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Abstract 

The analysis to determine the necessary forces with which to achieve a plastic deformation in metallic materials, in particular, in 
forging processes and under conditions of plain strain, has been raised over the years through a double approach; on the one 
hand, by analytical methods that involve a great complexity in their developments but that allow a direct understanding of the 
parameters that direct these processes. On the other hand, numerical methods, in which, thanks to the enormous development of 
computer technology, they provide solutions with a high approximation but, in most cases, do not allow to interpret 
independently the effect of each one of the parameters that come into play. The development of computers relegated analytical 
methods to the background. An alternative of great interest to apply these methods comes from the study of the Upper Bound 
Theorem by means of the Triangular Rigid Zones (TRZ) Model. One of the main limitations in the application of this model 
come from the fact that it is necessary to define a kinematically admissible velocity field and for complex geometric 
configurations of parts, this field becomes increasingly complicated. A new approach has delimited, from a theoretical 
perspective, a modular configuration based on a General Module formed by three TRZ that adapts to any geometry of flat 
surfaces of the part. Another limitation of the Upper Bound Method is the consideration of the plain strain represented by a flat 
section with double symmetry. Obviously, this imposition only allows to study a limited number of part configurations, which 
restricts its application in forging processes since the great majority of forged parts do not present geometrically this double 
symmetry. The present work releases one of these boundary conditions allowing to expand the possibilities of application of this 
method. 
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1. Introduction 

The high complexity of the theory of plasticity has conditioned its analytical development. One of the major 
limitations in the deduction of mathematical relationships that allows us to know the initial conditions of the plastic 
deformation of a material comes from the irreversible and non-linear nature of this type of deformation. With this 
objective, several families of methods have been developed for the study of the Processes of Conformation by 
Plastic Deformation (PCPD) in Metal Alloys [1,2] and, in particular, in forging, both of numerical and analytical 
nature. 

Analytical methods increase the ability of the engineer to evaluate and predict the influence of certain variables 
on important aspects of the process, for example, the energy invested to achieve it. The initial methods among the 
proposed ones are based on simple theoretical foundations, where only the geometrical aspects of the part are 
considered, as well as the distribution of the tension of the plastically deformed area. These methods are the 
Homogeneous Deformation Method and Local Stress Analysis. Both methods have the advantage of a relative 
simplicity of application compared to other methods used in PCPD analysis. Unlike the two previous methods, the 
Sliding Lines Field (SLD) presents a methodological alternative whose application complexity is directly related to 
the degree of accuracy required in the solution to the problem, since it is based on the definition of a field of flow 
difficult to define. The complexity of the mathematical approach of the equations limits it only to the study of 
processes in conditions of plain strain, as well as of geometries of reduced complexity. However, the Bound 
Analysis Methods, and more specifically, the Upper Bound Theorem [3-7], is a solid alternative to the application of 
the SLD. This method, a particular case of the SLD, is easier to implement and, nevertheless, provides quite 
acceptable solutions. At present, the high computational capacity of computers has led to a high development of 
numerical methods, among which is that of the Finite Elements, to the detriment of these analytical methods. 
However, the conditions of simplification of the bound analysis methods place these methods in a plane of 
effectiveness similar to the numerical ones already mentioned. 

In the present article, the Upper Bound Method is approached through a Triangular Rigid Zones Model. The exact 
solutions for plastic deformation problems are difficult to obtain. According to the Limit Theorems, an 
approximation to them is to confine the solution for the necessary energy of deformation between the lower and 
upper limits. The power must overcome the resistance of the material to the deformation, as well as the resistance to 
displacement, the latter due to the friction that appears between the material and the tool. The actual load will be 
delimited between these upper and lower limits, although the first will be more interesting, since it is the one that 
ensures that the deformation can be carried out by the calculated load. This method has great advantages for the 
determination of particular solutions. 

The criterion of the Upper Bound applies the principle of maximum work but, from the point of view of 
deformation, that is, an element is deformed in such a way as to offer the minimum resistance. When deducting a 
stress system from a hypothetical deformation that is in accordance with the kinematically conditions, the load value 
obtained will be greater or equal to the one that actually operates. When establishing the appropriate deformation, it 
will be necessary to define a kinematically admissible velocity field, independently of the tensional conditions, 
which is usually represented thorough its hodograph. For this it is useful to divide the deformed part into several 
zones, with a rigid behavior and which are called Triangular Rigid Zones (TRZ) [8-14], in each of which the velocity 
field and its derivatives must be continuous. The application of this method is done by straight lines, considering that 
only along them there are velocity discontinuities. The rest of the points that make up each block move at the same 
speed and with the same cutting direction. 

In a particularly unique way, and with reduced technological changes, the forging processes are fully adapted to 
the application of this method. Modifications aimed at achieving a flow behavior of material very similar to that of 
flat deformation, which is achieved by designing pieces of straight generatrix in the plane perpendicular to the one 
under study. 

 These TRZ allow the incorporation of different variables present in the plastic forming of metal alloys. 
In this way, and given that the forge constitutes a stationary process, it is possible to determine different natures of 
the friction (Tresca or Coulomb) acting on the different flat surfaces of contact between part and tool, and even, 
assigning different values to each surface. Other parameters, such as the temperature of the process, also have the 
possibility of being analyzed. One of the main limitations in the classic application of the Upper Bound Theorem 
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comes from the imposition of the double symmetry that prevents us from considering a large number of the 
geometric configurations present in the industry. In the present work, one of these symmetries has been eliminated, 
thus significantly increasing the range of application of the method. 

2. Methodology 

    The geometric model established is based on the elimination of the horizontal symmetry (with respect to the 
vertical plane) and therefore of the two fourth parts of the piece located to the right and left of the vertical plane, 
sufficient for the calculation of the necessary pressure to reach the plastic deformation of the part since the vertical 
symmetry has not been eliminated in the present study. The part will be arranged between matrices formed by 
parallel or inclined flat plates adapting to the exterior geometrical configuration. 
    The Basic Module on which the appropriate combination that represents the initial profile of the section of the 
part will be established is formed by three TRZ and is considered under the Modular approach (Fig.1). The Basic 
Module will respond in the evolution of the fluence of the material contained in it with the determination of an 
output velocity of the Module from the input velocity and geometric characteristics. This evolution can be observed 
in its corresponding hodograph (Fig.2). 
     
 
 
 
 
 
 
 
 
 
 

Fig. 1. Configuration of the Basic Module. 

 
 
 
 
 
 
 
 

 

Fig. 2. Basic Module Hodograph. 

    The output velocity of each Module (Vs) in the hodograph will be (Eq.1): 
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    For this reason, it will be combinations of this Basic Model that, with the appropriate dimensions, form the 
section to be studied. Initially the profiles of each of the two quarters will be considered considering double 
symmetry and obtaining for the two pieces that respond to this configuration the values obtained for the 
dimensionless relation p/2k that shows the increase (or decrease) on the shear stress of the material of the piece. 
Once these two solutions are presented, the position of the horizontal center of mass will be analyzed and it will be 
this position that delimits a vertical plane through which the configurations of the part will be studied to the right 
and left. From this vertical plane and in opposite directions the fluence of the material in the plastic state will occur. 
The new geometries will be recalculated, which in our case becomes two configurations of three and four Modules 
respectively. 
   The Modular approach has been implemented with the possibility of incorporating friction both by adhesion or 
Tresca (m) (Eq.2) and sliding or Coulomb (µ) (Eq.3) [15], responding in each case to a different expression. 
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3. Results 

   We have initially considered a configuration A of three Basic Modules with widths of 4, 3 and 5 value respectively 
computed from left to right and initial height of value 6 (Fig. 3) (the units are not determinant since the calculation is 
of a dimensionless relation). 
 
 
 
 
 
 
 
 

Fig. 3. Configuration A. 

The values of the ratio p/2k for Configuration A are shown in Figure 5 a) and Table 1 a). 
  

h



 Author name / Procedia Manufacturing 00 (2020) 000–000  5 

    Configuration B is formed by three Basic Modules with widths of 4, 4 and 3 value respectively computed from 
left to right and initial height of value 6 (Fig. 4 and 5 b)) (Table 1 b)). 
 

 
 
 
 
 
 

Fig. 4. Configuration B. 

Fig. 5. a) p/2k evolution Configuration A  b) p/2k evolution Configuration B. 

                  Table 1. a) p/2k Modules and Total Values Configuration A  b) p/2k Modules and Total Values Configuration B. 

 

 

 

 

 

 

 

 

Next we proceed to establish the horizontal value of the center of mass that will mark the vertical plane where the real configuration (A+B) 
must be split (Fig. 7) and recalculate the ratio p/2k from this plane (Fig. 8, 9) and (Table 2, 3). 

 
 

Fig. 7. Split Configuration A + B. 

h1 Module 1 Module 2 Module 3 Total 

6 1.700 2.349 1.531 2.217 

5.9 1.678 2.320 1.518 2.197 

5.8 1.657 2.291 1.505 2.177 

5.7 1.635 2.262 1.492 2.158 

5.6 1.614 2.234 1.480 2.138 

5.5 1.593 2.205 1.467 2.119 

5.4 1.572 2.177 1.456 2.100 

5.3 1.551 2.149 1.444 2.081 

.2 1.531 2.121 1.433 2.062 
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5 1.490 2.066 1.411 2.025 

h1 Module 1 Module 2 Module 3 Total 
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Fig. 8. p/2k evolution new split Configuration A. 

                                                                    Table  2. p/2k Modules and Total Values new split Configuration A. 

h1 Module 1 Module 2 Module 3 Total 

6 1.930 2.321 1.521 2.130 

5.9 1.903 2.292 1.507 2.111 

5.8 1.877 2.262 1.494 2.092 

5.7 1.851 2.233 1.481 2.073 

5.6 1.825 2.204 1.469 2.054 

5.5 1.799 2.176 1.456 2.035 

5.4 1.773 2.147 1.444 2.017 

5.3 1.747 2.119 1.432 1.998 

5.2 1.722 2.091 1.421 1.980 

5.1 1.696 2.063 1.410 1.962 

5 1.671 2.035 1.399 1.944 

 

 

 

 

 

 

 

 

Fig. 9. p/2k evolution new split Configuration B. 
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                                                           Table 3. p/2k Modules and Total Values new split Configuration B. 

 

 

 

 

 

 

 

 

 

 

 

Based on the results obtained, a sensitivity study was conducted to establish the influence of the variation of the 
width of the additional Module added in Configuration B. This Module has a very small width, so the Module is 
distorted and could affect the result of the total p/2k ratio, increasing it significantly. However, this influence is 
slightly compensated by the reduced value of the area of the aforementioned Module and therefore its influence is 
reduced (Fig. 10, Table 4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Sensitivity study of Additional Module. 

4. Conclusions 

The present work has extended the possibilities of application of the Upper Bound Theorem under the TRZ 
Method increasing the potentiality of the Modular approach. This potential is reflected in the fact that it can be 
adapted to practically any geometrical configuration, and with the options of presence of different types of friction, 
incorporation of the effect of temperature and hardening of the material by means of a low computational cost 
application, of practically response immediate and, therefore, competitive against numerical methods. 

 

h1 Module 1 Module 2 Module 3 Module 4 Total 

6 10.1991 1.736 1.706 2.184 2.273 

5.9 10.030 1.715 1.686 2.156 2.243 

5.8 9.861 1.694 1.667 2.129 2.213 

5.7 9.692 1.673 1.648 2.101 2.183 

5.6 9.523 1.653 1.628 2.074 2.154 

5.5 9.354 1.633 1.610 2.047 2.125 

5.4 9.185 1.613 1.591 2.020 2.096 

5.3 9.016 1.593 1.573 1.993 2.067 

5.2 8.847 1.573 1.555 1.967 2.039 

5.1 8.679 1.553 1.537 1.941 2.011 

5 8.510 1.534 1.519 1.916 1.983 
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                                                           Table 4. Sensitivity studio values of Additional Module. 

b1 Module 1 Module 2 Module 3 Module 4 Total 

4.00 1.700 1.879 1.719 2.424 1.898 

3.75 1.787 1.868 1.711 2.390 1.911 

3.50 1.889 1.858 1.702 2.357 1.926 

3.25 2.009 1.847 1.694 2.326 1.942 

3.00 2.150 1.837 1.687 2.296 1.959 

2.75 2.319 1.826 1.680 2.267 1.978 

2.50 2.525 1.816 1.673 2.240 1.999 

2.25 2.779 1.805 1.666 2.214 2.021 

2.00 3.100 1.795 1.660 2.190 2.045 

1.75 3.516 1.784 1.655 2.168 2.072 

1.50 4.075 1.774 1.649 2.146 2.100 

1.25 4.862 1.764 1.644 2.127 2.130 

1.00 6.050 1.753 1.640 2.108 2.162 

0.75 8.037 1.743 1.635 2.092 2.197 

0.50 12.025 1.732 1.631 2.076 2.234 

0.25 24.0125 1.722 1.628 2.062 2.275 
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