
TIME SERIES HETEROGENEOUS CO-EXECUTION ON CPU+GPU
José Carlos Romero #1, Angeles Navarro #1, Andrés Rodríguez #1, Rafael Asenjo #1, Murray Cole #2

#1 University of Málaga, #2 University of Edinburgh

Introduction
Time series motif (similarities) and discords discovery is
one of the most important and challenging problems
nowadays for time series analytics. We use an algorithm
called “scrimp” that excels in collecting the relevant
information of time series by reducing the
computational complexity of the searching. Starting
from the sequential algorithm we develop parallel
alternatives based on a variety of scheduling policies
that target different computing devices in a system that
integrates a CPU multicore and an embedded GPU.
These policies are named Dynamic -using Intel TBB- and
Static -using C++11 threads- when targeting the CPU,
and they are compared to a heterogeneous adaptive
approach named LogFit -using Intel TBB and OpenCL-
when targeting the co-execution on the CPU and GPU.

Problem and Methods

The scrimp algorithm is the state-of-the-art matrix
profile algorithm to find motifs and discords in time
series. The input data (the time series values) is divided
into subsequences that should be compared with all the
remaining subsequences of the time series, following a
sliding window approach. The subsequence to
subsequence comparison is based on a z-normalized
Euclidean distance (Equation 1). This distance
represents the similarity between the two
subsequences we are comparing. The output of the
algorithm is another time series called “Matrix Profile”
which, for each subsequence, stores the minimum
distance to all the other subsequences and the index of
the subsequence that resulted in this minimum
distance.

𝑑(𝑥$, 𝑦$) =)2 · 𝑚 · -1 −
∑ (𝑥1 · 𝑦1) − 2𝑚 · 𝜇4 · 𝜇567
189

𝑚 · 𝜎4 · 𝜎5
;

Equation 1 Distance between two subsequences 𝑥$, 𝑦.=

Because we compare each subsequence to all others,
the computation space can be seen as an upper
triangular matrix where the all-to-all distances are
stored. A careful analysis of the computations implied
by Equation 1 results in a parallel implementation that
concurrently traverses the diagonals of the matrix. So,
the parallelization of the algorithm is based on
dispatching the diagonals to the available threads. The
resulting workload is unbalanced because every
diagonal has different size. Getting a balanced
distribution of the diagonals is therefore a must. To that
end, we have proposed three scheduling strategies for
the scrimp algorithm targeting different devices:
Dynamic, Static and Heterogeneous.

Dynamic: Based on the tbb::parallel_for() scheduling
algorithm from Intel TBB. We let the work-stealing
scheduler to dynamically assign the diagonals to the
worker threads (one per core).

Static: Assuming each element of the matrix will be
computed in the same amount of time for any core, we

came up with an equation that yields N sets of
diagonals. Each set will have approximately the same
number of matrix elements. With this equation, and
setting N equal to the number of cores, we compute a
static distribution of the diagonals among the cores.

Heterogeneous: We also implemented a heterogeneous
scheduling of the workload between the CPU and the
GPU using LogFit, a scheduler previously developed in
our group for efficiently exploiting both devices
simultaneously. The scheduler dynamically dispatches
blocks with a variable number of diagonals to the GPU
and the CPU. The number of diagonals for each device is
adaptively computed during the execution in such a way
that the throughput in the GPU and CPU is continuously
monitored and the workload for each device is
accordingly adjusted to ensure load balancing. One
relevant detail is that the CPU and GPU work with
private partial results, so a reduction to get the final
output result is implemented using tbb::combinable() .
Also, for the GPU we have implemented an OpenCL
kernel for scrimp that relies on 64bit-atomic in order to
implement the reduction on the GPU.

Results

We run our experiments in ARCHER (at EPCC) in order to
assess the Dynamic and Static strategies (ARCHER only
features CPU cores). Figure 1 shows the speedup of
these strategies for different time series sizes. The Static
distribution ends up scaling slightly better than the
Dynamic one (up to 13% of improvement). This is
because the Static scheduler exhibits less scheduling
overhead and exploits the cache better due to larger
blocks of diagonals.

The heterogeneous implementation has been tested on
an AMD A10-7850K APU with Radeon (TM) R7 Graphics.
Figure 2 shows the speedup for our heterogeneous
scheduler. Results from 1CPU to 4CPU represent the
Dynamic scheduler, while results from 1CPU+GPU to
4CPU+GPU represent the Heterogeneous one.

Conclusions
We have implemented three different scheduling
strategies for the scrimp algorithm. The heterogeneous
strategy clearly has outperformed the homogenous
ones (Dynamic and Static). In particular, the
heterogenous scheduling improves speedup up to 8.3x
and 1.16x when compared to 4CPU and 1GPU Dynamic
homogenous executions, respectively.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/223069342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

