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Abstract

Laser communication systems provide a high data rate, power efficient communi-
cation solution for small satellites and deep space missions. One challenge that
limits the widespread use of laser communication systems is the lack of accessible,
low-complexity receiver electronics and software implementations. Graphics Process-
ing Units (GPUs) can reduce the complexity in receiver design since GPUs require
less specialized knowledge and can enable faster development times than Field Pro-
grammable Gate Array (FPGA) implementations, while still retaining comparable
data throughputs via parallelization. This thesis explores the use of a Graphics Pro-
cessing Unit (GPU) as the sole computational unit for the signal processing algorithms
involved in laser communications.
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Chapter 1

Introduction

Software receivers are significantly easier to build in terms of time and cost compared

to FPGA or hardware receivers, and offer increased flexibility and ease of upgrading.

Using graphics processing units (GPUs) to increase the processing speed with only

small increases in system complexity is an attractive solution to meeting the high

data rate needs of modern spacecraft missions.

1.1 CubeSats and Optical Communication

Electronics today continue to get smaller and faster as Moore’s Law and the Inter-

net afford us the ever-increasing ability to connect to anyone and anywhere. The

improved electronics capabilities are of particular benefit to the space community,

as the decreased size, weight, and power needs of electronics allow for nanosatel-

lites (also known as CubeSats), originally proposed by university researchers [31],

to perform missions previously developed by government agencies and industry with

budgets of up to hundreds of millions of dollars per projects. Space is more accessible

for nanosatellites, and their new capabilities enabled by early adoption of commer-

cial technologies result in more ambitious projects. As these projects take on more

data-intensive instruments, communications becomes a limiting factor.

Traditional satellites, both large and small, have used radio communications to

talk with ground operators. Although optical communications has been demonstrated
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from larger space platforms [8] [3], in comparison to optical communication, radio is

much easier to point, due to radio’s wider beamwidth, and typical radios are easier to

design and build, due to decades of heritage research and development. However, it

is challenging to achieve high data rates on nanosatellites due to the lack of available

volume and power. Achieving high data rates on nanosatellites is challenging using

radio due to the wider beamwidth, as radio systems require a larger antenna or array

of elements to achieve high gain, or require more power as the signal is less directed to

the receiver. In addition, the radio frequency available bandwidth is highly contested,

and systems must comply with sometimes complex regulations to avoid interference.

The size, weight, and power (SWaP) constraints on nanosatellites (CubeSats)

along with the need for low-cost solutions, make it difficult to significantly increase

data rates using radio frequency communications. This is especially true if using com-

mercial off-the-shelf (CotS) parts, which most CubeSats baseline to reduce cost and

development time. As the amount of data generated by nanosatellites has increased,

close to the theoretical limit (the Shannon limit) is the limit for radio communication

systems, emphasizing constraints due to regulatory bandwidth restrictions.

Laser communications (lasercom, or free space optical) can increase the data rates

available to nanosatellites. Because of the larger available bandwidth for lasercom,

and the improved power efficiency if a narrow beam is used, lasercom links have higher

capacity in comparison to radio [11].

There are still challenges that need to be overcome in implementing lasercom on

nanosatellites. Pointing requirements are significantly harder to achieve, but recent

developments in nanosatellite attitude determination and control systems, and the

introduction of staged control systems at nanosatellite scale have made it possible for

nanosatellites to point accurately enough for laser communication to be viable [11]

[26] [45].

Ground stations are also a problem, as the infrastructure to easily downlink laser-

com data with a variety of bands, modulation and coding types, and geographic

locations does not yet exist. The work done by Riesing, et al. on the Portable

Telescope for Lasercom (PorTeL) [35] has demonstrated the feasibility of using com-
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mercially available telescopes to meet this need. To date, not as much attention has

been paid to tailoring the signal processing algorithms to optical communications and

using commercially available processing capability.

Many lasercom receiver designs use older algorithms, such as Serially Concate-

nated Convolutional Codes on the Lunar Lasercom Demonstration (LLCD) and the

Deep Space Optical Communications project (DSOC) [29] or Reed-Solomon (NODE)

[46] with Interleaving, which either limit the data rate achievable due to their com-

plexity, have limits on parallelizing, or are non-optimal. To fully take advantage of

the benefits of optical communication, receivers must be tailored to the use case.

1.2 Motivation for software receivers

Field Programmable Gate Arrays (FPGAs) are the current norm in communications

electronics, with their high parallel processing power well-suited for digital signal

processing (DSP) algorithms. They require specialized engineers, however, to build

customized digital circuits through programming languages specific to FPGAs such

as VHDL, and the development times are longer compared to traditional software

projects, due to individual iterations needing more time (compilation takes longer,

and hardware being harder to debug due to obfuscation). Software receivers, where all

of the DSP is done on a CPU in a traditional programming language, eliminate these

two problems, as traditional programming is a more prevalent skill among engineers,

requiring less specialized electronics knowledge, and rapid iterations are more feasible.

Software receiver implementations, however, suffer from the loss of parallel processing

compared with FPGAs, and therefore are not capable of the same speeds as FPGA

receivers, even though CPUs run serially much faster than FPGAs.

Graphics Processing Units (GPUs) offer a solution to this problem, with their

parallel processing and serial speed occupying a middle ground between CPUs and

FPGAs. GPUs can support the same rapid iterations as in CPU development and

only require slightly more specialized knowledge to program than a CPU, something

any engineer familiar with C programming can pick up quickly. This thesis focuses on
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investigating how compelling the benefits of using a GPU for lasercom receivers are,

and whether GPU-based software receivers can compete with FPGA-based receivers

for use in optical communications terminals.

1.3 Current Ground Station Performance

An overview of recent lasercom missions and their ground stations can be found in

[35]. The rest of this section will discuss two specific missions, the Lunar Laser

Communication Demonstration (LLCD) and the Optical Communication and Sensor

Demonstration (OCSD), and the relevant receiver algorithms and metrics they used.

Table 1.1: Recent Optical Ground Station Performance
Ground Station Mission Received Data Rate Processing Data Rate

LLGT LLCD 622 Mbps 155 Mbps
OCTL LLCD 78 Mbps Offline

OCSD Ground Station OCSD 200 Mbps Unlisted

1.3.1 Lunar Laser Communication Demonstration

LLCD was a lasercom demonstration payload on the LADEE (Lunar Atmosphere

and Dust Environment Explorer) orbiter. The LLCD lasercom system development

was led by MIT Lincoln Laboratory in 2013 which demonstrated a 622 Mbps laser-

com downlink from the Moon to Earth [30]. NASA Jet Propulsion Laboratory also

supported LLCD.

The LLCD mission made use of optical Frame Acquisition Sequences and Inter-

Symbol Guard Times for clock recovery and Serially Concatenated Pulse Position

Modulation for forward error correction and modulation [44], which are discussed

in more detail in Chapters 2 and 3. For the Lunar Lasercom Ground Terminal

(LLGT) developed at Lincoln Labs for LLCD [8], with these methods, processing at

the receiver was initially only capable of throughput of up to 155 Mbps. Additional

FPGAs had to be added to reach 622 Mbps [43]. The bottleneck on the processing

speed is the computationally intense decoding algorithm, with performance being
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constrained by the serial nature of decoding SCPPM [43]. SCPPM is used in spite of

this limitation, due to its strong error correcting capabilities [29].

An alternate ground terminal to the LLGT was the Optical Communications

Telescope Laboratory (OCTL) developed at JPL [7]. OCTL only supported data

rates up to 78 Mbps due to pointing and acquisition constraints, and all of the signal

processing was done offline, highlighting the difficulty of designing and implementing

electronics and software that can process lasercom signals even at lower data rates of

78 Mbps.

1.3.2 Optical Communication and Sensor Demonstration

OCSD is a mission developed by The Aerospace Corporation, capable of demonstrat-

ing 50-200 Mbps from low Earth orbit to ground. The transmitter may be capable of

higher data rates, but the mission data rate may be limited by the receiver electronics

available [37]. This highlights the need for receiver designs capable of scaling to above

1 Gbps.

1.4 Metrics

The relevant metrics for a GPU-based software receiver focus on information theoretic

properties and actual data throughput. The information theoretic metric of relevance

is channel capacity and the gap to capacity of the given forward error correction code.

For real communications systems, the throughput of the signal processing algorithms

matters, as this constrains the actual data rate seen by the decision making system.

Throughput derives from both the computational complexity of the algorithms in-

volved, and how parallelizable an algorithm is. Parallelization is the primary means

of increasing throughput as Moore’s law slows down, because it becomes increasingly

challenging to add transistors to CPUs, and thermal and power constraints prevent

CPUs from increasing clock speeds to improve serial computation power. This is one

of the reasons why FPGAs and GPUs are starting to outperform traditional CPUs for

given applications, such as in digital signal processing, image processing and machine
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learning [38] [5] [41].

1.5 Thesis Organization

Chapter 2 details the status of current receiver architectures and methods, and iden-

tifies research and performance gaps. Chapter 3 describes the approach to designing

a software lasercom receiver for a GPU. Algorithm implementations for clock recov-

ery and decoding, are detailed. Chapter 4 discusses the performance results of the

receiver implementation. Comparisons are made with modern receiver implemen-

tations. Chapter 5 summarizes the work done for this thesis and discusses future

work.
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Chapter 2

Background

Communications systems can be divided into three blocks, a transmitter, a channel,

and a receiver. This thesis focuses on receiver design, which concerns itself with the

channel only as far as creating a model from which signal distortion (noise charac-

teristics) can be calculated and used in the signal processing algorithms. It is well

documented that the optical communication channel with Pulse Position Modulation

[21] [18] [9] can be modeled as an m-ary Poisson Channel.

There are a variety of resources that detail the design and analysis of lasercom

systems. Gagliardi and Karp [18] go over the physics of optical signals, direct and

coherent detection, modulation and encoding techniques, and use specific examples

from fiber optic, terrestrial, and space channels. Hemmati has similar texts [20]

[21] which specifically focuses on lasercom systems for the deep space channel. For

a detailed discussion on the tradeoffs in detection and modulation schemes used in

photon-starved systems, Caplan has an excellent chapter in his book [9].

2.1 Detection

The optical communication channel can make use of two broad forms of detection,

either coherent, where the data is modulated onto the phase of the signal, or direct,

where the data is modulated onto the amplitude of the signal. In direct detection,

photon counts are calculated from the electrical signal out of a detector as it responds
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to the optical signal. This form of detection lends itself to amplitude modulation tech-

niques, such as On Off Keying (OOK) or Pulse Position Modulation. In Pulse Position

Modulation, a data symbol is divided into M slots (referred to as the PPM order, or

M), and one pulse is sent per symbol in one of these slots. The data transmitted

is then demodulated as a number between 0 and M-1, corresponding directly to the

slot the pulse was sent in. The tradeoffs between direct detection versus coherent

detection are about power efficiency and spectral efficiency. Amplitude modulation

is more power efficient and less complex to implement, while phase modulation tech-

niques have a higher spectral efficiency (higher data rate for a given communication

bandwidth), but require more power and complexity [9]. Amplitude modulation and

direct detection are the schemes discussed in this thesis for nanosatellites and deep

space links due to the power constraints of these missions.

2.2 Hardware

2.2.1 Detector

In order to do direct detection, a detector is needed which produces an electrical re-

sponse to a received optical signal. Two examples are Avalanche Photodiodes (APDs)

and Superconducting Nanowire Single Photon Detectors (SNSPDs). SNSPDs are

used for deep space links as they are capable of detecting individual photons, which

is necessary for the low photon regime of deep space optical communications. They

require a specialized thermal control system to keep the detector in the supercon-

ducting regime, and complex electronics for photon detection. This makes them

expensive, and while suitable for deep space missions, they are not likely to be used

for nanosatellite missions.

For nanosatellite missions, APDs are more suitable. They can be bought com-

mercially at relatively low cost, coming in packages complete with biasing electronics.

A high-speed Analog-to-Digital Converter (ADC) is the only circuit needed for sam-

pling outside of the electronics to bias the APD. The semiconductor used for the APD
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dictates the optical wavelength it responds to, such as Indium Gallium Arsenide (In-

GaAs) for 800-2600 nm, Germanium for 400-1700 nm, and Silicon for 190-1100 nm.

As APDs are made out of normal semiconductor material, their operating temper-

atures are comparable to other commercial electronics and therefore do not require

any specialized thermal control.

2.2.2 Sampling

Both the APD and SNSPD electrical responses can be used to produce the photon

counts needed for the PPM signal. The SNSPD uses the digital circuit discussed

in [16]. An APD can be sampled using either a Time-to-Digital Converter (TDC)

or an ADC. The advantage of an ADC is you can choose between working with

photon counts or electrical signals in the signal processing algorithms [9]. The signal

processing algorithms in this thesis use photon counts, but transitioning between

photon counts and voltage samples is only a matter of changing channel models

(Gaussian versus Poisson), and has a negligible impact on the complexity of the

calculations involved [9] [21] [18].

2.2.3 Sample Piping

Moving the samples from the detector to processor memory requires high-speed digital

interfaces. These are usually Low-Voltage Differential Signaling (LVDS) or Current

Mode Logic (CML) outputs, defined by such standards as JESD204B [1]. In order to

use these interfaces, specialized ICs or FPGAs are required, as GPUs and CPUs do

not contain the necessary interface components. Peripheral Component Interconnect

Express (PCIe) is the only standard interface for GPUs and CPUs that can move

data at the required rate for lasercom, but there are no sampling chips which have

this interface. A more detailed study is needed to find an optimal design for piping

samples from the detector into processor memory.
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2.3 Signal Processing Algorithms

With the photon counts now in digital form, the original data needs to be recovered.

To accurately do this for PPM, the transmit clock must be recovered and used to

synchronize the received slots with the transmitted, and the the received bits need to

be demodulated and decoded. This is done using a variety of algorithms, broken up

into two broad categories, clock recovery and forward error correction.

2.3.1 Clock Recovery

In order to accurately demodulate and decode the PPM signal, it needs to be known

in which of M slots a given pulse was sent (slot synchronization) and where code-

words begin and end (frame synchronization). The transmitter clock will have some

variation, referred to as clock jitter, and there will be some offset between when a

slot is sampled on the receiver and when that slot was actually sent from the trans-

mitter. This is referred to as the slot offset, and the algorithms for estimating it

are referred to as slot synchronization. This is in contrast to the estimation of the

beginning and ending of codewords, which is referred to as the frame offset and frame

synchronization respectively.

Slot synchronization can be achieved using a few different approaches [36] [32]

[44], but the primary method is using Intersymbol Guard Times (ISGTs). A certain

number of slots are left blank; a pulse is never transmitted in these slots. This number

can vary depending on the Signal-to-Noise Ratio (SNR), but a good rule of thumb

is one-fourth the PPM order. This reduces the data rate for a given slot clock by

20 percent, but allows accurate calculation of the slot offset. With these blank slots,

over the course of enough symbols, these slots become obvious as depicted in Figure

2-1 and 2-2. The slot counts can then be combined into aggregate slot counts over

a given number of symbols, large enough to make the guard slots obvious, but not

large enough so as to make the clock jitter affect the estimate accuracy. A simple

approach to calculating the offset would be to take these aggregate slot counts, find

the minimum sum of continuous slot counts over a window the size of the guard
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Figure 2-1: Received PPM Pulses
over 5 Symbols

Figure 2-2: Aggregated PPM
Pulses over 100 Symbols

time, and call this the integer offset. Then, estimate the average signal count and

noise count for the slots and use this to estimate the fractional slot offset. This leads

to inaccuracies due to the random nature of the channel, which can be mitigated if

we use our knowledge of the channel statistics for a more sophisticated estimation

scheme. From the Poisson PPM channel, the signal counts and noise counts obey a

Poisson distribution and a maximum-likelihood estimator was derived and tested by

JPL [36]. It approaches the Cramer-Rao bound quickly, and can therefore be used

on a small enough sample size to avoid the hazards of clock jitter.

Frame synchronization requires a different approach. A header, or Frame Acquisi-

tion Sequence (FAS), is transmitted at the start of every codeword [17]. This specific

bit sequence can be accurately detected then using a Matched Filter approach at the

receiver. The known bit sequence translates to known signal shape, which is stored on

the receiver and then an autocorrelation is calculated across a codeword (also referred

to as frame). Once the peak is found, the frame offset is calculated and used to align

codewords for the decoder. As a maximum-likelihood approach with ISGTs is used

to find any fractional offset on the slots, and the slot clock is aligned as a result, only

the integer symbol offset is needed from the autocorrelation.

Both slot and frame synchronization lend themselves to parallel implementation.
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The frame synchronization consists of an autocorrelation done n times, where n is

the frame length (the block length, length of a codeword) plus the length of the

FAS. Each of these autocorrelations does not depend on the others, and therefore all

can be calculated at the same time. The frame length for space communications is

about a few thousand in the longest cases [10] [21], and this is on the order of how

many parallel threads can be spun up on modern GPUs [2]. This implies throughput

performance should be similar to FPGA-based approaches, if not faster, as FPGA

implementations derive their high throughputs based on massive parallelization. Slot

synchronization is a similar story, with the number of PPM symbols for an accurate

estimate presented in detail in Chapter 4.

2.3.2 Forward Error Correction

The forward error correction (FEC) portion of the receiver concerns itself with recov-

ering the original information the transmitter was trying to send. The field of FEC,

also referred to as channel coding, began with Shannon’s 1948 paper that created the

field of information theory [39], in which he detailed the optimal method for both

encoding transmitted information and decoding received information so as to achieve

error free data transmission. The methods Shannon described are usually computa-

tionally infeasible for real systems to use, and since 1948 a large variety of methods

have been developed that are practical for use but may not reach this maximum error

free rate of transmission, called the Shannon limit, or channel capacity.

For lasercom, the two methods that have been widely used are Reed-Solomon codes

and a class of turbo codes called Serially-Concatenated Convolutional Codes (SCCC)

combined with a PPM modulator to produce SCPPM [29] [10] [21] [46]. Both of these

approaches also make use of interleaving to deal with burst errors in the atmospheric

fading channel [21]. A third class of codes, Low-Density Parity Check (LDPC) codes,

have also been proposed [21] [15] and recent work tailoring them to lasercom has

shown promise [28]. Detailed background on LDPC codes and Turbo codes, and the

iterative decoding of them, is given in Urbanke and Richardson’s textbook [34] and

Mackay’s textbook [27].
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Reed-Solomon (RS) codes are a widely used class of FEC codes, due to their high

minimum codeword distance and low complexity encoding and decoding operations

[21]. Their application to lasercom has been studied, and Reed-Solomon Pulse Po-

sition Modulation (RS-PPM) performs within a few decibels (dB) of capacity for

the Poisson PPM channel [21]. This can be a favorable coding scheme for missions

looking to minimize system complexity, not having high data downlink requirements,

and operating in a high SNR regime. To fully take advantage of lasercom attributes,

though, a coding scheme which approaches capacity must be used, which is where

SCPPM comes in.

SCPPM was designed at JPL, first proposed in 2005 [29] as a means of getting

close to capacity for a deep space link. It operates using the turbo principle first

discovered in the 1990s [6], which found that by combining two convolutional codes

and a bit interleaver, a code could be designed which arbitrarily approached capac-

ity using an iterative decoder. Using this, SCPPM is able to get within ∼1 dB of

capacity, compared to the ∼3 dB of capacity of RS-PPM [29] [21]. SCPPM trades

this improved error performance for increased computational complexity, using the

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm for decoding, which operates on a Trel-

lis graph data structure. This breaks the decoder into an inner and an outer decoder,

with LLRs being updated in one and then passed to the other in a step, then the

reverse happening in the second step of an iteration, with iterations continuing until

some stopping condition is reached. The individual decoders within the BCJR decoder

are for the individual codes concatenated together to make SCPPM, a convolutional

code and a 1/(1+D) accumulator concatenated with a PPM symbol mapper. This

PPM symbol mapper is how the SCPPM code combines the decoding and demodu-

lation into the same step. This also results in improved performance, as there is no

information loss between demodulation and decoding, as hard decisions are not made

in order to break up PPM symbols, keeping all of the information associated with the

original channel observation.

Both the inner and outer decoders are recursive in nature, as the update rule

relies on the previous step of the update rule in the decoders, minimizing the gains to
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be made from parallel computation. Pipelining provides a means of speeding up the

decoder, but this implementation requires an FPGA for use, and to get reasonable

speeds, multiple FPGAs have to be used, as in the LLCD ground terminal which

used 5 separate FPGAs for the decoder to reach throughputs of 155 Mbps [43]. An

additional interleaver outside of the one within the SCPPM code also must be used

to account for longer fades associated with the atmospheric downlink channel.

LDPC codes are a possible competitor with SCPPM to achieve near capacity per-

formance. They were originally developed in 1963 in Gallagher’s PhD thesis [19],

in which he also proposed the Belief Propagation, or Sum-Product, algorithm, for

decoding, which is an approximation of maximum-likelihood decoding but less com-

putationally complex. At the time however, Belief Propagation was still too complex

to be practically implemented for all but the shortest block lengths and was forgotten

about until the discovery of turbo codes prompted a return to LDPC codes and Belief

Propagation, due to the similarities they have with the iterative decoding of turbo

codes. Two other key contributions to the revival of LDPC codes was the research

on low complexity decoding using bipartite graphs, a type of graph defined by two

sets of nodes which are only connected to nodes of the other type, done by Tanner in

[40] and research on irregular LDPC codes by Richardson, Shokrollahi, and Urbanke

which showed LDPC codes could approach capacity [33]. Belief Propagation on Tan-

ner graphs lends itself to parallel decoding, as calculations on each node set can be

done completely in parallel, then passing these results to the other node set which

can do its computations completely in parallel, as there are no dependencies within

a node set on a bipartite graph. GPUs are good hardware candidates for this type of

calculation, as the block lengths necessary for good error correcting performance are

at most on the order of a few thousand for LDPC codes [28] [15] [21], so the parallel

node calculations will not saturate most modern GPUs, which is discussed in detail

in Chapter 3. Recent implementations for LDPC decoders on GPUs have achieved

>1 Gbps [25], which shows the promise of LDPC codes for achieving high throughput

GPU based software receivers for lasercom.

Part of the reason SCPPM achieves its high performance is the inclusion of the
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PPM demodulation as part of the iterative decoding process. Gallagher discussed non-

binary LDPC codes in his original paper, but he was unable to produce any concrete

theoretical results about their performance. Recent experimental studies have found

that performance does improve when using a non-binary LDPC code over a finite field

[28] [15], but the additional complexity of the decoder has made the implementation of

non-binary codes on binary channels rely on approximate methods which still perform

well but degrade performance from belief propagation [13] [14]. For the PPM Channel

though, an LDPC-PPM decoder would not have to worry about the permutation

matrices associated with the decoders in [13] [14], as in instead of having to consider

both the binary channel observations and the order in which they are sent, only the

PPM symbols would have to be considered as they directly correspond to elements

of the finite field. LDPC codes have been designed for the Poisson PPM Channel

[28], but with minimal consideration for the decoder implementation. A decoder

implementation for LDPC-PPM on a GPU would be able to mitigate most of the

additional complexity associated with belief propagation decoding on a non-binary

field, as the multiple possible symbols can be considered in parallel, independent of

what the others are.
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Chapter 3

Methods Developed

The efficient implementation of algorithms on GPUs requires consideration of the

hardware being used, algorithmic design focused on the data structures to be em-

ployed, and selection of algorithms which lend themselves to parallel implementations.

In this manner, the slot and frame synchronization algorithms discussed in Chapter

2 are already well-suited for GPUs and only their implementation is discussed in this

chapter. Decoding implementation must be done simultaneously with the code de-

sign, and a non-binary low-density parity check scheme is designed and implemented

in this chapter. The reasons for this are the potential for LDPC codes to reach ca-

pacity, the higher degree of parallelization achievable compared to SCPPPM, and the

flexibility of LDPC to perform well in high and low rate situations.

3.1 GPU Preliminaries

The GPU used for this thesis was an NVIDIA GTX 1050 with 640 CUDA cores, 1354

MHz base clock, and 2 GB GDDR5. It belongs to the family of GPUs designed around

the GP100 Pascal architecture [2]. CUDA (Compute Unified Device Architecture) is

NVIDIA’s General Purpose GPU (GPGPU) API (Application Programming Inter-

face) [12], with the Pascal GP100 architecture having 128 CUDA cores per streaming

multiprocessor (SM) [2]. To transition between SM’s and CUDA cores to blocks and

threads, the abstractions used in CUDA for doing parallel computing, see the CUDA

29



Developer’s Guide, specifically the section on Pascal tuning [12]. The relevant figures

are the warp size and the number of registers available on an SM. The warp size is

32 and the registers per SM for GP100 Pascal is 64 KB, with warp size dictating the

number of threads per block capable of being scheduled and the number of registers

limiting the max allowable blocks times threads times registers (the parallelizable

limit essentially) [12].

3.2 Channel Model

The channel model used dictates how the channel observation statistics are calculated.

A channel observation corresponds to the quantity sampled by the detector over a

given sampling window. For the implementation done in this thesis, a Poisson PPM

Channel is used, with channel observations corresponding to slot counts, the number

of photons detected in a time window that is the length of 1 PPM slot, and exact

equations for the statistics and slot counts are detailed where relevant. Switching

between the Poisson channel and a Gaussian channel, which is a valid model for APD

detection schemes not using photon counting, would only be a matter of altering the

statistical equations used. Other concerns of the atmospheric channel model are well

documented in [42] [21], along with ways of more accurately modeling this channel.

3.3 Clock Recovery and Log-Likelihood Ratio Gen-

eration

3.3.1 ISGT Maximum Likelihood Slot Synchronization

As discussed in Chapter 2, slot synchronization is accomplished via the addition of a

certain number of guard slots P, slots in which a pulse is never transmitted, between

PPM symbols. By aggregating slot counts over a certain number symbols N, on the

order of 2-3 times the PPM order M, the guard slots become apparent and an estimate

for the slot offset tau can be calculated using the maximum likelihood estimator
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Figure 3-1: Aggregate Slots with
an offset of 3.5

Figure 3-2: Aggregate Slots After
Shifting

derived here [36]. Tau needs to be calculated M+P times over the given aggregate

slot counts for reasons described in [36], but this calculation can be parallelized due

to only being dependent on the aggregate slot counts and channel statistics. The

tau which maximizes the likelihood function is then taken to be the correct one,

doing the likelihood calculation in parallel, and the slot counts (not aggregate slot

counts) are shifted over the window of size N according to this tau, depicted in

Figure. This occurs codeword size n+N symbols divided by N times in parallel to

increase processing throughput, the goal being for the receiver to be able to process

one codeword in the time it takes for another codeword to be sent, so as to achieve

real-time performance.

3.3.2 MF/FAS Frame Synchronization

The other component of clock recovery is finding the beginning of a frame, which

becomes a codeword when the FAS is taken off. The frame synchronization consists

of identifying the FAS discussed in Chapter 2, and this is done via calculating the

autocorrelation of the FAS across a frame sized chunk of slot counts, with the size

of the FAS varies depending on the PPM order as the optimal FAS changes [17].

The autocorrelation consists of convolving the known FAS with the received signal,
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which amounts to a bunch of independent multiplications on each slot within the

FAS against a window of the received signal of the same size, and then summing

the products together to the autocorrelation value. The max value across the frame

is where the FAS is located and thus the beginning of the codeword is identified.

The autocorrelation calculation can have all of the multiplications done in parallel,

while the sum and subsequent max search can be broken into smaller parallel chunks,

reducing the complexity by half.

3.3.3 Log-Likelihood Ratios

Now that the received signal has been aligned as best as possible with the transmitted

signal, the slot counts (channel observations) need to be converted into log-likelihood

ratios (LLRs) for the decoder. An LLR is the log-likelihood a pulse was sent in a

given slot for that symbol, over the sum of the log-likelihoods of each the other pulses

not containing a slot. The likelihood is derived from the channel statistics as in [29]

[32]. The LLRs for the full received signal can be calculated completely in parallel up

to the hardware constraints, with the calculation itself also being reduced complexity

with individual threads calculate log-likelihoods and then a block summing them all

together.

3.4 Demodulation and Decoding

In order to avoid the loss of information associated with hard decision demodulation

for a PPM symbol, the design of the Low Density Parity Check code is constructed

over the finite field of q, GF(q), where q is equal to the PPM order M. It has been

shown that non-binary LDPC (NB-LDPC) codes perform better than binary ones [15]

[28], and since PPM is used, PPM symbols can be one to one mapped to elements of

GF(q), avoiding the permutation complexities associated with decoding a NB-LDPC,

as there is no probability of individual bit error within the field element, only a full

symbol error, so there is no need to permute the bit probabilities around within the

decoder.
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3.4.1 Code Design

Using the code design approach detailed here [28], a non-binary LDPC protograph is

selected with the desired BER. The Tanner graph, which is equivalent to the parity

check matrix H, is created via a combination of a Progressive Edge Growth (PEG)

algorithm [23] and a randomized approach. The PEG ensures a minimum codeword

distance and the randomized approach increases the extrinsic information available

to the decoder. The parity check matrix is then put in standard form and converted

to a generator matrix for encoding [22].

3.4.2 Inference on Tanner Graph

Figure 3-3: Example of a Tanner Graph, variable nodes represent LLRs of transmitted
bits, check nodes represent parity constraints dictating the update rule

The decoding makes use of the Tanner graph structure of the LDPC code. Gal-

lagher detailed the Belief Propagation algorithm in his 1960 thesis [19], but this was

computationally infeasible at the time as most maximum-likelihood approaches were.

Tanner also did not write his paper on Tanner graphs until 1981 [40], which offered

an efficient data structure for doing the belief propagation decoding.

A Tanner graph turns a parity check matrix into a bipartite graph which by

definition has two types of nodes, in the case of Tanner graphs referred to as check and
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variable nodes. Check nodes represent the parity constraints
∑︀𝑛

𝑗=0 ℎ𝑖𝑗 * 𝑐𝑗 = 0, with

ℎ𝑖𝑗 being elements of H and 𝑐𝑗 an elements of the codeword vector C, and variable

nodes to the received bits. Belief propagation operates on the graph as a message

passing algorithm, where variable nodes receive messages 𝜇𝑐 from check nodes, update

their likelihoods 𝑦, and send these updated likelihoods to check nodes as messages 𝜇𝑣.

Check nodes then calculate their messages based off the parity constraint and send

these back to variable nodes for the next update, and this goes on until the variable

node likelihoods reach some threshold, or a set number of iterations is reached. The

calculations performed at the nodes depend on which decoding algorithm is used, but

these fall into two broad categories, Sum-Product (SP) and Min-Sum (MS) [24] [25]

[13] [14].

Min-Sum is also referred to as Max-Sum, or Max-Product depending on the sit-

uation. It will be referred to only as Min-Sum for the rest of this thesis. Min-Sum

works as an approximation of the Sum-Product algorithm, by reducing the complex-

ity of the check node operation. A check node calculates the likelihood each of its

neighboring variable nodes is a certain element of the GF(q) by finding the likelihood

the other neighbors are a combination that would satisfy the parity constraint if the

variable node was that certain element. In SP, this calculation is dominated by a

large number of distinct products, or sums in the case LLRs are being used, but the

observation that these products or sums are dominated by the minimum likelihood in

that combination leads to the MS algorithm. This is particularly important for the

non-binary case being worked with, as the complexity scales exponentially with both

the degree of the check constraint and the order of the finite field used.

3.4.3 Node Calculations and Approximations

Nominally, the variable nodes all have an LLR for each element of GF(q), which is

initialized based on the channel observation and subsequently updated as the LLR

from the previous iteration plus the sum of messages (Σ𝜇𝑖) from each of its neighbors

(check nodes). The sums scale linearly in complexity with the variable node degree,

and the whole step for a given variable node scales linearly with the PPM order, but
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the individual sums can be done in parallel.

𝜇𝑣 = 𝜇𝑣,𝑝𝑟𝑒𝑣 +
∑︁
𝑛𝜖𝜇𝑐

𝜇𝑛

variable node calculation

𝜇𝑐 =
∏︁
𝑛𝜖𝜇𝑣

𝜇𝑛

optimal check node calculation

Careful consideration must be made in reducing the complexity of the check node

calculation through approximations. The first simplification is to throw out all but

the two largest LLRs at each variable node, as is done in the SCPPM case [29] [10].

A dynamic approach could also be taken, where the max LLR is found, and the

number of other LLRs kept is based on their value relative to the max. The dynamic

approach merits further research, but is not examined in the implementation for this

thesis. Using only the two largest LLRs caps the check and variable node calculations

from scaling with the PPM order, and constrains the complexity to a similar order

of magnitude as the binary case. An important implementation consideration is the

overhead of doing arithmetic on a finite field. As the finite field order is equal to the

PPM order, only fields of up to 27 are used, so a lookup table approach to addition

and multiplication can be used with minimal impact on memory and complexity. The

lookup tables for the different finite fields can be created and stored before processing

begins, and so no overhead is associated with this process during the algorithm.

For the check node calculation, the combinations which satisfy the parity con-

straint need to be generated based on the two LLRs coming from each of the neigh-

bors of the check node so as part of the initialization step for the Tanner graph; this

happens at each of the check nodes. The number of combinations that satisfy the

parity constraint for a given PPM symbol is equal to 𝑀𝑑𝑐−2.

With these initialization steps done at their relevant node types, iterative decod-

ing now begins with the check node calculations given the channel observation as the

initial messages from the variable nodes. The data input to this step comes as mes-
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sages from each of the neighbors of the check node, with the messages being vectors

of LLRs of rank 2.

3.4.4 Parallel Node Implementation

Iterative decoding via belief propagation is traditionally thought of in two steps, the

variable node step and check node step, with some of the literature naming an initial

step called LLR initialization and a final decision step where decoding terminates

and bit decisions are made. In this setup, message passing occurs at the end of each

variable and check node step and is not considered a separate part of the algorithm.

For a parallel implementation though, it merits its own step in between each variable

and check node step with detailed thought given to its data structures and execution,

so as to avoid race conditions but also as a means of improving the algorithmic

efficiency of the check and variable node steps.

The variable node contains two LLRs, and is updating these with the all of its

incoming messages. A variable nodes messages consist of its current belief to all of

its neighbors, but minus the most recent message from the respective neighbor its

sending a message to, meaning it has to send 𝑑𝑣 distinct messages each step. This is

represented as the one global copy of the variable LLR, then a bunch of local messages

that are calculated and passed in parallel to the appropriate check nodes. The check

node does not have its own LLR to keep track of, instead just needing to act as a

vehicle for passing the relevant LLRs combined together through a product to its

neighbors so they can update their variable belief. This view breaks the decoder into

4 steps, variable sum, the variable subtraction and send, the check product, and the

check send, with the most intensive step being the check product.
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Chapter 4

Results

The results detailed in this chapter are all for PPM Order (M) of 16 and codeword

length of 3000. The data rate throughput can then be calculated as (3000 symbols

* 4 bits/symbol)/(Processing Time). The GPU Occupancy refers to the percent-

age of each warp scheduler used, essentially being a measure of how many parallel

instructions are used for a given multiprocessor [2].

4.1 Slot Synchronization

The implementation of slot synchronization can be broken up into three separate

kernels performing the aggregation of slot counts, the slot offset and likelihood calcu-

lations, and the max likelihood search respectively. This separation is appropriate as

they lend themselves to different parallel structure. The receiver is being fed a code-

word sized chunk of slot counts, the received signal, and the received signal needs to

be aligned with the receiver’s best estimate of the transmitted signal. As described

in Chapter 3, the received signal is broken up into windows of size 𝑁 PPM symbols,

with an aggregate PPM symbol consisting of 𝑀 + 𝑃 aggregate slot counts, where

𝑀 and 𝑃 are the PPM order and ISGT respectively. The aggregate slot counts are

generated in the kernel by spawning 𝑛
𝑁

blocks, with 𝑛 the length of a codeword in

PPM symbols, with 𝑀 +𝑃 threads, with each block corresponding to an aggregation

window and each thread corresponding to an aggregate slot count in that window. A
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thread then iterates over the whole window, adding the relevant slot count in the 𝑁

symbols of the window to its aggregate count. The offset and likelihood calculation

kernel takes the aggregate counts as inputs, spawning the same number of blocks and

threads as the previous kernel, with each thread calculating a slot offset tau and a

likelihood sum that this is the slot offset for this aggregation window. The max like-

lihood search kernel then spawns N threads and finds the maximum likelihood offset

and passes it to the shifting slot count kernel, which corrects the received signal.

The results in this chapter are for the NVIDIA GPU described in Chapter 3.

As can be seen in Table 4.1, slot synchronization as implemented does not saturate

the GPU even for the maximum codeword length considered. The GPU manages to

process a codeword at rates of 100s of Mbps, satisfying the current speed requirements

for lasercom.

Table 4.1: Slot Synchronization Performance, M = 16, n = 3000, N = 100 averaged
over 30 runs.

Processing Time Data Rate GPU Occupancy
Kernel (microseconds) (Gbps) (percentage)

Aggregate Slot Counts 4.3 2.79 50
ML Slot Offset 11.5 1.04 50

Max Search Slot 7.8 1.58 100
Total 23.6 0.508

4.2 Frame Synchronization

Frame synchronization works on the individual slot counts as opposed to the aggregate

slot counts in slot synchronization. Only two kernels were implemented, one for the

autocorrelation and the other using the max search kernel from slot synchronization.

The autocorrelation kernel spawns 𝑛 threads, broken up into blocks so as to maximize

warp efficiency. Each thread runs an autocorrelation loop over 𝑁 symbols, where 𝑁

is the length of the FAS, requiring 𝑁 multiplications and additions, ignoring the

non-pulse slots as the frame synchronization occurs after the slot synchronization,

assuming the slot clock is accurately aligned as to reduce complexity by ignoring
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non-pulse slots. The max search is the same as in slot synchronization.

Frame synchronization also happens at similar speeds to slot synchronization, as

can be seen in Table 4.2, and the complexity reduction used does not increase error

probability since slot sync is done optimally beforehand [36].

Table 4.2: Frame Synchronization Performance, M = 16, n = 3000, N = 17 averaged
over 30 runs

Processing Time Data Rate GPU Occupancy
Kernel (microseconds) (Gbps) (percentage)

Autocorrelation Frame Offset 13.4 0.895 50
Max Search Frame 7.8 1.58 100

Total 21.2 0.566

4.3 LLR Generation

LLR generation calculates an LLR for each slot of the received signal, removing the

guard slots in the process. It therefore needs to do 𝑛 *𝑀 LLR calculations, where 𝑛

is the codeword length in PPM symbols, and 𝑀 is the PPM order. For the LLR, the

log-likelihood a slot is a signal pulse is calculated, and then divided by the summed

log-likelihoods the other slots in this PPM symbol are not a signal pulse. To do this

effectively in parallel, 𝑛 * 𝑀 threads are launched, with each thread responsible for

one slot and calculating the log-likelihood of the slot being a signal pulse and the

log-likelihood of the slot not being a signal pulse. The threads are then synced, and

each thread sums the log-likelihoods the other slots in the PPM symbol are not signal

pulses and divides the log-likelihood the slot is a signal pulse by this sum to get the

LLR.

The kernel block size can be made into a multiple of 32 (the warp size) without

excess computational overhead for indexing, as is the case in frame sync and slot

sync where the guard times make it challenging to concisely index PPM symbols in

multiples of 32. This means the LLR generation reaches 100 percent GPU occupancy

as seen in 4.3. It also keeps the computational burden at similar throughputs as frame

and slot sync.
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Table 4.3: LLR Generation Performance, M = 16, n = 3000, averaged over 30 runs
Processing Time Data Rate GPU Occupancy

Kernel (microseconds) (Gbps) (percentage)
LLR Generation 16.1 0.745 100

4.4 Decoding

Decoding breaks down into four kernels, with the results shown in Table 4.4. The

check node calculation kernel most intensive as expected

Table 4.4: Decoding Performance, M = 16, n = 3000, averaged over 30 runs
Processing Time Data Rate GPU Occupancy

Kernel (microseconds) (Gbps) (percentage)
Check Node Calculation 32.3 0.371 50
Bit Node Calculation 20.2 0.594 50

Bit Node Send 21.1 0.568 50
Check Node Send 22.2 0.540 50

Total 95.8 0.125 50
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Chapter 5

Summary

5.1 Conclusions

It has been shown that using a typical GPU found in a modern laptop, the signal

processing chain for lasercom receivers can be performed to support current lasercom

data rate requirements for small satellites while reducing the complexity of electronics

and programming needed. In order to do this, only the forward error correction

scheme had to be changed from current methods used in lasercom systems. LDPC-

PPM, the FEC scheme used in this thesis, is able to arbitrarily approach capacity

in the same way SCPPM is, but lends itself to a higher degree of parallel decoding,

meaning theoretical performance is not sacrificed to achieve lower complexity parallel

decoding as seen in Section 3.4. It also means it will be able to scale more effectively

than SCPPM as GPUs add more parallel processors, which will be necessary in future

lasercom systems trying to scale to hundreds of Gbps.

5.2 Future Work

This thesis only analyzes shorter block length LDPC codes. There should be no

problem scaling the decoding implementation to longer block lengths, but further

investigation is required to verify the performance can compete with SCPPM in the

low photon regime of deep space links. Additionally, LDPC codes have been shown to
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work well in both high rate and low rate scenarios, meaning they can be used for both

small satellite LEO missions as well as deep space missions. To fully take advantage

of LDPC codes, variable rate coding architectures could be used, offering increased

flexibility to lasercom systems. Further improvements to the decoding algorithm

could be made as well, with more analysis on how many LLRs need to be kept, and

how to best approximate the check node calculations.

GPUs have only recently become popular as general purpose computing platforms,

and as a result, their use in embedded systems for communications has been minimal.

Developing and testing flight computers which include NVIDIA SoCs with GPUs on

them is another area for future work, which will require identifying failure modes

of GPUs in the space environment and doing radiation testing to find their limits.

There are additional benefits outside of lasercom for implementing GPUs as flight

computers, as GPUs can enable small satellites to perform a wider variety of tasks in

image processing [4] and possibly allow them to employ machine learning algorithms

on orbit.
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