30,P3,13 = 0.20,

P3,21 = 0.50,P3,22 = 0.30,P3,23 = 0.20,

P3,31 = 0.50,P3,23 = 0.30,P3,33 = 0.20.

In general, the tests are consistent in the sense that the respective
power tends to 1. The exception is Case 8, where the regimes exhibit
some persistency and there are three different regimes, in that the
supLR(0 | 1) and theWDmax(0 | 1, 2) presents low asymptotic power.
Considering only two regimes, both the power of the supLR(0 | 1)

and of the WDmax(0 | 1, 2) is satisfactory, even with high persistency.
As expected, with one break (Cases 4, 5, 6) the supLR(0 | 1) al-

ways performed better than the WDmax(0 | 1). When two breaks are
present, the supLR(0 | 2) outperformed the WDmax(0 | 1, 2), how-
ever the WDmax(0 | 1, 2) surpassed the supLR(0 | 1). This suggests
that if we are not sure about the number of breaks theWDmaxmight
be a good option.

Furthermore, the Seq(1 | 2) behaves as expected. It tends to cor-
rectly reject 1 break against 2 in all situations, both in small and in
large samples, except for the case of highly persistent regimes (Figure
15b).

In small samples, with persistent regimes and in the presence of
two breaks the tests tend to evidence lack of power, notably the
supLR(0 | 1) and the WDmax(0 | 1, 2), Figure 16b. In turn, in finite
samples with two breaks, against an alternative of one single break
the null hypothesis of no break is only rejected about 18.3% of the
time by the supLR(0 | 2) and around 20% by the WDmax(0 | 1, 2),
which is far from being positive. However, the DGP was quite ex-
treme, as the induced magnitude of the shifts is relatively small, the
regimes are persistent in all of the three segments, and DGP of the
first segment equals the third one.

When two breaks are present, the supLR(0 | 2) always present a
good power, larger than the WDmax(0 | 1, 2) in all circumstances.
This is the expected result, given that H1 fully specified supLR(0 | 2).
In a nutshell, the higher the persistency of the regimes the lower the
power of the tests. It must, however, be pointed out that the multiple
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breaks have been induced in such a way that they are difficult to
detect: two breaks with the first and third regimes the same and small
magnitudes [71, p 32].

A practical recommendation of this exercise may involve the joint
use of the various tests to detect and test inhomogeneities in a Markov
chain. In fact, one can use the supLR(0 | m) for several levels of m,
in conjunction with a confirmatory analysis with the other tests. The
WDmax may be used with an arbitrary large M to confirm if there is
at least one structural break, then the Seq(` | `+ 1) can be employed
to corroborate the number of breaks of the process.
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Figure 14: Homogeneous Markov chain, up to two breaks are allowed (nom-
inal size: 5%)
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Figure 15: Inhomogeneous Markov chain with two segments, one break is
allowed (nominal size: 5%)
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Figure 16: Inhomogeneous Markov chain with three segments, two breaks
are allowed (nominal size: 5%)
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5.4 extensions and further research

The research focus is to test for structural breaks in only some rows
of the transition probability matrix, while keeping others unchanged.
Such a test can be carried out by estimating the model subject to
restrictions in the parameters. This ideia can be generalised for testing
structural breaks in expected times, e.g. in the duration of bull and
bear markets.

It could also be interesting to investigate the advantages in terms
of forecasting of considering the inhomogeneous nature of a Markov
chain. What are the practical consequences of ignoring the inhomoge-
neous nature of a Markov chain?

One natural extension to this work is to extend this analysis to mul-
tivariate Markov chains and to higher order Markov chains. Finally,
this methodology is worthy to be applied empirically. For example,
to analyse the predictability of stock returns testing the random walk
hypothesis of stock prices; or to detect and test changing points in
categorical time-series in general.
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5.5 conclusions

This article proposes a new approach for detecting and testing in-
homogeneities in Markov chains occurring at unknown periods. The
usual methods described in the literature for testing inhomogeneities
in Markov chains have some limitations. Namely that they can only
test for the presence of a single structural break; and either the break
is assumed to occur at a known date or the limiting distribution of
the test is unknown. Our strategy relies on the fact that, under cer-
tain conditions, an ergodic Markov chain admits a stable vectorial
autoregressive representation.

The numerical equivalence between the MLE estimator for the one-
step transition probabilities and the VAR mean parameter estima-
tors is proved. Taking advantage of the possibility of representing
a Markov chain in VAR form, the methods that usually apply to a
VAR model remain valid for the Markov chains, namely, the supLR,
the WDmax, and the Seq (`+ 1| `). These procedures are applied for
the first time to Markov chains.

A Monte Carlo simulation study points to a higher power of supLR
tests compared to WDmax tests when the alternative hypothesis is
correctly specified. This evidence occurs with one and with two struc-
tural breaks.

As for size analysis, with one and with two breaks, there were no
size distortions in either small or large samples, for all tests. With re-
gard to power analysis, in general the tests were asymptotically con-
sistent. Since the power increased substantially with T converging to
1. However, as DGP implied an increase in the persistence of regimes,
the asymptotic power of the tests worsened slightly, in particular in
the supLR(0 | 1) and in the WDmax when two breaks are present.

Regarding further research we believe that inhomogeneity in Markov
chains will continue to deserve analytical work as well as close care
in accounting for its consequences in practical forecasting exercises.
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appendix 1 : mathematical appendix

Propositon 5. Under Assumptions A6 and A7, the OLS estimator for
(51) is, regardless of the sample size, numerically equal to the one obtained
through the ML that assumes a multinomial distribution in (49)

Proof. The proof is immediate by the Frisch-Waugh-Lovell theorem,
given that the variables of the right-hand side of the equation (45)
are, by construction, orthogonal.

In fact, the stacked vector p̂ of the estimators P̂•i is given by

p̂ =

T∑
t=1

(
xtx
′
t

)−1 T∑
t=1

xtyt

=


∑T
t=1 ztz

′
t 0 · · · 0

0
∑T
t=1 ztz

′
t · · ·

...
...

...
. . . 0

0 0 · · ·
∑T
t=1 ztz

′
t


−1

∑T
t=1 zty1t∑T
t=1 zty2t

...∑T
t=1 ztyq−1t

 ,

thus, the i-th estimator is given by

P̂•i =

(
T∑
t=1

ztz
′
t

)−1 T∑
t=1

ztyit.

In view of the fact that

ztz
′
t =


y1t−1

...

yqt−1

( y1t−1 · · · yqt−1 )

=


y21t−1 0 · · · 0

0 y22t−1 · · · 0
...

...
. . .

...

0 · · · 0 y2qt−1

 =


y1t−1 0 · · · 0

0 y2t−1 · · · 0
...

...
. . .

...

0 · · · 0 yqt−1


then

(
T∑
t=1

ztz
′
t

)−1

=



1∑T
t=1 y1t−1

0 · · · 0

0 1∑T
t=1 y2t−1

· · · 0

...
...

. . .
...

0 · · · 0 1∑T
t=1 yqt−1

 .
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Therefore, the k-th entry of P̂•i is

P̂ki =
1∑T

t=1 ykt−1

T∑
t=1

zktyit

=

∑T
t=1 ykt−1yit∑T
t=1 ykt−1

=

=

∑
1 (ykt−1 = 1,yit = 1)∑

1 (ykt−1 = 1)

=

∑
1 (St−1 = k,St = i)∑

1 (St−1 = k)

=
nik
ni

.

This expression numerically equals expression (49) as we have orthog-
onal partitioned regressions.

Propositon 6. Under Assumptions A6 and A7 we have

`−1j

T0j−1+`j∑
t=T0j−1+1

xtx
′
t
a.s.→ Qj, (59)

a non random positive definite matrix, as `j →∞, for each j = 1, · · · ,m+ 1

and `j 6 T0j − T0j−1 + 1.

Proof. {St} is a stationary and ergodic Markov chain sequence and
E [|St|] is finite, therefore, using, for example, the pointwise ergodic
theorem for stationary sequences [88, 98] we have

1

`j

T0j−1+`j∑
t=T0j−1+1

ztz
′
t =

 1
`j

T0j−1+`j∑
t=T0j−1+1

1 {St−1 = i}


=

 1
`j

T0j−1+`j∑
t=T0j−1+1

yit−1


i=1,··· ,q

as→ Ej [yit] = πi (j) (88)

Using the continuous mapping theorem

1

`j

∑
xtxt

′ as→ Πj,

where Πj is the vector of stationary probabilities for the j-th segment.

Propositon 7. Under Assumptions A6 and A7:

1. {xtεt,Ft} forms a martingale difference sequence;

2. E [xtεt] = 0;



72 time inhomogeneous multivariate markov chains

Proof. The vector εt is, by construction, a martingale difference se-
quence with respect to Ft, given that εit = yit − E [yit | Ft]. Hence,
{xtεt} is also a martingale difference sequence because E [xtεt | Ft] =

xtE [εt | Ft] = 0. Therefore, E [xtεt] = 0 (by the law of iterated ex-
pectations), {ztεt} is an uncorrelated sequence and as a direct conse-
quence {xtεt,Ft} forms a martingale difference sequence and, thus, a
strongly mixing sequence.

Lemma 1. The covariance matrix (55) Σ ≡ E [εtε
′
t] given by

Σ =


π1 −

∑q
k=1 πkP

2
k1 −

∑q
k=1 Pk1Pk2πk · · · −

∑q
k=1 Pk1Pkqπk

−
∑q
k=1 Pk1Pk2πk π2 −

∑q
k=1 πkP

2
k2 · · · −

∑q
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...
...

. . .
...

−
∑q
k=1 Pk1Pkqπk −

∑q
k=1 Pk2Pkqπk πq −

∑q
k=1 πkP

2
kq

 .

Proof. The covariance writes:

E
[
εitεij

]
= E

[(
yit − x

′
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) (
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′
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)]
=
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E
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On the other hand, E
[
ε2it
]

may be written as

E
[
ε2it
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)2]
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=
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therefore

E
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2
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appendix 2 : monte carlo simulation results

Size Analysis
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Figure 17: Homogeneous Markov chain, one break is allowed (nominal size:
1%)
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Figure 18: Homogeneous Markov chain, one break is allowed (nominal size:
10%)
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Figure 19: Homogeneous Markov chain, up to two breaks are allowed (nom-
inal size: 1%)
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Figure 20: Homogeneous Markov chain, up to two breaks are allowed (nom-
inal size: 10%)
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Figure 21: Inhomogeneous Markov chain with two segments, one break is
allowed (nominal size: 1%)
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Figure 22: Inhomogeneous Markov chain with two segments, one break is
allowed (nominal size: 10%)
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Figure 23: Inhomogeneous Markov chain with three segments, two breaks
are allowed (nominal size: 1%)
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Figure 24: Inhomogeneous Markov chain with three segments, two breaks
are allowed (nominal size: 10%)





6
C O N C L U D I N G R E M A R K S

This Thesis contributes to the Markov chains literature by develop-
ing methods focused on the estimation issue that are usually cir-
cumscribed to the continuous variables. The first essay, Modelling
insurgent-incumbent dynamics: Vector autoregressions, multivariate Markov
chains, and the nature of technological competition, considered the mul-
tivariate Markov chain model applied to an example from economic
history, more precisely to the creative destruction in ocean-going ship-
ping technologies during the early XIX century: steam and sailing. In
fact, the struggle between sailing and steam is a long-standing theme
in economic history, but this technological competition story has only
partly tackled. Moreover, we compare a classical multivariate linear
econometric approach (a VAR model) with a multivariate Markov
chain. While the former fails to detect linear interdependency rela-
tionships between these two technologies, the latter method detects
evidence that the relationship was nonlinear, with a strong indication
of complementarities and cross-technology learning effects. To the
best of our knowledge, this has been the first application of Markov
chains to an instance of economic history. It suggested that Markov
chains are a valuable tool and fertile instrument that can be used
in an interdisciplinary manner, even when applied in non-standard
realities.

The second essay, Combining a regression model with a multivariate
Markov chain in a forecasting problem, addressed the situation where a
multivariate Markov chain, with an arbitrary large domain and num-
ber of series, play the role of covariates in a regression model. In a sit-
uation where a dependent variable depends on categorical variables,
the past state interactions between latter can be modelled through
a multivariate Markov chain to more accurately forecast the future
values of the former. In fact, exploiting the intra and inter-transition
probabilities within and between data categories may lead to a sub-
stantial forecasting improvement of that endogenous variable. To the
best of our knowledge this has never been done before. This concept
was illustrated through a Monte Carlo simulation that pointed out
the benefits of the proposed method over some alternative methods.

The third essay, The changing economic regimes and expected time to re-
cover of the peripheral countries under the euro: a nonparametric approach,
proposes a simple non-parametric model to estimate the expected
time that a stochastic process takes to cross a defined threshold based
on a Markov chain representation of such a process. An economic
application suggested that the Euro generated a regime change in
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the macrodynamics of Europe and that this change impacted on the
growth of the economies involved, triggering a process of divergence.
These two essays illustrate the flexibility of the Markov chain ap-
proach and how it may be deployed in situations that go beyond
the simple calculation of transition probabilities. Put another way,
it shows that the calculated transition probabilities can be useful to
different nontrivial diligences, for example, to assist the forecast of
continuous variables or to compute expected hitting times. An inter-
esting extension is to consider the issue of inhomogeneity either for
the computation of the expected hitting times and for the concept of
inhomogeneous Markov chains as covariates. Furthermore, the speci-
fication considered in Chapter 3 was linear. It could also be meaning-
ful to incorporate nonlinearities in the functional form that governs
the relationship between the dependent variable and the multivariate
Markov chain.

Finally, in Chapter 5, Time inhomogeneous multivariate Markov chains:
detecting and testing multiple structural breaks occurring at unknown dates,
we propose a methodology for testing multiple structural breaks oc-
curring at unknown date intervals in multivariate Markov chains.
Even though several studies approached Markov chains, few stud-
ies focused on the issue of nonhomogeneity. More importantly, the
issue of detecting and testing multiple distinct transition probability
matrices in a Markov chain has not been studied yet. Our approach re-
lies on a vectorial autoregressive representation of the Markov chain.
The method presented here can be used to test for a large number of
breaks in a Markov chain, as it showed great flexibility. Our proposal
can also be extended to multivariate Markov chains and to higher or-
der Markov chains, provided the sample size is large enough. On top
of that, to overcome the curse of dimensionality problems, it might
be interesting to develop a method to test the presence of structural
breaks in the framework of the MTD-Probit. These topics are cur-
rently under research. There are grounds to argue that the literature
in Markov chains might assume the probable systematic inhomoge-
neous nature of the underlying stochastic process.
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