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Introduction 
Time series motif (similarities) and discords discovery is 
one of the most important and challenging problems 
nowadays for time series analytics. We use an algorithm 
called “scrimp” that excels in collecting the relevant 
information of time series by reducing the 
computational complexity of the searching. Starting 
from the sequential algorithm we develop parallel 
alternatives based on a variety of scheduling policies 
that target different computing devices in a system that 
integrates a CPU multicore and an embedded GPU. 
These policies are named Dynamic -using Intel TBB- and 
Static -using C++11 threads- when targeting the CPU, 
and they are compared to a heterogeneous adaptive 
approach named LogFit -using Intel TBB and OpenCL- 
when targeting the co-execution on the CPU and GPU. 

Problem and Methods 

The scrimp algorithm is the state-of-the-art matrix 
profile algorithm to find motifs and discords in time 
series. The input data (the time series values) is divided 
into subsequences that should be compared with all the 
remaining subsequences of the time series, following a 
sliding window approach. The subsequence to 
subsequence comparison is based on a z-normalized 
Euclidean distance (Equation 1). This distance 
represents the similarity between the two 
subsequences we are comparing. The output of the 
algorithm is another time series called “Matrix Profile” 
which, for each subsequence, stores the minimum 
distance to all the other subsequences and the index of 
the subsequence that resulted in this minimum 
distance. 
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Equation 1 Distance between two subsequences 𝑥$, 𝑦.=  

Because we compare each subsequence to all others, 
the computation space can be seen as an upper 
triangular matrix where the all-to-all distances are 
stored. A careful analysis of the computations implied 
by Equation 1 results in a parallel implementation that 
concurrently traverses the diagonals of the matrix. So, 
the parallelization of the algorithm is based on 
dispatching the diagonals to the available threads. The 
resulting workload is unbalanced because every 
diagonal has different size. Getting a balanced 
distribution of the diagonals is therefore a must. To that 
end, we have proposed three scheduling strategies for 
the scrimp algorithm targeting different devices: 
Dynamic, Static and Heterogeneous. 

Dynamic: Based on the tbb::parallel_for() scheduling 
algorithm from Intel TBB. We let the work-stealing 
scheduler to dynamically assign the diagonals to the 
worker threads (one per core). 

Static: Assuming each element of the matrix will be 
computed in the same amount of time for any core, we 

came up with an equation that yields N sets of 
diagonals. Each set will have approximately the same 
number of matrix elements. With this equation, and 
setting N equal to the number of cores, we compute a 
static distribution of the diagonals among the cores. 

Heterogeneous: We also implemented a heterogeneous 
scheduling of the workload between the CPU and the 
GPU using LogFit, a scheduler previously developed in 
our group for efficiently exploiting both devices 
simultaneously. The scheduler dynamically dispatches 
blocks with a variable number of diagonals to the GPU 
and the CPU. The number of diagonals for each device is 
adaptively computed during the execution in such a way 
that the throughput in the GPU and CPU is continuously 
monitored and the workload for each device is 
accordingly adjusted to ensure load balancing. One 
relevant detail is that the CPU and GPU work with 
private partial results, so a reduction to get the final 
output result is implemented using tbb::combinable() . 
Also, for the GPU we have implemented an OpenCL 
kernel for scrimp that relies on 64bit-atomic in order to 
implement the reduction on the GPU.  

Results 

We run our experiments in ARCHER (at EPCC) in order to 
assess the Dynamic and Static strategies (ARCHER only 
features CPU cores). Figure 1 shows the speedup of 
these strategies for different time series sizes. The Static 
distribution ends up scaling slightly better than the 
Dynamic one (up to 13% of improvement). This is 
because the Static scheduler exhibits less scheduling 
overhead and exploits the cache better due to larger 
blocks of diagonals. 

The heterogeneous implementation has been tested on 
an AMD A10-7850K APU with Radeon (TM) R7 Graphics. 
Figure 2 shows the speedup for our heterogeneous 
scheduler. Results from 1CPU to 4CPU represent the 
Dynamic scheduler, while results from 1CPU+GPU to 
4CPU+GPU represent the Heterogeneous one.  

 

Conclusions 
We have implemented three different scheduling 
strategies for the scrimp algorithm. The heterogeneous 
strategy clearly has outperformed the homogenous 
ones (Dynamic and Static). In particular, the 
heterogenous scheduling improves speedup up to 8.3x 
and 1.16x when compared to 4CPU and 1GPU Dynamic 
homogenous executions, respectively. 
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