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Abstract 
 

One way to analyze the structure of a network is to identify its communities, groups of 

related nodes that are more likely to connect to one another than to nodes outside the 

community. Commonly used algorithms for obtaining a network’s communities rely on 

clustering of the network’s nodes into a community structure that maximizes an appropriate 

objective function. However, defining communities as a partition of a network’s nodes, and 

thus stipulating that each node belongs to exactly one community, precludes the detection of 

overlapping communities that may exist in the network. Here we show that by defining 

communities as partition of a network’s links, and thus allowing individual nodes to appear in 

multiple communities, we can quantify the extent to which each pair of communities in a 

network overlaps. We define two measures of community overlap and apply them to the 

community structure of five networks from different disciplines. In every case, we note that 

there are many pairs of communities that share a significant number of nodes. This highlights a 

major advantage of using link partitioning, as opposed to node partitioning, when seeking to 

understand the community structure of a network. We also observe significant differences 

between overlap statistics in real-world networks as compared with randomly-generated null 

models. By virtue of their contexts, we expect many naturally-occurring networks to have very 

densely overlapping communities. Therefore, it is necessary to develop an understanding of 

how to use community overlap calculations to draw conclusions about the underlying structure 

of a network. 
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Introduction and Background 
 

A structural feature of many networks is the organization of networks’ nodes into 

communities. Heuristically, the number of edges connecting nodes within a given community to 

each other outweighs the number of edges connecting member nodes to nodes outside the 

community1,2,3,4. For example, consider the example of a social network, where nodes 

represent people and edges represent interactions between them. It would be reasonable for 

this network’s communities to elucidate subgroups of individuals who belong to common 

workplaces, families, or social groups. By extending this idea to other contexts, we can assume 

that there is considerable insight to be gained from defining the communities underlying 

internet networks, metabolic networks, and communication and distribution networks5. A 

network’s community structure is one approach from which to begin developing an 

understanding of the intricacies of the network as a whole. However, defining a network’s 

communities is a challenging task for a few reasons: (1) relevant research lacks consensus on a 

singular, specific definition of communities, and thus (2) there is an absence of criteria to 

distinguish between a community and a non-community; finally, (3) there have been a myriad 

of proposed community detection algorithms, deemed by many to be “intractable”4,6. 

Additionally, many community detection methods operate under the assumption that every 

node belongs to exactly one community, which precludes the study of overlapping structure.  

 Nonetheless, it is illustrative to study community structure because it has been shown 

to be indicative of the properties guiding the underlying systems behind many networks6. 

Communities may provide insight into both the structural properties of a network as well as 

functional roles of subgroups of a network’s nodes3. A network’s optimal community structure 
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may differ depending on which of these two properties (structural or functional) researchers 

desire to illuminate, which leads to intrinsic difficulty in interpreting results7.  

By studying networks whose ground-truth communities (an a priori expectation of the 

community structure) are explicitly stated, researchers have evaluated the performance of 

structural community detection methods in identifying these pre-defined functional subunits of 

the network3,6. In 2012, researchers from the Department of Computer Science at Cornell 

University analyzed 10 community detection algorithms under this framework6. These methods 

included: breadth first search, two variations of a random walk algorithm, (a,b), link 

communities1, infomap, Louvain, Newman-Clauset-Moore, Markov clustering, and metsis. 

Because we seek a unified, context-independent way to study communities, the established 

collection of community detection methods is based on mathematical optimization, and 

different methods tend to produce significantly different community structures. However, the 

random-walk-based algorithms generally produce the community structure that most closely 

resembles the ground-truth communities, when known6. The plethora of proposed community 

detection methods can be grouped into broader categories8, including traditional clustering 

methods, divisive algorithms4, methods based on modularity5, dynamic algorithms (including 

random walk4,6), and methods based on statistical inference.  

One of the most common techniques for community detection seeks to maximize 

modularity, which is a measure of the quality of the identified communities9. However, a 

significant drawback of using this method is that it is subject to a resolution limit, whereby 

communities below a certain size (dependent on the size of the network and the 

interconnectedness of the communities) may not be detected10. In order to begin studying 
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overlapping communities, we may relax the assumption that each node belongs to one 

community. However, this makes modularity optimization even more difficult to use as a 

criteria for identifying a meaningful community structure.  

Although the details of their implementations differ, node-grouping methods dominate 

the existing literature on network community detection1,2,9,12. The need to develop an 

alternative method can be validated by a simple example2,12: Consider a network of social ties 

between individuals as described previously, where nodes represent people and edges 

represent interactions between them. As we have stated, a node-partitioning community 

detection approach requires that the clusters create a partition of the network’s nodes. Thus, 

each individual may belong to only one of the identified communities. However in reality, it is 

expected that in many cases an individual will belong to multiple social groups. The link-

partitioning method for community detection holds that each edge of the network belongs to 

exactly one community1,2. However, nodes induced by each edge in a community may show up 

in multiple communities, effectively elucidating the overlapping communities that may exist in 

a network. A major shortcoming of the node community method can be resolved by using an 

analogous procedure to instead partition a network into disjoint and exhaustive sets of its 

edges. Further, this new method identifies the optimal community structure as the one that 

maximizes partition density (defined in Methods section) and eliminates the need to rely on 

modularity. We will explain the node community detection method and show how it gives rise 

to the link community detection method used in our analyses.  

 The first step in node community detection is to define a way to measure the similarity 

between the network’s nodes. One of the widely-accepted ways to quantify node similarity, 
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𝑆(𝑖, 𝑗), between nodes i and j is defined below, where.	𝑛)(𝑖) and 𝑛)(𝑗) represent the inclusive 

neighbors of nodes i and j, respectively1,2.  

																																																										𝑆(𝑖, 𝑗) =
|	𝑛)(𝑖)	⋂	𝑛)(𝑗)	|
|	𝑛)(𝑖)	⋃	𝑛)(𝑗)	|

																																																					(1) 

As an analog to this method, link similarity will be defined as a comparison between two edges 

that share an impost node1. Because networks typically contain more edges than nodes, the 

number of pairwise similarity calculations that must be performed increases significantly when 

we adopt a link community approach.  

 The Les Misérables character interaction network2 provides a comprehensible example 

of this phenomenon. The nodes in this network represent characters from the original novel. 

There exists a link between two nodes if their respective characters appeared in the same scene 

together.  There are 77 nodes and 254 edges in the network, for an average degree of 

approximately 6.6. Figure 1 below shows a node similarity matrix and a link similarity matrix 

graphed on the same scale. A similarity matrix provides a visual representation of all similarity 

calculations using a color gradient. As the similarity between two entities increases, the shading 

in the appropriate cell of the plot darkens. In Figure 1, the same unit of area on each plot 

corresponds to one pairwise similarity comparison between either two nodes (at left) or two 

links (at right). We use the area of each matrix to visualize the extent to which the number of 

calculations needed to generate a link similarity matrix outweighs the number required to 

create a node similarity matrix for the same network. 
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From the similarity matrices, we observe a common problem in studying networks: networks 

quickly become too large to be interpreted using static visualizations. Even though it is 

relatively small in comparison to many naturally occurring networks, the Les Misérables 

network appears to be approaching the maximum network size for which a link similarity matrix 

is a useful and interpretable visualization. The labels on the left and bottom edges of the matrix 

(which list each edge in the network) are illegibly small, so it is difficult even for a viewer to 

intuitively make sense of the pairs of highly similar edges in the network, even if s/he has 

contextual expertise. Figure 1 is intended to demonstrate a key difference between node and 

link community detection methods and to be evidence that new tools, such as interactive or 

Figure 1 
Link communities contain far more potential information than node communities. 
Here, two similarity matrices were created for the Les Misérables character 
interaction network, which has 55 nodes and 254 edges. Generating the node 
similarity matrix (left) requires 552 = 5,929 calculations, while generating the link 
similarity matrix (right) requires over 10 times more, or 2542 = 64,516 calculations. 
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dynamic visualizations, should be explored as potentially useful alternatives to these similarity 

matrices. 

 After defining a way to quantify the similarity between nodes, traditional node 

community methods then perform a version of agglomerative clustering to group the nodes 

into communities. Agglomerative (bottom-up) algorithms start by assigning each node to its 

own community, which is then merged with other communities in successive iterations2,13. 

Alternatively, divisive (top-down) methods start with all nodes in a single community, which 

splits during each iteration2,13. We will focus on single-linkage clustering, in which communities 

containing the pair (or pairs) of nodes with the greatest similarity merge at each step. Other 

agglomerative clustering techniques are complete-linkage and average-linkage, which employ a 

different criterion for determining the pair of communities to merge at each step2,13. The whole 

procedure of hierarchical clustering can be summarized in a dendrogram. The leaf nodes of this 

diagram correspond to the nodes in the network12. At each merging step, the threshold at 

which a pair of communities merges is encoded in the height of the connection between them. 

This tool for tracking the history of hierarchical clustering of nodes has a direct translation to 

link community methods. The key difference is that the leaf nodes on a link dendrogram 

represent a network’s edges, as opposed to its nodes1. In both cases, we can “cut” the 

dendrogram at a specific threshold to obtain the community structure at that merging 

threshold. As is the case with similarity matrices, dendrograms lose their visual interpretability 

when networks are large.  

After performing hierarchical clustering on a network, we identify the network with the 

optimal set of communities and analyze their structure. There have been several proposed 
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methods for how to determine the best set of communities to reveal the underlying 

organization of a network1,11,12,14. In our link community method, we compute the partition 

density of the set of communities at each merging step and select the partition that has the 

maximum partition density to be the basis for subsequent analyses.  

Following the general ideas of the node community algorithms, we use an analogous 

procedure, proposed in 2010 by Ahn, Bagrow, and Lehmann, and explained in the Methods 

section below, to define a link community method. Following hierarchical clustering and the 

identification of the set of communities with the greatest partition density, we define and 

investigate relevant statistics for quantifying the overlap that exists between communities. We 

utilize these methods on a corpus of five networks, some of which are known to have densely 

overlapping communities.   

Datasets 
 
 We have identified a corpus of five networks from different disciplines to analyze using 

link community methods. The first four listed below are naturally-occurring, while the fifth was 

constructed with some amount of (partially understood) human intervention. The description 

of these networks is followed by their visual representations, created using Cytoscape, and 

designed to give the reader a sense of the size and density of the networks we are studying. 

These basic properties are summarized in Table 1. 

 

1. Word association: Nodes in the word association network represent words in the 

English language. Two nodes are connected by an edge if they were ‘associated’ with 

one another by a participant in the study from which the network was formed15. This 
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dense network is the largest graph in the corpus, in terms of number of nodes and 

number of edges.  

 

2. Protein-protein interaction (PPI): The protein-protein interaction network provides 

insight into the realm of biological systems. Nodes represent proteins, and edges 

represent interactions between them. The data for this network were collected by 

yeast two-hybrid interaction mating16. This network has the lowest average degree 

of the networks in our corpus.  

 

3. Primary school: The primary school network was released in a 2014 study published 

in BMC Infectious Diseases. Nodes represent students and teachers in a primary 

school, and edges represent face-to-face interactions between them17.  

 

4. Airports: Nodes represent the 500 airports in the United States with the most traffic. 

Two nodes are connected by an edge if there existed a direct flight (as of 2007) 

between the two airports that they represent14. 
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5. Football games: A node in this network represents a Division 1A college football 

team. An edge exists between a pair of teams if they played a regular season game 

against one another in Fall 2000[12]. The colors of the nodes represent the known 

conference structure of the teams, as shown in the legend. Note that there are five 

teams (Central Florida, Connecticut, Navy, Notre Dame, and Utah State) that do not 

belong to a conference, so they are grouped as Independents in gray.  

 

 

 
 

 Figure 2B 
Football conference network 

 

Figure 2A 
Top row (L-R): word association, PPI 

Bottom row (L-R): primary school, airports 
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Table 1 
 

Network Number of nodes Number of edges Average degree 
Word association 5,018 55,232 22.01 

PPI 1,647 2,518 3.06 

Primary school 243 8,318 68.46 

Airports 500 2,980 11.92 

Football conferences 115 613 10.66 

Methods 
 

The steps laid out below explain the details of our link community method. A complete 

implementation of these algorithms was written in Python, but ultimately we utilized a C++ 

implementation from a previous study1 of link communities due to its higher efficiency. Minor 

modifications were made to its functionality to suit the scope of this research. We returned to 

Python to create the plots accompanying these analyses. The analyses of the community 

structure at the networks’ maximum partition densities were dependent upon striking features 

of various plots and statistics. The link community method, in its entirety, follows in the steps 

below. 

Convert network data to a standard format. A python script authored by Ahn, et. al. defines 

a standard network encoding in which a network’s nodes are mapped to integers, and the 

network itself is represented by a list of space-separated integers that represent its links. This 

script was used to format each network in the corpus. The resulting file storing the network 

(characterized by the .pairs file extension) is compatible with the implementation of future 

procedures for calculating link similarities and performing hierarchical clustering. A useful 
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product of running the aforementioned python script is the .int2node file which contains the 

mapping of integers to the nodes they represent.  

Calculate pairwise link similarities. The similarity S(eik,ejk) between two links eik and ejk in an 

undirected, unweighted network is defined as follows, where n+(i) denotes the inclusive 

neighbors of node i (the set containing node i and its neighbors)1. 

																																																					𝑆/𝑒12, 𝑒324 =
|	𝑛)(𝑖)	⋂	𝑛)(𝑗)	|
|	𝑛)(𝑖)	⋃	𝑛)(𝑗)	|

																																																						(2) 

Note that link similarity ranges from zero (if two links do not share any impost nodes) to one (if 

there exists an edge between nodes i and j and these two nodes have an identical set of 

neighbors). Performing this calculation for each pair of links in the network has the potential to 

be an expensive operation. A file with the .jaccs extension stores an exhaustive list of edge pairs 

and their respective similarities. The information contained in this file can be visually 

represented in a similarity matrix (Figure 1), where darker shading indicates greater similarity 

between two links, and lighter colors on the gradient correspond to smaller similarity.  

Perform hierarchical clustering. We elect to use single-linkage clustering, due to its efficiency 

over complete- and average-linkage clustering. The algorithm for carrying out this 

agglomerative procedure starts by assigning each link to its own community. Each future 

iteration identifies the pair of links that has the greatest similarity and merges the links in their 

respective communities. If there is a tie for maximum pairwise link similarity, the appropriate 

communities are merged simultaneously. The algorithm terminates when there exists one 

community that contains all of a network’s edges. A link dendrogram stores all of the 

information about hierarchical clustering. Each leaf of the dendrogram represents an edge in 
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the network. The threshold at which two communities merge is represented by the height of 

the line representing their merge on the dendrogram18. By “slicing” the dendrogram at a 

particular merging threshold, we obtain the set of communities at this threshold. A clustermap 

(Figure 3) juxtaposes a dendrogram on two edges of a link similarity matrix and invites 

simultaneous analysis of these figures.  

 
 

 

 

Owing to the computational cost of performing hierarchical clustering on the five-network 

corpus, we stepped through a finite set of merging thresholds, from [0,1] in increments of 

0.005, and saved the resulting community structure at each step.  

Compute the partition density of each link partition of the network. Partition density is a 

statistic used to determine the optimal link community structure for a network. Heuristically, 

partitions at the top of a dendrogram are dense, because they are comprised of few 

communities containing large numbers of edges. Partitions near the bottom of a dendrogram 

Figure 3 
A clustermap of the Les Misérables character interaction network. 
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typically contain many communities, each with relatively few edges, and thus, are less dense. 

The partition density, D on a partition of a network with M links is defined below. 

																																																		𝐷 = 	
2
𝑀8𝑚:

𝑚: − (𝑛: − 1)
(𝑛: − 2)(𝑛: − 1):

																																																	(3) 

In this formula, mc and nc are the number of links and nodes, respectively, in a cluster within the 

partition1. A community containing two disconnected edges reaches the minimum quantity of 

D=-2/3. The maximum value for partition density, D=1, occurs when a community is a fully 

connected clique. It follows that as the value of D increases, a community bears less 

resemblance to a tree and progresses toward becoming a clique. We calculated the partition 

density at each recorded link partition of the network from the hierarchical clustering step. 

Figure 4 shows the partition density at a coarser resolution (merging thresholds in the interval 

[0,1] in increments of 0.05) for each of the networks in the corpus. We see that the range of 

partition densities differs greatly between networks. 

 

 
Figure 4 

Partition density and corresponding merging threshold for five-network corpus. 
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After performing these calculations, we identify the merging threshold at which the maximum 

partition density is achieved, and we used the corresponding community structure for 

subsequent analyses.  

Define and compute overlap statistics on networks. We define two measures by which to 

quantify the overlap between two link communities: the Jaccard J and the overlap coefficient 

W. The Jaccard extends directly from our link similarity calculation and is defined as follows, 

where A and B represent the set of nodes induced by the links of two communities, cA and cB.  

 

	𝐽(𝑐?, 𝑐@) =
|	𝐴	 ∩ 𝐵	|
|	𝐴	 ∪ 𝐵	|	 

 

Simply put, this quantity is the ratio between the number of shared nodes in two communities 

and the size of the union of their nodes. The overlap coefficient W	determines overlap slightly 

differently by comparing the proportions of the size of the difference between two 

communities to the size of each of them. The smaller of these two proportions is subtracted 

from the statistic’s maximum value (one).  

 

W(𝑐?, 𝑐@) = 	1 − minH	
|𝐴 − 𝐵|
|𝐴| ,

|𝐵 − 𝐴|
|𝐵| 	I 

 

Figure 5 below provides a visual explanation of this measure.  
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Due to the fact that all possible values of W	are rational numbers, we observe step-like patterns 

and features similar to those of discrete data in the plots that describe this statistic.  

Generate networks using the configuration model. The configuration model provides a 

framework for generating random graphs that preserves a given degree sequence. An 

important requirement for this model is that the sum of the degree sequence must be even. In 

this study, we use the configuration model to generate one hundred models that correspond to 

the degree sequences of each of the networks in the corpus (for a total of 500 network 

models). Python’s networkx package supports this model19, which makes the generation of 

these models a simple process. The graph that results from using the built-in configuration 

models functions is a multigraph, so we simply remove any self-loop edges, without concern 

that this will have a significant impact on the resemblance of the model’s degree sequence to 

the degree sequence of the original network. Figure 6 shows one of the random models 

generated from the degree sequence of each network. We see that they are similar in 

A B

Figure 5 
Using communities A and B represented above, we see that 

|@J?|
|@|

 < 
|?J@|
|?|

, so the overlap 
coefficient W	of these two communities is one minus the proportion of nodes in community 

B and not in community A, relative to the size of community B. 
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appearance to the original networks. One observation, however, is that model of the PPI 

network has many connected components. A simple investigation revealed that, on average, 

the largest connected component of a random model of the PPI network contains 91.5% of the 

model’s nodes.    

 

 

 

Compare statistics on real networks to statistics on random models.   

Results/Discussion 

Investigate overlap statistics. Finally, we investigate the similarities and differences between 

the overlap statistics we calculated on the random models and those we computed on the real 

network data. This step involves analyzing distributions, calculating summary statistics, and 

performing statistical analyses. The beginning of this process was guided by the general task of 

making comparisons between the real and randomly-generated networks. 

Figure 6 
Models generated using the configuration model. 

Top row (L-R): word association, PPI, primary school interactions 
Bottom row (L-R): US airports, football teams 
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Results 
 

For each of the five networks in our corpus, we have identified the link partition that 

achieves the greatest partition density. Using this set of communities, we compute J and W 

(defined in Methods) between every pair of overlapping communities. We can visualize these 

results in the histograms and cumulative density plots in Figure 7 below.  
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There are a few noteworthy observations that we make from these plots. First, in the histogram 

for each of the networks, we see that W	is generally greater than J. Considering the definition of 

each of these statistics, we note that if a small community is almost completely contained 

within a considerably larger one, their value of W will be quite high (close to the maximum 

value of one). However, J may not necessarily be as high, since the larger community inflates 

the size of the two communities’ union and effectively lowers this statistic. The cumulative 

distribution plots are provided to make the discretization of W more apparent, and to eliminate 

the visual effects of binning on the interpretation of the statistics’ distributions. In the 

cumulative distribution plots, we observe noticeable stepwise increases in probability at 

  
  
  
  
 

 
Figure 7 

Histograms and cumulative density plots of overlap statistics for each network. From the 
histograms, we observe that W	is generally greater than J, and in the cumulative density 

plots, we note a stepwise pattern of increasing probability. 
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W	values of 1/3, 1/2, and 2/3, while J generally increases more smoothly. This pattern is consistent 

across each of the five networks in the corpus, which range considerably in terms of context, 

size, and average degree.  

 Next, we investigate the relationship between J and W  calculated on each pair of 

overlapping communities. Both of these statistics can take any value in the range 0 to 1. Had 

these statistics quantified overlap by the exact same criteria, we would have seen a scatterplot 

that could be modeled by a line with slope=1. However, as shown in Figure 8 below, we observe 

that a pair of communities can have values of J and W that are quite dissimilar from one 

another. In particular, there are many cases in which the value of W calculated between two 

communities is much higher than the value of J calculated on these same communities (which 

corresponds to the points in the upper left corner of the scatterplots in Figure 8). However, we 

do not see any cases of a pair of communities having high J and low W, which would lie in the 

bottom right corner of these scatterplots. This observation is consistent with our claim that W	 

tends to be greater than J. This result suggests that J and W are not redundant statistics; taken 

together, they provide more information about overlapping community structure than either 

statistic can provide on its own.  
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To further explore the differences between W and J, we constructed histograms to 

visualize the distribution of W minus J in each of our constituent networks (Figure 9). By visual 

inspection, we see that these distributions are quite similar to one another; they are skewed to 

the right, but there is a sizable group of community pairs whose difference in overlap statistics 

is very close to one (the maximum possible difference).   

Figure 8 
Scatterplots of overlap coefficient W	by Jaccard J for each of the networks. We note that 
a pair of communities may have disparate values of W and J, but that if this is the case, it 

is W that significantly exceeds J. 
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The summary statistics provided in Table 2 confirm that the mean and standard deviation of the 

overlap statistic differences are quite similar across each of the five networks in our corpus.  

Figure 9 
Histograms showing the distribution of the differences between the overlap 

coefficient W and Jaccard J of each pair of communities in each of the networks. 
These distributions are quite similar to one another in shape, center, and spread.  
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Table 2 
 

Network mean difference  
(W – J) 

standard deviation 
 (W	– J) 

Word association 0.297 0.246 

PPI 0.356 0.252 

Primary school 0.356 0.231 

Airports 0.312 0.205 

Football conferences 0.434 0.290 

 

The fact that the mean difference is positive in every case and the histograms in Figure 9 have 

only positive values on the x-axis reveals that W	always exceeds J. This is not an unexpected 

result given that W, by definition, subtracts the minimum of two values from the maximum 

possible value of the statistic. 

We have investigated basic observations regarding the overlap statistics calculated on 

each of our five networks. Next, we compare the overlap statistics computed on the real 

networks to the overlap statistics computed on 100 null models for each network, created using 

the configuration model, which preserves the network’s degree sequence. For each random 

model of each network, J and W were computed for each pair of link communities sharing one 

or more nodes at the maximum partition density. The distribution of these statistics by network 

(and thus, preserved degree distribution) are shown in Figure 10. 
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We observe that, in all cases except for the distribution of J for the football network, the 

mean of the overlap statistics on the real network are less than the mean of the overlap 

statistics on the random models. This is summarized below in Table 3. Using this tabulated 

information, we perform z-tests to determine whether the means of J and  W	calculated on the 

random networks are different from the true means observed in the real networks. In every 

case, we obtain a p-value of approximately zero, indicating that the mean statistics on the null 

models differ from the true mean statistics on the real networks. This is evidence that 

overlapping community structure is not determined by a network’s degree distribution. 

Table 3 
 

Network mean J  
real 

network 

 

mean J 
null  

models 

std. dev. J  
null  

models 

mean W 
real  

network 

mean W  
null  

models 

std.dev. W 
null  

models 

Word association 0.212 0.094 0.088 0.624 0.350 0.215 

PPI 0.089 0.059 0.068 0.583 0.302 0.185 

Figure 10 
Histograms showing the distribution of the overlap coefficient W and Jaccard J on the 

random models for each network. The mean of each of these statistics is plotted for both 
the random and real networks.  
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Primary school 0.181 0.066 0.036 0.713 0.228 0.268 

Airports 0.186 0.111 0.065 0.581 0.344 0.186 

Football conferences 0.119 0.156 0.115 0.769 0.517 0.261 

 
Alternative random models of these networks should be used in future research to 

establish whether or not there is another feature of the network that may be underlying the 

observed overlapping community structure. 

Discussion  

 One of the fundamental challenges in studying networks, which is applicable to this 

exploration, is the difficulty of creating interpretable visualizations of large networks. Many 

naturally-occurring networks are incredibly large and dense, which suggests that there is a 

wealth of information to glean from them. However, these networks are often several orders of 

magnitude too large to visualize on a typical computer screen or piece of paper. In this 

research, this issue was most apparent in trying to produce meaningful visualizations of the 

word association network, which had over 55,000 edges. Even by experimenting with various 

layout heuristics using tools such as Cytoscape and Python’s networkx package, there were too 

many nodes and edges to be able to pinpoint any notable structural features. Addressing this 

problem by creating tools to make visualizations dynamic and/or interactive is a body of 

research that could enrich the quality of network analyses like this one. 

 Another challenge in studying partitioning networks into communities is how to define 

the optimal set of communities. For this project, we utilized the partition at which the 

maximum partition density was achieved. However, by nature of calculating this value at a 
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finite range of merging thresholds, there is a risk that we missed a better partition (ie: one with 

a greater partition density) in between these thresholds, despite the fact that we stepped 

through them at a very fine interval (increments of 0.005). Further, using this criteria to select a 

link community structure resulted in there being between 53 and 6,152 communities in the 

optimal partition of the real networks. It is difficult to investigate what these communities 

represent, even when we understand the context of the network, simply because there are so 

many distinct groups. Regarding the issue of visual representation, it is also not particularly 

illustrative to encode the community structure in the color of the edges in a network drawing 

because it would be nearly impossible for viewers to distinguish between so many different 

colors. 

 There are several limitations that are specific to this project. First, we used a small 

corpus containing only five networks. Therefore, the results are not generalizable to a greater 

category of networks. The fact that there were some similarities between statistics computed 

on the networks (for example, average difference between W	and J, Table 2) suggest that there 

are underlying properties to be discovered, regardless of the context of the network. Thus, 

there would be value in gathering a larger corpus of networks and investigating the durability of 

this apparent result. However, in Figure 4 we also saw that the maximum partition density for 

each of the networks and the merging threshold at which this value was achieved varied 

considerably between networks, indicating that structural features specific to contextual 

factors should be studied using more networks similar to each of the ones in our corpus.  

 The comparisons to randomly generated networks are based off of 100 networks 

created using the configuration model for each network. The reliability of the observed results 
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could be improved by increasing the number of models generated. If the efficiency of the 

calculations were improved, it would be reasonable to increase the number of random models 

by orders of magnitude. 

The football network is not naturally-occurring. There are many factors at play to 

determine a collegiate game schedule, including, for example, geography, school budgets, and 

conference alignment. It would be worthwhile to study this network with other sports-related 

networks and analyze their link community structure as a way of looking beyond the role of 

conference structure in determining competition schedules.   

There are several areas to extend this research. Most notably, we should continue to 

define and analyze new measures of community overlap. Using W	and J, we should define a way 

to classify community pairs into subgroups indicating the extent to which they overlap, ranging 

from barely overlapping to completely nested. Finally, we should use alternative random 

models to generate the null models for each network and compare their overlap statistics to 

those computed on the real networks.  

Conclusion 
 

We have utilized link communities to investigate the overlapping community structure 

in a corpus of five networks from various disciplines. Using two measures, the Jaccard J and the 

overlap coefficient W, we examine the extent to which nodes are shared between pairs of link 

communities. Both of these statistics are defined as rational numbers, so we observe stepwise 

patterns in their cumulative densities. We found that the value of W between two communities 

always exceeds their value of J, and the distribution of the differences between these two 

measures is quite consistent across each of the networks in the corpus.  
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We used the configuration model to generate 100 null models of each network and 

compared overlap statistics on their link communities to overlap statistics on the real networks’ 

link communities. Preliminary results suggest that overlapping community structure is not a 

product of a given network’s degree distribution, but this question is a natural basis for future 

research on this topic.  
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