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INTRODUCTION 

Previous in vivo studies have demonstrated profound increases in plasma 

catecholamines (CA) in response to intravenous administration of bacterial endotoxin [1, 

2, 3, 4]. Additional evidence suggests that such changes are due to non-neurogenic as 

well as an enhanced neurogenic release of epinephrine (Epi) from the adrenal medulla 

[5, 6, 7]. These reports imply that in response to septic insult, mechanisms appear to 

be activated to cause enhanced release of medullary catecholamines and thus, elevate the 

functional sympathetic output. 

The immune system is at the forefront of whole animal defense mechanisms that 

are mobilized against septic challenge. One of the key immune responses to endotoxin 

is the production of cytokines, a class of inducible, water-soluble, heterogeneous 

proteinaceous mediators with molecular weights above 5000 kD. Cytokines are secreted 

mainly by cells of the mononuclear phagocyte system. Interleukin-I (IL-1), Tumor 

Necrosis Factor (TNF), Interleukin-6 (IL-6) and some others are all known to be 

produced following the i. v. administration of bacterial endotoxin in experimental animals 

[8, 9]. Furthermore, the immune and neuroendocrine systems appear to communicate 

with each other by common signal molecules (i.e. cytokines) and receptors [10]. A 

growing body of evidence has shown that cytokines can act on neuroendocrine tissues, 

such as some areas of hypothalamus, pituitary, and adrenal cortex, etc [11, 12, 13]. 

The present study was designed to examine the possibility that the molecules (e.g. 

cytokines) produced by activated immunocompetent cells, are capable of modulating 

catecholamine secretion from chromaffin cells. To test this possibility, in vitro 
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experimental systems were used. Isolated bovine splenocytes were stimulated with 

mitogen to obtain cytokine-rich media which was then tested on the primary culture of 

bovine chromaffin cells (BCC). The experimental approach included three steps: 1) 

characterizing the chromaffin cell model in terms of functional changes (i.e. secretion) 

over days in culture; 2) using conditioned media, obtained from mitogen-stimulated 

bovine splenocyte culture, to demonstrate the possible role played by cytokines in 

modulating chromaffin cell secretion; and 3) examining whether the catecholamine 

release, induced by the conditioned media, is due to elevated exocytotic activity or 

damage of the cell membrane. 

The results of this study demonstrate that immune-derived products from mitogen

activated splenocytes stimulate CA secretion from cultured BCC and enhance the 

nicotinic agonist induced release. This CA release does not appear to be related to cell 

membrane damage. 



REVIEW OF THE RELATED LITERATURE 

I. Sympathetic Activation in Septic Shock. 

Sympathetic hyperactivity has been implicated in the pathogenesis of endotoxin 

(ET) shock [14]. In experimental models of ET shock, increased circulating 

catecholamines (CA) [1, 2, 3, 4], increased norepinephrine (NE) turnover rate in heart 

and spleen tissues [15] and depletion of CA content in sympathetically innervated organs 

at the end stage of shock [16, 17, 18] have been demonstrated. These findings are 

interpreted as evidence for increased CA release from both sympathetic nerve terminals 

and the adrenal medulla, and are considered to be directly related to increased 

sympathetic nerve activity from the central nervous system. Recent studies, however, 

suggest the existence of non-neurogenic stimulation of adrenal CA release following ET 

administration. In conscious adrenal denervated animals, plasma epinephrine (Epi) was 

elevated at 90 min post ET, although the amplitude was about one third of that observed 

in control rats given ET [6]. In addition, other experiments have shown that ganglionic 

blockade could not prevent the stimulation of adrenomedullary secretion during 

endotoxicosis [5]. In vitro incubation of adrenal chromaffin cells with endotoxin or 

endotoxin-elaborated agents, such as bradykinin, histamine and prostaglandins, resulted 

in CA secretion [19, 10, 21, 22]. These findings imply that adrenal CA secretion may 

be due in part to non-neurogenic mechanism. The cellular mechanisms mediating this 

non-neurogenic CA efflux remain largely unexplored. 

A wide range of responses occur when ET interacts with mammalian host 

3 
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defenses. In an older view, histamine, arachidonic acid metabolites and vasoactive 

peptides have been considered to be major mediators responsible for various 

pathophysiologic responses during endotoxin shock [23]. In addition, it has been 

generally accepted that circulatory hypodynamic responses to ET activate autonomic 

reflex adjustments with a concomitant increase in CA release from adrenal glands [23]. 

This response would tend to compensate for the early hypotensive effects of ET and 

improve perfusion pressure and circulation to vital organs. The efflux of CA, especially 

Epi, from adrenal medulla may be caused not only by the acceleration of efferent impulse 

traffic over sympathetic nerve pathways but also by the direct interaction of certain 

humeral factors with medullary chromaffin cells. The influence of humeral factors is 

supported by the presence of various receptors on bovine chromaffin cell membrane. 

Besides the nicotinic and muscarinic receptors, chromaffin cells possess histamine Hl, 

prostaglandin E-2 (PGE2), vasoactive intestinal peptide (VIP), angiotensin II, atrial 

natriuretic peptide (ANP), bradykinin, endothelin, insulin-like growth factor 1 (IGFl) and 

ATP receptors, which have stimulatory effect on CA secretion upon binding to their 

agonists [24]. Therefore, ET-elaborated factors such as histamine, PG and some 

vasoactive peptides may play a role in non-neurogenic CA secretion from adrenal 

medulla in the course of developing septic shock. 

II. Cytokines as the Mediators of Septic Shock. 

The diverse spectrum of mediators elicited by ET leads to the complexity of 

biological responses [25]. Many effects of ET apparently result from its interaction with 

various components of host immune system. In particular, immune-derived cytokines 



5 

have attracted much attention in studies of the pathogenesis of gram-negative bacterial 

infection. Cytokines are a heterogeneous group of peptides that help sustain, amplify and 

regulate the cellular immune and inflammatory response to local infection [26]. They 

have endocrine, paracrine and autocrine roles in the inflammatory response and mediate 

changes that resemble aspects of the sepsis syndrome [27]. Monocytes release cytokines 

in response to appropriate stimuli, and the hormone-like secretory products diffuse to 

target cells, affecting their cellular activity. When the target cell is in the immediate 

vicinity, a paracrine function is invoked, whereas when the target cell is reached via the 

blood stream, the function becomes endocrine. At certain concentrations cytokine actions 

are protective, but their overproduction can cause deleterious changes in organs or 

tissues, in some cases resulting in death. Cytokines function as endogenous mediators 

of immunological, metabolic and physiological alterations during bacterial infections, 

which include inflammatory response, fever, metabolic and vascular changes, increased 

energy expenditure, anorexia and shock. Although the precise knowledge of the initial 

biochemical events after the bacterial invasion is not well established, much new 

information has emerged in the past five years. 

A. Induction of Cytokine Expression by LPS. 

The expression of cytokines appears to be tightly regulated. Little transcription 

of the cytokine genes takes place under normal conditions. A specific stimulus, bacterial 

or viral insult for instance, is usually required for induction of cytokine genes. 

Endotoxin, a component of the gram-negative bacterial cell wall, is composed of a 

polysaccharide portion and a lipid moiety called lipid A, and is generally referred to as 
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lipopolysaccharide (LPS). Biological analysis of the synthesized compounds has 

confirmed that lipid A is the active center of LPS [28]. Due to its amphipathic nature, 

LPS is able to interact with mammalian cell membrane nonspecifically by imbedding 

itself into phospholipid bilayer. Although such nonspecific interaction has been 

documented with a variety of cell types, the actual relevance to the cellular response 

remains to be determined. There is now strong experimental evidence to support the 

concept that specific receptors for lipid A do exist and are functional on mammalian 

lymphoreticular cells. For example, LPS of E. coli is able to stimulate TNF secretion 

from macrophages, while the nontoxic LPS of Rhodoppseudomonas sphaeroides was 

shown to block this production in a concentration-dependent manner [29]. Since the 

structure of lipid A from the nontoxic LPS is quite similar to that of its counterpart of 

E. coli LPS, the action of the non-toxic LPS is most likely explained by competitive 

binding to the specific receptors for lipid A. Similar phenomena were also observed in 

human monocytes [30] and neutrophils [31]. 

Morrison and colleagues have used a cross-linking approach to identify potential 

LPS receptors [32]. CD14, a 55-kD glycoprotein held on the mononuclear cells surface 

by a phosphotidylinostiol glycan anchor, has been identified as a receptor for LPS [33]. 

In fact, this receptor was able to recognize LPS only if it was complexed to LPS-binding 

protein (LBP) [33]. LBP is a serum protein synthesized in liver as an acute phase 

reactant [34]. LBP serves as an opsonin by binding stably to gram-negative bacteria 

[35]. The ligated CD14 may trigger the synthesis and secretion of cytokines including 

TNFa and IL-1 [36, 27]. The signal transduction pathway coupling stimulus-secretion 
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is unclear. It has been suggested that microtubule-associated protein may be involved, 

because taxol, a microtubule-disturbing agent could mimic cellular responses to LPS 

[37]. It is conceivable that LPS could affect the cell function by altering the activities 

of microtubule-associated kinases or phosphatases. 

TNFa and IL-1 are produced in the early phases of sepsis [38]. IL-1 can regulate 

T cells and induces the production of IL-2 [39]. BothTNFa and IL-1 are able to induce 

the expression of IL-6 in monocytes, endothelial cells and fibroblasts [38, 40]. Despite 

the fact that TNFa, IL-1 and IL-6 are predominant in sepsis, other cytokines such as IL-

8 and interferons (IFN) are also released as a sequel to endotoxemia [41, 42]. IFN-y is 

produced by lymphocytes following antigenic or mitogenic stimulation. 

Monocytes/macrophages are involved in the induction of IFN-y synthesis via IL-1. IL-1 

probably stimulates T-cell IL-2 secretion, and IL-2 may in turn induce IFN-y release [43]. 

Mice infected with Gram-negative bacterial exhibited a transient increase if IFN-y in 

plasma between 2-4 days after infection. Spleen cells explanted from infected mice 

produced in vitro IFN-y spontaneously; this production was enhanced considerably by 

LPS or concanavalin A [44]. 

B. Cytokine Mediated Responses in Endotoxicosis. 

TNFa, originally named cachectin, is a primary mediator in the pathogenesis of 

infection [27, 45]. Studies of genetic tolerance to endotoxins led to the identification of 

macrophage products as mediators of the physiological in response to bacterial infection. 

Monocytes from the C3H/HeJ strain of mice are not responsive to several bacterial 

endotoxins [46]. Their non-responsiveness results from a defect in LPS-mediated 
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activation of their macrophages. Macrophages isolated from LPS-resistant mice do not 

produce TNFa in response to LPS, while those from LPS responders exhibit high levels 

of TNFa secretion [47]. When serum from an endotoxin-sensitive mouse (C3H/HeN 

strain) is injected into a resistant mouse, it reproduces the changes induced in the 

sensitive mouse by endotoxin [48]. This observation led to the identification and later 

isolation of cachectin [ 49]. Experimental administration of bacterial endotoxin to human 

volunteers leads to a marked increase of TNFa in the plasma at 90 minutes [8]. the 

extent of symptoms, changes in white cells count, and production of ACTH were 

temporally related to the peak concentration of TNFa. Infusion of recombinant human 

TNFa into experimental animals produces effects similar to those manifested in Gram

negative sepsis [50]. Elevated plasma catecholamines have been observed as one of the 

evident responses to i.v. injection of TNFa in rats [51], indicating that the 

neuroendocrine function of sympathetic nerve and adrenal gland may be affected by TNF 

or TNF associated events. Passive immunization with various anti-TNFa antibodies 

protects the host from deleterious effects of both lethal and sublethal doses on endotoxin 

[52]. These results illustrate that TNFa is an important mediator of pathophysiological 

alterations characteristic of sepsis syndrome. Although antibodies against TNFa reduce 

its effect, they do not completely abrogate the alterations induced by endotoxin [52]. 

This suggests that other endogenous factors may be involved. 

TNFa can induce the production of IL-1 and vice versa; thus using in vivo 

experimental models, it is impossible to determine whether the actions of TNFa or IL-1 

are primary or secondary [53]. IL-1, which has many biological activities similar to 
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TNFa, has been shown to induce a shock-like state in synergism with TNF in rabbits 

[54]. The two classic activities associated with IL-1 are fever production and lymphocyte 

activation, which have been confirmed by using a well-defined recombinant form of 

human IL-1 [55]. Other activities include promoting coagulation and enhancing the 

hepatic production of acute phase proteins [25]. 

Another important inductor of the acute phase _protein synthesis is IL-6, which is 

closely related to the inflammatory response. In the lethal baboon E. coli shock model, 

IL-6 was detectable within two hours post bacterial infusion, and steadily increased 

during the first 8 hours [56]. In patients with meningococcal infections, IL-6 levels have 

been associated with fatality [57]. 

Other cytokines, such as IFN')' and IL-8, were also detected in severe septic states 

[38, 9], but their exact roles are unclarified. Macrophages from rats pretreated in vivo 

with recombinant IFNI', released higher amounts of TNFa in response to LPS than the 

control group did [58]. IL-1 expression induced by ET was also subject to the 

modification of IFN')'. LPS stimulated about a four-fold increase in IL-1 mRNA in the 

human monocyte cell line preincubated with IFNI' [59]. These results provide evidence 

that IFN')' may be involved in the development of septic syndromes at least through its 

action on macrophages. Collectively, cytokines play a key role in gram-negative sepsis 

or shock and they are part of the immune response in all vertebrates [38, 6]. 

C. Cellular Mechanisms of Cytokine Actions. 

Cytokines, like hormones, exercise their effects at extremely low concentrations 

via cell receptors [43]. An individual cytokine interacts in a highly specific manner with 
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its cell receptor. All cytokine receptors are transmembrane glycoproteins made up of an 

extracellular amino-terminal ligand binding domain, a short hydrophobic transmembrane 

region and a carboxy-terminal intracellular domain. Signal transmission across the 

plasma membrane to activate the functional domain of the receptor is poorly understood. 

The means by which cytokine-receptor interact with intracellular signalling pathways also 

remain to be elucidated. However, there is experimental work that strongly implicates 

the requirement for calcium ions, high-energy nucleotide intermediates (e.g. GTP, cAMP 

and phospholipid derivatives, etc.) and protein kinases and phosphatases in the 

transmitting process [61, 62]. At present, at least two signal transduction pathways have 

been described that appear to be related to hormone- or cytokine-mediated cell responses 

[60]. One of these involves G-protein, adenylate cyclase, protein kinase A and 

calmodulin. In the other pathway, the receptor molecules themselves contain a tyrosine 

kinase which, when activated, subsequently stimulates phospholipase C (PLC), possibly 

also through G protein intermediates. Plasma membrane inositol phospholipids are then 

broken down by PLC into inositol triphosphate and diacylglycerol which are active 

intermediates for intracellular Ca2+ release and protein kinase C (PKC) activation, 

respectively. PKC has a number of potential protein substrates, thus it can alter many 

intracellular functions. 

Intracellular events associated with the binding of TNFa to its receptor include 

the phosphorylation of tyrosine residues on a stress protein [63] and on the epidermal 

growth factor receptor [64]. Protein phosphorylation suggests an early effect on protein 

kinases involved in signal transduction. A transient increase in cAMP after the activation 
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of both TNFa and IL-1 receptors [65] has been reported. The interaction of IL-6 with 

its receptor has not been found to induce any known conventional biochemical processes, 

such as protein phosphorylation, phosphatidylinositol turnover or intracellular Ca2 + 

increase. A novel transducer protein may be involved in the event immediately after 

ligand-binding [66]. 

IFN')' receptors are single chain glycoproteins _that bind ligand with high affinity 

in a species specific manner [67]. There appears to be only a single type of IFN')' 

receptor that is expressed on nearly all cell types. Considerable data indicates that IFN')' 

induces cellular responses via Ca2+ and possible protein kinase C-dependent mechanisms 

[68, 69, 70]. Exposure of murine and human macrophage populations to the combination 

of a protein kinase C activator and a calcium ionophore leads to the induction of many 

of the same cellular responses as are induced by IFN')'. Calcium influx has also been 

observed on cells exposed to IFN')' with 45CaC12 [70]. An inhibitor of intracellular Ca2+ 

release from endoplasmic reticulum was not able to block the cell response to IFN')', 

while depletion of calcium from culture medium by EGT A could. These results suggest 

an existence of receptor-mediated calcium channel. 

ID. Neuroendocrine-immune Interactions. 

From research conducted over the past 10 years, complex interrelationships 

among neural, endocrine and immune processes have become apparent [10]. 

Neuroendocrine and immune systems are intimately linked and communicate with each 

other through the use of common signal molecules and receptors [71]. During the course 

of an immune response hormonal changes occur [72]. Conversely, the activation of the 
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neuroendocrine system during stress leads to changes in immune function, such as 

inhibition of the production and action of several cytokines [73, 74]. These findings 

provide the basis for the interesting concept that the immune system may serve as a 

sensory organ [11, 75], which recognize non-self or altered-self antigens. The 

recognition of such stimuli is consequently converted into the form of cytokines and other 

messengers which can be received by neuroendocrine_tissues [76] and thus, to induce an 

integrative reaction. 

Corticotropin (ACTH) was the first de novo synthesized hormone to be found in 

the immune system by J.E. Blalock, et al. [77]. ACTH is a 39-amino acid peptide 

whose production is primarily associated with the pituitary gland and whose classical 

action is to elicit a glucocorticoid response from the adrenal cortex during times of stress. 

Human peripheral blood lymphocytes and mouse spleen cells were initially observed to 

express an ACTH-like peptide following virus infection or interaction with bacterial LPS 

[42, 78]. Consistent with this observation has been the work of Besedovsky and 

colleagues. They found that blood levels of glucocorticoids increase at the time of peak 

immune response to several antigens [72]. Similar to that observed in immunized 

animals, injection of lymphokine-containing supernatants from concanavalin A-activated 

spleen cells could mimic the events occurring after antigen injection [79]. Such increases 

were attributed in part to IL-1 [13, 80] and IL-2 [81] instead of immune-derived ACTH

like peptide. As soon as cytokines became available in pure form, they were tested 

individually. Intraperitoneal administration of recombinant IL-1 in rats elicited an 

increased CRF ( corticotropin releasing factor) secretion and a slight elevation of plasma 
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Epi and NE levels [13]. IL-1 may work at any level of the hypothalamo-pituitary-adrenal 

(HP A) axis. Although it is clear that IL-1 induced HPA activation involves an increased 

secretion of CRF from hypothalamus [82, 83, 84], effects of IL-1 on hormone release 

from pituitary [85, 86] and adrenal cortex [87, 88] have also been demonstrated. 

Besides IL-1, such cytokines as IL-2, IL-6 and TNF were also found to activate 

the HPA [89, 90, 91, 92], but they are less potent and less persistent [12]. IL-6 and 

ACTH have been demonstrated to act synergistically to stimulate the release of 

corticosterone from adrenal gland cells [93] in culture. These observations clearly 

illustrate that cytokines play an important role in mediating immune-neuroendocrine 

communication. 

Unlike classical hormones whose receptors are generally restricted in certain 

tissues, cytokine receptors can be found in virtually all cell types [61]. Specific anti

interleukin receptor monoclonal antibodies can block the behavioral, brain electrical 

activity and body temperature changes induced by microinfusion of IL-1, IL-2 and IL-3 

in the rat brain [94]. Therefore, these interleukin-caused effects are most likely receptor

mediated. Recent studies with radiolabeled IL-1 have shown that there are high-affinity 

binding sites for IL-1 in certain areas of rodent brain [95, 96, 97]. IL-2 receptors have 

been identified in human brain under pathological conditions [98]. The expression of IL-

2 receptors on pituitary cells was also detected by the monoclonal antibody-binding and 

by electrophoretic analysis [99]. Structurally, the interferons (IFNs) resemble 

glycoprotein hormones both in composition and approximate size [100]. Virtually all 

nucleated cells within a species are sensitive to that species IFN and presumably possess 
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IFN receptors [101]. Collectively, the presence of interleukins receptors in the CNS and 

pituitary [102 , 103, 104, 105] is supportive evidence for the communicative role of 

cytokines between neuroendocrine and immune systems. Since the adrenal medulla is 

of neural crest origin, expression of cytokine receptors on medullary chromaffin cells is 

quite likely. 

IV. Possible Role of Cytokines in the CA Secretion from Adrenal Medulla. 

The existence of signals originating from the immune system to bring about 

neuroendocrine response has only recently begun to be evaluated. No work has been 

reported that examines the potential action of cytokines to influence adrenal medullary 

CA secretion. One single report indicates that IL-1 stimulated corticosterone release 

occurs through the local CA outflow from the rat adrenal gland (A.R.Gwosdow, et al. 

Abstract, FASEB meeting 1992). This work suggests that IL-1 can cause CA secretion 

from chromaffin cells. In contrast, numerous investigations have been conducted to 

assess the impact of CA on immunological activities [10]. Spengler, et al. (1990) have 

demonstrated that a-2 adrenergic agonist can augment LPS-stimulated TNF from elicited 

macrophage [106]. The increase in TNF production was concentration-dependent. The 

presence of a macrophage a-adrenergic receptor was detected by binding of the specific 

antagonist 3H-yohimbine. These investigations reveal the role of CA that may regulate 

cytokine production during an inflammatory response. Conversely, cytokines may carry 

messages in the opposite direction by acting on the sympathoadrenal system. 

Receptors for growth hormone share large degree of homology with cytokine 

receptors, especially within the extracellular sequence [107]. IGFl (Insulin-like growth 
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factor 1) receptor is present on bovine chromaffin cells [108]. It is possible that 

cytokines may influence the secretion of adrenal chromaffin cells through either IGFl 

receptors or more specifically through cytokine receptors if they were actually there. 

The complete signaling loop between immune and sympathoadrenal systems is 

anticipated. There is evidence that the immune-HPA axis regulatory loop is not the only 

one involving cross system interactions [12]. The communicating circuit between the two 

systems might possibly be complemented by immune-derived products, cytokines for 

instance, acting on the sympathoadrenal end. 

Under physiological conditions, CA is contained in the membrane-bound vesicles 

beneath the plasma membrane and is released through exocytosis following nicotinic 

and/or muscarinic activation. Nicotinic stimulation results in the influx of cation through 

ion pore within the receptor itself which then depolarizes the cell. Voltage-dependent 

Na+ and Ca2+ channels are opened by depolarization. Exocytosis occurs immediately 

after the rise of [CA2+l due to Ca2+ entry and calcium-induced calcium release from 

internal stores. Muscarinic stimulation leads to the production of IP3 which mobilizes 

Ca2+ from intracellular Ca2+ pools. Calcium from IP3-sensitive pool does not appear to 

trigger exocytosis in most species. In resting cells, chromaffin granules are bound within 

a cytoskeletal matrix and are unable to reach the secretory sites. Cortical actin 

cytoskeleton plays a role in the control of exocytosis by acting as a barrier to secretory 

granule movement. Disassembly of the cytoskeleton net is necessary, but not sufficient, 

for a full secretory response. Calcium and/or protein kinase C are involved in bringing 

about actin disassembly/reorganization, but the exact mechanism is unclear. Several 
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actin-regulatory proteins that are possible targets for the action of Ca2+ and PKC are 

present in chromaffin cells. Calcium entry and the subsequent rise of [Ca2+]; is essential 

and sufficient for exocytosis, whereas PKC is able to modulate this process by 

controlling Ca2+ -sensitivity [24]. As aforementioned, the activation of cytok:ine receptors 

may be associated with increases of intracellular calcium levels and protein kinase C 

activity. Cytokines would be capable of activating the intracellular signals that lead to 

exocytosis if cytokine receptors existed on chromaffin cells. 

Cytok:ine production is a dramatic whole-body response when immune components 

are confronted with bacterial insult. Non-neurogenic CA output from adrenal medulla 

may be an important component of the sympathetic response to sepsis but mediators 

causing this release are unknown. Based on the knowledge reviewed above, cytok:ines 

may play a role in stimulating CA secretion of adrenal chromaffin cells. This thesis 

project examines this possibility through an initial set of experiments involving immune

derived factors that are applied to chromaffin cells in vitro. 



METHODS 

I. Bovine Chromaffin Cell Isolation and Culture. 

Adult bovine adrenal glands obtained from a local supplier are kept in room 

temperature buffer during transportation to the laboratory. Glands are trimmed of fat and 

rinsed through the adrenal vein with Ca2 + - and Mg2+ -free buffer to remove all blood. 

Cell isolation is achieved by 0.17% collagenase P (Boehringer Mannheim Biochemicals) 

digestion (basic procedure by Fenwick et al [109], modified by Greenberg and Zinder 

[110]). Three to five milliliters of freshly prepared collagenase solution is infused 

through the adrenal vein followed by incubation of the gland in additional collagenase at 

37 °C for 15 min. This step is repeated. The gland is then cut in half sagittally and the 

medullary contents are removed with forceps, minced and rinsed through 200 µm nylon 

mesh with additional buffer. The isolated cells are rinsed to remove collagenase and 

saved in buffer at 37 °C. Tissue remaining on the mesh is incubated for 30 min with 

additional collagenase containing DNAse followed by filtration through clean mesh and 

removal of collagenase. All chromaffin cells are combined and layered onto a 1: 1 

mixture of complete Lockes solution and fetal calf serum for density gradient 

centrifugation [111]. Following low speed (50 x g) centrifugation, cells are resuspended 

in complete Lockes solution and the density purification repeated. Determination of 

viability and purity is achieved by using trypan blue exclusion and neutral red staining, 

respectively. Cells are counted in a hemacytometer. 

Cells are plated on collagen-coated 24-well plates at a density of 6 x 105 cells per 

17 
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2 cm2 in 1 ml culture media. The media contains a 1: 1 mixture of Dulbecco's modified 

Eagle medium and F12 supplemented by 10% fetal calf serum, 9 mM HEPES, 3.2 mM 

glucose, 2 mM glutamine, 100 µg/ml penicillin G, 20 µg/ml gentamicin, 50 U/ml 

nystatin, 2.4 µg/ml 5-FDU and 2.8 µg/ml Ara-C. The media is changed the next day and 

then every other day. Cells are maintained at 37 °C in a humidified atmosphere 

containing 5 % C02• 

Il. Preparation of Conditioned Media. 

1) Isolation of bovine spleen cells: 

Bovine spleen is obtained from a local supplier and brought to the laboratory at 

room temperature. Several tissue pieces are excised from interior of the organ. Cells are 

dispersed by pushing them through a 520 µm stainless steel mesh in Hank's solution with 

a plunger from 30 ml syringe. The cell suspension is diluted with Hank's, layered over 

a Lymphocyte Separation Medium (LSM, Ficoll, Organon Teknika), and centrifuged at 

400 x g for 30 min. Lymphocytes and other mononuclear cells (platelets and monocytes) 

move to the Hank's-LSM interface, and are then recovered by aspirating the layer. The 

recovered cells are washed twice in Hank's media and centrifuged at 210 x g for 10 min. 

The cells are finally resuspended in 10 ml RPMI 1640 culture media. 

2) PHA conditioned culture: 

The lymphocytes are cultured at a concentration of 1-2 x 106cells/ml in RPMI 

1640 supplemented with 10% FCS (heat inactivated), MEM non-essential amino acids, 

4 mM Glutamine, 50 U/ml penicillin, and 50 µg/ml streptomycin. They are incubated 

with or without 0.5 % phytohemagglutinin (PHA) for 24 hr in 5 % C02 atmosphere at 37 
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°C. The conditioned media is then separated from the cells and saved in -20 °C freezer 

for future experiments. 

m. Experimental Protocol. 

1l Functional Characterization: 

Chromaffin cells are maintained for 3 different periods (1, 4 and 8 days) prior to 

secretion experiments. Typically, serum containing media is discarded and replaced by 

Earle's balanced salts solution (EBSS) which is supplemented with 25 mM HEPES, 0.1 

mM EDTA and 1.8 mM Ca2+. Incubation in EBSS (0.5 ml/well) is maintained for 30 

min. at 37 °C, then the media is removed, chilled, centrifuged and acidified with HC104 

to a final concentration of 0.4 Mand 0.1 mM EDTA. The samples are kept at -70 °C 

for later determination of catecholamines. Catecholamine content in these samples 

represents spontaneous (corresponding to 'non-neurogenic' in vivo) release during the 30 

min. incubation period. Immediately following removal of EBSS, the cells are exposed 

to nicotinic agonist DMPP (dimethylphenylpiperazinium) at 0, 1, 5 or 10 µMin EBSS. 

After 10 min., the secretagogue-containing media is removed and processed as before. 

Each well is then flooded with 1.0 M HC104 with 0.1 mM EDTA and this is used to 

determine the remaining catecholamine content of the cells. 

2) Experiments with PHA conditioned media: 

The experiments are carried out 3 or 4 days after chromaffin cell isolation. 

(i) Effect of PHA conditioned media on CA secretion from BCC: BCC are incubated 

with supplemented RPMI 1640 either with or without addition of PHA, or splenocyte 

culture media either with or without PHA stimulation. After 90-min incubation, the 
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supernatants are removed and saved, and chromaffin cells are then exposed to 3 µM 

DMPP for 10 minutes in the presence of corresponding media used during previous 

incubation. 

(ii) Dose-dependent effect of PHA conditioned media: After removal of BCC culture 

media, the cells are incubated with different dilutions of conditioned media (1 :99, 1 :9, 

1:1 in supplemented RPMI 1640, and full strength) at 37 °C for 90 min. Samples are 

then collected and saved. Immediately after this incubation, cells are exposed to 3 µM 

DMPP for 10 min. DMPP is dissolved in the corresponding preincubation media. 

(iii) Time-dependent effect of PHA conditioned media: Cells are incubated with full 

strength conditioned extract for different times (10, 30, 60, 90, 150, 210 min) followed 

by 10 min DMPP stimulation at 3 µM. Supernatants are collected before and after DMPP 

stimulation. 

3) Test of Exocytotic Activity vs Leakiness: 

Chromaffin cells are incubated with PHA conditioned media, splenocyte culture 

media without PHA stimulation, fresh RPMI 1640 media with or without addition of 

PHA, DMPP (in RPMI 1640), or 20 µM Digitonin at 37 °C for 90 min. The 

supernatants are then collected and saved for LDH assay. Samples digitonin

permeabilized cells which leak LDH into the media are used as positive experimental 

control. 

All experiments of this project are conducted using triplicate samples for each 

condition, and repeated on at least 3 different chromaffin cell preparations. 

IV. Catecholamine Assay. 
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Secretion of epinephrine and norepinephrine is determined by HPLC with 

electrochemical detection. HPLC mobile phase consists of 0.1 M monochloroacetic acid, 

1 mM sodium octyl sulfate, 0.5 mM Nai-EDTA, and 1.5% acetonitrile at pH 3.0. The 

column is a 10 cm OSD Biophase II (BAS, West Lafayette, IN), and the working 

electrode is glassy carbon with a model LC-4B amperometric detector (BAS). Before the 

assay, the samples are filtered through nylon membrane with 0.22 µm pore size. 

V. Lactate Dehydrogenase Assay. 

LDH is measured by monitoring the formation of NADH from NAD at 340 nm with 

spectrophotometer. LDH was determined with the generous cooperation of Clinical 

Chemistry of LUMC. 

VI. Statistics. 

The basic test statistic used was an one-way analysis of variances (ANOVA). Significant 

differences indicated by ANOVA were followed by Newman-Kuels test for individual 

comparisons. 

Data from BCC characterization underwent transformation and was shown to be normally 

distributed. The effect of dose and time was tested with two-way ANOV A followed by 

Tucky's test for individual comparison. 



RESULTS 

I. Characterization of Isolated Bovine Chromafrm Cells in Primary Culture. 

The quality of bovine chromaffin cell (BCC) preparations was indicated by the 

viability and purity of the isolated cells (Table 1), which were detected with trypan blue 

exclusion and neutral red stain respectively. Typically, 50-100 million cells were 

harvested from one adrenal gland with the variation most likely linked to the gland size. 

The percentage of viable cells was consistently high (93 ± 2 %), while the purity ranged 

at 90-95 % in 15 out of 18 preparations. 

In order to characterize functional changes of cultured BCC over time, cultures 

were maintained for 1, 4 or 8 days before the secretion response to DMPP (nicotinic 

agonist) was tested. Cells were stimulated with 1, 5 and 10 µM DMPP for 10 minutes. 

In Figure 1, catecholamine (CA) secretion was expressed as the absolute amount from 

each well, containing 600,000 cells. Between 1-5 µM, there is over a five fold increase 

in response to the agonist. There was no significant increase of secretion when the dose 

was raised from 5 to 10 µM. At the level of 10 µM DMPP, saturation started to occur 

and was confirmed with higher concentrations (data not shown). There was significant 

interaction between dose (DMPP) and time (days in culture) effects for both Epi and NE 

secretion. This suggests that the culture duration influences the dose-response relation 

of nicotinic-mediated secretion. It appeared that the longer the cells had been cultured, 

the more responsive they were to nicotinic stimulation. The differences were apparent 

when comparisons were made between 8- or 4-day vs 1-day groups. Statistical analysis 

22 
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confirmed the differences with different culture durations at 1 µM DMPP for both Epi 

and NE secretion. The overall effect of culture duration on combined Epi and NE 

secretion irrespective to DMPP concentration were significant between 8- or 4-day vs 1-

day, though there was no interaction. This indicates that the curves of the combined Epi 

and NE secretion are shifted parallel to the left. 

To correct for the possible variations between BCC preparations and differences 

in the number of cells in different wells, catecholamine secretion from each well was 

normalized to its own total cellular content. In Figure 2, the percentage of total Epi, NE 

or both, released in response to DMPP, is displayed. The pattern of dose-response curves 

is very similar to that in Figure 1, while the apparent change across time appears more 

obvious. The overall effect of culture duration on percent CA secretion is significant 

between 8- or 4-day vs 1-day regardless of DMPP concentration. After BCC had been 

cultured for several days, 5 µM DMPP induced up to 17% secretion of NE and 12 % of 

Epi, whereas only 5-6 % was induced by 5 µM one day after isolation. The cells 

underwent a bigger change during the first four days in culture than they did in the 

second four days. Within the dose range examined, the maximal release evoked by 10 

µM DMPP was around 15% for epi and 20% for NE. 

Total cellular CA content are also compared between cells maintained in culture 

for varying durations (Figure 3). The total catecholamine content stores in each well 

decreased over time. Epi content counted for roughly 75 % of CA storage in chromaffin 

cells. The greatest decrease of Epi was seen during the initial four days (15 % of initial 

content) and there was a 20% drop after eight days in culture. Statistical differences in 
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TABLE 1 

SUMMARY OF BCC PREPARATIONS 

DATE 
HARVEST VIABILITY PURITY 
(106 cells) (%) (%) 

60 93.5 90 
517192 

48 96 94 

4/14/92 75 95 85 

3/30/92 80 95 91 

3123192 48.5 95.5 91.5 

319192 85 92 91.5 

2/27/92 100 91.6 73 

2/13/92 93.5 90.5 92.7 

213192 78 92 94.4 

33.4 93.5 90.6 
1123/92 

88.5 95 92 

1116/92 41 91 91 

12119/91 90 91.2 91 

12/5/91 61.8 94 83 

11/21191 61.6 89 89.6 

11114/91 20 93 92 

11/11191 110 98 94 

10/31191 90 90 95 

MEAN 93.3 91.7 

SD 2.28 4.18 

BCC: Bovine Chromaffin Cells 
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Figure 1. Changes in DMPP-mediated CA secretion over time in culture. BCC were 
exposed to 0, 1, 5 and 10 µM DMPP after 1, 4 or 8 days in culture. For each dosage, 
secretion was determined in triplicate wells. The same protocol was repeated with four 
different adrenal glands (N =4). The data points are means + SEM. Significant 
differences exist between 10 or 5 vs 1 µM DMPP in all plots (not marked). *, P < 0.05 
for 8- or 4-day vs 1-day at that dose. The overall means of Epi&NE secretion at 8- or 
4-day are significantly different from 1-day irrespective of DMPP concentration (P < 
0.05, not marked). 
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Figure 2. Changes in DMPP-mediated CA secretion over culture time. The secretion 
data shown in Fig-1 was normalized to the corresponding total cellular content, i.e., 
secretion was expressed as % of initial total. The overall means of 10 or 5 µM are 
significantly different from 1 µM irrespective of time (P < 0.05, not marked). The 
overall effect of culture duration is significant betwee 8- or 4-day vs 1-day irrespective 
of dose(#, P < 0.05). 
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Figure 3. Changes of cellular catecholamine content over time in culture. Total NE, 
Epi and combined NE&Epi contents were measured 1, 4 or 8 days after cell isolation. 
Values are Means + SEM. Four triplicate determinations were made in each of four 

BCC preparations (N=4). 
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Epi or combined Epi and NE could only be detected between 8- and 1-day. In general, 

total CA content was 13,000 - 16,000 ng/0.6 x 106 cells. Based on changes in the 

functional characteristics, all the following experiments were conducted on 3-5 days old 

BCC. 

II. Effect of the Culture Media from PHA-stimulated Splenocytes on CA Secretion 

Mononuclear cells, which include Band T lymphocytes, monocytes/macrophages 

and platelets, were isolated from bovine spleen and cultured in the presence (Stim

Extract) or absence (NonStim-Extract) of 0.5 % (v/v) FHA. After 24 hours, the culture 

supernatants were collected. Chromaffin cells, incubated with the FHA-conditioned 

media for 90 minutes, released over 20 % each of their Epi or NE content which is 4-5 

fold more than that of the control groups (Figure 4). In contrast to the secretory 

response to nicotinic agonist, this conditioned media induced slightly more Epi release 

than NE in terms of percent secretion. The FHA-conditioned media exerted its effect in 

a concentration-dependent manner (Figure 5). One to one dilution of the original 

supernatant induced a secretion response at about half of the maximal magnitude, which 

was still a statistically significant increase as compared to that of the group treated with 

non-stimulated extract. 

FHA-conditioned media not only caused the CA release of chromaffin cells, but 

also enhanced the secretion resulting from nicotinic activation. Immediately after the 

first 90-minute incubation with different media, the cells were exposed to DMPP. As 

demonstrated in Figure 6, 3 µM DMFF in control media brought about 3-4 % secretion 

of Epi or NE during a 10-minute incubation, while the same concentration of DMPP in 
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Figure 4. Effect of conditioned-media on CA secretion. After 3-5 days in culture, 
chromaffin cells were treated with supernatants from 24-hour splenocyte cultures with 
or without PHA stimulation, and fresh RPMI 1640 with or without addition of PHA. 
After 90 minutes, media was collected and saved for NE and Epi assay. Two spleen 
preparations (N =2) were tested with four BCC preparations (N =4). Each condition was 
performed in a triplicate. *, P < 0.05 compared to all the other groups. 
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Figure 5. Concentration-dependent effect of conditioned media on Epi secretion. 
Different dilutions of PHA-conditioned media were tested on chromaffin cells with 90-
min incubation. The concentrations were 1:99 (0.01), 1:9 (0.1), 1:1 (0.5) and full 
strength (1.0). *, P < 0.05 fort-test comparison between Stirn- vs NonStim- Extract. 
#, P < 0.05 for individual comparisons following ANOVA of Stim-Extr across dilutions; 
marked points are significantly different from those at any other dilutions. Two 
splenocyte (N =2) and four BCC (N =4) preparations were used. Triplicate 
determinations for each condition. 
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Figure 6. Effect of conditioned media on DMPP-mediated CA secretion. Immediately 
following the 90-min incubation with various media, chromaffi.n cells were stimulated 
with 3 µM DMPP in the presence of corresponding incubation media for 10 minutes. CA 
secretion from cells treated with PHA conditioned media was significantly enhanced in 
comparison to all the others (*P < 0. 05). 
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Figure 7. Concentration-dependent effect of conditioned media on DMPP-induced Bpi 
secretion. Following 90-min exposure to different dilutions of conditioned media, Bpi 
secretion in response to 3 µM DMPP were examined in the presence of corresponding 
different dilutions of conditioned media. *, P < 0.05, t-test comparison between Non
Stim and Stirn Extracts at each dilution.#, P < 0.05 for individual comparison following 
ANOVA of Stim-Extr across dilutions; significant differences are present between 1.0 
or 0.5 vs 0.1 or 0.01. 
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the presence of PHA-conditioned media doubled the release. This enhancement of 

DMPP-stimulated secretion was also concentration-dependent (Figure 7). Statistical 

differences across different dilutions of conditioned media occurred between any two 

concentrations except between 0.1 vs 0.01. 

Figure 8 contains the results of the time course of Epi secretion in response to 

PHA-conditioned extract. Six different incubation times ranging from 10 to 210 minutes 

were examined. Within the first 60 minutes, Epi was released to the media at a higher 

rate than that during the later phase. There was a transient plateau between 60 to 90 

minutes, then chromaffin cells continued to secrete at a relatively constant rate during the 

2 hours after the initial 90-minute period. NE secretion also followed the similar pattern 

(data not shown). At the end of 210-minute, up to 30% of the cellular Epi storage was 

secreted. To examine if pre-incubation duration effects the DMPP evoked secretion, the 

chromaffin cells were stimulated with 3 µM DMPP in the presence of conditioned media 

after they had been incubated for various times as described above. No matter how long 

the cells were pretreated with the extract of PHA activated splenocytes, the following 

DMPP stimulation was not affected. 

Results of the nine splenocyte preparations are summarized in Table 2. The 

potency of the conditioned media from these mitogen-stimulated cells was variable. Four 

preparations were relatively more potent than the others in terms of their ability to cause 

CA release. The difference in CA response between extracts from the cultures with or 

without PHA stimulation was demonstrated in only one of the spleen preparations. 



30 

25+ 

20 

15 ~ 

10 ~ 

5 

TIME DEPENDENT EFFECT 
OF PHA CONDITIONED MEDIA 

O-t-~-+~~-+-~~+-~-1-~~-+-~~1--~--+~----I 

0 30 60 90 120 150 180 210 240 
Time of incubation with CM (min) 

34 

Figure 8. Time course of the effect of PHA CM on Epi secretion. Different times of 
chromaffin cell incubation with PHA CM were followed by 3 µM DMPP stimulation for 
10-min. Statistical differences exist between any two data points except between 90' and 
60' (P < 0.05, not marked). Triplicate determinations. BCC, N=5; spleen, N=4. 
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RESPONSE OF BCC TO CONDmONED MEDIA 

DATE 
(spleen Viability Purity Age 90' secretion 10' 3uM DMPP 

preparation) (%) (%) (day) 

Non-Stirn. PHA-Stim. Non-Stirn. PHA-Stim. 

1st. 98 94 l 11.2 5.5* 

4 10.4 5.2* 

2nd. 89 89.6 l 7.8 8.4 4.7• 4.3* 

3rd. 94 83.5 l 13 10 

4 16.3 15.3 

4th. 90 91 l 8.5 7.6 4.5• 4.7* 

12113/91 

4 11 11.3 7.3* 5.9* 

5th. 91 91 4 5.7 20.l 3.3 6.1 

112/92 

93.5 91 3 5.1 18.3 3.3 4.5 

95 92 4 5.9 18.9 3.4 6.3 

92 94.4 4 16.6 6.7 

90.5 92.7 4 4.1 12.l 3.3 5.4 

6th. 91.6 73 3 8.0 7.1 3.6 3.5 

2/20/92 

4 7.0 6.3 4.3 4.0 

7th. 92 91.5 3 6.5 5.0 4.6 4.4 

8th. 5 16.9 16.7(M) 4.4 4.0(M) 

3/13/92 

21.S(W) 4.S(W) 

9th. 95 91 3 12.4(\V) 14.2 4.2 4.0 

3/30/92 

14.2 13.2 3.5 3.6 

13.8 14.3 8.1 6.1 

• : stimulation with 10 µM DMPP. 
M and W stand for two different preparations of supplimented RPM! 1640 medium, i.e., made by Dr. Matthews and Z. Wang 
respectively. 2-ME is 2-mercaptoethanol. l-2FCS is the fetal calf serum used on Jan 2, 1992. 
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Figure 9. LDH in BCC media following incubation with splenocyte conditioned 
media. Chromaffin cells were incubated with PHA CM, fresh RPMI 1640 culture 
medium, 3 or 10 µM DMPP, and 20 µM Digitonin for 90 minutes. The supernatants 
were then collected for LDH assay. Each bar is mean ± SE. Triplicate determination for 
each treatment. PHA CM from four spleen preparations were tested on three BCC 
isolations. Six different combinations (N=6) of PHA CM and BCC were used for the 
group of PHA CM; N =3 for all the contols. *, significant difference compared to all the 
other groups at P < 0.05. 
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ID. Detection of Cell Membrane Integrity by LDH Assay. 

Lactate dehydrogenase (LDH) normally exists in cytoplasm. LDH concentration 

in culture supernatant was estimated to confirm that the cells maintained their membrane 

integrity when they were exposed to different testing media. There was no real 

difference between the groups treated with lymphocyte culture medium, 3 or 10 µM 

DMPP and PHA conditioned splenocyte medium (Figure 9). Digitonin is a detergent that 

can render the cell membrane leaky to LDH and is applied as a positive control agent. 

Digitonin-treated cells released much more LDH than all the other groups. 



DISCUSSION 

The chromaffin cells of bovine origin (BCC) have been extensively used in the 

studies of endocrine mechanisms, neuronal function and basic cell biology of the 

secretory process [112, 113]. It is a particular advantage that they can be isolated in large 

quantities to provide a relatively homogeneous cell population. The primary culture of 

BCC can usually be maintained for up to 10 days, but the cells change morphologically 

and functionally during time in culture. Owing to this concern, functional 

characterization, especially of the secretory change with culture age, must be established 

prior to experiments with this in vitro model. 

In bovine species, nicotinic activation of chromaffin cells is the physiological 

stimulus leading to CA secretion, whereas muscarinic activation is not sufficient to 

trigger exocytosis [24, 114]. DMPP (Dimethylphynylpiperazinium), a synthetic nicotinic 

agonist, was used to mimic "neurogenic" secretion in vitro, because adrenal medullary 

CA output in vivo is mediated by nicotinic activation by acetylcholine, released from 

preganglionic nerve endings. The dose-response relationship was examined on BCC of 

four different adrenal glands. As the culture duration gets longer (1, 4 and 8 days), the 

secretory response seems to become larger for the same concentration range. Changes 

were more obvious in the first four days (Figures 1, 2). There are at least three possible 

explanations for this phenomenon. One is that membrane proteins of the chromaffin cells 

may be damaged by the collagenase digestion procedure of cell isolation. The initial 

increase in response to DMPP could be due to the recovery of nicotinic receptors on cell 
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membrane. The second explanation is that there is a functional shift from muscarinic- to 

nicotinic- cholinergic receptors during the primary culture of BCC. This finding has been 

reported by Nakaki et al [115] who observed that in less than 2 days of primary culture, 

muscarinic but not nicotinic stimulation leads to IP3 (inositol triphosphate) formation and 

calcium mobilization, whereas at periods longer than 4 days, the opposite occurs. 

Thirdly, the sensitivity to nicotinic agonist may be increased after a period of time of 

culture. This could be the result of an alteration in any event of stimulus-secretion 

coupling. Therefore, it is important that chromaffin cells be cultured for a consistent 

duration before secretion experiments are conducted, to ensure appropriate comparison. 

The CA content was indicated to decline over time in culture (Figure 3). Fifteen 

to 20 % reduction was observed after 4-8 days in culture. Epi content accounted for 

about 75 % of the total CA, and the Epi drop reflected a loss of apparent storage without 

any significant changes of NE content. Similar observations have been reported by other 

groups [114, 116]. This result may be interpreted in two ways: either by a selective death 

of Epi-storing cells or by a decrease of PNMT (phenylethanolamine N-methyltransferase) 

activity in former Epi synthesizing cells. Since the activity of PNMT is regulated by the 

pituitary-adrenocortical axis, it has been proposed that the lack of functioning adrenal 

cortical tissue in BCC cultures accounts for the decrease in Epi-forming capacity [114]. 

However, BCC treated with dexamethasone failed to alter cellular CA levels [117]. 

Glucocorticoids may have a permissive effect rather than a positive one, but the 

mechanism and the relevance of this phenomenon are poorly understood. In general, the 

characteristics of in vitro BCC model revealed in the present experiments are in good 
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agreement with the observations by other laboratories. These include the high viability 

and purity of the BCC preparations, the percentage of secretion in response to nicotinic 

agonist, and the change in expression of nicotinic vs muscarinic receptors with culture 

time. 

Studies with adrenal chromaffin cells in culture have been particularly valuable 

in elucidating postsynaptic events involved in stimulus-secretion coupling and in 

suggesting mechanisms that may operate in vivo to control secretion from adrenal 

medulla. Previous findings in whole animal models demonstrate the existence of non

neurogenic CA release in endotoxic states [5, 6]. Elucidation of potential mediators 

responsible for stimulating chromaffin cell secretion would be facilitated by using in vitro 

model systems. 

The objective of this project was to assess the role of immune-derived factors, 

such as cytokines, in mediating the CA secretion from adrenal chromaffin cells. The 

experimental approach to accomplish this goal involved the following: 

1) A potent inducer of cytokine production is needed to obtain a broad spectrum of 

cytokine. Phytohaemagglutinin (PHA), a mitogenic lectin from red kidney beans, is a 

widely used polyclonal stimulant of lymphocytes. PHA exerts its mitogenic effect through 

the induction of cytokines. In contrast to stimulation by antigens, in which specific clones 

of lymphocytes are activated, PHA can motivate multiple clones irrespective of their 

antigen specificity, so that the percentage of responding cells is 70-80 % of the 

lymphocyte population [118]. The activated cells release a variety of cytokines which 

have pleiotropic activity and are able to regulate cell growth and differentiation. IL-2 
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(originally known as T-cell growth factor) and IFN'Y are the best characterized among 

them. IL-2 is required for the proliferation of activated T cells [119]. Meanwhile, IL-2 

can result in the production of IFN1 in spleen cells [120]. TNFa is the main cytokine 

produced by IFN,,-activated macrophages [121]. In addition, activated-macrophages 

secrete IL-1, which is necessary for the production and release of IL-2 [122]. 

2) One easily obtainable source of immune cells from the same species as chromaffin 

cells is the bovine spleen. A mononuclear cell population, predominantly including B and 

T lymphocytes, monocytes/macrophages, and some platelets, was prepared from bovine 

spleen. After isolation, they were then stimulated with PHA and cultured for 24 hours. 

Cell proliferation is an indication of cytokine release because most of the cytokines are 

pleiotropic. The cell-free supernatant of this culture (referred as PHA-conditioned media) 

is considered to contain various cytokines and other soluble factors released by PHA

activated splenocytes. 

3) To determine the potential role of immune-derived factors, presumably cytokines, on 

CA secretion from adrenal medulla, the cytokine-rich supernatant was placed on bovine 

chromaffin cells in primary culture and CA secretion was measured. 

As illustrated in Figure 4, the PHA-conditioned media did affect CA secretion 

remarkably, with a 4-5 fold increase over the controls after 90 minutes. Not only did it 

stimulate CA release by its own, it also enhanced the nicotinic secretion (Figure 6). Both 

responses exhibited concentration-dependency (Figure 5, 7). However, the potency of the 

conditioned media was variable. Four out of nine splenocyte preparations were relatively 

more potent than the others in terms of their ability to cause CA release. The difference 
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in BCC secretary response between extracts from the cultures with or without PHA 

stimulation was demonstrated in only one of the spleen preparations. Several components 

of the lymphocytes culture medium, such as fetal calf serum, 2-mercaptoethanol and L

glutamine, which might have big influence on splenocyte culture, were ruled out. The 

other possibility is that these spleen-originated mononuclear cells may have been already 

activated if they have exposed to certain antigen in vivo. For instance, domestic cattle 

(which the spleens were obtained from) are usually given double stranded RNA 

(structurally similar to RNA virus) to prevent them from viral infection. The strategy of 

this treatment is to induce the production of IFN which has antiviral activity. In addition, 

the cell isolation procedure itself and the serum-containing culture medium may also 

serve as stimuli to these immune-participating cells. 

In the course of 210-minute incubation with FHA-conditioned media, almost one

third of CA store was released into the media (Figure 8). It seems that this elevation of 

secretory response is sustained and lasts for as long as four hours. If these results 

reflected the situations in vivo, it would provide an explanation to the non-neurogenic CA 

outflow from adrenal medulla following immune response to LPS. 

To examine the nature of this CA release, LDH (lactate dehydrogenase) activity 

in the media was estimated. Because LDH is a cytosolic enzyme, its release is an 

indication of cell membrane disruption. Some detergents, such as digitonin, can make the 

cell membrane permeable to cytosolic molecules with MW less than 1000 kD including 

LDH. Digitonin has therefore been used as a positive control of plasma membrane 

leakiness [123]. Although the LDH level of PHA-conditioned media-treated group 
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appeared slightly higher than the negative controls, it was much lower than that of 

detergent-treated groups. There was no significant release of LDH above basal level 

when the cells were exposed to either DMPP or PHA-conditioned media. The integrity 

of BCC membrane appeared intact, while CA release through exocytosis instead of cell 

lysis is implied. Ion analysis of the splenocyte supernatant excluded the possibility of 

potassium elevation. The direct effect of PHA by itself was eliminated by measuring CA 

released in the presence of PHA alone. Taken together these findings imply that the 

soluble products derived from the activated immune cells may serve as stimuli to cause 

exocytosis in chromaffin cells. 

Despite the fact that the precise contents in this conditioned media has not been 

clarified, information about cytokine receptors and the cellular mechanisms of cytokine 

action supports the possibility that cytokines may influence chromaffin cell secretion. As 

previously reviewed, cytokines transmit their biological signals to specific cells within 

hematopoietic, lymphoid as well as other organ systems via interaction with specific cell

surface receptors. Cytokines and their receptors play a key role in the communication 

between neuroendocrine and immune systems [71, 75, 76]. For instance, IL-1 and IL-2 

receptors were expressed on pituitary cells and other areas of the brain in animals and 

human [95, 96, 97, 98, 99]. Virtually all nucleated cells within a species are sensitive 

to IFN of that species and presumably possess IFN receptors [101]. It is unknown if 

certain cytokine receptors exist on chromaffin cell membranes. To date, there is only one 

report indicating that IL-1 stimulates corticosterone release indirectly through the action 

of local CA outflow which is also induced by IL-1 in rat (A.R. Gwosdow, et al. 
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Abstract, FASEB meeting 1992). Nonetheless, BCC was revealed to express a number 

of different receptors including IGFl receptor in addition to the nicotinic and muscarinic. 

IGFl has been shown to have a stimulatory effect on CA release from chromaffin cells 

[108]. Growth hormone receptors share a large degree of homology with cytokine 

receptors, especially in the extracellular sequence [107]. It is possible that cytokines 

effect CA secretion via binding to the IGFl receptors. 

The intracellular events associated with cytokine receptor activation usually 

include calcium elevation and increased protein kinase activity. For example, calcium 

influx has been observed on cells exposed to IFN-y, and the combination of a PKC 

activator and a calcium ionophore induced many of the same cellular responses as IFN-y 

[68, 69, 70]. Protein kinase may also be involved in signal transduction of TNFa, IL-1 

and IL-6 [63, 64, 65]. Coincidentally, calcium entry and the subsequent [Ca2 +]i rise is 

essential and sufficient for exocytosis in chromaffin cells, whereas PKC is able to 

modulate stimulus-secretion coupling by controlling Ca2+-sensitivity [24]. If the BCC 

express such cytokine receptors as IFN-y receptor, it is likely predicted that IFN-y can 

alter CA secretion since it shares the same intracellular messengers as those normally 

triggering exocytosis in chromaffin cells. CA release caused by the cytokine-rich media 

could possibly result from the calcium entry through an unidentified channel which might 

be activated by ligand-receptor binding. 

The enhancement of nicotinic secretion may be explained by the involvement of 

PKC. Calcium and/or PKC can in some way disassemble/reorganize the actin network 

and consequently potentiate the secretory response by freeing more NE or Epi granules, 
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which are normally fixed within an actin cytoskeleton matrix. 

Although results of the present study do not examine specific effect of cytokines, 

cytokine action on CA secretion from adrenal medullary cells is inferred. The 

physiological implication of these findings lies in the interrelationship of immune 

response and catecholamine action. Numerous studies have been conducted to assess the 

impact of CA on immune function. NE and Epi may alter immune response through 

modulation of such functions as cellular migration, lymphocyte proliferation, antibody 

secretion, or cell lysis [124]. Both a- and /3-adrenergic receptors are found on 

lymphocytes and accessory cells in human and other species. In particular, IL-2 synthesis 

by human T-cell line were shown to be inhibited following stimulation of /3-adrenoceptors 

[125]. The presence of primarily /32-adrenoceptors on lymphocytes suggests that Epi may 

be more influential than NE in altering lymphocyte function [126, 127, 128]. The major 

source of Epi is adrenal medulla of which the hormonal output delivers messages to the 

body immune section. 

In a physiological model, potential communication from the immune system to 

the sympathoadrenal system is likely to occur. Such information flow could be 

accomplished by soluble mediators (e.g. cytokines) secreted from immunocompetent 

cells, which influence local or distal neural or endocrine targets. Based on previous 

studies and present results, a feedback circuit can be pictured for in vivo reciprocal 

regulation of immune-sympathoadrenal function. If immune system is viewed as a sensor 

of foreign invasions, it then likely passes the signal to all of its cooperative organs via 

molecules produced by the activated immune cells. The observations of the present 
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investigation demonstrate that the adrenal medullary chromaffin cells respond to these 

immune-derived signal molecules by releasing more CA into circulation. Since the 

immunocompetent cells bear adrenoceptors, CA may exert their cooperative effort to fine 

tune the immune response to any insults. As a feedback signal, CA is capable of down 

regulating lymphocyte activity after earlier activation. For example, later events in an 

immune response such as continued cell proliferation, antibody secretion, and cytotoxic 

T lymphocyte-mediated lysis are inhibited by jJ-adrenoceptor stimulation and cAMP 

elevation [129]. Consequently, the modulation by CA ensures that the magnitude of 

immune response is roughly proportional to the amount of antigen encountered and the 

ongoing response is appropriately terminated. At this point, the regulatory loop between 

immune organs and adrenal medullum is completed. 



SUMMARY 

I. Immune-derived products from mitogen-treated splenocytes stimulate EPI and NE 

secretion from cultured bovine chromaffin cells, and enhance the nicotinic agonist 

induced release. 

II. The CA release induced by immune-derived factors is not due to the damage of 

cell membrane. Alternatively, these results suggest that exocytosis is triggered 

when cells are exposed to the media of mitogen-stimulated splenocyte culture. 

ill. Specific factors that are responsible for stimulating CA secretion from BCC 

remain to be investigated. 
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