Long-time effects of an experimental therapy with mesenchymal stem cells in congenital hydrocephalus

María García-Bonilla^{1,3}, Betsaida Ojeda¹, Kirill Shumilov^{1,3}, Javier Vitorica², Antonia Gutiérrez^{1,3}, Patricia Páez-González^{1,3}, Antonio J. Jiménez^{1,3}

 Department of Cell Biology, Genetics, and Physiology, University of Malaga, 29071, Spain
Department of Molecular Biology and Biochemistry, University of Seville, 41004, Spain

3 IBIMA, Malaga, Spain

mgbonilla@uma.es

Introduction

Bone marrow-derived mesenchymal stem cells (BM-MSC) are a potential therapeutic tool due to their ability for migrating and producing neuroprotector factors when they are transplanted in other neurodegenerative diseases. Moreover, some investigations have shown that BM-MSC are able to modulate astrocyte activation and neuroprotector factor production. The aim of this study was to evaluate the long-time effects of a BM-MSC experimental therapy in the hyh mouse model of congenital hydrocephalus.

Methods

BM-MSC were characterized in vitro and then transplanted into the ventricles of young hydrocephalic hyh mice, before they develop the severe hydrocephalus. Non-hydrocephalic normal mice (wt) and hydrocephalic hyh mice sham-injected (sterile saline serum) were used as controls. Samples were studied by analyzing and comparing mRNA, protein level expressions and immunoreaction related with the progression and severity of hydrocephalus.

Results

Fourteen days after transplantation, hydrocephalic hyh mice with BM-MSC showed lower ventriculomegaly. In these animals, BM-MSC were found undifferentiated and spread into the periventricular astrocyte reaction. There, BM-MSC were detected producing several neuroprotector factors (BDNF, GDNF, NGF, VEGF), in the same way as reactive astrocytes. Total neocortical levels of NGF, TGF- β and VEGF were found increased in hydrocephalic hyh mice transplanted with BM-MSC. Furthermore, astrocytes showed increased expressions of aquaporin-4 (water channel protein) and Slit-2 (neuroprotective and anti-inflammatory molecule).

Conclusions

BM-MSC seem to lead to recovery of the severe neurodegenerative conditions associated to congenital hydrocephalus mediated by reactive astrocytes.