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Abstract

Chimera states—the coexistence of synchrony and asynchrony in a nonlocally-coupled network of
identical oscillators—are often sought as a model for epileptic seizures. This work investigates that
connection, seeking chimera states in a network of modified Hindmarsh-Rose neurons connected in
the graph of the mesoscale mouse connectome. After an overview of chimera states for neurologists,
and an overview of neurology for mathematicians, previous connections between chimera states and
seizures are reviewed in the current scientific literature. The model was found to be of sufficient
quality to produce superficially epileptiform activity. The limitations of the model were investigated,
depending on the strength of connections between subcortices within a cortex and between cortices.
A wide swath of parameter space revealed persistent chimera states.
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Chapter 1

Introduction

As this work is an analysis of the relationship between chimera states and seizures, it is important
to develop a baseline understanding of what each of those are.

1.1 Chimera States

The science and mathematics of synchronization are among history’s most well-studied areas of
research. One of the earliest well-documented appearances of synchrony in unexpected places was
observed in 1665 by Dutch physicist Christiaan Huygens, the inventor of the pendulum clock. He
noticed that two clocks hung from the same beam would eventually synchronize with each other.
He supposed that this was due to minuscule energy transfers between the two clocks through
the wooden beam. This hypothesis was proven nearly 350 years later which shows that even the
simplest-seeming synchronization behavior results from complex dynamics [23].

This behavior extends to larger systems than two clocks. A classic demonstration in many
classes on the mathematics of synchronization depicts the same phenomenon with more oscillators
[22]. One places a platform on top of a set of rollers, and places at least two metronomes on that
platform (see fig. 1.1 for a drawing). When these metronomes are started with the same frequency,
out of phase with each other, over time their phases drift until they synchronize.

Figure 1.1: The classic demonstration of Huygens synchronization. When the
metronomes are set running, they eventualy synchronize due to the light coupling
provided by the platform’s ability to roll.

One example of more complex behavior arising from similar mechanisms is the coexistence of
synchrony and asynchrony within a system of identical coupled oscillators, a phenomenon known
as a chimera state [1, 14]. The existence of these chimera states are surprising, as they represent
asymmetry within symmetric systems. The first time this behavior was observed was in a ring
of nonlocally coupled oscillators [14]. While global coupling is an all-to-all interaction and local
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coupling is a nearest-neighbor interaction, nonlocal coupling is a mixture of the two. The model is
expressible in one dimension as

∂

∂t
A(x, t) = (1 + iω0)A− (1 + ib)|A|2A+K(1 + ia)(Z(x, t)− A(x, t)) (1.1)

where

Z(x, t) =

∫
G(x− x′)A(x′, t) dx′ and G(y) =

κ

2
e−k|y|, (1.2)

which reduces to the phase equation

∂

∂t
φ(x, t) = ω −

∫
G(x− x′) sin(φ(x, t)− φ(x′, t) + α) dx′ where tan(α) =

b− a
1 + ab

. (1.3)

We numerically simulated the Kuramoto system using a discrete approximation, and it quickly fell
into a chimera state (fig. 1.2).

(a) The time series of the Kuramoto simulation.
(b) A snapshot at t = 120.

Figure 1.2: The results of our simulation of a Kuramoto oscillator, as described in
eq. (1.3). A 4th-order Runge-Kutta solver (dt = 0.01, tmax = 1000) was run on a
system of 512 oscillators. (a) The entire time series of the simulation. The behavior
represented there is quite complex, with several distinct qualitative changes to the
patterns in the system. However, in-depth analysis of this system is beyond the
purview of this work. (b) A snapshot of the state of the system at t = 120. Note
the juxtaposition of asynchronous (0 . x . 0.3 and 0.78 . x . 1) and synchronous
(oscillators 0.3 . x . 0.78).

Since then, chimera states have been found in simpler systems still. One of the simplest is the
Abrams model, two populations of identical oscillators with a stronger coupling strength within the
populations than between them [2]. The equation describing this system is given as

dθσi
dt

= ω +
2∑

σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin
(
θσ
′

j − θσi − α
)

where K =

[
µ ν
ν µ

]
and σ ∈ {1, 2}. (1.4)

In this model, µ represents the intra-population strength, and ν represents the inter-population
strength, meaning µ > ν. Time can be scaled such that µ + ν = 1. If µ − ν is not too large, and
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(a) The time series of the Abrams simulation. (b) A snapshot at t = 799.45.

Figure 1.3: A simulation of the Abrams model for two populations of 128 oscillators.
A 4th-order Runge-Kutta solver (dt = 0.01, tmax = 1000) was run. (a) shows the time
series of the simulation for t ∈ (800, 1000). (b) shows a snapshot at t = 799.45, chosen
because the synchronous population (on the left) was almost perfectly synchronized
(φ ≈ 0).

α is not too much less than π
2
, then this system can produce chimera states. Figure 1.3 shows a

simulation of the Abrams model on two populations of 128 oscillators.
A similar system was also analyzed in the physical world [18]. Two swinging platforms were

coupled together with springs of variable spring constant κ, and 15 metronomes—all tuned to
the same frequency—were placed on each platform. For a wide range of values of κ, all of the
metronomes on one platform would synchronize, while the metronomes on other platform would
remain asynchronous. This system is directly analogous to the Abrams model. The metronomes
on the same platform are coupled through the motion of the swing, which heavily influences the
motion of the metronomes. This intra-community coupling is represented by µ in the Abrams
model. The metronomes on opposite platforms are coupled through the springs, which is a much
weaker interaction, represented in the Abrams model by ν.

While chimera states may present themselves obviously when observed in a plot or the physical
world, they can be harder to pin down analytically. One useful pair of measures for the presence
of a chimera state are the chimera-like index χ and the metastability index m [10, 27]. We will
investigate a system of M communities of nonlocally-coupled oscillators, and we sample their phases
at times t ∈ [1, . . . , T ]. In order to develop these two measures, one must first develop the order

parameter r(t) =
∣∣∣〈eiφk(t)〉

k∈C

∣∣∣, where φk is the phase of oscillator k, and 〈f〉k∈C is the average of f

over all k in community C. r indicates the instantaneous synchrony of a community (how similar
the phases of the oscillators are to the others in C), and not its overall coherence (how similar the
trajectories of the oscillators are). From this, we find the two measures:

χ = 〈σchi〉T where σchi(t) =
1

M − 1

∑
c∈C

rc(t)− 〈rc〉C
2 (1.5)

m = 〈σmet〉C where σmet(c) =
1

T − 1

∑
t≤T

rc(t)− 〈rc〉T
2 (1.6)

To put this into words, the metastability index is the average across communities of the variance
of the order parameter within a given community over time, while the chimera-like index is the
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average over time of the variance of the order parameter across communities.
This gives us some maximum possible values for these measures [27]. If a community c spends

equal time in all stages of synchronization (i.e., the phase parameter of c is uniformly distributed),
then σmet(c) is at its maximum, the variance of the uniform distribution: mmax = 1

12
. If a community

spends equal time in a maximally chimeric state and a minimally chimeric state, then its chimera-
like index will be at its maximum1: χmax = 1

7
. Therefore, when the normalized chimera-like and

metastability indices are presented, they will be presented normalized to 1
7

and 1
12

, respectively.
Chimera states have been observed in many other systems, whether they be purely mathematical,

biological, electrical, or mechanical [1, 3, 10, 13, 14, 18, 21, 24, 25, 27, 33]. One of the most common
ways that chimera states are talked about is in regards to seizures.

1.2 Seizures

1.2.1 Neuroanatomy and Neurophysiology

Since the brain is an electrochemical device, its function and disorders are often best talked about
from an electrical standpoint [7]. Neurons are cells which are specialized for communication (see
fig. 1.4 for a diagram). They receive input signals through synapses at the ends of their dendrites,

Figure 1.4: A diagram of the anatomy of a neuron. Taken from [19].

branches in their large tree of inputs. The trunk of the dendritic tree is the soma, the cell body. If
the sum signal entering the soma from all of the dendrites is sufficient, the neuron fires, sending a
signal to its outputs.

When a neuron fires, it sends an electrochemical signal down its axon—its long stem—to the
output synapses at its axon terminals. This signal is known as an action potential. The action
potential is discrete; a neuron sends the same signal any time its input threshold is surpassed, no
matter how far above the threshold the input is. It is the propagation along the axon of a potential
difference across the cell membrane of the neuron. This potential difference is created by different
concentrations of various ions in and out of the cell, controlled by pumps (which push Na+ out of

1While it is possible for half of a system’s communities to be synchronous and the other half asynchronous for all
times (resulting in a chimera-like index of 2

7 ), this is transient due to the effects of metastability [27]. Therefore, we
will ignore this case.
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the cell and draw K+ into it) and gates (which allow the ion concentrations to equilibrate). It is
important to note that processes involving Na+ are faster than those involving K+. Each location
along the axon goes through the following six stages, in total taking approximately 1 ms:

Equilibrium No current flows through the membrane, which has a potential of −75 mV across it2.

Depolarization The potential difference propagating from upstream in the axon activates ion
channel gates, allowing Na+ to flow into the axon, countered by the K+ flowing out.

Amplification Because the K+ processes are slower than the Na+ processes, if the incoming signal
is strong enough, the influx of Na+ is too fast for the outflow of K+ to compensate. This results
in a positive feedback loop, wherein the Na+ flowing in increases the membrane potential,
which increases the rate at which Na+ flows into the neuron, which continues to feed itself.

Repolarization When the Na+ channels are fully open, the K+ channels are finally able to com-
pensate for the influx.

Hyper-polarization The Na+ channels close, and the slower K+ channels remain open. This
causes more K+ to flow out of the cell than Na+ flowed in, dropping the potential below its
equilibrium state.

Refractory Period The Na+ channels are briefly unable to open, which means that neurons need
a brief time to “recharge” after an action potential.

Micro-scale models

All of these processes are summarized in the Hodgkin-Huxley model3 describing the membrane
potential U :

CmU̇ + pAK+ ḡAK+(U − EK+) + pANa+ ḡANa+(U − ENa+) + gl(U − El) = Im (1.7)

where
ṅ = αn(1− n)βnn

ṁ = αm(1−m)βmm

ḣ = αh(1− h)βhh

and
pAK+ = n4

pANa+ = m3h
(1.8)

where gi is the conductance of the membrane to ion i, pAi is the proportion of i-gates which are open
(developed from a Markov model with transition rates α and β), Ei is the equilibrium potential
of ion i, Cm is the capacitance of the membrane, and Im is an external current (the tuned input
parameter). This model is highly accurate, and won its developers a Nobel Prize in Physiology or
Medicine. Many bifurcation analyses have been performed on these equations, and they are well
understood [9].

However, the Hodgkin-Huxley model is not particularly useful for large-scale brain simulation.
Given that most behavior of the brain is emergent4, it is important to understand neurons’ inter-
actions. As is often the case with emergent phenomena, it is wildly impractical to simulate the
collective behavior of a brain by simulating its constituent neurons. Since the human brain has

2All potentials hold the extracellular matrix at 0 V. In other words, the interior of the cell is at a lower potential
than the exterior.

3A full derivation of this model can be found in [9].
4One of the classic ways to explain emergence is asking, “Where is the thought in a neuron?”
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approximately 1011 neurons with 1014 synapses, direct simulation is too computationally intensive.
In order to better understand the dynamics of large portions of the brain, many researchers turned
to the techniques of thermal and statistical physics [6]. Particularly, neural ensemble models and
neural mass models are popular approaches to studying brain behavior.

Meso-scale Models

Neural ensemble models treat patches of the brain as a collective group, taking into account neurons’
mean activity, as well as their variance. They assume that the firings of the neurons within a group
are sufficiently uncorrelated to result in a Gaussian distribution of firing rates. This means that the
behavior of the ensemble is linear, even though the behavior of the constituent neurons is highly
nonlinear. One can then use a Fokker-Planck equation to describe the collective dynamics of the
population. The main benefit to these models is that they are well-studied in fields like solid-
state physics. However, recent work has shown that the assumption of Gaussian firing rates is not
accurate [6]. Firing rates do tend to fall into well-behaved distributions, but not ones that lend
themselves to already-developed tools.

For higher coherence within populations (i.e., a non-Gaussian distribution of firing rates), re-
searchers tend to use neural mass models. They assume that nearby neurons in the brain are
sufficiently synchronized to model groups of them as a single neuron, with some modifications. In-
stead of the discrete action potential of a single neuron, neural mass models often have a sigmoidal
activation function. They will also simplify the dynamics of the Hodgkin-Huxley model to divide
the neural mass’s constituent neurons into two subpopulations: an excitatory pool (corresponding
to the Na+ channels in the Hodgkin-Huxley model) and an inhibitory pool (corresponding to the
K+ channels in the Hodgkin-Huxley model).

An example of a neural mass model is the extremely simple Wilson-Cowan model [30]:

τxẋ = −x+ S(Cxxx+ Cxyy + Cxzz + P ) (1.9)

τyẏ = −y + S(Cyxx+ Cyyy + Cyzz +Q) (1.10)

τz ż = −z + S(Czxx+ Czyy + Czzz +R) (1.11)

x represents an excitatory process (like the flow of Na+), and y and z represent inhibitory processes
(like the flow of K+). The time constants τi determine the rates of the dynamics of the three
processes. It is worth noting that chaotic dynamics can occur when multiple different time scales
are present [6]. The coupling strengths Cij represent the connectivity between the three processes,
with Cix ≥ 0 (making x excitatory) and Ci{y,z} ≤ 0 (making y inhibitory). P , Q, and R represent
the excitability threshold, or the constant external inputs to each process (similar to Im in eq. (1.7)).
The sigmoidal activation function S(x) = 1

1+e−a(x−θ)
represents the mass effect of the population of

neurons being modeled. This system provides an excellent toy model which reflects meso-scale
dynamics accurately, relative to its simplicity.

Macro-scale Models

These models do an accurate job of representing the behavior of small parts of the brain. However,
it is not reasonable to carry the assumptions of un- or highly-correlated activity to the large-scale
activity of whole-brain dynamics. In order to make these models accurately depict the overall
behavior of the brain as a whole, researchers turn to two main techniques: neural field models and
neural mass networks. The first treats the brain as a continuous sheet of cortex, within which
activity obeys wave equations. The second represents the brain as a discrete graph of cortices, or a
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network of coupled oscillators. The graph used for the coupling of the oscillators is determined by
the brain’s connectivity matrix, or connectome. An example of a neural mass network model is the
modified Hindmarsh-Rose model (eqs. (3.1) to (3.3)), which is discussed later.

One of the benefits of a neural mass network model is that its outputs are similar to those of
an electroencephalograph, or EEG. The EEG is a device used to record the electrical activity of the
brain. Electrodes are placed in specific areas on the scalp, and then measure changes in voltage
from neural masses beneath the skull. Much of the signal is distorted and attenuated by the bone
and tissue between the brain and the electrodes, which act like resistors and capacitors. This means
that, while the membrane voltage of the neuron changes by millivolts, the EEG reads a signal in
the microvolt scale [31]. Additionally, the EEG has relatively low spatial and temporal resolution
(16 electrodes for the whole brain, and a sampling rate of 33 ms). However, when properly treated,
neural mass models make for effective predictors of the output from EEGs [15, 29]. This is useful,
as EEGs are the main tool used to detect and categorize seizures.

1.2.2 Seizure Ætiology

For centuries, and across many cultures, seizures were viewed as holy and mystical events, and
those with epilepsy were often considered to be shamans [8, 31]. Seizures are often accompanied
by strange visions, sounds, or smells (called auras), and sometimes manifest themselves physically
in extreme ways. External symptoms can include convulsions of the limbs or the entire body, or
a seeming trance. In societies that are unfamiliar with the root causes of seizures, this can be a
terrifying and awe-inspiring sight to behold.

In more recent years, researchers have come to define seizures as abnormal, excessive, or overly-
synchronized neural activity [4, 31]. It is important to distinguish between seizures and epilepsy,
as the two are often conflated. Seizures are an acute event, whereas epilepsy is a chronic condition
of repeated seizures. While classification schemes vary, all center around the division between
generalized and focal seizures.

Generalized seizures involve the entire brain, and start in both hemispheres at the same time,
which is why they are often called primary generalized seizures. The manifestation of these seizures
crosses an entire spectrum. They sometimes hardly present to an external observer, as in the case
of the typical absence seizure5, which is nonconvulsive and results in a complete cessation of motor
activity for approximately 10 seconds. Patients lose consciousness, but not posture, making it seem
to an observer like a trance or simply “spacing out.”

On the other side of the range is the tonic-clonic seizure, wherein effectively all of a patient’s
muscles contract at once for around 30 seconds (the tonic phase), and then clench and unclench
rapidly, resulting in jerking of the extremities (the clonic phase) for 1 to 2 minutes. After tonic-clonic
seizures (in the postictal phase), patients often report confusion, muscle soreness, and exhaustion.

Focal seizures start in one part of the brain (the seizure focus). They are generally preceded
by auras such as a sense of fear, or hearing music, and often manifest as clonic movement of the
extremities. In many cases, they secondarily generalize, spreading to the entire brain. This can
make focal seizures and primary generalized seizures hard to distinguish, as a focal seizure can
generalize rapidly after a brief aura. This can lead to misdiagnoses and improper treatments.

5Since a lot of early epilepsy research was performed in French-speaking regions, “absence” is pronounced æb"sAns.
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The Epileptor Model

From careful observation, an empirical/phenomenological seizure model called Epileptor was devel-
oped [11, 12]. It involves two fast processes x1 and y1, two spike-wave event processes x2 and y2,
and a slow permittivity variable z. Its guiding equations are:

ẋ1 = y1 − f1(x1, x2)− z + Irest1 (1.12)

ẏ1 = y0 − 5x21 − y1 (1.13)

ż =
1

τ0
(4(x1 − x0)− z) (1.14)

ẋ2 = −y2 + x2 − x32 + Irest2 + 0.002g(x1)− 0.3(z − 3.5) (1.15)

ẏ2 =
1

τ2
(−y2 + f2(x1, x2)) (1.16)

where

g(x1) =

∫ t

t0

e−γ(t−τ)x1(τ) dτ (1.17)

f1(x1, x2) =

{
x31 − 3x21, if x1 < 0

x1
(
x2 − 0.6(z − 4)2

)
, if x1 ≥ 0

(1.18)

f2(x1, x2) =

{
0, if x2 < −0.25

6(x2 + 0.25), if x2 ≥ −0.25
(1.19)

The required parameters have the following values: x0 = −1.6, y0 = 1, τ0 = 2857, τ1 = 1, τ2 = 10,
Irest1 = 3.1, Irest2 = 0.45, γ = 0.01. A feature to note is that τ0 � τ2 � τ1. As previously
mentioned, these vastly different time scales allow for chaotic dynamics to occur, and contribute to
the nonlinearity of the system.

While the Epileptor model is highly accurate, and is currently being used to develop patient-
specific models and treatments, its main issue is that it is purely phenomenological. EEG traces of
humans, mice, and zebrafish were collected, and parameters were adjusted until x1 + x2 matched
the measured traces, resulting in the above values. This means that, while the variables and
parameters in the model directly correspond to physical processes, the model’s development was
largely empirical, and not fully rooted in theory [12]. This means that it can be a helpful tool in
treating symptoms, but is not necessarily as valuable for determining root causes.
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Chapter 2

Literature Review

It is important to get a sense of how the area of nonlinear dynamics has been applied to neuroscience.
One of the most powerful tools for describing the qualitative behavior of a nonlinear system is
bifurcation analysis, determining how the number and stability of fixed points and limit cycles
changes as parameters of a model change [28].

2.1 Bifurcation Analyses of Seizure Models

Analyses of the dynamics of brain models can provide an understanding of the mechanisms underly-
ing a wide variety of brain behaviors. Multistability and bifurcations can be interpreted as being at
the center of many different states, from seizures to switching from syncopated to anti-syncopated
finger tapping [4–6, 12, 24, 30]. With that in mind, it is worthwhile to look at some examples of
bifurcation analyses of neural models.

2.1.1 The Wilson-Cowan Model

One of the simplest models which lends itself to bifurcation analysis is the Wilson-Cowan model
(eqs. (1.9) to (1.11)). Traces of x over time look remarkably like the output from an EEG scan.
Figure 2.1 shows a simulation of the Wilson-Cowan model with the parameters1:

C =

23 −15 −10
35 0 0
10 0 0

 ,
PQ
R

 =

 3
−5
−5

 , τ =

0.015
0.013
0.267

 (2.1)

These results show a stereotypical spike-wave event, represented to a high degree of accuracy relative
to the simplicity of the model.

The main challenge to performing bifurcation analysis on this type of system is two-fold. The
first aspect is that there are 15 parameters to vary. This makes bifurcation analysis exceedingly
difficult, as all 15 dimensions and their relationships to each other must be analyzed. This is closely
related to the second aspect of the challenge this model provides: the variables in this model are
abstracted from their physical/physiological meanings. For example, because the coupling strengths
do not correspond directly to any measurable values, it is hard to gain actionable semantic knowledge
from analysis of their effects on the system [12].

1Parameters taken from [30], table 1. Note that the values in rows 3(g),3(i) and 3(j),3(l) should be switched.
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(a)
(b)

Figure 2.1: A comparison of a simulation of the Wilson-Cowan system and an actual
EEG trace of spike-wave event. (a) The output of a simulation of the Wilson-Cowan
model (eqs. (1.9) to (1.11)) using parameters from [30]. A 4th-order Runge-Kutta
solver (dt = 0.01, tmax = 1000) was run on the Wilson-Cowan model with parameters
shown in eq. (2.1). (b) An EEG trace of a spike-wave event, often characteristic of
absence seizures. Taken and modified from [17].

However, it is possible to observe a bifurcation if the external input P varies (eq. (1.9)). Fig-
ure 2.2 shows the change from spike-wave behavior to simple wave behavior as P increases past
3.92, at time 47.3. While it would be impossible to do an exhaustive sweep of parameter space, one
can observe all of the dynamics of brain behavior in this model.

Figure 2.2: A bifurcation from spike-wave behavior to simple wave behavior in the
Wilson-Cowan model as a function of continuously varying external input parameter
P . Simulation used a 4th-order Runge-Kutta solver (dt = 0.01, tmax = 100) as P
linearly increased from 3 to 5.

2.1.2 The Epileptor Model

In the Epileptor model (eqs. (1.12) to (1.19)), bifurcations depending on the slow permittivity
variable z determine whether the brain is behaving normally, or having a seizure [12]. Given the
time scale on which z varies ( 1

2857
times as fast as x1) and the bifurcations’ dependence on it, it

acts like an external parameter to the system, causing the model to go into and out of seizure. In
fig. 2.3, the transitions into and out of seizure are clear as critical points in z. Particularly, as is the
case with many similar models, normal steady-state brain function corresponds to a stable fixed
point, while seizure-like events are on stable limit cycles. This raises the question: what kinds of
bifurcations occur during the transition from healthy brain activity to seizures and back?

To discuss the dynamics of Epileptor in general, we will use the stereotypical behavior displayed
in fig. 2.3. An important aspect of epileptor to note is that x1 + x2 is the closest variable to an
observable quantity, but it still does not resemble an EEG trace without some post-processing.
Particularly, x1 would look a lot more like the output from an EEG if put through a high-pass
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Figure 2.3: A simulation of the Epileptor model showing the observable x1 and the
slow-changing permittivity variable z, using a 4th-order Runge-Kutta solver (dt =
0.01, tmax = 2000) and the parameters listed in section 1.2.2. The brain is exhibiting
healthy behavior for t ∈ (0, 360) = h1, then rapidly jumps into a seizure-like behavior.
It stays in this state for t ∈ (360, 1360) = s, until it returns to a healthy fixed point
for t ∈ (1360, 2000) = h2. Note the DC shift, wherein x1(s) > x1(h1) ≈ x1(h2).

filter. However, there is an invertible map directly between x1 + x2 and the readings from an EEG,
so the results can be treated as the same [12].

During seizure onset at t = 360, the stable fixed point of healthy activity disappears, replaced
by a stable limit cycle. This indicates that the system undergoes either a Hopf or a saddle-node
bifurcation. A hint towards the type of bifurcation involved is that seizures occur suddenly [31].
This means that the amplitude of oscillation does not steadily increase from 0, meaning that a
supercritical Hopf bifurcation can be ruled out [28]. At t = 360, the mean values of x1 + x2
jump from 〈x1(t) + x2(t)〉t∈h1 = −2.5 to 〈x1(t) + x2(t)〉t∈s = −0.8. This DC shift does appear in
experiment, and indicates that the bifurcation can not be a subcritical Hopf. This leaves only a
saddle-node bifurcation for the transition into a seizure [12].

As the seizure ends at t = 1360, the model returns from a limit cycle to a fixed point with another
DC shift. This indicates that the bifurcation is either a fold bifurcation or a homoclinic bifurcation.
One important point of note is that the frequency of oscillation decreases as the seizure approaches
offset, which matches with experiment. This indicates that the transition must be a homoclinic
bifurcation, because systems maintain constant frequency as they approach fold bifurcations [12].

2.2 Chimera States in the Brain

Chimera states in brain models have often been linked loosely to unihemispheric sleep, seizures,
and other brain behaviors [1, 2, 18, 21, 27]. In most cases, these connections are made in off-
hand remarks to introduce the concept of a chimera state, but serious connections between these
phenomena are rarely drawn. However, there are some notable cases of investigations of chimera
states in brains.

2.2.1 Square Torus

One such example is an investigation of two different neural models (FitzHugh-Nagumo neurons and
leaky integrate-and-fire neurons, both known to be accurate neural models [7]) run on a toroidal
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square network of N × N nonlocally coupled neurons [26]. The most important result of this
simulation is that similar behaviors appeared in each. It was found that FitzHugh-Nagumo and
leaky integrate-and-fire neurons not only can produce chimera states, but produce chimera states
in similar shapes and patterns.

For example, both types of neurons produced isolated disks of high synchrony while the rest
of the torus was oscillating asynchronously (coherent-spot), as well as disks of asynchrony while
the rest of the system was oscillating synchronously (incoherent-spot). Both types of neurons
also produced states in which a ring of neurons were firing synchronously between two areas of
asynchronous oscillation (coherent-ring), and vice versa (incoherent-ring).

This similar behavior indicates that the presence of chimera states is not simply a function of
the precise model chosen, but a quality universal to brain activity. Thus, it makes sense to postulate
that chimera states will appear in any reasonably accurate brain model. The main caveat for that
takeaway is that the network topology chosen for these models was not necessarily representative
of the topology of an actual brain (see section 3.2). However, seeing as the models both presented
chimera-like behavior, these states are well worth pursuing in other models.

2.2.2 Chimera Collapse

Chimera states are transient behavior for finite networks of oscillators [32]. This means that a finite
number of oscillators will eventually collapse into a totally synchronous state. This transition occurs
suddenly, but does provide warning signs. As the system gets closer to collapse, the asynchronous
group gets increasingly incoherent [3]. This is counterintuitive, as the asynchronous group is already
almost incoherent (by definition). However, the order parameter of an asynchronous group is
rarely 0. As an example, in the snapshot of the simulation of the Kuramoto model (fig. 1.2b),
the asynchronous group is generally gathered around φ = −π

2
. The asynchronous group’s non-

zero coherence provides it its own mean-field (however spread it may be), which protects it from
being absorbed into the synchronous group. Thus, when the coherence of the asynchronous group
decreases, this mean-field goes away, leaving the asynchronous group susceptible to collapse.

This hypo-coherence preceding chimera state collapse was observed in transcranial EEG record-
ings of patients undergoing seizures [3]. However, the authors were very clear that the analogies
between chimera state collapse and seizures are extremely conceptual. It has yet to be shown
whether chimera state collapse specifically is related to seizure activity in any way.

2.2.3 Chimeras in a Cat Model

A final example of a chimera state being investigated in neural models (and the inspiration for this
work) was an exploration of chimera states on a network of Hindmarsh-Rose neurons (eqs. (3.1)
to (3.3)) [24]. This model was simulated on the connectome of a cat (fig. 2.4). Parameter space
for the two connection strengths α and β was explored. Chimera states are most prevalent for
low values of β, the inter-cortex connection strength [24]. This is unsurprising. If the inter-cortex
connection strength is too high as compared to the intra-cortex connection strength, the coupling
acts global instead of nonlocal. This means that each community has less holding it together than
pulling it apart, allowing the system to descend into asynchrony.

Additionally, with increasing input current I0 (and increasing noise in the input current), chimera
states give way to incoherence. This also intuitively makes sense. As the input current increases,
its significance relative to the coupling also increases. Thus, the oscillators have no reason to
synchronize. And, of course, adding noise will simply amplify the effect.
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Figure 2.4: The cat connectome, represented as a matrix. The cat brain was divided
into 4 cortices (visual, auditory, somato-motor, and frontolimbic) with 65 subcortices.
The connection strength between the subcortices was measured and placed on a scale
of 1, 2, or 3.
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Chapter 3

Methods

3.1 Model

The model used for this work was the modified Hindmarsh-Rose neural model1 [24].

ẋj = yj − x3j + bx2j + Ij − zj −
α

n′j

N∑
k=1

G′jkΘj(xk)−
β

n′′j

N∑
k=1

G′′jkΘj(xk) (3.1)

ẏj = 1− 5x2j − yj (3.2)

żj = µ(s(xj − xrest)− zj) (3.3)

where

Θj(xk) =
xj − xrev

1 + e−λ(xk−θ)
(3.4)

is the sigmoidal activation function, making it a neural mass model. Table 3.1 shows the values
and meanings of the symbols in the model.

This model was chosen due to the semanticity of its parameters, as well as its proven ability to
exhibit chimera-like behavior as a neural mass model [24]. Additionally, the Hindmarsh-Rose model
was not designed to emulate seizures, which provides further evidence for the theory that chimeras
are a universal aspect of brain activity, as discussed in section 2.2.1.

3.2 Network

The model was implemented on a mesoscale mouse connectome, which organized the mouse brain
into 13 cortices, made up of 213 subcortices total and measured the connection strengths between
the subcortices [20]. These connection strengths were then reduced to those with sufficient certainty
(p < 0.01), and segmented as follows:

Gjk =


0, if Ojk < 10−4

1, if Ojk < 10−2

2, if Ojk < 1

3, otherwise

(3.5)

1The modification is to add in the coupling, turning it into a network model instead of a single neuron.
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Symbol Value Meaning
xj — Membrane potential of the jth neural mass
yj — Associated with the fast processes
zj — Associated with slow processes
b 3.2 Tunes the spiking frequency
Ij 4.4 External input current
xrev 2 Ambient reverse potential
λ 10 Sigmoidal activation function parameter
θ -0.25 Sigmoidal activation function parameter
µ 0.01 Time scale for variation of z
s 4 Governs adaptation

xrest -1.6 Resting/equilibrium potential
α Varied Connection strength within cortices
n′j See fig. 3.2a Number of connections within a cortex from the jth neuron
G′jk See fig. 3.2b Intra-cortical connection matrix
β Varied Connection strength between conrtices
n′′j See fig. 3.2a Number of connections between cortices from the jth neuron
G′′jk See fig. 3.2b Inter-cortical connection matrix

Table 3.1: The list of parameters used in modeling the Hindmarsh-Rose network.

where Ojk is the raw connection strength provided by [20]. G is shown in fig. 3.1, and is shown
broken down into its inter- and intra-connections in fig. 3.2. A useful aspect of this brain network is
that the standard graph whose topology it most resembles is a small-world or Watts-Strogatz graph
[20]. This graph topology lends itself well to the development of chimera states, as it facilitates
nonlocal coupling [10].

Another benefit to this network is that it is accurate and complete. Given the complexity of
brains, creating an accurate structural or functional connectome is extremely difficult. It has yet
to be done to a large-scale extent in humans, and was only recently done in mice. Additionally, as
mice are common analogues for humans in laboratory settings, the mouse seemed a fitting “guinea
pig” for the creation of chimera states.

3.3 Implementation

The modified Hindmarsh-Rose model was coded into Python (Python version 3.7.0, NumPy version
1.15.2, Pandas version 0.23.4, SciPy version 1.1.0), and integrated using a 4th-order Runge-Kutta
with variable step size2 dt < 0.01. The code was verified by reproducing the results of [24]. The
model was run for a time period of Tsim = [−1000, 5000], where only times T = [0, 4000] were saved.
The times [−1000, 0] were calculated and thrown away to eliminate transients. The chimeras were
extremely unlikely to be eliminated on such a time scale, due to the size of the network [32]. The
times [4000, 5000] were calculated to facilitate analysis of the phase.

The phase of the jth neuron in the resulting waveform was found as

φj(t) = 2π × t− ti
ti+1 − ti

(3.6)

2Step size was determined by SciPy’s internal algorithms, but was limited to a maximum of 0.01.
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(a) Matrix representation (b) Embedding

Figure 3.1: (a) A matrix representation of the mouse connectome, with strengths as
defined by eq. (3.5). The cortices represented are, left to right (top to bottom), the
striatum, the olfactory areas, the isocortex, the crebellar cortex, the hippocampal
formation, the midbrain, the hypothalamus, the pallidum, the pons, the medulla, the
cortical subplate, the thalamus, and the cerebellar nuclei. (b) An embedding of the
graph. Edge colors indicate the source location.

where ti is the time at which the jth neuron fires (xj crosses 0 in a positive direction) for the ith
time3. In order for this calculation to be possible for all values in T , it was necessary to have each
neuron fire at least once after T had finished (i.e., there has to be some ti+1 /∈ T in order to calculate
the phase for times ti ≤ t ≤ tmax = 4000). The calculated time range went so far beyond tmax so
that any extremely slow-firing neurons were allowed to do so, to ensure that as much of parameter
space was in the physical region (section 4.2). The phase was then used to find the chimera and
metastability indices of the result using eq. (1.5) and eq. (1.6) respectively.

This process was repeated for various parameter sweeps of α×β, summarized in table 3.2. Note
that the step in each strength i ∈ {α, β} is ∆i = imax

ni−1 , due to the fact that the ranges are inclusive
of both endpoints.

αmax, βmax ∆α (nα), ∆β (nβ) Figure
1.6, 0.4 0.0203 (80), 0.0211 (20) —
3.2, 0.8 0.0405 (80), 0.0205 (40) —
0.2, 0.1 0.00253 (80), 0.00256 (40) fig. 4.5
0.9, 0.9 0.0101 (80), 0.0101 (80) fig. 4.4

Table 3.2: The sweeps used in evaluating the effects of α and β on the chimera and
metastability indices. All parameter sweeps started at (α, β) = (0, 0).

3This is a similar measure for the phase as was used in [24], but allows for easier discrimination between physical
and aphysical parameter sets. It is modified to keep φj ∈ (0, 2π) and to eliminate ambiguity about the meanings of
the subscripts.
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(a) n′ and n′′
(b) G′ and G′′

Figure 3.2: A breakdown of the network. (a) shows n′j and n′′j , effectively the number
of nonzero elements in the jth row of G′ and G′′, respectively. (b) shows G′ and G′′,
which are G (fig. 3.1a) only within and between cortices, respectively.

(a) All values (b) Dropped zeros

Figure 3.3: The average connection strengths for each neuron j, within cortices (blue)
and between them (orange). (a) All of the subcortices. (b) All of the subcortices for
which neither intra- nor inter-cortical average strength was 0.

Initial conditions were drawn from uniform distributions of xj ∈ [−2, 2], yj ∈ [0, 0.2], zj ∈ [0, 0.2].
All code was run on the Vermont Advanced Computing Core, and is available online4.

4https://gitlab.uvm.edu/Henry.Mitchell/thesis
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Chapter 4

Results

We now investigate three aspects of the results of this work. First, we compare the output from the
model to real-world data, on a qualitative level. We then discuss the region of parameter space for
which the model produces aphysical results. Finally, we draw connections between chimera states
in the model and their physiological analogues.

4.1 Model Quality

It is worthwhile to first discuss the quality of the model used, and its relationship to reality. Fig-
ure 4.1 shows several types of behavior one can expect on an EEG trace. Healthy brain behavior

Figure 4.1: A typical EEG trace. The first row (“Wild type”) shows a normal
awake adult mouse EEG trace. The other four rows (“Mutant”) show typical ab-
normal/epileptiform activity. Taken from [16].

presents as low-amplitude oscillations on an EEG, as the asynchrony leads the firings of individual
neurons to cancel each other out. Seizures and seizure-like activity present as higher-amplitude
oscillations, as the synchrony decreases the variance between neurons, making the mean closer to
the behavior of each neuron. One of the main challenges of simulating seizures is that only trained
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experts can truly identify seizures; as yet, there is no mathematical technique for identifying seizures
[31].

However, one can indicate whether a model resembles epileptiform activity on a qualitative
level. Figure 4.2 shows the results of a simulation of the Hindmarsh-Rose network for (α, β) =
(0.608, 0.267). Qualitatively, in our simulation, the thalamus, the pons, and the striatum look like

Figure 4.2: The mean membrane potential within each cortex. χ and m are normal-
ized to 1

7
and 1

12
, respectively.

the wild type EEG; the cerebellar cortex shows some spiking behavior, as well as some spike runs;
the medulla and the hypothalamus look to be in repetitive spike runs; and the cortical subplate
seems to be exhibiting seizure-like behavior over some time periods. This shows that the behavior
visible on an EEG can be reproduced in this model.

While getting a higher neuronal resolution from the EEG is not possible due to the nature of the
method, one can see the neural dynamics of the model (fig. 4.3). It is evident that the thalamus,
the pons, and the striatum are each highly asynchronous, which corresponds to their wild-type
presentation.

Both presentation methods have their benefits, as fig. 4.2 looks similar to an EEG (and therefore
lends itself well to the comparison), where fig. 4.3 allows us to view the individual subcortical
behaviors leading to the net dynamics.

4.2 Aphysical Region

We choose not to include figures for the first two sweeps of table 3.2 because a large portion of
parameter space leads to an aphysical model. Specifically, for certain value pairs of (α, β), certain
neurons never fired (increased past 1). Despite the drastically increased time of evaluation (see
section 3.3), a vast swath of parameter space gave nonsense results (the white shown in fig. 4.4).
The boundary between physical and aphysical appears to be linear, with a negative slope. This
means that α can range further when β is low, and vice versa. This makes sense, as increased α
and β influence the model in the same way (increasing the coupling and decreasing ẋj).

Additionally, the slope of the boundary is greater than −1, which means that α has an greater
influence on the physicality of the model. This is also reasonable, but for slightly less self-evident
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Figure 4.3: The phase φ of the entire timeseries for a simulation of the Hindmarsh-
Rose network.

reasons. To explain why, we must look specifically at the two coupling terms from eq. (3.1):

− α
n′j

N∑
k=1

G′jkΘj(xk)−
β

n′′j

N∑
k=1

G′′jkΘj(xk)

This coupling will, in fact, be positive, as Θj(xk) < 0 if xj < 2, which is true almost all of the
time. This means that, as α and β increase, so does the overall coupling strength. So, there is some
threshold K for which the overall coupling is too strong if

α

n′j

N∑
k=1

G′jk|Θj(xk)|+
β

n′′j

N∑
k=1

G′′jk|Θj(xk)| > Kj (4.1)

for some j. So, in order for α to influence the coupling’s proximity to K more than β does, there
must exist some j such that 1

n′j

∑
G′jk|Θj(xk)| > 1

n′′j

∑
G′′jk|Θj(xk)|. Seeing as g′j = 1

n′j

∑
G′jk and

g′′j = 1
n′′j

∑
G′′jk are the average connection strength within and between cortices (shown in fig. 3.3a),

these are simply a function of the topology of the graph.
It may look from fig. 3.3a like β should have more influence than α, as for most j, g′′j > g′′j .

However, for most of those cases, g′′j0 > g′′j0 = 0. This means that, for those j0,
∂Kj0
∂α

= 0. So, those
cases contribute to the value of the threshold, but do not influence the physicality’s dependence on
α and β.

If we remove the j for which g′j = 0 or g′j, we find that, on average, g′j = 2.100, slightly more
than g′′j = 2.079 (see fig. 3.3b). This explains the slope of the boundary between the physical region
and the aphysical region.

4.3 Chimera states

The normalized chimera-like index of the entire physical region is shown in fig. 4.4. Near the
maximal edge of the physical region, the highest values of the chimera index appear to follow a
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Figure 4.4: The chimera-like landscape of parameter space on (α, β) ∈ (0, 0.9) ×
(0, 0.9). The aphysical region of the model is shown in white. The black rectangle in
the bottom left corner indicates the region of parameter space shown in fig. 4.5. The
dashed line has a slope of −1, to serve as a guide for section 4.3. The chimera-like
index (defined in eq. (1.5)) is normalized to 1

7
, as usual.

slope of −1. It is unsurprising that chimera states would be prevalent when the coupling is large
(out near the boundary of the aphysical range).

What is surprising, however, is the presence of the chimeric patch in the bottom left corner of
fig. 4.4, shown at a higher resolution in fig. 4.5. Plotting the results of the simulations (figs. 4.6a
and 4.6b), it is evident that this is not a calculation error, but is an actual feature of the parameter
landscape.

The highly chimeric portion of the landscape appears to be mostly below the β = α line. This is
reasonable, as chimera states occur when coupling within groups is greater than coupling between
groups. A small portion of the chimeric patch lies above the β = α line, likely due to the fact
that the average strength between cortices is greater than the average strength within cortices (see
fig. 3.3a).

χ greatly lessens at α ≈ 0.1. A possible explanation for this comes from comparing the order
of ẋ without the coupling terms, and the coupling terms themselves. From our simulation, we find
that ẋ without the coupling terms ranges roughly from -6 to 3. The coupling terms each1 range
from 0 to approximately 30α. That means that, when α > 0.1, the coupling is at least of the same
order as the sum of the rest of the terms in the equation. This leads to a qualitative difference
between the two states, which likely manifests itself as the less chimeric states.

1Since the same can be said for both α and β, we will discuss only α, with the understanding that β could be
substituted into the proceeding sentences.
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Figure 4.5: The chimera index of runs with (α, β) ∈ (0, 0.2)× (0, 0.1). As before, the
chimera-like index is normalized to 1

7
. Note that the values of the index are much

higher in this patch than in most of the rest of (α, β) ∈ (0, 0.9) × (0, 0.9) (fig. 4.4).
The dashed line shows β = α.
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(a)

(b)

Figure 4.6: A run of the Hindmarsh-Rose simulation in the chimeric island. (a)
The mean membrane potential within each cortex. (b) The phase φ of the entire
timeseries for a simulation of the Hindmarsh-Rose network. Synchronization is most
consistently evident in the medulla, the hypothalamus, and the isocortex.
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Chapter 5

Conclusion

5.1 Future Work

The logical next step is to compare the simulated EEG traces to actual data collected from mice,
with the aid of an epileptologist. With that further work, this research could potentially go from a
mathematical curiosity to an applicable therapeutic and diagnostic tool.

Additionally, finding an instructive phase-space embedding of the Hindmarsh-Rose network
would be challenging (seeing as it is a 639-dimensional system, currently), but would likely reveal
potentially useful insights into the nature of the mechanisms underlying these systems. The same
could be said for Lyapunov analysis, as well as finding an informative way to create a bifurcation
diagram and perform more in-depth bifurcation analysis.

A final way this work could be extended is by looking at chimera state collapse and its re-
lationship to secondary seizure generalization. However, it would be extremely computationally
expensive, given the size of the system, and would therefore require some clever handiwork [32].
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