XXIII Meeting of the Spanish Society of Plant Physiology/XVI Spanish Portuguese Congress of Plant Physiology

Pamplona, 26-28 June 2019

»Sr uptake in the freshwater liverwort Riccia fluitans L.

Lourdes Rubio, Rubén Zapico, José A. Fernández Department of Plant Biology, University of Málaga, Málaga, Spain Corresponding author: José A. Fernández (JA_fernandez@uma.es)

⁵⁰Sr is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. This artificial radioisotope is present in natural ecosystems as the results of radioactive fallout from nuclear weapons or releases during nuclear power plants accidents; because of its similarity with Ca² is quickly incorporated into the biota. The high mobility of Sr² in aquatic compared with terrestrial ecosystems makes the uptake and accumulation of ⁵⁰Sr² higher in aquatic than in terrestrial plants (Kalinichenko *et al.*, 2018). Here we analyse the uptake rate, kinetics and retention, concentration factor (CF) of ⁵⁰Sr in the freshwater liverwort *Riccia fluiants*.

^wSr uptake by *R. fluitnas* shows a bi-phasic kinetics that fits the Michaelis & Menten model in both micro and milimolar concentration ranges. Apparent semi-saturation constants (K_{M}) were 15 μ M and 2 mM for the high and low affinity ranges, respectively. The presence of the K⁺ channels blocker tetraethyamonium (10 mM TEA) inhibits "Sr uptake by only a 25%. However, the presence of 1 mM La¹³ completely inhibits ³⁰Sr uptake in this plant. Maximum incorporation rate occurs at alkaline external pH (8.3), either in plants grown in the presence of K^+ (K⁺-sufficient plants) or in the absence (K⁺ -deficient plants). Finally, gradual increases of the Ca² concentration in the assay medium progressively inhibits "Sr uptake. CF values are higher in K⁺ -deficient plants, with a maximum of 1500, than in K⁺ -sufficient, (maximum CF of 600) and show similar responses to inhibitors, pH or Ca²⁺ than the described for uptake rates. CF values progressively decrease at increasing external Ca³⁺ concentrations, higher CF values are found at pH 8.3 but lower values are observed in the presence of TEA, being close to zero in the presence of La¹³. The different ¹⁰Sr uptake rates in K¹-sufficient and K¹-deficient plants and TEA sensitivity indicate that one part of "Sr would be transported through nonselective cation channels. Furthermore, Ca²⁺ and La³⁺ sensitivities suggest that "Sr could be incorporated through Ca²⁺ channels.

References

Kalinichenko et al., 2018. Gupta D. K. & Walther C. (eds), Behaviour of Stronium in Plants and the Environment. Springer International Publishing AG 2018. Doi: 10.1007/978-3-319-66574-0_9

Acknowledgements & Funding Spanish MINECO: BFU2017-85117-R and BIO2016-81957-REDT