

UNIVERSITY · CANADA

Integrated Raman Lidar and Microwave Radiometer Retrieval of Atmospheric Water Vapor

brought to you by 🗓 CORI

J. VanKerkhove¹, R. J. Sica¹, A. Haefele^{2,1} ¹Department of Physics and Astronomy, The University of Western Ontario, London, ON, Canada ²Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne, Switzerland

Instruments we use to measure water vapor		
Instrument	Advantages	Disadvantages
Radiosonde (weather balloon)	 Widely used at meteorological stations globally (GCOS Upper-Air Network) Launched during any weather 	 Limited observation period (launched 2 times/day) Corrections needed for low temperatures (<-40°C) and humidity (<5% RH)

Optimal Estimation Method Retrieval

Goal: To develop a single forward model that includes lidar and radiometer information, which uses the radiometer's total water measurement to calibrate the lidar profile continuously.

Photocount Rate (MH:

Contact Info: Jeff VanKerkhove Purple Crow LIDAR Department of Physics & Astronomy University of Western Ontario London, ON, N6A 2K7 jvankerk@uwo.ca

References:

- 1. Dinoev, Simeonov, & Arshshinov. Atmos. Meas. Tech., 6,1329, 2013.
- 2. Kampfer, N., editor. *Monitoring Water Vapour: Ground-based Remote Sensing and In-Situ* Methods, volume 10. Springer Science, 2013.
- 3. Rodgers, C., Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing, London, 2000.
- 4. Sica, R. & Haefele, A. Appl. Opt., 55(4), 763, 2016.
- Technical Instrument Manual. Radiometer Physics, RPG-MWR-STD-TM, 2013.

"Upper Troposphere and Lower Stratosphere (UTLS)", Atmospheric Chemistry Observations and 6. *Modeling*, National Center for Atmospheric Research, acom.ucar.edu/utls