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In current societies, the risk of toxic liver damage hasmarkedly increased. The aimof the presentworkwas to carry
out further research into themechanism(s) of livermitochondrial damage induced by acute (0.8 g/kg bodyweight,
single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced
intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate
and cranberry flavonoids in rats.
Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver.
The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pb0.05). Short-term
melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction
but decreased the enhanced NO production.
After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was
observed, despite marked changes in the redox-balance of mitochondria. The activities of themitochondrial
enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in
liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated
with CCl4 displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg,
30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl4, reducing elevated plasma
activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented ac-
cumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of
the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg)
plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of
toxic liver injury and liver mitochondria damage.

© 2012 Elsevier Inc. All rights reserved.

Introduction

The risk of toxic liver damage has markedly increased in recent
years due to the exposure to environmental toxins, pesticides and
chemotherapeutics. Many compounds, including useful drugs, can
cause liver cell damage through their metabolic conversion to highly
reactive substances and the generation of free radicals (Mahesh et al.,
2010).

Carbon tetrachloride continues to provide an important service as a
model substance to elucidate the mechanisms of action of hepatotoxic
agents (Weber et al., 2003). Themechanism(s) of CCl4-induced path-
ological processes in the cell have been widely studied (Mahesh et
al., 2010; Shiryaeva et al., 2009; Smucler, 1976). It is well known

that CCl4 is activated by cytochromes CYP2E1, CYP2B1 or CYP2B2,
and, possibly, CYP3A to form the trichloromethyl radical CCl3⁎

which, in the presence of O2, is subsequently converted into a highly
reactive trichloromethylperoxyl radical CCl3OO⁎ (Weber et al., 2003;
Manibusan et al., 2007). Under activation of Kupffer cells (stellate
cells) by toxic agents, free radicals and nitric oxide (NO) they migrate
to the inflammation sites of the liver, synthesize transforming growth
factor (TGF)β and extracellular matrix, which results in fibrogenesis.
Production and release of cytokines and other mediators by Kupffer
cells in response to toxins initiate a cascade of events that can culminate
in altered liver homeostasis and hepatocyte injury (Ju et al., 2002).

At the molecular level, CCl4 activates tumor necrosis factor
(TNF)α, NO, TGFα and TGFβ synthesis in the cell, processes that appear
to direct the cell primarily toward self-destruction or fibrosis (Weber et
al., 2003). Interleukins (IL-6 or IL-10), on the contrary, have the potential
to initiate recovery of the CCl4-damaged hepatocytes. In a chronic liver
damage, a vicious circle of hepatocyte injury, reactive oxygen species
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production, inflammatory cell recruitment and hepatic stellate cell acti-
vation occurs, amplifying the fibrogenic response (Mitchell et al.,
2009). It was suggested that reactive metabolite formation, gluthatione
depletion, outer mitochondrial membrane pore formation by Bcl-2 fam-
ilymembers, Bax and Bid, intramembrane protein release, e.g. apoptosis-
inducing factor and endonuclease G and the diminished capacity to ATP
synthesis, are critical events in hepatotoxicity (Jaeschke and Bajt, 2006).
Based on the dose, exposure time and the presence of potentiating
agents, tissue regeneration can take place with recovery from liver dam-
age (Weber et al., 2003).

Hepatocyte mitochondrial dysfunction and subsequent oxidative
stress play significant pathophysiological roles at the early steps of
fibrogenesis (Mitchell et al., 2009). However, the specific role of he-
patocyte mitochondrial dysfunction in the fibrogenetic process is
still unknown.

Pharmacological correction and prevention of toxic liver damage
using safe and effective “biocorrectors”with both a wide range of phar-
macological activities and high specificity to the target are a major con-
cern of contemporary medicine. Several of the CCl4 – induced
intoxicationprocesses can be specifically interruptedwith the use of an-
tioxidants andmitogens, respectively, by restoring cellularmethylation,
or by preserving calcium sequestration (Weber et al., 2003). Essential
fatty acids for regeneration of hepatocyte membrane structure, hypo-
cholesterinemic agents, antioxidants, anti-inflammatory substances,
detoxifying agents and plant-derived natural products, such as flavo-
noids, terpenoids and steroids, have received considerable attention in
recent years in the pharmacotherapy of liver damages due to their di-
verse pharmacological and biochemical activities (Mahesh et al.,
2010). This study provides further information about the mechanism(s)
of liver mitochondrial injury induced by the known hepatotoxic agent,
CCl4, and about the efficacy of the antioxidant melatonin and cranberry
flavonoids in reducing the hepatotoxicity.

Materials and methods

Reagents. N- acetyl-5-methoxytriptamine (melatonin), succinic acid
disodium salt hexahydrate, L-glutamic acid sodium salt, L-malic acid so-
dium salt, ADP, 5,5’-dithiobis (2-nitrobenzoic acid) (Ellman's reagent),
trichloroacetic acid (TCA), NADH, carbon tetrachloride (CCl4), reduced
glutathione (GSH), 1-chloro-2,4-dinitrobenzene (CDNB), and 2,6-
dichlorophenol-indophenol (DCPI) were from Sigma-Aldrich, St. Louis,
MO, USA or Steinheim, Germany.

Preparation of cranberry extract. Cranberry fruits (1 kg) were dried,
crushed, blended in water (1 l) at 25 °C and filtered through sieves
and Whatman filter paper. Pigment was extracted using ethanol (0.4 l)
from remaining wet hulls by maceration at 25 °C. The ethanol extract
was filtered using Whatman filter paper and concentrated at 35 °C
using a rotary evaporator, suspended in water (30 ml) and then par-
titioned with n-hexane (3×30ml) to remove carotenoids, fats and
waxes, followed by additional partitioning into 90 ml of ethyl acetate
to selectively extract flavanols, anthocyanins and proanthocyanidins.
The ethyl acetate extract was concentrated by vacuum evaporation
(7 g) and analyzed by Whatman paper chromatography in isobutanol:
acetic acid:H2O=4:1:2. Crude extract containing 700 mg of flavanols,
anthocyanins and proanthocyanidins was analyzed spectrophotometri-
cally using the average molar extinction coefficient for flavonoids equal
14,500 M-1 cm-1 at the region of 360–385 nm (Markham, 1975).

Animal models. The experiments were carried out on male albino
Wistar rats weighing 200–250 g. Each experimental group included
8–10 animals. The animals were adapted to intermittent 12-h light
(beginning at 08:00 h) and 12-h dark (beginning at 20:00 h) phases
cycle for 1 week.

Acute rat intoxication with carbon tetrachloride. CCl4 at a dose of
0.8 g/kg (50% solution in olive oil) was administered singly
intragastrically (i.g) via a gastric tube at 9 h. Melatonin (10 mg/kg) as a
0.3% solution in a 0.9% NaCl solution containing 5% ethanol was injected
intraperitoneally (i.p.) three times: 30 min prior to CCl4 treatment and 2
and 6 h following the treatment. The animals were subdivided into 4
groups:

1) controls, rats treated with olive oil (i.g., 1.0 ml/kg b.w.) and a
physiologic solution containing 5% ethanol (i.p. in the same volume
as the melatonin solution); 2) melatonin, rats treated with melatonin,
i.p., and olive oil, i.g.; 3) CCl4 , rats treated with CCl4, i.g., and physio-
logical solution, i.p.; and 4) melatonin+CCl4, the animals treated
with melatonin and carbon tetrachloride. The rats were decapitated
after 24 h following the CCl4 administration. Animals were sacrificed
according to the rules defined by the European Convention for the
Protection of Vertebrate Animals Used for Experimental and Other
Scientific Purposes and the studywas approved by the Ethics Committee
of the Institute for Pharmacology and Biochemistry of the National
Academy of Sciences of Belarus.

Chronic rat intoxication with carbon tetrachloride. The rats were
subdivided into 5 groups. The first group served as controls and re-
ceived a subcutaneous injection (s.c.) of olive oil (2.0 ml/kg b.w.,
30 days, twice a week) and a physiologic solution containing 5% ethanol
(i.g. in the same volume as themelatonin solution). The second group re-
ceived an injection of CCl4 (1.6 g/kg b.w., 30 days, twice a week, as a 50%
solution in olive oil, s.c.) at 9 h and a physiologic solution (i.g., 30 days,
every day) at 20 h. The third, fourth and fifth groups were given melato-
nin (10 mg/kg b.w., 30 days, i.g.); melatonin and succinate (50 mg/kg
b.w., 30 days, i.g.); melatonin, succinate and cranberry flavonoids
(7 mg/kg b.w., 30 days, i.g.), respectively. The animals were
sacrificed by decapitation 24 hours after last CCl4 injection. Blood
was collected and the activity of serum aminotransferases [(alanine
aminotransferase (ALT) and aspartate aminotransferase (AST)] as well
as total, free and conjugated bilirubin levels in blood plasma were
measured.

Isolation of mitochondria and measurement of their respiratory activity.
The liver was removed in cold (0–4 °C) isotonic phosphate buffer
(150 mM NaCl, 10 mM Na2HPO4, pH 7.4), dried with filter paper,
weighed and homogenized in the medium containing 0.25 M sucrose,
0.02 M Tris–HCl and 0.001 M EDTA, pH 7.2. Mitochondria were isolated
by the method of differential centrifugation (Johnson and Lardy, 1967).
The homogenatewas centrifuged at 600 g for 10 min (at 4 °C) for nuclear
precipitation. The supernatant was centrifuged at 8,500 g for 10 min (at
4 °C). Themitochondrial pelletwaswashed twice in the isolationmedium
and resuspended to a protein concentration of 35–40 mg/ml. The protein
concentration was determined according to Lowry et al. (1951).

The mitochondrial respiratory rate was measured polarographically
at 26.5 °C using a laboratory-made oxygen Clark-type electrode and a
hermetic polarographic cell. The mitochondrial pellet was placed in a
cell with the incubation medium containing 0.125 M sucrose, 0.02 M
Tris–HCl, 0.05 M KCl, 0.02 M KH2PO4, 0.005 M MgSO, and 0.001 M
EDTA, pH 7.5. The respiratory substrates, such as L-glutamate
(5 mM)+L- malate (2 mM) and succinate (5 mM), and ADP (180 μM,
this corresponded to 210 nmolADP in thepolarographic cell),were intro-
duced into the mitochondrial suspension. The mitochondrial respiratory
ratewas determined indifferentmetabolic states: V1was the endogenous
oxygen consumption rate, V2 was the substrate-dependent respiratory
rate, V3 was the rate of respiration coupled with phosphorylation (after
addition of ADP) and V4 was the rate of oxidation after phosphorylation.
Theparameters for coupling ofmitochondrial oxidation andphosphoryla-
tionwere determined: the acceptor control ratio (ACR) (V3/V2), the respi-
ratory control ratio (RCR) (V3/V4) and the coefficient of phosphorylation
(ADP/O).
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Biochemical measurements. The reduced glutathione content (GSH)
and protein SH-groups level (PSH) in the liver tissue and the hepatocyte
mitochondrial fraction were measured according to Ellman (1959),
using the molar extinction coefficient.

ε 412=13,600 M-1 cm-1. Mixed disulfides formed by glutathione
and accessible sulfhydryl groups of mitochondrial proteins (PSSG)
were determined by the method described by Rossi et al. (1993).
The accumulated products of membrane lipid peroxidation (thiobarbi-
turic acid-reactive substances, TBARS) were monitored assuming that
the molar absorption coefficient ε532=1.56 105 M-1 cm-1 (Stocks and
Dormandy, 1971). Before mitochondrial enzyme activity measure-
ments 0.1 ml mitochondrial pellet was resuspended in 0.2 ml H2O and
subjected to 3 cycles of freeze-thawing (Zoccarato et al., 2004). The
activity of glutathione peroxidase (GPx) in the mitochondrial pellet
was measured by the method of Martinez et al. (1979). The activity
of mitochondrial glutathione-S-transferase (GST) was determined
employing the method of Habig et al. (1974). The activity of mito-
chondrial succinate dehydrogenase (SDH) was determined by the
rate of 2,6 - dichlorophenol-indophenol reduction, whereas that of
α-ketoglutarate dehydrogenase – by the rate of NAD+ reduction
(Nulton-Persson and Szweda, 2001). The activities of the marker en-
zymes of hepatic cell membrane injury, ALT and AST, as well the
levels of free, conjugated and total bilirubin in blood plasma were
determined using reagent kits from Pliva-Lachema a.s., Brno, Czech
Republic. The overall level of nitrites and nitrates reflecting nitric oxide
generation was measured in blood plasma using the Griess reagent
(N- (1-naphtyl) ethylenediamine dihydrochloride, sulfanilamide) and
metallic cadmium as a reducer (Green et al., 1982).

Morphological measurements. For histopathology, the liver was im-
mediately removed, weighed, sliced into 2- to 3- mm sections, and
fixed in 10% neutral buffered formalin. After 48 h of fixation, tissues
were paraffin-infiltrated. Histological sections (4 μm) were prepared
with amicrotome,mounted on glass slides and stainedwith hematoxylin
and eosin (H&E) and observed under a light microscope (Carl Zeiss Jena,
Germany). Eachmicrophotograph is a representative image of liver tissue
of 8–10 animals that showed the same phenotype.

Electron microscopy analysis of rat liver mitochondria. Mitochondri-
al ultrastructure analysis was performed on isolated mitochondria
from 3 animals of each group using the method of electron microscopy.
Isolated mitochondria suspensions were centrifuged at 5,000 g at 4 °C
for 5 min and the pellet of mitochondria was fixed by 2.5% glutaric alde-
hyde in Millonig's buffer, pH 7.4, at 4 °C for 4 hours, then washed with
the same buffer and postfixed by 1% OsO4 solution in Millonig's buffer,
pH 7.4, at 4 º C for 2 hours. The samples were dehydrated by rinsing
them in ethanol and acetone and embedding them in an epon-
araldite mixture (Gabriel, 1982). Ultrathin sections were prepared
with an MT-7 000 ULTRA ultratome (USA) and were contrasted
with 2% uranyl acetate in 50%methanol (Watson, 1958) and lead citrate
(Reynolds, 1963). They were examined using a JEM-1011 electron
microscope (Japan) at magnifications of 5,000x – 40,000x. The micro-
photographs of mitochondria were made by an Olympus MegaView III
camera (Germany).

Statistical analysis. Data for 8–10 rats in each group are presented as a
mean±SD for the normally distributed parameters. We used the stan-
dard Student's t-test for the comparison of data showing no departures
fromnormality according to Shapiro–Wilk's test. Pb0.05was taken to in-
dicate statistical significance. The calculations were performed using
the statistical software Statistica 6.0.

Results

In the present work, we evaluated the parameters of mitochondrial
physiology,metabolic state andmitochondrial structure after chronic or

acute intoxication by carbon tetrachloride andmelatonin and cranberry
flavonoids treatment in rats.

Chronic rat intoxication

Mitochondrial effects of chronic intoxication and melatonin, succinate
and cranberry flavonoids administration. Under chronic rat intoxica-
tion we observed some increase in the substrate-dependent respiration
rate V2 (by 25%, pb0.05), ADP-stimulated oxygen consumption rate V3

(by 15%, pb0.05) and the respiration rate after ADP consumption V4

(by 20%, pb0.05) in the case of succinate, but not glutamate, as respira-
tory substrate (Fig. 1A). With both substrates, the acceptor and respira-
tory control ratios and the phosphorylation coefficient did not change
during intoxication in the case of both substrates (Fig. 1B). 30-day
melatonin administration (10 mg/kg, 30 days, daily), combined admin-
istration of succinate (50 mg/kg) andmelatonin or the treatment of the
animals by the complex of melatonin (10 mg/kg) plus succinate
(50 mg/kg) plus crude cranberry flavonoid extract (7 mg/kg) did not
influence all the respiratory parameters (Fig. 1).

There was a significant change in the redox state of mitochondria:
the level of mitochondrial reduced glutathione (GSH) was enhanced
considerably (by 60%, pb0.01) after 30 days of intoxication (Table 1).
Melatonin administration diminished the augmented level of mito-
chondrial glutathione (by 20%, pb0.05). The combined administration
of succinate and melatonin or the treatment by the combination of
melatonin plus succinate plus crude cranberry flavonoid extract for
30 days did not influence the GSH levels in mitochondria. An increased
level of mixed protein – glutathione disulfides (GSSP) in mitochondria

Fig. 1. Parameters of oxidative phosphorylation processes in rat liver mitochondria
under liver damage by chronic carbon tetrachloride administration. Effects of the ad-
ministration of melatonin or melatonin plus succinate and the combination of melato-
nin plus succinate plus cranberry flavonoids: the substrate-dependent respiration rate
V2 and the ADP-stimulated respiration rate V3 (A) as well as the acceptor control ratio
(V3/ V2) and the coefficient of phosphorylation ADP/O (B). Glutamate (Glu) and succinate
(Suc)wereusedas respiratory substrates. Data, presented as amean±SD, represent values
at the termination of the experiment. The standardunpaired Student t testwas used for the
comparison of the data. *pb0.05 vs control non-treated animals, **pb0.01 vs control non-
treated animals, #pb0.05 vs intoxicated group, ##pb0.01 vs CCl4+melatonin+succinate
group.
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under intoxication was also noted (by 30%, pb0.01) and the protector
administrations did not change it (Table 1).We observed some changes
of the activities of the mitochondrial enzymes under chronic intoxica-
tion: succinate dehydrogenase (complex II) activity and glutathione
peroxidase activity decreased (by 15%, Pb0.05, and by45%, pb0.001, re-
spectively). At the same time the activities of the main enzyme of the
Krebs cycle, 2-oxoglutarate dehydrogenase, and themain detoxifying en-
zyme, glutathione transferase, inmitochondria did not change.Melatonin
ormelatonin plus succinate as well as the combination of melatonin plus
succinate plus cranberry flavonoids converted the values of the inhibited
activity of SDH or GPx to the control (Table 1).

Under intoxication the mitochondrial membrane potential remained
unchanged (data not shown). Chronic intoxication decreased the protein
content in the mitochondrial fraction of rat liver tissue as well as in the
liver cell cytoplasm, and the protectors had no effect on this parameter
(data not shown).

Biochemical alterations during chronic intoxication. After 30 days of
CCl4 treatment, the animals showed typical signs of intoxication: blood
plasma level of urea increased (by 35%, pb0.05), the markers of liver
damage, plasma ALT and AST activities were elevated (by 9-fold,
pb0.01 and by 5-fold, pb0.01, respectively), and bilirubin level (both
total and free bilirubin) in plasma increased (by 2.6- and 3.3-fold,
pb0.01, respectively) (conjugated bilirubin content did not change)
(Table 2).We observedmarked growth retardation of rats under chronic

intoxication: the final body weight minus initial body weight decreased
(by 3.3 –fold, pb0.05) and the ratio of liver weight / body weight in-
creased (by 1.6 –fold, pb0.001) (Table 2). But long-term chronic intoxi-
cation did not result in alterations in the plasma NO levels. Melatonin
administration daily to intoxicated animals considerably reduced both
plasma aminotransferase activities and bilirubin levels (Table 2). Howev-
er, melatonin was not effective in preventing increases in blood urea
level or growth retardation (Table 2). Surprisingly, melatonin plus succi-
nate was not effective in preventing the toxic liver damage. But addition
of cranberry flavonoids to themelatonin plus succinate increased consid-
erably the protective actions (Table 2).

The chronic intoxication of rats resulted in pronounced rises in the
cellular reduced glutathione content (more than twice, pb0.0001)
and, consequently, in the total cellular sulfhydryl group contents
(1.3-fold, pb0.01) in the postmitochondrial fraction of liver cells (in
accordance with mitochondrial thiol group levels change), while the
level of protein sulfhydryl groups in liver tissue did not change
(Table 3). The content of mixed protein-glutathione disulfides in the
liver cellular postmitochodrial fraction raised as a result of chronic intox-
ication (1.6-fold, pb0.01) and the activity of the antioxidant enzyme,
catalase, decreased (1.6-fold, pb0.001). The hepatic TBARS level consid-
erably increased (1.9-fold, pb0.001) under intoxication in accordance
with many other observations (Table 3).

Melatonin administration during 30-days to intoxicated rats par-
tially prevented the rises in both cellular and mitochondrial reduced

Table 1
Rat liver mitochondria thiol groups levels, mitochondrial enzymatic activities and protein content during liver damage by chronic CCl4 administration (1.6 g/kg i.p., biweekly, 30 days).
Effect of melatonin (10 mg/kg i.g., 30 days daily) or melatonin plus succinate (50 mg/kg i.g., 30 days daily) as well as the complex of melatonin plus succinate plus cranberry flavonoids
(7 mg/kg i.g., 30 days daily) administration.

Parameters Control CCl4 CCl4+
melatonin

CCl4+
mel+
succinate

CCl4+ mel+
succinate+flavonoids

TSH,
(nmol/mg protein)

81.6±4.3 87.8±14.7 82.3±5.7 87.0±3.6* 83.9±5.8

PSH,
(nmol/mg protein)

73.8±4.0 75.2±11.9 72.1±4.2 75.2±3.0 72.8±4.8

GSH,
(nmol/mg protein)

7.8±1.2 12.6±3.1** 10.2±1.8* # 11.9±2.0*** 11.1±2.4**

GSSP,
(nmol/mg protein)

0.23±0.06 0.30±0.06* 0.33±0.10* 0.29±0.04* 0.30±0.07*

GST, (nmol CDNB/min/ mg protein) 40.2±5.7 46.4±11.9 43.2±5.9 47.4±15.5 45.9±5.3
OGDH, (nmol NAD+/min/mg protein) 35.7±10.4 31.4±8.2 39.0 ±9.1 33.7±10.1 33.9±7.6
SDH, (nmol DCPI/min/mg protein) 51.9±6.6 44.1±6.5* 47.5±7.7* 50.2±8.2b 51.6±5.5#
GPx (nmol GSH/min/mg protein) 587±63 336±65*** 454±54***

##
356±71*** 415±116**

Data, presented as a mean±SD, represent values at the termination of the experiment. *pb0.05 vs control non-treated animals; **pb0.01 vs control non-treated animals;
***pb0,001 vs control non-treated animals; #pb0.05 vs intoxicated group; ##pb0.01 vs intoxicated group; bpb0,01 vs CCl4+melatonin group.

Table 2
Blood plasma urea, nitric oxide and bilirubin levels, ALT and AST activities, and animal body and liver weights in normal and chronically CCl4-treated rats (1.6 g/kg i.p., biweekly, 30 days).
Effect of melatonin (10 mg/kg i.g., 30 days daily) or melatonin plus succinate (50 mg/kg i.g., 30 days daily) as well as the complex of melatonin plus succinate plus cranberry flavonoids
(7 mg/kg i.g., 30 days daily) administration.

Parameter control CCl4 CCl4+
melatonin

CCl4+
mel+
succinate

CCl4+ mel+
succinate+flavonoids

Blood urea, (mmol/l) 5.7±0.9 7.6±0.6*** 7.5±1.1** 7.6±0.7*** 7.9±0.6***
NO, (μmol/l) 30.0±6.4 26.5±3.6 29.2±8.1 c 23.1±4.6* 27.9±4.2c

ALT, μkat/l 1.03±0.24 9.39±1.99*** 7.89±1.60*** ## c 10.79±1.57*** 7.21±2.03*** # c

AST, μkat/l 0.94±0.30 4.61±1.41*** 2.49±0.21***## c 6.47±1.43***# 1.41±0.24** ## c b

Total bilirubin, (μmol/l) 10.2±3.7 26.1±10.5** 14.0±4.6* # c 26.8±10.1** 10.4±6.5# c

Free bilirubin, (μmol/l) 6.8±3.5 22.3±10.5** 11.9±5.2*# 21.4±10.0* 6.9±3.2# c

Conjugated bilirubin, (μmol/l) 3.9±2.5 4,4±2,4 3.1±1,8 6.2±2.4 4,7±2.8
Body weight (final-initial), (g) 49 15* 9* 2* 6*
Liver/Body weight, (g/g) 0.031±0.003 0.049±0.006*** 0.045±0.005*** 0.046±0.005*** 0.044±0.009*

Data, presented as a mean±SD, represent values at the termination of the experiment. *pb0.05 vs control non-treated animals; **pb0.01 vs control non-treated animals; #pb0.05
vs intoxicated group; ##pb0.01 vs intoxicated group; bpb0,01 vs CCl4+melatonin group; cpb0.01 vs CCl4+melatonin+succinate group.

274 V.T. Cheshchevik et al. / Toxicology and Applied Pharmacology 261 (2012) 271–279



Author's personal copy

Table 3
Rat liver cell thiol groups, lipid peroxidation products levels, catalase activity and protein content during liver damage by chronic CCl4 administration (1.6 g/kg i.p., biweekly,
30 days). Effect of melatonin (10 mg/kg i.g., 30 days daily) or melatonin plus succinate (50 mg/kg i.g., 30 days daily) as well as the complex of melatonin plus succinate plus cranberry
flavonoids (7 mg/kg i.g., 30 days daily) administration.

Parameters control CCl4 CCl4+
melatonin

CCl4+
mel+
succinate

CCl4+ mel+
succinate+flavonoids

TSH, (nmol/mg protein) 114.0±10.9 151.0±24.9** 136.1±21.1* 147.2±17.6*** 146.8±18.5***
PSH, (nmol/mg protein) 83.9±5.7 80.4±8.2 78.9±8.7 78.4±9.9 80.3±10.1
GSH, (nmol/mg protein) 29.9±8.1 70.6±19.7*** 57.2±14.6*** 68.8±10.8*** 66.5±15.1***
GSSP, (nmol/mg protein) 0.45±0.14 0.73±0.21** 0.56±0.04 # c 0.71±0.15** 0.73±0.15** b

TBARS, (nmol/mg protein) 0.2±0.03 0.37±0.07*** 0.28±0.04***# c 0.36±0.08*** 0.21±0.05### a c

Catalase, (μmol H2O2/min/mg protein) 365.3±35.8 139.5±56.1*** 170.3±34.0*** 135.7±51.3*** 180.3±44.6***

Data, presented as a mean±SD, represent values at the termination of the experiment. *pb0.05 vs control non-treated animals; **pb0.01 vs control non-treated animals; ***
pb0.001 vs control non-treated animals; #pb0.05 vs intoxicated group; ##pb0.01 vs intoxicated group; apb0,05 vs CCl4+melatonin group; bpb0,01 vs CCl4+melatonin
group; cpb0.01 vs CCl4+melatonin+succinate group.

Fig. 2. Representative histological sections from liver tissue from control animals (A), intoxicated animals (B) and intoxicated animals treated by melatonin (C), by melatonin plus
succinate (D), by combination of melatonin plus succinate plus cranberry flavonoids (E). H&E, x 210; scale bar, 100 μm. Signs of morphological transformations: 1, fatty dystrophy;
2, hydropic dystrophy; 3, ballooning dystrophy; 4, site of hepatocyte necrobiosis and necrosis; 5, lymphocyte infiltration; 6, sclerosis of portal areas; 7, enlarged and hyperchromic nuclei.
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glutathione and total sulfhydryl group content in liver, inhibition of cy-
toplasm catalase as well as normalized the liver tissue TBARS level
(Table 3). Combined administration of melatonin and succinate did
not increase the effectiveness of the therapy. At the same time, treatment
of the animals with a combination of melatonin plus succinate plus
cranberry flavonoids was more effective in comparison with melatonin
alone.

Morphological transformations of liver cells and mitochondria during
intoxication

Histopathological analysis of the rat liver. Histologically, control rats
showed normal hepatic architecture (Fig. 2A). In accordance with
numerous observations, chronic CCl4 intoxication caused substantial
morphological changes in the rat liver (Fig. 2B). The histological examina-
tion demonstrated disruption of hepatic lobular structure including a
high degree of fatty (mainlywith small-sized lipid droplets) andhydropic
dystrophies that transformed to ballooning dystrophy. Many cell nuclei
were enlarged. Extensive sites of hepatocyte necrobiosis, necrosis
and apoptosis were observed, particularly in the second and the

third hepatic lobes. Dystrophic and necrobiotic changes in hepatocytes
were less pronounced in the first lobe. Both intralobular and periportal
lymphocyte infiltration and sclerosis of portal areas were revealed
everywhere. In some cases, there was hepatocyte sequestration.
Substantial hepatocyte destructive changes point to highly toxic chronic
hepatitis with formation of septal cirrhosis.

Melatonin administration under liver intoxication dramatically re-
duced the liver lobular and ballooning destructive changes (Fig. 2C).
Hyperplastic processes in undamaged hepatocytes enhanced under
melatonin treatment: many hepatocyte nuclei were enlarged and
hyperchromic (Fig. 2C). After combined treatment of intoxicated rats
with melatonin and succinate, hepatic structure changes were similar
to those seen in rats that received melatonin only (Fig. 2D). Intoxicated
rats treated with the combination of melatonin plus succinate plus
cranberry flavonoids exhibited slight hepatocyte destructive changes,
including slight fatty and hydropic dystrophy, lymphocyte infiltration
and sclerosis to a lesser extent in comparison with the other groups
(Fig. 2E).

Rat liver mitochondrial ultrastructure. The mitochondrial ultrastructure
was examined by electron microscopy. Basically, the isolated mitochon-
dria from control rat livers had an oval shape and were characterized
by a condensed matrix and slightly expanded intracristae spaces
(Fig. 3A).

Mitochondria isolated from the livers of chronically CCl4-treated rats
displayed substantial irreversible impairments, including a more con-
densed matrix, reduction in the number of cristae in comparison with
those of control rat liver (Fig. 3B). About 70% of mitochondria had a
substantial enlargement of intracristae space with vacuole forma-
tions of different size up to detachment of the inner mitochondria
membrane. Some mitochondria were disruptured by outer membrane
rupture due to large vacuole formation (Fig. 3B). In the mitochondrial
suspension from intoxicated animals, we could observe mitochondria

Table 4
Blood plasma AST and ALT activities, nitric oxide level in normal and acute CCl4-treated
rats (0.8 g/kg i.g., 24 hours). Effects of melatonin (10 mg/kg i.p. x 3) administration.

Parameters control CCl4 CCl4+
melatonin

control+
melatonin

AST, (μkat/l) 0.88±0.09 1.33±0.20*** 1.34±0.17*** 0,87±0,11
ALT, (μkat/l) 0.89±0.15 1.96±0.05*** 1.95±0.09*** 0,83±0,17
NO, (μmol/l) 28.2±6.6 43.8±14.1* 32.2±15.0 40.1±15.3

Data, presented as a mean±SD, represent values at the termination of the experiment;
***pb0.001 vs control non-treated animals.

Fig. 3. Rat liver mitochondria ultrastructure: control animals (A), intoxicated animals (B) and intoxicated animals treated by melatonin (C) and by the combination of melatonin plus
succinate plus cranberry flavonoids (D); x20,000; scale bar, 1 μm.
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self-association. Long-term melatonin administration to intoxicated
animals appreciably prevented mitochondrial damage. Mitochon-
dria became less destroyed (Fig. 3C). About 30% of the mitochondria
demonstrated irreversible destructive changes: detachment of the
inner mitochondria membrane with vesicle formation or cristae reduc-
tion (Fig. 3C). Virtually all the mitochondria had an oval shape, but pos-
sessed enlarged intracristae spaces with vacuole formations and showed
heterogeneity of matrix density.

After simultaneous administration of melatonin, succinate and
cranberry flavonoids to intoxicated rats, destructive changes in mito-
chondria became less marked (Fig. 3D) in comparison with those in
mitochondria isolated from intoxicated rats treated either with mela-
tonin or melatonin plus succinate.

Mitochondrial effects of acute CCl4 intoxication andmelatonin administration

The single (acute) administration of the carbon tetrachloride at a dose
of 0.8 g/kg b.w. to rats at 24 hours had effects that differed from those of
the chronic CCl4 administration. The acute CCl4 administration was ac-
companied by damage to hepatocyte plasma membrane, resulting in a
marked elevation of hepatocytic enzymes ALT (1.2-fold, pb0.001) and
AST (1.5-fold, pb0.001) in plasma (Table 4). We observed an increase
of plasma nitric oxide level (1.55-fold, pb0.05). Short-term treatment
of rats by melatonin did not prevent toxic liver impairment but de-
creased NO production.

The acute intoxication did not change the levels of mitochondrial
reduced glutathione and mixed protein-glutathione disulfides (Table 5).
Only the livermitochondria of rats treatedwithCCl4+melatonin showed
a slight rise of the GSH levels (1.2-fold, pb0.05 in comparison with con-
trol animals). The activity of mitochondrial succinate dehydrogenase
(but not glutathione peroxidase) decreased (1.25-fold, pb0.001) and
melatonin administration did not prevent these changes (Table 5).

Acute CCl4 intoxication resulted in a considerable impairment of
mitochondrial respiratory parameters in the liver, the ADP-stimulated
respiration rate V3, acceptor control ratio, respiratory control ratio and
phosphorylation coefficient ADP/O decreased (1.5-1.55-fold, pb0.05)
with glutamate as respiratory substrate, whereas with succinate as respi-
ratory substrate, the same parameters decreased by 1.3-fold (pb0.01),
1.4-fold (pb0.01), 1.5-fold (pb0.01) and 1.55-fold (pb0.05), respectively
(Fig. 4). The short-term administration ofmelatonin did not substantially
change the respiratory parameters of mitochondria in both control and
intoxicated animals. We observed enhancement of the mitochondrial
membranepotential under acute intoxication, andmelatonin administra-
tion did not prevent this effect (Table 5).

Discussion

In the presentwork, we compared themitochondrial effects of acute
(single injection) and chronic (30 days) CCl4 –induced intoxication and
evaluated the hepatoprotective potential of some antioxidants.

There are a lot of data on the mitochondrial effects of intoxication
and the role of mitochondrial impairments in the pathogenesis of
toxic tissue damage. Krahenbuhl et al. have shown that hepatic mito-
chondrial function is impaired in rats with CCl4 –induced cirrhosis
due to both reduced mitochondrial volume per liver and impaired
metabolism of the remaining mitochondria (Krähenbühl et al.,
2000). Dissipation of mitochondrial membrane potential (14.8%)
and intramitochondrial Ca2+ overload (2.1-fold) were observed in
liver cells of CCl4-insulted mice (Chiu et al., 2007). CCl4 –hepatotox-
icity in mice caused an increase in the sensitivity of mitochondria to
Ca2+ -stimulated permeability transition which was associated with
the rise in mitochondrial Ca2+ -content, the extent of reactive oxygen
species production and cytochrome c release (Chiu et al., 2007). It has
recently been shown that specific protection against hepatocyte mito-
chondrial dysfunction plays a preventive role in early stages of thefibrotic
processes (Mitchell et al., 2009). The mechanisms of liver protection

Table 5
Rat liver mitochondrial glutathione level, mitochondrial enzymatic activity and membrane potential during liver damage by acute CCl4 administration (0.8 g/kg i.g., 24 hours). Effects of
melatonin (10 mg/kg i.p. x 3) administration.

Parameters control CCl4 CCl4+
melatonin

control+
melatonin

GSH, (nmol/mg protein) 8.6±0.9 9.0±2.0 10.1±1.4* 8.0±1.0
GSSP (nmol/mg protein) 0.21±0.09 0.20±0.09 0.23±0.07 0.28±0.07
SDH, (nmol DCPI/min/mg protein) 43.6±2.9 32.5±5.5*** 36.6±5.5** 42.8±4.7
GPx (nmol GSH/min/mg protein) 745±290 730±205 805±180 770±235
Membrane potential, (mV), glutamate as a substrate (5 mM) −146.9±11.5 −160.2±19.3 −165.2±9.2** −149.8±13.5
Membrane potential, (mV), succinate as a substrate (5 mM) −171.8±8.0 −186.3±7.3** −183.1±6.7* −176.1±3.5

Data, presented as a mean±SD, represent values at the termination of the experiment. *pb0.05 vs control non-treated animals; **pb0.01 vs control non-treated animals;
***pb0.001 vs control non-treated animals.

Fig. 4. Parameters of oxidative phosphorylation processes in rat liver mitochondria
under liver damage by acute carbon tetrachloride administration (0.8 g/kg, i.g., 24
hours). Effects of melatonin (10 mg/kg, i.p. x 3) administration: the substrate-
dependent respiration rate V2 and the ADP-stimulated respiration rate V3 (A) as well
as the acceptor control ratio (V3/ V2) and the coefficient of phosphorylation ADP/O
(B). Glutamate (Glu) and succinate (Suc) were used as respiratory substrates. Data,
presented as a mean±SD, represent values at the termination of the experiment.
The standard unpaired Student t test was used for the comparison of the data.
*pb0.05 vs control non-treated animals, **pb0.01 vs control non-treated animals,
***pb0.001 vs control non-treated animals.
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during intoxication by different agents might be related to regulation of
mitochondrial functions, inhibiting the process of mitochondrial perme-
ability transition and improvement of mitochondrial biogenesis (Tang
et al., 2005; Gao et al., 2006).

In the present study, the pathomorphological analysis demonstrated
that long-term CCl4 – intoxication caused severe chronic hepatitis and
septal cirrhosis formation. These liver structure impairments were asso-
ciated with considerable irreversible mitochondria damages, including
outermembrane destruction, large intramitochondria vacuole formation
and cristae reduction. This is in line with the report by Bezborodkina et
al. (2008)who showed that in spite of the increase in the volume density
of mitochondria in cells of the cirrhotic liver (by 28%), the concentration
of internalmitochondrialmembranes and the total length of the internal
membrane were reduced.

Earlier our electronmicroscopic investigation of the hepatic samples
of rats after acute high dose CCl4 – intoxication (4.0 g/kg) indicated
substantial ultrastructural changes, whichweremoremarked for hepato-
cytes than for themicrovascular bed (Zavodnik et al., 2005).Mitochondria
displayed considerable changes, including a highly variable structure
with hypertrophy, swelling and clarification of their matrix, reduction
in the number of cristae. In our previous study, short-term melatonin
administration showed a beneficial effect, decreasing dystrophic cell
changes, inflammation processes and lipid inclusions (Zavodnik et al.,
2005).

We found that acute intoxication of rats with a low dose of the toxic
agent (0.8 g/kg) resulted in considerable impairments of respiratory
function of rat liver mitochondria without alterations in the GSH level.
Short-term melatonin administration neither influenced considerably
the respiratory parameters of liver mitochondria of intoxicated and
control animals, nor prevented hepatolysis under acute intoxication.
In our earlier experiment, the high-dose acute intoxication (4.0 g/kg)
led to complete uncoupling of respiration and phosphorylation and
the loss of respiration control in rat liver mitochondria (Maksimchik
et al., 2010). In the case of high-dose and low-dose acute intoxication,
but not under chronic intoxication, the level of plasma nitric oxide in-
creased and melatonin administration decreased NO level under
intoxication.

We demonstrated that the liver damage (ALT or AST plasma activities
and bilirubin content) wasmuchmore severe under long-term intoxica-
tion than after the low dose single CCl4 injection. However, after 30 days
of chronic CCl4 intoxication, the functional parameters of mitochondria
were similar to the control values, despite the considerable changes in
redox-balance of mitochondria as a result of chronic intoxication (rise
of the mitochondrial levels of GSH, or GSSP, inhibition of mitochondrial
glutathione peroxidase or succinate dehydrogenase) and mitochondrial
morphology damage. On the other hand, it was found that the activities
of complexes I and IV of themitochondrial respiratory chain were signif-
icantly decreased in wild-type mice rather than in Bcl-2 transgenic mice
after chronic CCl4 administration (Mitchell et al., 2009). We observed a
compensation of the functional activity of mitochondria after long-term
intoxication. The elevated content of GSH in mitochondria may serve as
a factor of mitochondrial adaptation to constant effect of the toxic
agent. To interpret this finding, we turned to several reports that demon-
strated that the induction of GSH synthesis due to elevated expression of
γ-glutamylcysteine synthetase, and, consequently, enhancing the cellu-
lar defense potential are one of the common adaptive responses to GSH
depleting agents or oxidative stress (Shi et al., 1994; Liu et al., 1996;
Moellering et al., 2002; Kurozumi et al., 2005). The increase in hepatic
GSH, that occurs coincident with overt hepatotoxicity, was observed
after α-naphthylisothiocyanate administration to rats (Dahm et al.,
1991). On the opposite, a considerable decrease of glutathione levels
was demonstrated in liver tissue ofmice after 8 weeks of CCl4 intoxication
with a subsequent activation of glutathione peroxidase and glutathione
reductase (Hsiao et al., 2001).We found that the activity ofmitochondrial
glutathione peroxidase consuming GSH decreased under chronic intoxi-
cation. The activity of catalase in the hepatocyte cytoplasm considerably

decreased, as well as the TBARS level in rat liver tissue increased after
CCl4 administration as a result of repeated oxidative stress.

Beneficial effects of melatonin, a direct and indirect antioxidant
(Rodriguez et al., 2004; Reiter et al., 2007), during toxic liver damage
were observed in numerous studies (Daniels et al., 1995; Kus et al.,
2005; Ohta et al., 2004; Galano et al., 2011). Melatonin administration
during acute CCl4 –induced rat intoxication dose-dependently re-
duced morphological liver damage (Kus et al., 2005) and attenuated
the reduction in hepatic superoxide dismutase, catalase and glutathi-
one reductase activities (Ohta et al., 2004). Mitochondrial effects of
melatonin may be related to the ability of melatonin to inhibit
strongly the mitochondrial permeability transition pores and cyto-
chrome c release (Andrabi et al., 2004; Jou et al., 2007). Being an an-
tioxidant and inhibitor of mitochondrial permeability transition pore,
melatonin may provide a beneficial therapeutic treatment of toxic
liver damage.

In our experiment, the long-term melatonin administration during
chronic intoxication demonstrated pronounced hepatoprotective prop-
erties, decreasing the intensity of necrotic and inflammatory processes,
and improving the hepatocyte antioxidant balance, thus preventing
TBARS accumulation and contributing to enhancement of regenerative
processes in liver tissue, aswell as preventingmitochondrialmembrane
impairments.Melatonin administration decreased the level of oxidative
stress and, correspondingly, prevented a considerable elevation of
cellular and mitochondrial glutathione contents.

Histopathological examination confirmed the hepatoprotective
effects of melatonin and its combination with succinate and cranberry
flavonoids. Earlier Domitrovic and Jakovac (2010) demonstrated
dose –dependent hepatoprotective effects of flavonoids on carbon
tetrachloride-induced acute liver damage in rats due to promoting
extracellular matrix degradation and down-regulation of fibrogenic
stimuli. Also, we have previously shown that succinate administration
to diabetic animals improved the mitochondrial physiology: increased
the respiration rate of isolated rat liver mitochondria and prevented a
loss of respiratory control, rising the acceptor control ratio value
(Zavodnik et al., 2011).

The complex of melatonin plus succinate plus cranberry flavonoids
was much more effective in preventing chronic liver damage. A reason-
able explanation for such an effect of this combination might be found
in the study by Jacobs et al. (2010). The authors showed that the powerful
antioxidant semi-synthetic flavonoid 7-mono-O-(β-hydroxyethyl)-ruto-
side oxidized in blood plasma to a highly reactive productwhich could be
regenerated by other antioxidant, ascorbate (Jacobs et al., 2010). In our
experiment, melatonin can act as such an antioxidant and may partici-
pate in recycling other oxidized protectors (flavonoids).

In conclusion,multiple events, including considerablemitochondrial
ultrastructure impairments, inhibition of mitochondrial enzymes
(enzymes of electron-transport chain and antioxidative defense),
protein modification (GSSP formation) and lipid peroxidation due
to free radical attack contribute to development of liver damage
and dysfunction during chronic and acute CCl4 intoxication. Acute
intoxication resulted in pronounced impairments of mitochondrial
respiratory parameters. Despite numerous biochemical and morphologi-
cal signs of intoxication after 30 days of toxic agent administration, an ad-
aptation of mitochondrial respiratory parameters was observed. Long-
termmelatonin administration preventedmarkedlymitochondrialmem-
brane damage and enhanced regenerative processes in the liver. The
hepatoprotective effect of melatonin is due to antioxidant, membrane-
stabilizing and anti-inflammatory properties. The synergistic action of
melatonin, succinate and plant polyphenols may be useful for clinical
application.
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