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CHAPTER I 

INTRODUCTION 

Major neurological disorders that afflict humans include Alzheimer's disease, 

Parkinson's disease, Huntington's chorea, mood disorders and schizophrenia. 

Although each of these diseases has distinctive symptoms which allow for ultimate 

diagnosis, there is also a certain degree of similarity among the clinical manifestations. 

All of these disorders are characterized by cognitive impairments, abnormal movements, 

psychoses, and depression that are expressed with varying prevalence and severity in 

individual patients (for review see, Heimer et al., 1991). In fact, two of these diseases, 

Alzheimer's disease and Parkinson's disease, are often diagnosed within the same 

patient (Boller, 1985; Jellinger, 1987; Quinn et al., 1986). This has led to the theory 

that these two disorders may be part of a disease continuum, where each "pure" disease 

state forms the boundaries, and combinations of symptoms represent the remainder of 

the spectrum (Appel, 1981; Korczyn et al., 1986). 

The pathology of both Parkinson's disease and Alzheimer's disease involve the 

loss of neurons that are located within discrete brain regions and contain specific 

neurotransmitters. In Parkinson's disease, abnormalities of the dopaminergic (i.e. 

dopamine (DA) containing) system that originates within the midbrain are observed with 

the concomitant loss 60 to 85% of the substantia nigra neurons (for review see Boller, 

1985; Jellinger, 1986). Clinical signs of Parkinson's disease include: resting tremor, 

rigidity and the impaired ability to initiate and execute voluntary movement (Cote and 

Crutcher, 1985). In Alzheimer's disease, which accounts for about 70% of all cases of 
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dementia or progressive decline of mental function (Cote, 1985), cell loss is the most 

dramatic among the cholinergic (acetylcholine-containing) neurons (Cote, 1985; 

Lehericy et al., 1991). 

The majority of cholinergic neurons affected by Alzheimer's disease are located 

at the base of the forebrain in the nucleus basalis of Meynert (Whitehouse et al., 1981 ). 

Parkinson's patients can also demonstrate cognitive impairments and dementia 

associated with loss of forebrain cholinergic neurons (Boller, 1980; Candy et al., 1983; 

Whitehouse, 1986; Whitehouse et al., 1983); and Alzheimer's patients can also present 

with rigidity and impaired movement related to loss of dopaminergic neurons (Boller, 

1985; Jellinger, 1987; Mayeux and Stem, 1986; Uchihara et al., 1992). This overlap in 

clinical manifestations suggests that there may be some strategically located anatomical 

systems mediating the cognitive and motoric behaviors that have become deficient in 

these disease states. 

As a basis for understanding the clinical findings of the aforementioned 

neurological diseases, many studies have emphasized the importance of an integrative 

knowledge of the normal anatomical connections of the brain regions affected by these 

diseases, as well as the functional significance of these innervations. One potential 

locus for dysfunction that is similar among these diseases is the basal nucleus of 

Meynert or substantia innominata, and also may involve the midbrain dopaminergic 

system (for review see, Heimer et al., 1991). Parkinson's disease and Alzheimer's 

disease, as well as animal models of these disease states, also demonstrate alterations in 

the density of specific DA receptor subtypes (Cortes et al., 1988; Gagnon et al., 1990; 

Graham et al., 1990; Seeman et al., 1987). This dissertation is based upon the 

hypothesis that the output (measured as changes in neuronal firing rate) of the rat brain 

region comparable to the human nucleus basalis of Meynert, the ventral pallidum and the 
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adjacent substantia innominata (VP/SI), is altered by DA and dopaminergic agents acting 

through specific receptor subtypes. 

Recent molecular biological studies have revealed that at least four DA receptor 

subtypes exist in the rat brain (Civelli et al., 1991), and possibly five receptors in the 

human brain (Grandy et al., 1991). Previously, DA was considered to act through two 

receptor subtypes, the Di and the D1 subtype (Kebabian and Caine, 1979). Both 

receptor subtypes have been identified within the VP/SI, and either the Dt or the Di 

receptor can mediate the actions of DA applied within the VP/SI. The effect of separate 

activation of these receptors by selective agonists on VP/SI firing rate has not been 

previously determined. Furthermore, DA may also act as neuromodulator, altering the 

effects of other afferent systems on neuronal activity of VP/SI, similar to its action in 

other dopaminoceptive brain regions (Graybiel, 1990; Le Moal and Simon, 1991; Yim 

and Mogenson, 1982, 1983). The distribution and functional relevance of the other DA 

receptor subtypes await future studies with receptor subtype specific dopaminergic 

agents. 

The hypotheses of this dissertation are: 1) that the D1 and the Dz 

DA receptor subtypes mediate DA-induced effects on VP/SI neuronal 

activity. and 2) that DA is a neuromodulatory transmitter within the 

VP/SI alterina: neuronal activity evoked in this brain rea:ion by electrical 

stimulation of afferents from the amy1:daloid nuclei CAMN>. To investigate 

these hypotheses, the following specific aims were proposed: 

Specific Aim 1: To characterize the DA receptor subtypes that 

mediate the responses of single VP/SI neurons to systemic 

administration of DA agonists. 

In vivo electrophysiological experiments were performed on anesthetized rats. 

Spontaneously active VP/SI neurons were characterized by their action potential 
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properties (configuration, amplitude and duration) and activity (firing rate and pattern). 

Agonists that selectively activate Di or Di DA receptor subtypes were injected 

intravenously in increasing doses. VP/SI neuronal activity was measured by alterations 

in firing rate in response to increasing concentrations of DA agonists. If any significant 

rate changes occurred, the antagonist specific for the activated receptor subtype was 

administered to determine if the rate alterations were mediated by that specific receptor 

subtype. To determine whether activation of one receptor subtype was sufficient to 

mediate the actions of a nonselective DA agonist (i.e., one that mimics the actions of 

endogenous DA within the brain), the combined Di and Di DA agonist apomorphine 

was administered, and any effects induced were tested for receptor subtype specificity 

by administration of selective D1 or Di antagonists. 

Specific Aim 2: To determine the DA receptor subtypes involved 

in the VP/SI responses evoked by endogenously-released DA during 

stimulation of midbrain dopaminergic regions. To characterize the VP/SI 

responses evoked by electrical activation of the AMN. To determine if 

endogenously-released, and exogenously-applied DA within the VP/SI 

modulate AMN-evoked responses of VP/SI neurons. 

In vivo electrophysiological experiments were used to describe the effects of 

orthodromic (i.e., trans-synaptic) stimulation of the AMN and two midbrain 

dopaminergic regions, the ventral tegmental area and the substantia nigra pars compacta 

(VTAfSNc), on the activity of VP/SI neurons. To verify whether VTAfSNc stimulation 

results in the release of DA in the VP/SI the following criteria were used: 1) 

exogenously-applied DA via microiontophoresis should mimic the effects of electrical 

stimulation and 2) exogenously-applied Di and/or Di DA antagonists within the VP/SI 

should attenuate the effects of VT AfSNc stimulation on VP/SI neuronal firing rate. The 

effects of microiontophoretic application of DA agonists selective for the Di or Di 
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receptor subtypes were also assessed to determine the contribution of these subtypes to 

alterations of spontaneous activity of VP/SI neurons. In addition, possible modulatory 

effects of DA within the VP/SI on VP/SI responses evoked by AMN stimulation were 

examined to determine: 1) if electrical stimulation of the VT A/SNc (which prestimabl y 

releases endogenous DA), prior to AMN stimulation alters the effects of AMN 

stimulation alone; and 2) if exogenous application of DA mimics the modulatory effects 

of endogenously-released DA on VP/SI neuronal activity evoked by AMN stimulation. 
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CHAYfER II 

REVIE\V OF RELATED LITERATURE 

In Chapter I, the degeneration of the nucleus basalis of Meynert (or its rat 

analogue, the ventral pallidal/substantia innominata region; VP/SI) and the midbrain 

dopaminergic regions was described in relation to Alzheimer's disease and Parkinson's 

disease. The importance of understanding the normal anatomy and physiology of these 

systems was indicated as the foundation for this dissertation. Thus, to illustrate the 

relationship of dopamine (DA) to changes in neuronal activity of the VP/SI, this chapter 

is divided into three major subdivisions. 

Initially, the Anatomy of the Ventral PallidumfSubstantia Innominata 

is described to identify the location of the VP/SI within the rat brain; the nomenclature 

used for this region is also described. An outline of the afferents to VP/SI is included, 

emphasizing the innervation from the amygdala and the midbrain dopaminergic regions, 

to provide the anatomical background for the electrophysiological studies in the 

following chapters. The anatomy of VP/SI efferents is summarized to suggest the 

potential consequences of altering the activity of the VP/SI neurons. In the second 

subdivision, Dopamine Receptor Pharmacolo&y, the characteristics of the DA 

receptor subtypes (i.e., the Di and D2 DA receptors) are described in relationship to the 

effects of specific agonists and antagonists, and their location within the basal forebrain 

is also detailed. The final subdivision, Neurochemical. Behavioral and 

Electrophysiolo&ical Studies Involvin& Dopamine, summarizes the known 

6 



interactions between D1 and D2 receptor stimulation, and describes the potential 

relevance of these receptors for DA agonist-mediated effects on VP/SI output. 
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Anatomy of the Ventral Pallidum/Substantia Innominata 

1.ntroduction 

The term "ventral pallidum" (VP) was first used by Heimer and Wilson ( 1975) 

to describe the rostroventral extension of the globus pallidus beneath the anterior 

commissure. The VP displays similar cell morphology to the dorsal globus pallidus 

(GP), and in fact is indistinguishable from the GP in Nissl-stained material (Nauta and 

Domesick, 1984). However, the VP can be differentiated from the GP by other 

histochemical methods, since the VP exhibits a dense plexus of substance P-positive 

striatopallidal fibers which readily demarcate it from the GP (Haber and Nauta, 1983; 

Heimer et al., 1985). The identification of the VP has redefined the region ventral to the 

anterior commissure since the VP was previously considered the subcommissural part 

of the substantia innominata (SI; Switzer III et al., 1982). 

The SI is restricted to the caudal sublenticular gray (Alheid and Heimer, 1988; 

Heimer et al., 1985), "a homogenous region underneath the caudal part of the globus 

pallidus" (Switzer III et al., 1982). It is located medial to the caudal aspects of VP 

(Paxinos and Watson, 1986). Although anatomically distinct, the SI and VP regions 

exhibit similar afferent innervation (Haring and Wang, 1986), terminal configuration 

(Grove, 1988a) and electrophysiological characteristics (Napier et al., 199lb). The 

cholinergic neurons contained within both regions receive midbrain dopaminergic and 

amygdaloid afferents (see review below). Furthermore, the cholinergic neurons of the 

VP (Zaborszky and Leranth, 1985) and the SI (Carlsen, 1985) both project to the 

basolateral nucleus of the amygdala. Recent anatomical evidence suggests that portions 

of the SI may form a continuum with the bed nucleus of the stria terminalis and the 

centromedial amygdaloid nuclei, which together are termed "the extended amygdala" 

(Alheid and Heimer, 1988). However, the former term of SI is maintained throughout 
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the following chapters since functional differences (i.e., action potential duration, firing 

rate or pattern) were not observed between SI and VP neuronal populations. 

Neuronal Population of the VPISI 

The VP/SI is a heterogeneous cell population similar in composition to the GP, 

which is primarily comprised of diffusely arranged, large triangular cells with long 

radiating dendrites covered with extensive synaptic terminals. Scattered among this cell 

population are fewer small cells (Heimer et al., 1985; Heimer and Wilson, 1975). 

Immunocytochemical studies of the neurotransmitter content of VP/SI neurons indicates 

that the large cell types are either cholinergic or GABAergic (Carlsen et al., 1985; 

Kimura et al., 1981; z.aborszky and Leranth, 1985; z.aborszky et al., 1985). The 

cholinergic neurons within the VP/SI constitute part of the rat brain region comparable 

to the primate nucleus basalis of Meynert (Ch4 cholinergic cell group), and project 

widely throughout the cortex and amygdala (for review see, Mesulam et al., 1983a; 

Zaborszky et al., 1991). 

Afferents of the VPISI 

Amy2daloid Afferents. The VP/SI regions in the monkey and the rat are 

innervated by amygdalofugal fibers originating from many amygdaloid nuclei (AMN; 

Fig. 1; Aggleton et al., 1987; Fuller et al., 1987; Haring and Wang, 1986; Kelley et al., 

1982; Krettek and Price, 1978; Price, 1986; Russchen et al., 1985). The majority of 

this AMN projection in the monkey arises from the parvicellular basal nucleus (or 

posterior basolateral nucleus; Aggleton et al., 1987; Price, 1986), magnocellular 

accessory basal nucleus (or basal medial) and the central nucleus (Price, 1986). Using 

retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase 

(WGA-HRP) and anterograde axonal transport of Phaseolus vulgaris 

9 



Fig. 1. SCHEMA TIC ILLUSTRATION OF THE RELA Tl ON SHIP BETWEEN 
VP/SI AFFERENT AND EFFERENT PATHWAYS. The VP/SI receives excitatory 
(plus symbol) input from the AMN, both inhibitory (minus symbol) and excitatory 
inputs from the NA and from the midbrain dopaminergic regions. VP/SI neurons 
innervate the cortex (CTX), the AMN, the mediodorsal nucleus of the thalamus (MD -
thal) and the pedunculopontine nucleus (PPN). Biochemical and molecular studies 
suggest that D1 receptors (filled circles) and~ receptors (filled squares) are located on 
pre- and postsynaptic membranes of the VP/SI (and the NA). Figure is not drawn to 
scale, and, for clarity, all inputs are not shown. ACh - acetylcholine; Asp - Aspartate; 
DA - dopamine; ENK - enkephalin; GABA - gamma-aminobutyric acid; Glu - glutamate; 
RRF - retrorubral field; SNc - substantia nigra, pars compacta; SP - substance P; VT A -
ventral tegmental area. 
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leucoagglutinin (PHA-L), Grove (1988b) observed similar AMN projections to the 

VP/SI in the rat. HRP injections into the rat basolateral nucleus of the amygdala (blA) 

anterogradely label VP/SI neurons, some of which are immunoreactive for the enzyme 

that synthesizes acetylcholine, choline acetyltransferase (ChAT; Zaborszky et al., 

1984,1991). In addition, some of the AMN afferents to the VP/SI are thought to be 

glutamatergic and/or aspartergic, since [3H]D-aspartate and.WGA-HRP injections into 

the VP/SI retrogradely label neurons within the AMN (Fig. 1; Fuller et al., 1987). 

Thus, some of the AMN afferents are excitatory and innervate both cholinergic and 

noncholinergic neurons of the VP/SI. 

Midbrain Dopamineriic Afferents. Recent anatomical evidence indicates 

that the VP/SI is innervated by midbrain dopaminergic neurons. Catecholaminergic 

innervation to the VP/SI in the rat and the monkey originates primarily from the 

substantia nigra pars compacta (SNc; Fig. 1; Fallon and Moore, 1978; Haring and 

Wang, 1986; Jones and Cuello, 1989; Martinez-Murillo et al., 1988b; Russchen et al., 

1985; Semba et al., 1988; Zaborszky, 1989; Zaborszky et al., 1991), ventral tegmental 

area (VTA; Fig. 1; Grove, 1988b; Haring and Wang, 1986; Jones and Cuello, 1989; 

Russchen et al., 1985; Semba et al., 1988; Zaborszky, 1989; Zaborszky et al., 1991) 

and the retrorubral field (Fig. 1; Deutch et al., 1988; Jimenez-Castellanos and Graybiel, 

1987; Jones and Cuello, 1989; Zaborszky, 1989; Zaborszky et al., 1991). The 

presence of immunoreactivity against the rate-limiting enzyme for catecholamine 

synthesis, tyrosine hydroxylase (TH) in VTA and SNc (Semba et al., 1988), as well as 

retrorubral projections to the VP/SI (Deutch et al., 1988) indicates that these afferents 

are catecholaminergic, and are likely dopaminergic based on the origin of the 

projections. Finally, Voom et al. (1986), used antibodies against DA to demonstrate 

that "a dense plexus of thin, varicose dopaminergic fibers" is present in the VP/SI, 
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suggesting that this region is a target of these DA antibody-labeled fibers. Thus, 

dopaminergic afferents originating from the VTA, the SNc, and the retrorubral field 

innervate neurons within the VP/SI. 

The dopaminergic region of the midbrain also innervates in particular the 

cholinergic subpopulation of VP/SI neurons. Retrograde and anterograde tracing studies 

using WGA-HRP and PHA-L, respectively, demonstrate that VTA afferents 

occasionally approach individual neurons within the cholinergic-rich regions of the SI 

(Grove, 1988b). TH-immunoreactive cell fibers from the VTA, SNc and the retrorubral 

field are located near ChAT-immunoreactive VP/SI somata (Jones and Cuello, 1989; 

Martinez-Murillo et al., 1988b; for review see, Zaborszky, 1989; Zaborszky et al., 

1991). Further studies using electron microscopy indicate that Ill-containing terminals 

contact ChAT-positive neurons in the rat VP/SI (Zaborszky et al., 1992). These 

observations suggest that ascending dopaminergic fibers of SNc, VT A and retrorubral 

field synapse on cholinergic neurons in VP/SI. In addition, lesions of the ascending 

catecholaminergic bundles produced by the toxin, 6-hydroxydopamine (6-0H-DA) 

result in reductions of ChAT levels in the VP/SI (Zaborszky et al., 1992). Thus, the 

midbrain dopaminergic innervation of cholinergic neurons within the VP/SI may 

modulate the activity of these cholinergic neurons. 

Other Afferents. The nucleus accumbens (NA) and the remainder of the 

ventral striatum provide the most extensive innervation of the VP/SI in the rat and the 

monkey (Fig. 1; Grove, 1988b; Haber et al., 1990; Heimer and Wilson, 1975; 

Mogenson et al., 1983; Nauta et al., 1978; Walaas and Ouimet, 1989; for review also 

see, Heimer and Alheid, 1991; Heimer et al., 1991; Parent, 1990; z.aborszky et al., 

1991). The NA innervation of the VP/SI is topographically distributed such that "core" 

and "shell" regions of the NA project to dorsolateral and ventromedial VP/SI, 
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respectively (Zahm and Heimer, 1990). In addition, NA nerve terminals to VP/SI 

cholinergic and non-cholinergic neurons presumably contain the inhibitory 

neurotransmitters GABA and enkephalin, as well as the excitatory neurotransmitter 

substance P (Fig. 1; Bolam et al., 1986; Martinez-Murillo et al., 1988a; Wood and 

McQuade, 1986; Zaborszky et al., 1986). 

The cortical innervation of the VP/SI originates from the medial prefrontal, 

insular, perirhinal and entorhinal cortices in the rat (Grove, 1988b). In the monkey, 

projections from the orbitofrontal, insular and temporal cortices project to cholinergic 

and non-cholinergic neurons of the VP/SI (Mesulam and Mufson, 1984; Russchen et 

al., 1985). 

The non-telencephalic inputs to the rat and monkey VP/SI include the 

pedunculopontine nucleus (Russchen et al., 1985), the dorsal raphe (Grove, 1988b; 

Russchen et al., 1985), the locus ceruleus (Russchen et al., 1985), much of the 

hypothalamic and midline thalamic nuclei (Groenewegen and Berendse, 1990; Grove, 

1988b; Russchen et al., 1985), the subthalamic nucleus (Groenewegen and Berendse, 

1990), the parabrachial nucleus (Bernard et al., 1991; Grove, 1988b; Russchen et al., 

1985), and the nucleus of the solitary tract (Grove, 1988b; Russchen et al., 1985). 

Similarly, VP/SI cholinergic neurons are innervated by the dorsal raphe nucleus (Grove, 

1988b), and hypothalamus (Grove, 1988b; Mesulam and Mufson, 1984), as well as 

noradrenergic neurons from the locus ceruleus (Chang, 1989; Zaborszky et al., 1992). 

Thus, these afferents convey multifarious information that may regulate the final output 

of the VP/SI to its efferent targets. 
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Efferents from the YP/SI 

Efferents to the Amygdala. Basal forebrain efferents, including those from 

the VP/SI, to the AMN (Fig. 1; Aggleton et al., 1980, 1987; Carlsen et al., 1985; De 

Olmos et al., 1985; Emson et al., 1979; Grove, 1988a; Haber et al., 1985; Koliatsos et 

al., 1988; Mesulam et al., 1983a; Nagai et al., 1982; Nauta and Domesick, 1984; 

Troiano and Siegel, 1978; Woolf and Butcher, 1982; Z.aborszky et al., 1986; Z.aborszky 

and Leranth, 1985) arise from both cholinergic and noncholinergic neurons (Carlsen et 

al., 1985; Woolf et al., 1986; Z.aborszky and Leranth, 1985). Combined retrograde 

transport and ChA T histochemical studies demonstrate that cholinergic projections to the 

basolateral amygdala (blA) originate predominantly from the dorsal subcommissural part 

of the VP (Z.aborszky and Leranth, 1985) and the sublenticular SI (Carlsen et al., 

1985). Non-cholinergic neurons from the same region of the VP constitute 

approximately 25% of VP/SI efferents projecting to blA (Carlsen et al., 1985). Thus, a 

substantial portion of the cholinergic efferents to the AMN is from the VP/SI (Aggleton 

et al., 1987; Kitt et al., 1987; Mesulam et al., 1983a, 1983b; Russchen et al., 1985), 

and the main target of these efferents in the AMN is the blA (Aggleton et al., 1987; 

Carlsen et al., 1985; Haber et al., 1985; Kordower et al., 1989; Otterson, 1980; Woolf 

and Butcher, 1982; Woolf et al., 1984; Z.aborszky et al., 1986; for review see, Carlsen, 

1989). Additionally, the blA contains more radioactive label for both AChE and ChAT 

than any other amygdaloid nucleus tested (Emson et al., 1979). Since few cholinergic 

cell bodies have been found in the AMN (Carlsen, 1989; Carlsen and Heimer, 1986; 

Kimura et al., 1981), and knife cuts of the ventral pathway that connects the VP/SI with 

the AMN produce large depletions of ChATactivity in the AMN (Emson et al., 1979), it 

is considered to be cholinoceptive (Amaral and Bassett, 1989; Kimura et al., 1981; 

Nagai et al., 1982). There appears to be reciprocal innervation between blA neurons 

and VP/SI neurons. 
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Qther Telencephalic Efferents. The VP/SI projections to the hippocampus 

(Aggleton et al., 1987; Amaral and Cowan, 1980; DeVito, 1980; Koliatsos et al., 1988; 

Woolf et al., 1984) are in part cholinergic (Woolf et al., 1984). Similarly, the cortical 

mantle receives innervation from neurons within the VP/SI (Fig. 1; Divac, 1975; Haber 

et al., 1985), 80-903 of which are cholinergic (Ch4; Rye et al., 1984). In fact, the 

VP/SI provides a major source of the cholinergic innervation of the rat, monkey, as well 

as human neocortices (Big! et al., 1982; Grove, 1988a; Koliatsos et al., 1988; Lehmann 

et al., 1980; Mesulam and Geula, 1988; Mesulam et al., 1983a; Stewart et al., 1985; 

Switzer III et al., 1982; Woolf et al., 1983, 1984). 

Non-cortical, telencephalic projections from the VP/SI include a reciprocal 

innervation to the NA and the remainder of the ventral striatum. In contrast to the 

substantial afferent innervation of the VP/SI from the NA and the remainder of the 

ventral striatum, the VP/SI provide only minor efferent projections to these regions 

(Haber et al., 1985; Spooren et al., 1991b; Woolf et al., 1984). 

Non-telencephalic Efferents. The medial dorsal nucleus of the thalamus 

of the rat and monkey receives VP/SI efferents (Fig. 1; Grove, 1988a; Haber et al., 

1985; Hreib et al., 1988; Mogenson et al., 1987; Nauta and Domesick, 1984; Young et 

al., 1984), as does the subthalamic nucleus (Canteras et al., 1990; Groenewegen and 

Berendse, 1990; Haber et al., 1985; Zahm, 1989) and the zona incerta (Mogenson et 

al., 1985). There is also evidence for diencephalic projections from the VP/SI to the 

lateral habenular nucleus (Haber et al., 1985; Nauta and Domesick, 1984), and to the 

reticular nucleus of the thalamus (Grove, 1988a; Heimer et al., 1985; Jourdain et al., 

1989; Levey et al., 1987), approximately 203 of these VP/SI neurons are ChAT-

15 



pasitive (Jourdain et al., 1989). Thus, most of the descending efferents of the VP/SI 

appear to arise primarily from noncholinergic cells (Grove, 1988a). 

The SNc (Grove, 1988a; Haber et al., 1985; 2'.ahm, 1989) and the VTA (Grove, 

1988a; Haber et al., 1985; Nauta and Domesick, 1984; Zahm, 1989) receive VP/SI 

efferents which suggests reciprocal connections between the VP/SI and these regions. 

The pedunculopontine nucleus (Fig. 1; Semba et al., 1989), which includes the 

mesencephalic locomotor region (Mogenson et al., 1985; Mogenson and Wu, 1986), 

and the hypothalamus (Grove, 1988a; Haber et al., 1985) also receive VP/SI efferents. 

Through the cortical and the NA, the AMN, and midbrain dopaminergic afferent 

innervations of the VP/SI (Fig. 1), the VP/SI may receive information concerned with 

cognitive (for review see Richardson and DeLong, 1988; Salamone, 1986), 

motivational (for review see Richardson and DeLong, 1991), and motoric behaviors 

(for review see Heimer et al., 1982; Kalivas et al., 1991; Mogenson and Yang, 1991), 

respectively. In tum, the efferent connections of the VP/SI to the cortex, the AMN, the 

mediodorsal thalamic and pedunculopontine nuclei (Fig. 1), and the hypothalamus 

suggest that the VP/SI may be able to influence activity of brain regions concerned with 

cognition (Pirch et al., 1986, 1991), motor behavior (for review see Mogenson and 

Yang, 1991), motivation (Richardson and Del...ong, 1991), and possibly even visceral 

function (Grove, 1988; Haber et al., 1985) . In summary, the VP/SI is located such 

that it can convey the output of "limbic antecedents not only into extrapyramidal circuits 

but also back into the circuitry of the limbic system" (Haber et al., 1985). 
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Dopamine Receptor Pharmacolo2y 

Introduction 

Multiple subtypes of the DA receptor have been described (for review see, 

Civelli et al., 1991; Clark and White, 1987). The generally accepted classification, that 

was used for this dissertation is into two subtypes designated Di and D1 (Kebabian and 

Calne, 1979; Stoof and Kebabian, 1981). This classification is based upon differences 

in the biochemical (Kebabian and Calne, 1979), pharmacological (Billard et al., 1984; 

Creese et al., 1983; Stoof and Kebabian, 1984), anatomical (Creese et al., 1983), and 

behavioral (Amt, 1985; Barone et al., 1986) profiles of these receptor subtypes. In 

addition, the Di and Di receptors are deemed distinct entities since they can be separated 

using biochemical techniques (Dumbrille-Ross et al., 1985), and have different DNA 

and protein sequences (Civelli et al., 1991). The original classification was based upon 

the differential manner by which these subtypes affect the activation of adenylyl cyclase 

(ACy). The Di receptor subtype stimulates (Hyttel, 1978; Kebabian and Calne, 1979) 

and the Di receptor subtype inhibits (Battaglia et al., 1985; Onali et al., 1984; Stoof and 

Kebabian, 1981) the production of cyclic AMP by ACy. The classification was refined 

to include later findings that some Di receptors were not linked to this enzyme (Memo et 

al., 1986b; Stoof and Kebabian, 1982; Stoof and Verheijden, 1986), and that agonist

mediated effects at these Di receptors are independent of ACy inhibition (Memo et al., 

1986a). These functional studies, combined with the results of radioligand binding 

studies, provide a means for assessing the apparent selectivity of agonists and 

antagonists that interact with either Di or Di receptor subtypes. 
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.Identification of D1 and D2 DA A1:onists and Anta2onists 

Tue non-selective and D1 or D2 selective agonists and antagonists used in the 

experiments for this dissertation are described below. The D1 DA receptor agonist and 

antagonist, used throughout these studies, were SKF38393 (SKF) and SCH23390 

(SCH), respectively; the Di DA receptor agonist and antagonist were quinpirole (QUIN) 

and sulpiride (SUL), respectively. In addition, apomorphine (APO), a non-selective 

DA agonist, was tested in experiment 2 (Chapter IV); and a non-selective DA 

antagonist, cis-flupentixol (cis-FLU) was tested in experiment 3 (Chapter V). 

D1 or D2 Receptor Selectivity of Dopaminer2ic Aients. The 

selectivity of SKF for the D1 receptor is defined by its ability to stimulate ACy in 

homogenates of rat caudate, and by its inability to cause emesis, stereotypic behavior or 

to inhibit prolactin release, all of which are associated with activation of the Di receptor 

(Setler et al., 1978). SKF is considered a partial agonist for the Di receptor since its 

efficacy for stimulating DA-sensitive ACy from rat striatum is about 45% of that 

observed for DA (Andersen and Jansen, 1990; Battaglia et al., 1986). Similarly, SCH 

is considered selective for the D1 receptor based on its failure to induce prolactinemia, 

its potent blockade of DA-stimulated A Cy, and its weak displacement of [3H]spiperone 

bound to D2 receptor sites (Hyttel, 1983; Hyttel, 1984; Iorio et al., 1983; and see 

below). 

QUIN (Bach et al., 1980) is a relatively selective and potent Di receptor agonist 

since it stimulates the Di receptor in the intermediate lobe of the rat pituitary gland (the 

pituitary gland serves as a model for D2 receptors), inhibits ACy activity in 

homogenates (Tsuruta et al., 1981); the latter effect is attenuated by SUL and other DA 

antagonists which compete for the Di receptor (Tsuruta et al., 1981). Likewise, SUL 

(Spano et al., 1979) is considered a selective Di antagonist since it stimulates prolactin 
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release, attenuates the effects of DA agonists on locomotor activity, which mimics the 

actions of classical neuroleptic agents, and JX>tently inhibits the binding of non-selective 

and selective D1 DA antagonists (O'Connor and Brown, 1982). In contrast to these 

selective comJX>unds, the classical DA agonist, APO, is considered to be non-selective 

at these two DA receptors since its effects can be mediated through either receptor 

subtype, and cis-FLU is a non-selective DA antagonist which binds to both subtypes 

with similar affinity (Creese et al., 1983; and see below). 

Binding Characteristics of Selective D1 and D2 Agonists and 

Antagonists 

Indirect Binding Assays for Dopaminer&ic Agents. The interaction of 

a dopaminergic agent with a receptor can be characterized by assessing its ability to 

inhibit the binding of a radioligand. The pharmacological specificity of the D1 or the Di 

receptor site is described based on the dissociation constants for a variety of 

dopaminergic agents determined from inhibition of the binding of a radioligand. The 

equilibrium inhibition constant or Ki of the unlabeled competing dopaminergic agent is 

related to the concentration required to inhibit 503 of the binding of a radioligand to the 

same site (McGonigle and Molinoff, 1989) . In rat striatum (STR), the ratio of Ki 

values for the D1 versus the D1 binding sites (and the relative potency of the 

dopaminergic agents for the D1 to the Di site) for SKF is 18 nM: 9300 nM (517 times 

greater for D1); for SCH, it is 0.14 nM : 895 nM (6400 times greater for D1); for 

QUIN, it is > 5000 nM : 720 nM (> 7 times greater for Di); for SUL, it is > 10,000 nM 

: 70 nM (> 143 times greater for Di); for APO, it is 87 nM: 98nM (1.1 times greater for 

D1; Andersen and Jansen, 1990); and for cis-FLU, it is 0.32 nM: 0.34 nM (equipotent 

for D1 and Di) against the in vitro binding of the selective D1 and Di radioligands, 

[3H]SCH and [3H]spiroperidol, respectively (Andersen, 1988). The results of these 
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binding studies demonstrate that SKF is selective for the D1 receptor since it is a more 

potent inhibitor of the D1 than the D1 radioligand; QUIN and SUL are selective for the 

Dz receptor since they more readily inhibit binding of the Di radioligand; and, APO and 

cis-FLU are nonselective since they display about equal inhibitory potency against both 

the Di and Di radioligands. 

Although SCH may interact with the serotonin2 binding site, the use of [3H] 

SCH as an appropriate marker ofD1 binding sites has previously been established since 

this compound selectively binds the D1 receptor both in vitro (Andersen et al., 1985; 

Billard et al., 1984) and in vivo (Andersen and Gronvald, 1986; Andersen and Nielsen, 

1986) with a low equilibrium dissociation constant, or K<i value of about 0.5 nM in the 

rat STR (Billard et al., 1984; Hess et al., 1986; Schulz et al., 1985). Although the 

affinity of SCH for serotonin2 sites is in the nanomolar range (Bishchoff et al, 1986), it 

is 20 times more potent in displacing a nonselective DA radioligand from striatal D1 

receptor sites (Hyttel, 1983). Similarly, when administered in vivo, doses of 1.5 mg/kg 

of SCH are required to inhibit 503 of [3H]spiperone binding to serotonin (5HT2) 

receptors in frontal cortex (Bishchoff et al., 1986); this dose exceeds those required to 

inhibit DA-dependent behaviors (~ 0.1 mg/kg; Molloy and Waddington, 1984 ). 

Comparison of pharmacological characteristics of in vitro [3H]SCH and 

[3H]spiroperidol binding in the rat STR with in vivo [3H]SCH and [3H]raclopride 

binding in the mouse brain indicates that compounds with selectivity in vitro retained 

this selectivity in vivo (Andersen, 1988). Similarly, in the monkey, [3H]SCH labels a 

homogeneous and saturable high-affinity Dt site (K<i = 0.35 nM; Madras et al., 1988). 

Binding potencies for the Di or D1 sites for select dopaminergic drugs are: SKF (125 

times greater for Di; SCH (5000 times greater for Di); QUIN(> 3000 times greater for 

Di); SUL (2500 times greater for Di); APO (3 times greater for D1); cis-FLU (2 times 

greater for Di); DA (1.4 times greater for Di; Madras et al., 1988). 
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Hii:.h and Low Affinity States of Dt and D2 Receptors. The D1 and 

Dz receptor sites are thought to exist in two interconvertible states exhibiting either high 

or low affinity for agonists, and are modulated by a guanine nucleotide-selective 

regulatory protein (Urwyler and Markstein, 1986). The high-affinity state can be 

converted into the low-affinity state by the addition of a guanine nucleotide. In the 

absence of exogenous guanine nucleotide, both receptors have similar high affinities for 

DA of about 40 nM (range 9-74 nM), and low affinities for DA of between 2 and 4µM 

(Richfield et al., 1989). With the similarities in dissociation rate constants for DA at the 

two subtypes, neither receptor will predominate in its binding of endogenous DA, and if 

both receptors are found in the same dendritic area of a neuron, both receptors are likely 

to bind endogenously released DA (Richfield et al., 1989). However, the D1 receptor 

accounts for an average of 783 of the total number of DA receptors in most regions, but 

studies indicate that only 203 may be in the high affinity state (Richfield et al., 1989). 

The D1 receptor makes up the remaining 223 of the total number of DA receptors; but, 

in contrast to the D1 receptor, 80-903 of the D1 receptors may be in high affinity state 

in vitro (Richfield et al., 1989). If these differences in affinity states for the D1 and D2 

receptors exist in vivo, the proportions may influence the effects of DA and 

dopaminergic agents on individual brain regions. 

Distribution of D1 and D2 DA Receptors 

Location of Dt and D2 Radiolii:.and Bindini:. Sites. Autoradiographic 

studies have aided the localization of D1 and Di DA binding sites in VP/SI (see Fig. 1). 

Binding of [3H]SCH and [3H]spiperone in the rat indicates that the Dt and Di receptor 

densities in the VP/SI are 689 ± 26 fmoVmg protein and 70 ± 14 fmoVmg protein, 

respectively (Richfield et al., 1989). Similarly, autoradiographic studies of cholinergic 
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basal forebrain regions in the rat indicate that absolute density of D1 receptors is 440 ± 

53 fmol/mg protein in the VP, and 292 ± 51 fmol/mg protein in the SI; whereas D2 

receptor densities are 30 ± 5 fmol/mg protein in the VP and 11 ± 3 fmol/mg protein in 

the SI (Zilles et al., 1991 ). Compared with other cholinergic basal forebrain regions, 

Di receptors exhibit the highest density in the VP (Zilles et al., 1991). In contrast to the 

density of D1 receptors, [3H]SUL binding to the Di receptor indicates that the density of 

these receptors in the VP/SI is one-tenth that found in the NA; this is about equal to the 

amount for the substantia nigra pars reticulata (SNr), and 1/3 of the amount found in the 

SNc (Gehlert and Wamsley, 1985). Thus, the autoradiographic and binding studies 

concur that the density of the D1 subtype is high in the VP (Contreras et al., 1987; 

Dawson et al., 1988; Napier et al., 1991a) and seems to prevail by as much as 10 times 

over the Di subtype (Boyson et al., 1986; Geula and Slevin, 1989; Napier et al., 1991a; 

Richfield et al., 1989; Richfield et al., 1987; Zilles et al., 1991), and with an even 

greater difference in the SI (Zill es et al., 1991 ). 

Location of DARPP-32 Antibody-labeled Sites. Another applicable 

technique for visualizing D1 receptors in the brain is through co-localization of 

[3H]SCH binding with DARPP-32, which is a DA- and cyclic AMP-regulated 

phosphoprotein (Ouimet et al., 1984). This co-localization does not appear to be 

coincidental, since stimulation of D1 receptors in vivo in the rat STR by SKF increases 

phosphorylation of DARPP-32 (Lewis et al., 1990). DARPP-32 appears to be 

concentrated in a subpopulation of dopaminoceptive neurons, namely those containing 

D1 receptors, where it is localized in cell bodies, dendrites, axons, and nerve terminals 

(Hemmings Jr and Greengard, 1986; Ouimet et al., 1984; Walaas and Greengard, 

1984). Staining for DARPP-32 in the basal forebrain demonstrates that the VP and the 

GP display brightly fluorescent fibers and puncta (presumed nerve terminals), but that 
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neuronal cell bodies and dendrites are unstained (Ouimet et al., 1984). The distant 

groups of DARPP-32-containing cell bodies (e.g., from the NA and STR) are 

considered the source of these DARPP-32-Jabeled fibers and nerve terminals in the VP 

and GP, respectively (Ouimet et al., 1984). Thus, the presence both of this receptor 

and of DARPP-32 within the VP (see Fig. 1) and the GP suggests that Di receptors 

may be located presynaptically on afferents to these regions. 

Location of D1 and D2 mRNA-labeled Sites. Studies concur that the 

VP contains a higher concentration of Di receptors than the GP (Bardo and Hammer, 

1991; Beckstead et al., 1988; Boyson et al., 1986; Dawson et al., 1986a, 1986b; 

Mansour et al., 1990; Napier et al., 1991a; Richfield et al., 1987; Savasta et al., 1986). 

Additional evidence for this DA receptor diversity in the VP versus the GP is provided 

by in situ hybridization techniques demonstrating that the apparent density of D1 

receptor mRNA within VP is not as great as that observed in the GP (Mansour et al., 

1990). In contrast, Di DA receptor mRNA labels cells in the VP/SI (Fremeau et al., 

1991), whereas no specific hybridization signals were observed in the GP, suggesting 

that the Di receptor in the GP may be present on afferent nerve terminals originating in 

other brain regions (Fremeau et al., 1991; Mengod et al., 1991; Weiner et al., 1991). 

Considering that DARPP-32 labeling of the VP and the GP (see above) indicates that D 1 

receptors are located on afferents to these regions, and that Di mRNA labels VP 

neuronal cell bodies, the VP may have both pre- and post-synaptic Di receptors (Fig. 

1). Moreover, since the VP postsynaptic receptors are not associated with DARPP-32 

labeling, they may also be independent of ACy and cyclic AMP generation. 

Corroborating this theory are studies on the amygclala that demonstrate DI receptor 

binding (Boyson et al., 1986; Dawson et al., 1986) without DA-stimulated ACy 

(Dawson et al., 1986b; Kilts et al., 1988; Mailman et al., 1986). Thus, although the 
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yp/SI is morphologically similar to the GP (see anatomical description of VP/SI), the 

above evidence suggests that these two regions may have distinct responses to DA 

receptor activation. 
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Neurochemical. Behavioral and Electrophysiolo&ical Studies Involvin& 

Dopamine 

Introduction 

The studies of this dissertation examined whether separate Di or Di receptor 

activation within the VP/SI region is sufficient to alter VP/SI neuronal activity. The 

effects of Di/D2 nonselective agonists on the activity of VP/SI neurons were then 

compared to the results of selective DA agonists. In an attempt to formulate a model 

incorporating all the conceivable effects of selective Di and Di receptor stimulation, the 

functional interactions between Di and Di receptors on the neuronal activity of the 

VP/SI are considered below. The potential interaction between these receptors suggest 

three possibilities: independent actions of each receptor, oppositional interactions, and 

non-oppositional interactions. 

The non-oppositional interactions of Di and Di receptor activation may involve 

enabling or synergistic actions. Enabling actions suggest that the activation of one 

subtype is necessary for drug actions on the other subtype. It is often suggested that 

stimulation of the Di receptor subtype by a selective Di agonist "enables" or permits the 

activation of the D1 receptor subtype by a D1 selective agonist to produce the same 

magnitude of effect as DA or as nonselective dopaminergic agents. The synergistic 

actions of Di and Di receptors imply that the response magnitude is less when either 

receptor subtype is activated alone versus the magnitude of concurrent activation of 

these receptors. 

Potential Effects of D1 and D2 Receptor Activation 

Independent Actions. In the STR, SKF has a dose-dependent effect that is 

similar to DA or APO on the induction of inositol phosphates (Undie and Friedman, 
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1990). SCH, but not SUL, blocks this agonist-induced response, whereas QUIN lacks 

effect on inositol phosphate accumulation (Undie and Friedman, 1990). DA-induced 

stimulation of the depolarization-induced release of [3H]GABA from rat slices isolated 

from SNr, entopeduncular nucleus, GP, and caudate-putamen is blocked by SCH, 

suggesting that DA modulates the release of GABA via the Di receptor (Floran et al., 

1990). In contrast, Dz, but not Di, receptor activation decreases DA release in the NA 

and caudate measured by microdialysis in freely-moving rats (Imperato et al., 1988). 

Chronic treatment with SCH increases the density of striatal Di receptors, which are 

located postsynaptically on intrinsic neurons (Cross and Waddington, 1981; Filloux et 

al., 1987; Leff et al., 1981), without altering the Dz receptor population (Creese and 

Chen, 1985). 

The independent effects of Di or Dz receptor activation likewise are expressed 

through specific behavioral responses. Di receptor activation in rats mediates non

stereotyped sniffing (Molloy and Waddington, 1985), and induces episodes of a 

specific grooming behavior that involves the snout being directed vigorously into the 

body (Dall'Olio et al., 1988; Molloy and Waddington, 1984, 1985; Starr and Starr, 

1986). These SKF-induced behaviors are blocked by SCH but not by a Dz antagonist, 

suggesting selective activation of Di receptors (Molloy and Waddington, 1984, 1985). 

SKF also induces grooming in rats chronically pretreated with SCH (Dall'Olio et al., 

1988). Unilateral injection of SKF into the SNr results in contralateral rotation (Asin 

and Montana, 1988; Jackson and Kelly, 1983). Di receptors have been implicated in 

the modulation of: 1) rapid eye movement sleep (Trampus et al., 1991), 2) bar 

pressing to receive rewarding VTA stimulation (Kurumiya and Nakajima, 1988; 

Nakajima and McKenzie, 1986), and 3) the duration of free-running rhythms of 

locomotor activity during constant dark conditions (Yamada and Martin-Iverson, 1991) 

in the rat. Mouthing movements that mimic oro-facial dyskinesia are produced 

26 



following intra-VP/SI injection of SKF, and are attenuated by local injection of SCH 

(Spooren et al., 199la). Similarly, injection of SKF82958 (a full Di agonist) within the 

VP induces prominent mouthing movements in addition to enhancing locomotion and 

rearing/wall climbing behaviors (Napier and Rehman, 1992). 

In contrast to Di-mediated effects, Di receptor stimulation has been implicated in 

the anti.psychotic and anti-dopaminergic activity of classical neuroleptic agents (Creese et 

al., 1976; Ellenbroek et al., 1991). Activation of D1 receptors in rats mediates 

locomotion, rotational behavior and some stereotypic sniffing and rearing behavior (for 

review see Clark and White, 1987). D1 receptor agonists increase the amplitude, but 

not duration, of free-running rhythms of locomotor activity in rats maintained in a 

constant dark environment (Yamada and Martin-Iverson, 1991). Intra-NA injections of 

QUIN, but not SKF, reduces exploratory locomotion in a dose-dependent manner 

(Mogenson and Wu, 1991). QUIN injected within the GP increases locomotion and 

rearing/wall climbing behaviors (Napier and Rehman, 1992). 

Electrophysiological studies concur that separate Di or Di receptor activation is 

sufficient to alter neuronal activity. White and Wang (1986) observed a heterogeneous 

population of NA neurons that respond with rate suppression to both Di and D1 

agonists, or to either agonist independently. Intrastriatal infusion of SKF, which 

mimics the effects of nonselective DA agonists (Groves et al., 1981; Tepper et al., 

1984), decreases the ability of antidromic stimulation to initiate action potentials (i.e., 

application of a Di agonist within the terminal region decreases the excitability of the 

terminals to antidromic stimulation). Thus, the terminal excitability of antidromically

identified nigrostriatal dopaminergic neurons is attenuated by Di receptor activation 

(Diana et al., 1989). However, D1 receptors are involved with enhancement of 

terminal excitability of hippocampal-NA neurons since microiontophoretic application of 

DA or QUIN within the NA mimics the effects of VTA stimulation on the excitability of 
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these hippocampal terminals (Yang and Mogenson, 1986). In contrast, the excitatory 

response of striatal neurons to cortical stimulation is attenuated by electrical stimulation 

of the nigrostriatal dopaminergic system via D2 receptors (Vives and Mogenson, 

1986b). Signal transmission from the hippocampus to the VP neurons that innervate the 

pedunculopontine nucleus is modulated by intra-NA application of QUIN (Yang and 

Mogenson, 1987). Thus, the possibility of independent actions of D1 and Di receptor 

agonists is supported by neurochemical, behavioral and electrophysiological studies. 

Qpposine; Actions of D1 and Di Receptor Activation. Neurochemical 

studies have indicated that D1 receptor agonists stimulate, and Di receptor agonists 

inhibit, ACy and cyclic AMP efflux and accumulation within the STR (Kelley and 

Nahorski, 1986; Pifl et al., 1991; Setler et al., 1978; Stoof and V erheijden, 1986). 

Recent studies reveal that D1 receptors can be positively coupled to phospholipase C, 

leading to the production of phosphatidyl inositols and diacyl-glycerol; conversely, Di 

receptors are negatively linked to this enzyme (Enjalbert et al., 1986; Pizzi et al., 1988). 

SKF also antagonizes Di receptor-mediated inhibition of DA metabolism in vivo in rats 

(Saller and Salama, 1985). Furthermore, activation of the D1 increases, whereas 

activation of the Di receptor decreases striatal acetylcholine release (Ajima et al., 1990; 

Damsma et al., 1990; Gorell and Czarnecki, 1986; Gorell et al., 1986). 

Behavioral and electrophysiological studies substantiate the opposing interaction 

of D1 and D2 receptors. The two receptors mediate opposite effects on: 1) oral 

movements (Johansson et al., 1987; Koshikawa et al., 1990b; Rosengarten et al., 

1986); 2) the convulsant effects of pilocarpine (Al-Tajir et al., 1990); 3) body 

temperature (Costentin et al., 1990); 4) the amount of area traversed during exploratory 

behavior (Eilam et al., 1991); and, 5) the direction of rotation following injection of DI 

or D2 selective agonists into the SNr (Asin and Montana, 1988; Jackson and Kelly, 
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l983) in rats. In addition, atypical jerking response is not induced by the Di agonist 

alone, but is dependent upon the removal of tonic Di-mediated dopaminergic activity 

that would otherwise oppose its manifestation (Murray and Waddington, 1989). 

Similarly, D1 receptor agonists enhance, whereas D2 receptor agonists suppress event

related slow potentials recorded from the rat cortex (Pirch et al., 1988), which are 

generated by VP/SI cholinergic neurons (Pirch et al., 1986). Several neurochemical, 

behavioral and electrophysiological findings suggest that D1 and Di receptor stimulation 

can express opposing influences on certain functions within the brain. 

Non-oppositional Interactions between D1 and D2 Receptor 

Activation. Neurochemical studies reveal that Di/Di receptor synergism is involved 

in: 1) the dopaminergic control of the electrically-evoked release of [3H]GABA in rat 

prefrontal cortex (Retaux et al., 1991) and, 2) DA-mediated inhibition of NA+/K+

dependent ATPase (Bertorello et al., 1990). 

A variety of behaviors also involve the cooperative effects of stimulating D1 and 

D1 receptors, and the expression of some behaviors require the activation of both 

receptor subtypes (for review see, Clark and White, 1987; Murray and Waddington, 

1989; Waddington and O'Boyle, 1989; White et al., 1988). Stimulation of both Di and 

Di postsynaptic receptors is necessary for the expression of stereotyped (Amt et al., 

1987; Braun and Chase, 1986; Vasse et al., 1988), and climbing (Moore and Axton, 

1988; Vasse et al., 1988) behaviors. Priming with QUIN is essential for SKF-mediated 

effects on contralateral turning in rats with unilateral 6-0H-DA lesions (Morelli et al., 

1990). In monkeys, the D1 receptor has a permissive role in yawning induced by Di 

receptor activation (Code and Tang, 1991). D1 receptor activation can also potentiate Di 

receptor-mediated motor responses (Amt et al., 1988; Barone et al., 1986; Molloy et al., 

1988; Molloy and Waddington, 1985; Morelli et al., 1987; Plaznik et al., 1989; 
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Robertson and Robertson, 1986, 1987), stereotypies (Bordi and Meller, 1989; 

Mashurano and Waddington, 1986; Meller et al., 1988), catalepsy (Dall'Olio et al., 

1988; Wanibuchi and Usuda, 1990), jaw movements (Koshikawa et al., 1989, 1990a), 

and yawning (Longoni et al., 1987; Spina et al., 1989) in normal and DA-depleted rats. 

Furthermore, the synergistic effects of Di and Dz agonists on rotational behavior may 

also be mediated through Di and Dz receptor activation in separate brain regions, such 

as the effect of Di receptor agonists in the SNr, and Dz receptor agonists in the STR 

(Robertson and Robertson, 1987). 

In electrophysiological studies, synergistic interactions between Di and Dz 

receptors: 1) increases the activity of GP neurons (Carlson et al., 1987a; Walters et al., 

1987), 2) potentiates both excitatory and inhibitory effects of SNr neurons as compared 

to activation of individual receptor (Weick and Walters, 1987), and, 3) decreases the 

activity of NA neurons (White, 1987). In addition, VP neuronal activity is excited 

similarly by intra-NA application of DA, or SKF followed by QUIN, but not by either 

agonist alone (Yang and Mogenson, 1989). Much of the evidence supporting the 

synergistic effects of Di and Dz receptor stimulation originates from studies of the 

systemic effects of DA agonists and antagonists, which may simultaneously activate Di 

and Dz receptors in many brain regions. 

Effects of Endoe,enously-released and Exoe,enously-applied DA 

The sensitivity of evoked neuronal activity of several brain regions to DA and 

dopaminergic agonists and antagonists has been studied using similar methods to those 

proposed in this dissertation. The categorization of DA as either an excitatory or 

inhibitory neurotransmitter is controversial since these studies indicate that actions of 

DA depend on the brain region examined. Electrophysiologic studies of the well

defined SNc projection to the STR indicate that stimulation of the SNc has an excitatory 
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effect on these STR neurons (Frigyesi and Purpura, 1967; Fujimoto et al., 1981; Hull et 

al., 1970; Kitai et al., 1975, 1976; Ohno et al., 1985, 1986; York, 1967). 

Microiontophoretic application of DA (Ohno et al., 1985, 1986; York, 1967) and DA 

Di, but not D1, receptor antagonists within the STR inhibits the excitatory SNc-evoked 

response, suggesting that the effects of SNc stimulation on STR neuronal activity is 

mediated by DA acting at Di receptors (Ohno et al., 1985, 1986). 

However, DA can have an inhibitory role since other studies reveal that 

VTNSNc (Connor, 1970; Le Douarin et al., 1986; Zarzecki et al., 1976) or medial 

forebrain bundle (Akaoka et al., 1987) stimulation usually evokes inhibitory STR 

responses (in 733 and 473 of the neurons tested in Akaoka et al., 1987; Connor, 

1970, respectively). The STR neurons with inhibitory responses to VTNSNc (Connor, 

1970; Le Douarin et al., 1986; Zarzecki et al., 1976) or medial forebrain bundle 

(Akaoka et al., 1987) stimulation also are suppressed by microiontophoretic application 

of DA. The complexity of STR responses to SNc stimulation may result from the 

extensive innervation of the STR region by dopaminoceptive brain regions that are 

concurrently affected by SNc stimulation. Intracellular recording studies supporting this 

conclusion reveal that only long latency excitatory postsynaptic potentials (the long 

latency time frame is analogous to our short latency response described in Chapter V) 

remain after removal of all of the non-nigral response components by denervation of the 

cortical, and transection of the thalamic inputs (Wilson et al., 1982). 

Stimulation of the sensory motor cortex also produces excitatory responses in 

STR neurons that are attenuated by preceding cortical stimulation with train stimulation 

of the SNc (Hirata et al., 1984), or intra-STR application of DA (Hirata et al., 1984; 

Johnson et al., 1983). Intra-STR application of SUL, but not SCH, reversed the 

attenuating effect of SNc stimulation on the excitatory response of STR neurons to 

cortical stimulation (Vives and Mogenson, 1986a), suggesting the involvement of Di 
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DA receptors in SNc-evoked STR responses to cortical stimulation. Stimulation of the 

SNc produced predominantly inhibitory, yet some excitatory affects on the activity of 

STR neurons; and microiontophoretic application of DA also inhibits glutamate-induced 

excitatory effects of STR neurons (Zarzecki et al., 1977). 

Microiontophoretic studies indicate that DA is generally a inhibitory 

neurotransmitter when applied locally within the brain. DA inhibits the glutamate

induced firing of the majority of NA neurons tested (Akaike et al., 1983). Excitatory 

NA responses to hippocampal or AMN stimulation are attenuated: 1) by prior 

stimulation of the VT A with a train of pulses, or 2) by intra-NA application of DA, 

indicating that DA mediates the VT A-evoked attenuation of the excitatory NA responses 

(Yang and Mogenson, 1984; Yim and Mogenson, 1982). Likewise, excitatory NA 

responses to stimulation of the parafascicular nucleus of the thalamus are inhibited by: 

1) VTA conditioning stimulation and iontophoretically applied DA (Akaike et al., 1984), 

and 2) iontophoretically-applied selective Di or D1 agonists (Hara et al., 1989) within 

the NA. In addition, VTA stimulation alters the responses of NA neurons to sensory 

input (West and Michael, 1990). 

The activity of GP neurons is inhibited by stimulating the sensory motor cortex, 

and these inhibitory responses are reduced when the SNc is activated with a train of 

pulses prior to cortical stimulation (Hirata and Mogenson, 1984). Stimulation of the 

hippocampus (Tsai et al., 1989) or the AMN (Tsai et al., 1989; Yim and Mogenson, 

1983) evokes inhibitory and excitatory VP responses. The inhibitory VP responses to 

AMN stimulation are attenuated: 1) by DA released within the NA, or 2) by prior 

stimulation of the VTA with a train of pulses (Yim and Mogenson, 1983). Thus, 

orthodromic stimulation studies provide strong evidence that DA released from the nerve 

terminals of the VTA and the SNc produces receptor spe.cific effects on neuronal activity 

of several brain regions. In addition, inhibitory actions of VT A/SNc stimulation on the 

32 



neuronal activity of target regions that appear to be modulate the effects of other 

afferents, are mimicked by microiontophoretically-applied DA. 
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f_unctional Relevance for DA within the VP/SI 

Studies indicate that the VP/SI receives dopaminergic innervation from the 

midbrain, and that D1 and Di receptors are located within this region (see anatomical 

review and distribution of D1 and Di receptors above). Biochemical studies corroborate 

this anatomical evidence since DA and its major metabolites have been isolated from 

VP/SI tissue, and are significantly reduced following 6-0H-DA lesions of midbrain 

dopaminergic regions (Geula and Slevin, 1989; Napier and Potter, 1989). Recent 

behavioral studies demonstrate that intracerebral microinjections of DA directly into the 

VP/SI dose-dependently increase locomotion in an open field (Napier and Chrobak, 

1992; Napier and Rehman, 1992), but do not alter working memory in rats previously 

trained on a 12 arm radial maze (Napier and Chrobak, 1992). Pretreatment by systemic 

administration of the D1/D2 antagonist, cis-FLU, attenuates the increase in locomotor 

activity (Napier and Chrobak, 1992). Intra-VP/SI injection of DA or a D1 agonist, 

results in dose-related increases rearing and wall climbing, and the Di agonist also 

produced robust mouthing movements (Napier and Rehman, 1992). Similarly, intra

VP/SI injection of SKF in cats elicits oro-facial dyskinesia that are attenuated by local 

injection of SCH (Spooren et al., 1991a). Thus, intra-VP/SI DA application elicits 

readily discernible motoric and grooming behaviors, whereas assessment of cognitive 

behaviors await more discrete testing paradigms. 

Likewise, electrophysiological studies reveal that VP/SI neurons are affected by: 

1) systemic administration of APO, 2) microiontophoretic application of DA (Napier et 

al., 199lb) and 3) electrical stimulation of the SNc (Napier et al., 1991a). Systemic 

administration of APO often induces dose-dependent rate increases (fewer neurons 

demonstrate dose-dependent rate suppressions), that are attenuated by haloperidol, 

verifying that the actions of the agonist are mediated through DA receptors (Napier et 

al., 199la). Although intra-NA DA application also increases the firing rate of VP/SI 
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neurons (Yang and Mogenson, 1989), the excitatory effects of APO remains following 

pharmacological inactivation of the NA, indicating that APO-mediated effects on VP/SI 

neuronal activity may be independent of the NA (Napier, l 992a). In addition, intra

VP/SI application of DA mediates VP/SI rate excitations and inhibitions, with the latter 

observed more frequently (Napier et al., 199lb). Systemic administration of 

haloperidol or SCH attenuate these effects, indicating that alterations in activity of VP/SI 

neurons involve both D1 and D1 receptors subtypes (Napier et al., 199lb). 

Furthermore, preliminary data corroborates the inhibitory effects of DA within the 

VP/SI since electrical stimulation of the SNc evokes inhibitory VP/SI responses (Napier 

et al., 1991a). Thus, the combined results from neurochemical, behavioral and 

electrophysiological studies indicate that DA is not only located within the VP/SI, but is 

also functionally relevant in this brain region. 
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Summary 

This literature review has outlined 1) the afferent and efferent anatomy of the 

VP/SI; 2) the pharmacology of Di and Di dopaminergic agents, as well as evidence of 

the localization of Di and Di receptor subtypes within the VP/SI; 3) the possible 

interactions between Di and D1 receptor activation; and, 4) the functional relevance of 

DA within the VP/SI. The hypotheses of this dissertation are: 1) that the D1 

and the Dz DA receptor subtypes mediate DA-induced effects on VP/SI 

neuronal activity. and 2l that DA is a neuromodulatory transmitter within 

the VP/SI alterine neuronal activity evoked in this brain reeion by 

~lectrical stimulation of afferents from the amyedaloid nuclei (AMNl. To 

investigate these hypotheses, the following specific aims were proposed: 

Specific Aim 1: To characterize the DA receptor subtypes that 

mediate the responses of single VP/SI neurons to systemic 

administration of DA agonists. 

In vivo electrophysiological experiments were performed on anesthetized rats to 

investigate the responsiveness of single VP/SI neurons to systemic administration of the 

selective Di agonist, SKF, and the selective D1 agonist, QUIN. Spontaneously active 

VP/SI neurons were characterized by action potential properties (configuration, 

amplitude and duration) and activity (firing rate and pattern). SKF or QUIN were 

injected intravenously in increasing doses. VP/SI neuronal activity was assessed as 

alterations in firing rate in response to increasing drug concentrations. If any significant 

rate changes occurred, the antagonist specific for the receptor subtype activated (i.e., 

SCH for the Di, and SUL for the Di receptor) were injected to determine if the rate 

alterations were mediated by specific receptor subtypes. To determine whether 

activation of one receptor subtype was sufficient to mediate the actions of a nonselective 

DA agonist (i.e., one that mimics the actions of endogenous DA within the brain), the 
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Dt and Dz DA agonist apomorphine was administered, and any effects induced were 

tested for receptor subtype specificity by administration of selective Di or Dz 

antagonists. 

Specific Aim 2: To determine the DA receptor subtypes involved 

in the VP/SI responses evoked by endogenously-released DA during 

stimulation of midbrain dopaminergic regions. To characterize the VP/SI 

responses evoked by electrical activation of the AMN. To determine if 

endogenously-released, and exogenously-applied DA within the VP/SI 

modulate AMN-evoked responses of VP/SI neurons. 

In vivo electrophysiological experiments were used to describe the effects of 

orthodromic (i.e., trans-synaptic) stimulation of the AMN and two midbrain 

dopaminergic regions, the ventral tegmental area and the substantia nigra pars compacta 

(VT A/SNc ), on the activity of VP/SI neurons. To verify whether VT A/SNc stimulation 

results in the release of DA in the VP/SI the following criteria were used: 1) 

exogenously-applied DA via microiontophoresis should mimic the effects of electrical 

stimulation and 2) exogenously-applied SCH and/or SUL within the VP/SI should 

attenuate the effects of electrical stimulation on VP/SI neuronal firing rate. The effects 

of microiontophoretic application of SKF and QUIN were also assessed to determine 

the contribution of these subtypes to alterations of spontaneous activity of VP/SI 

neurons. In addition, possible modulatory effects of DA within the VP/SI on VP/SI 

responses evoked by AMN stimulation were examined to determine: 1) if electrical 

stimulation of the VT A/SNc (which presumably releases endogenous DA), prior to 

AMN stimulation alters the effects of AMN stimulation alone, and 2) exogenous 

application of DA mimics the modulatory effects of endogenously-released DA on 

VP/SI neuronal activity that resulted from AMN stimulation. 
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CHAYfER Ill 

Dt AND D2 DOPAMINE AGONISTS INDUCE OPPOSITE CHANGES 

IN THE FIRING RATE OF VENTRAL PALLIDAL NEURONS 

Abstract 

Selective D1 and Dz dopamine (DA) agonists were used to determine the 

contributions of each receptor subtype in the modulation of firing rate of ventral 

pallidum/substantia innominata (VP/SI) neurons. Administration of cumulative doses of 

the Dz agonist, quinpirole (QUIN), decreased activity in 59% of the VP/SI cells tested. 

The decrease in firing rate was dose-dependent between 0.002-0.2 mg/kg, i.v. and was 

blocked by the Dz antagonist, sulpiride (SUL; 12.5 mg/kg, i.v.). In addition, the 

magnitude and the distribution of responses of VP/SI neurons was not changed 

following administration of QUIN as a single versus a divided cumulative dose of 0.1 

mg/kg. 

In contrast, administration of the D1 agonist, SKF38393 (SKF), excited 693 of 

the neurons sampled. Similar maximal responses were observed following 

administration of either a single or a divided cumulative dose of 3.2 mg/kg of SKF. 

The D1 receptor antagonist, SCH23390 (SCH; 0.1-0.4 mg/kg, i.v.) often attenuated the 

SKF-induced increases. 

The results illustrate that, 1) VP/SI neurons are sensitive to systemically 

administered DA agonists, 2) D1 or D1 receptor activation is sufficient to change the 
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activity of these neurons, and 3) these selective agonists mediate opposite effects on 

VP/SI neuronal activity. These differential responses contrast with effects observed for 

other dopaminoceptive brain regions, and distinguish VP/SI neurons from 

morphologically related neurons of the dorsal globus pallidus. 

Introduction 

Di or Dz DA receptors are classified based upon differential regulation of the 

enzyme, adenylate cyclase. Di receptor is coupled positively to adenylate cyclase 

(Kebabian and Calne, 1979), and Dz receptor is negatively coupled to the enzyme 

(Stoof and Kebabian, 1981). The availability of agonists and antagonists selective for 

Di or Dz receptors has provided the means to investigate the roles of DA receptor 

subtypes in the modulation of neuronal systems. Electrophysiologic studies of 

dopaminoceptive brain regions, including the striatum (STR), nucleus accumbens (NA), 

globus pallidus (GP), and amygdala (AMN), as well as the substantia nigra (SNc) and 

ventral tegmental area (VTA), have contributed significantly toward understanding the 

role of DA receptor subtypes on neuronal transmission. 

Systemically administered selective Dz agonists increase the firing rate of STR 

neurons (Hu and Wang, 1988), induce biphasic changes in NA activity (White and 

Wang, 1986), suppress SNc neurons innervating the STR (Kelland et al., 1988), and 

increase GP neuronal activity (Carlson et al., 1988). The Di selective agonist, SKF 

inhibits the firing rate of neurons in the STR (Hu and Wang, 1988) and NA (White and 

Wang, 1986). Under similar anesthetic conditions to the above studies, SNc neurons 

are not affected by systemic administration of this agonist alone (Carlson et al., 1987b; 

Kelland et al., 1988). High doses of SKF often increase GP neuronal activity (Carlson 

et al., 1988), but behaviorally relevant doses (Meller et al., 1988; Vasse et al., 1988) are 
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not effective. Thus, DA receptor activation results in complex responses that may be 

distinctive for the brain region under investigation. 

The ventral pallidum/substantia innominata (VP/SI) is a ventral extension of the 

GP (Heimer and Wilson, 1975), and is directly contacted by presumptive 

catecholaminergic neurons (for review see Zaborszky et al., 1991). DA has been 

suggested as a possible neurotransmitter for this input (for review see Napier et al., 

199la). DA and its metabolites are located within VP/SI and lesions of midbrain 

dopaminergic neurons yield significant depletion of DA within VP/SI tissue (Napier and 

Potter, 1989). In addition, VP/SI neurons are altered by microiontophoretic 

applications of DA, often exhibiting an inhibition of firing rate (Napier and Potter, 

1989), but the receptor subtypes involved have not been determined. Autoradiographic 

studies demonstrate that the VP/SI contains Di and Di binding sites (Contreras et al., 

1987). 

To evaluate the functional consequence of Di and of D1 DA receptor stimulation 

on extracellularly recorded single unit activity of VP/SI neurons, the present in vivo 

electrophysiologic study characterized effects following systemic administration of the 

Di agonist, SKF, and the D1 agonist, QUIN. Because responses to DA agonists differ 

among brain regions, initial experiments defined the dose-response relationships of the 

effects induced by these agonists in the VP/SI in order to compare among 

dopaminoceptive brain regions. Agonists were administered as multiple dose treatments 

emulating the protocol and dose range used in previous electrophysiologic studies on 

other brain regions (e.g., Carlson et al., 1987b). In a subsequent experiment, agonist 

doses that induced near maximal responses were injected as a single dose treatment to 

verify that the onset, magnitude, and duration of the effects of VP/SI neurons were 

similar to those observed after administration of the agonist in divided doses. 
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Material and Methods 

.s.urgical freparation of Animals 

Male Sprague-Dawley rats (270-350 g, Harlan Inc., Indianapolis, IN) were 

anesthetized with chloral hydrate (400 mg/kg, i.p.), and a lateral tail vein was 

cannulated for intravenous administration of treatment drugs and supplements of chloral 

hydrate. The rats were mounted in a stereotaxic apparatus (David Kopf, Tujunga, CA) 

with the nose piece set at 3.3 mm below the horizontal, and the skull was exposed. A 

burr hole was drilled in the skull 0.5 mm posterior to Bregma, and ± 2.5 mm lateral to 

the midline for recording in the VP/SI (Paxinos and Watson, 1986), and the dura was 

removed. During all experiments, body temperature was maintained at 37 °c with a 

thermostatically controlled heating pad (Fintronics, Inc., Orange, CT). 

Extracellular Recordina: 

Neuronal activity was recorded extracellularly through a single barrel 

micropipette pulled from 2.0 mm O.D. glass tubing (A-M Systems, Inc., Everett, WA), 

with a vertical electrode puller (Narishige PE-2, Tokyo, Japan). The tip was broken 

back to a diameter of approximately 2 µm, and the electrode was filled with a 2M 

sodium chloride solution saturated with fast green dye (Fisher Scientific Co., St. Louis, 

MO). The impedance of these electrodes was 4-8 megohms, measured in vitro at 165 

Hz with a micro-electrode tester (Winston Electronics, San Francisco, CA). The 

electrode was lowered through the hole with a hydraulic microdrive (Trent Wells, South 

Gate, CA), within a VP/SI sampling distance of7.5 - 8.5 mm below the dura. 

Electrical signals recorded by the electrode were passed through a high

impedance amplifier (Fintronics, Inc., Orange, CT), filtered, and monitored on an 

oscilloscope (Tektronix, Inc., Beaverton, OR) and audiomonitor (Haer Inst., Inc., 
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Brunswick, ME). The signals were relayed to a window discriminator (Fintronics, 

Inc.) with the digital output representing action potentials from single, spontaneously 

active neurons. The output was recorded by a computer (IBM-AT) that, with the aid of 

Brainstorm Systems Spikes to Stats software (Chapel Hill, NC), displayed rate 

histograms, and stored all data for future statistical analysis. 

Urug Administration 

After a 5 min period of stable activity was recorded for each VP/SI neuron, 

drugs were administered through the tail vein cannula. Stable baseline activity was 

reestablished following any chloral hydrate supplements, and the anesthetic was not 

administered during DA agent administration. The specific D2 agonist, QUIN (Tsuruta 

et al., 1981; 0.002 - 0.2 or 0.1 - 25.6 mg/kg) or the specific D1 agonist, SKF (Setler et 

al., 1978; 0.002 - 1.6 or 0.1 - 25.6 mg/kg) was injected at 2 min intervals such that 

each dose added to the previous dose. Control studies were conducted using volumes 

of vehicle solutions that were similar to those used to dissolve the agonists. Only one 

neuron was recorded from each animal. 

The selective D2 antagonist, SUL (O'Connor and Brown, 1982; 12.5 - 25 

mg/kg, one neuron was tested also with 50 mg/kg) or the selective D1 antagonist, SCH 

(Hyttel, 1983; 0.1 - 0.4 mg/kg) was administered routinely 5 min after the injection of 

the highest dose of QUIN or SKF, respectively. Antagonist doses were selected based 

on their capacity to block QUIN- and SKF-induced responses observed in other studies 

(Hu and Wang, 1988; Molloy and Waddington, 1984). 

Single injection treatments of QUIN or SKF were tested to determine if 

responses with this protocol were similar to those observed with cumulative dose 

administration. For this experiment, baseline firing rate was monitored for 5 min, after 

which 0.1 mg/kg of QUIN or 3.2 mg/kg of SKF was administered and neuronal activity 
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was monitored for I 0 min. In some studies, firing rate was monitored for an additional 

20 min during which two successive antagonist vehicle injections (either tartaric acid or 

saline solution) were administered at 10 min intervals after the agonist. These studies 

verified that maximal agonist responses could be obtained within 2 min of injection and 

were maintained for at least 20 min. For the remaining neurons, SUL, then SCH, was 

administered at I 0 min intervals to test for antagonism of the QUIN-induced responses, 

and the antagonists were injected in reverse order following SKF. 

Neuronal activity following drug injections was converted to a percent of 

pretreatment control, determined by comparison of the firing rates averaged over the last 

30 s interval of pre-drug baseline (considered as 1003) with that observed during the 

last 30 s interval following each injection. This interval was increased for neurons that 

exhibited a cyclic firing pattern lasting more than 30 s to accurately assess drug effects. 

Treatment rates that differed from pretreatment levels by greater than 203 (and 

maintained for at least two consecutive doses in the multiple dose experiments), were 

considered significant. Antagonism was defined as an attenuation of agonist-induced 

responses by at least 303. A more stringent criterion than that for agonist-induced 

responses was select to assess antagonism since most of the antagonist effects exceeded 

the usual 203 criterion. Reversal was defined as a re-establishment of pretreatment 

rates. The number of neurons that satisfied these criteria for a given response direction 

were determined. 

At the end of each experiment, the rat was overdosed with chloral hydrate and 

the location of the recording site was marked with fast green dye by passing anionic 

current for 10 - 30 s through the electrode. The brain was removed, mounted and 

frozen, then cut with a microtome to locate the fast green dye deposit. The site of the 

fast green deposit that denoted the recording site was recorded on standardized 

stereotaxic maps reproduced from Paxinos and Watson (1986). 
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s.tatistics 

Cumulative log dose-response curves were constructed for the effects of 

repeated injections of DA agonists on the firing rate of VP/SI neurons. EDso, defined 

as the dose required to induce half of the maximum response, was determined from the 

x-axis intercept of the linear portion of each curve using linear regression analysis of a 

double reciprocal plot of dose versus population response values. Emax, defined as the 

maximal observed effect, standardized as percent of baseline firing rate, was determined 

from the y-axis intercept. These data are presented as mean ± standard error of the 

mean. 

To compare overlapping portions of the dose response curves for low and high 

dose administration of QUIN or SKF, a repeated measures analysis of variance 

(ANOVA) was used. In the experiment involving single injection treatments of SKF or 

QUIN, statistical differences among groups were determined using a repeated measures 

ANOV A and Tukey's test; and a t - test was used to compare mean rate responses to 

agonist administration between single and cumulative dose treatment. Chi-square 

analysis was used to detect changes in distribution of responses to the agonists. The 

criterion of significance for all statistical tests wasp < 0.05. 

Dru2s 

The drugs used in this study were chloral hydrate (Sigma Chem. Co., St. Louis, 

MO), quinpirole (LY 171555; trans-(-)-4aR-4,4a,5,6,7 ,8,8a,9-octahydro-5-propyl-1H

(or 2H)-pyrazolo-(3,4-g) quinoline monohydrochloride; Lilly Res. Lab., Indianapolis, 

IN), SCH23390 ((R)-( + )-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-IH-3-

benzazepin-7-ol hemimaleate; Schering Corp., Bloomfield,NJ), SKF38393 (2,3,4,5-

tetrahydro-1-phenyl-1H-3-benzazepine-7 ,8-diol hydrochloride; Smith, Kline, and 
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French Labs., Philadelphia, PA), and sulpiride (5-(aminosulfonyl)-N-((l-ethyl-2-

pyrrolidinyl) methyl)-2-methoxybenzamide; Sigma Chem Co.). Chloral hydrate, QUIN 

and concentrations of SKF below 3 mg/ml were dissolved in a saline solution. Higher 

concentrations of SKF were dissolved in water. SCH was dissolved in a 0.33 tartaric 

acid solution, and SUL was dissolved in a few drops of glacial acetic acid, then diluted 

with deionized water, and the pH adjusted with a IM sodium hydroxide solution. Drug 

doses are expressed in terms of the weight of their bases, except for chloral hydrate and 

SCH, which are provided as the salt. 

Results 

Electrophysiolo2ic Characteristics of Extracellularly Recorded Neurons 

in the VP/SI 

One hundred twenty five histologically verified VP/SI neurons were investigated 

in the present study (Fig. 2). Of these spontaneously active VP/SI neurons, 114 (913) 

displayed biphasic and 11 (93) had triphasic action potential configurations. The mean 

duration of the action potentials was 1.3 ± 0.04 ms, and the peak to peak amplitude was 

370 ± 22 µV. One hundred three recordings (823) had initially negative action 

potential waveforms, and the remaining 22 (183) had initially positive waveforms. 

VP/SI neurons demonstrated regular, irregular, or bursting firing patterns (Fig. 3) with 

an average firing frequency of 11.5 ± 0.74 spikes/s. The most frequently encountered 
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Fig. 2. STEREOTAXIC MAPS ILLUSTRATING THE HISTOLOGICAL 
LOCATIONS OF NEURONS WITHIN THE VP/SI FROM WHICH 
EXTRACELLULAR POTENTIALS WERE RECORDED (maps obtained from Paxinos 
and Watson, 1986). The side from which each neuron was recorded is indicated by L, 
left or R, right; and many recording sites overlapped. Anterior-posterior locations of 
brain sections are indicated in millimeters from Bregma by the number of each section. 
AC, anterior commissure; SI, substantia innominata; STR, striatum; VP, ventral 
pallidum. 
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Fig. 3. OSCILLOSCOPE TRACES ILLUSTRATING THE CHARACTERISTICS 
OF ACTION POTENTIALS AND FIRING PATTERNS RECORDED FROM 
NEURONS LOCATED IN THE VP/SI. The most frequent recording encountered had 
~n initially negative, biphasic action potential and a slow, irregular firing rate as 
llh.~strated in (A). Neurons with large, initially positive action potentials and bursting 
activity as illustrated in (C) were encountered least frequently. Up is positive. 
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recording displayed an irregular firing pattern often demonstrating slow cyclic increases 

and decreases in rate (illustrated by histograms in Fig. 6A-B). 

Effect of Cumulative Doses of the Selective Di DA Receptor Aeonist. 

Quinoirole. on the Activity of VP/SI Neurons 

QUIN was administered to determine the effects of DA Di receptor activation on 

the firing rate of VP/SI neurons. Firing rates following injection of vehicle solutions in 

volumes similar to those for agonist treatments did not meet the criteria for a drug

induced rate change (N = 13 neurons). In contrast, injections of 0.1 - 25.6 mg/kg of 

QUIN decreased firing rate in 16 of 26 neurons tested (Table 1). The activity of 7 

neurons ceased with the 0.2 mg/kg dose of QUIN, and thus, were not included in the 

dose-response curve presented in Fig. 4B. The magnitude of the rate suppression in the 

other 9 sensitive neurons at 0.1 mg/kg of QUIN was significant, and administration of 

higher doses of the agonist did not decrease firing rate further. Responses of the 10 

remaining neurons tested with these doses of QUIN are summarized in Table 1. 

Many VP/SI neurons responded to 0.1 mg/kg of QUIN, and additional doses 

did not induce further rate changes (Fig. 4B), suggesting that maximal responses were 

attained with this dose. Thus, 12 VP/SI neurons were tested with lower doses of 

quinpirole (0.002 - 0.2 mg/kg, i.v.) to determine if VP/SI neurons were sensitive to 

these doses, and if these changes in firing rate were dose-dependent. As illustrated in 

Fig. 4A-B, firing rate of 6 neurons decreased in a dose-dependent manner with a 

maximal decrease of 40% below control rates and an ED50 of 7.6 µg/kg. Responses of 

the remaining 6 neurons were equally distributed between a slight increase in firing rate 

(Fig. 4C) or an insensitivity to agonist administration (Table 1). 

The decrease in activity of only half of the neurons tested with a total dose of 

25.6 mg/kg of QUIN was abated after administration of the selective D2 antagonist, 
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SUL (12.5 or 25.6 mg/kg, i.v. and 1 neuron was tested and antagonized with 50 

mg/kg). SUL administration antagonized only 2 of the 6 cells that responded with 

QUIN-mediated increases, and 2 of 3 with biphasic rate changes. Furthermore, the 

average firing rate recorded after administration of 25.6 mg/kg of QUJN or after a 

subsequent injection of SUL was not different (Table 2). In contrast, SUL (12.5 

mg/kg, i.v.) reversed the decrease in firing rate of all 6 neurons tested with a 0.2 mg/kg 

total dose of QUIN (Fig. 4A), as well as 1 of 3 cells excited by this dose of QUIN. The 

firing rate of responding neurons was different between QUIN plus SUL and the 

agonist alone at the lower agonist concentration (Table 2). 
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Fi~. 4. RESPONSES OF VP/SI NEURONS TO CUMULATIVE DOSE 
ADMINISTRATION OF QUINPIROLE (QUIN). (A) A histogram illustrating the 
effects of dopamine D2 receptor stimulation by low doses of QUIN. The decrease in 
firing rate mediated by QUIN was reversed by sulpiride (SUL). (B and C) Cumulative 
dose-response curves summarizing the effects of intravenous administration of QUIN 
on the spontaneous activity of VP/SI neurons. In (B), six of 12 cells tested with low 
doses of QUIN responded with dose-dependent decreases in activity (open triangles; df 
= 5, r = -0.92, p < 0.01). The decreases in firing rate of 9 neurons following 
administration of 0.1 - 25.6 mg/kg of QUIN did not correlate with dose (df = 7, r = 
0.08, p > 0.1 ). (C) Increases in firing rate occurred in 3 neurons after administration of 
Jow doses; and 6 cells after high doses of QUIN that was dose related (df = 7, r = 0.79, 
p < 0.05). Three cells that demonstrated biphasic responses are not represented. N is 
the number of VP/SI neurons included in each curve. 
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TABLE 1 

SUMMARY OF RESPONSES OF VP/SI NEURONS TO SYSTEMIC 
ADMINISTRATION OF SELECTIVE OOPAMINE RECEPTOR AGONISTS 

In the experiments involving a dose range, dopamine ~gonists w~e. administered at 
2 min intervals such that each dose added to the previously adm1mstered dose. In 
the remaining experiments, quinpirole or SKF38393 was administered as a single 
injection of the dose indicated. 

Agonist Response'l 

(doses) 

Increase(%) Decrease(%) Biphasic (%) No Effect (3) 

Quinpirole 

(0.1 - 25.6 mg/kg)h,c 6/26 (23) 16/26 ( 61.5) 3/26 (11.5) 1/26 (4) 

(0.002 - 0.2 mg/kg) 3/12 (25) 6/12 (50) 0112 (0) 3/12 (25) 

(0.1 mg/kg) 3/13 (23) 8/13 (62) 0/13 (0) 2/13 (15) 

SKF38393 

(0.1 - 25.6 mg/kg)h,c 17/25 (68) 4/25 (16) 0/25 (0) 4125 (16) 

(0.002 - 1.6 mg/kg) 6/13 (46) 4/13 (31) 1/13 (8) 2/13 (15) 

(3.2 mg/kg) 19/23 (83) 1/23 (4) 0123 (0) 3/23 (13) 

a The ratio of responding cells divided by total number tested. Chi-square 
analysis of the distribution of responses following the administration of SKF38393 
versus that following quinpirole administration indicated that the number of cells 
that increased, decreased or were unaffected is dependent on the agonist 
administered (df = 3; x2 = 28.91; p < 0.01). 

h The distribution of responses following administration of high and low doses of 
quinpirole, or high and low doses of SKF38393 was not significant (df = 3; x2 = 
5.08, 3.49; p > 0.1, respectively). 

c The distribution of responses following administration of cumulative versus 

single doses of quinpirole and SKF38393 also was not significant (df = 6; x2 = 
6.42, 9.35; p > 0.1, respectively). 
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TABLE 2 

SUMMARY OF ANfAGONISM OF DA AGONIST-INDUCED EXOTATION OF 
VP/SI NEURONAL ACTIVITY 

Neurons that were excited by quinpirole (total dose 0.2 or 25.6 mg/kg) were tested 
with sulpiride (SUL; 12.5 or 12.5-50 mg/kg, respectively). Neurons that were 
excited by SKF38393 (total dose 1.6 or 25.6 mg/kg) were tested with SCH (0.1-0.4 
mg/kg). In addition, SCH (0.1 mg/kg) and SUL (12.5 mg/kg) were injected in 10 
min intervals to 11 neurons that responded to a single dose of SKF38393 (3.2 
mg/kg). 

Agonist Response Antagonist 
(doses) 3 control Treatment No. 1 Treatment No. 2 

Increase SUL SUL+ SCH 

Quinpirole 
25.6mg/kg 296±123.9 292 ± 89.1 .......... 
0.2 mg/kg 137 ± 30.3 144 ± 17.6 .......... 
0.1 mg/kg 159 ± 21.7 120 ± 16.98 .......... 

Increase SCH SCH+ SUL 

SKF38393 
25.6mg/kg 162 ± 15.4 115 ± 16.lb .......... 
1.6 mg/kg 180 ± 29.1 123 ± 19.2C .......... 
3.2 mg/kg 179 ± 9.4 133 ± 15.3d 105 ± 12.9d 

The mean percent response to agonist administration was different than the mean 
response after subsequent injection of antagonists: a df = 5, F = 24.33; b df = 25, F = 
4.76; c df = 11; F = 7.81; p < 0.05. 

d The mean percent response to SKF was different from the responses following SCH 
or subsequent injection of SUL (SCH + SUL); repeated measures ANOV A: df = 29, 
F = 17.68, and Tukey's HSD for SCH or SCH + SUL from SKF: df = 18, p < 
0.01). However, SCH+ SUL was not different from SCH (df = 18, p > 0.05). 
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T ABI ... E 2 - Continued 

sUMMARY OF ANTAGONISM OF DA AGONIST-INDUCED SUPPRESSION 
OF VP/SI NEURONAL ACTIVITY 

Neurons that were inhibited by quinpirole (total dose 0.2 or 25.6 mg/kg) were tested 
with sulpiride (SUL; 12.5 or 12.5-50 mg/kg, respectively). In addition, SUL (12.5 
mg/kg) was injected 10 min after quinpirole was administered as a single dose of 0.1 
mg/kg, and SCH23390 (SCH; 0.1 mg/kg) was administered 10 min after SUL in 2 
neurons. Neurons that were inhibited by SKF38393 (total dose 1.6 or 25.6 mg/kg) 
were tested with SCH (0.1-0.4 mg/kg). In addition, SCH (0.1 mg/kg) and SUL 
(12.5 mg/kg) were injected in 10 min intervals to 11 neurons that were inhibited by a 
single dose of SKF38393 (3.2 mg/kg). 

Agonist Response Antagonist 
(doses) 3 control Treatment No. 1 Treatment No. 2 

Decrease SUL SUL+ SCH 

Quinpirole 
25.6mg/kg 42± 8.8 65 ± 15.0 .......... 
0.2 mg/kg 58± 9.9 99± 5.ia .......... 
0.1 mg/kg 50± 6.1 74±11.4h 50 ± 13.6 

Decrease SCH SCH+ SUL 

SKF38393 
25.6mg/kg 33 ± 26.3 57± 6.0 .......... 
1.6 mg/kg 52 ± 15.4 104 ± 14.JC .......... 
3.2 mg/kg 6d 62 76 

The mean percent response to agonist administration was different than the mean 
response after subsequent injection of antagonists: a df = 11, F = 10.49; b df = 15, F 
= 7.76; p < 0.05; c df = 7, F = 26.54, p < 0.01. 

d Only one neuron was suppressed by administration of SKF38393. 
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Effect of Cumulative Doses of the Selective D1 DA Receptor Aeonist, ---
Sf<F38393, on Activity of VP/SI Neurons 

SKF was administered to investigate the responsiveness of VP/SI neurons to D1 

receptor stimulation. Cumulative dose administration of 0.1 - 2S.6 mg/kg SKF altered 

the firing rate of 21 of 2S neurons tested (Fig. SB-C). Seventeen neurons displayed 

dose-dependent increases in firing rate to agonist administration (Fig. SA-B), and 4 

neurons were suppressed (Fig. SC). 

Unexpectedly, many VP/SI neurons responded to low doses of SKF (e.g. 0.1 

mg/kg) that were below those necessary to induce responses in other dopaminoceptive 

brain regions (e.g., 20 mg/kg for the GP; Carlson et al., 1987a), suggesting that VP/SI 

neurons may be more sensitive to this agonist. Thus, lower doses (0.002 - 1.6 mg/kg) 

of the agonist were tested on an additional 13 VP/SI neurons, and rate increases were 

observed in 6 of these (Fig. SB). The responses illustrated in both the high and low 

dose SKF curves were dose-related. The EDso of the SKF-induced increases, 

determined by combining the responses for 0.2 - 6.4 mg/kg doses in both cumulative 

dose studies, was 0.9 mg/kg, and the Emax was 1623 of control firing rate. The 

responses of the remaining 7 neurons tested with low doses of SKF are illustrated in 

Fig. SC and summarized in Table 1. 

Administration of the selective D1 antagonist, SCH (0.1 - 0.4 mg/kg, i.v.) 

antagonized the SKF-induced excitation of 10 of the lS neurons tested with a total dose 

of 2S.6 mg/kg, but only 1 of 4 suppressions (Fig. SA). SCH injection antagonized 4 of 

the 6 neurons with increased rates, all 4 of the decreases, and the last phase of the 

biphasic response, for neurons tested with a total dose of 1.6 mg/kg of SKF. The 

responses to antagonist treatment differed from the SKF-induced excitations for both 

dose ranges, and for the neurons with decreases in rate after injection of a total dose of 

1.6 mg/kg of SKF (Table 2). 
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Fig. 5. VP/SI NEURONAL RESPONSES TO ADMINISTRATION OF 
CUMULATIVE DOSES OF THE D1 RECEPTOR AGONIST, SKF38393 (SKF). (A) 
A histogram depicting a rate increase induced by SKF. The D1 specific antagonist, 
SCH23390 (SCH) attenuated the response. (B and C) Cumulative dose-response 
curves illustrating the effects of SKF on single unit neuronal activity of the VP/SI. (B) 
Six neurons displayed dose-dependent increases in firing rate following injection of low 
doses of SKF (df = 8, r = 0.69, p < 0.05). An additional 17 of 25 neurons exhibited 
dose-dependent increases in firing rate after administration of higher doses of SKF ( df = 
4, r = 0.87, p < 0.05). Rate increases with 0.1 - 1.6 mg/kg of SKF38393 were not 
different in the two experiments ( df = 1, 20, F = 2.28, p > 0.1 ). (C) Decreases in firing 
rate following administration of low doses of SKF occurred in 4 neurons, and also in 4 
neurons that received high doses of the agonist. In addition, one neuron (not illustrated) 
demonstrated a SKF-mediated biphasic response, the last phase of which was blocked 
by SCH. N is the number of cells. 
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Effect of Sin2le Injections of Dopaminer2ic Aeonists on the Firin2 Rate 

!!f VJ>/SI Neurons 

Electrophysiologic studies have demonstrated that DA agonist pretreatment can 

attenuate the effect of higher doses of the same agonist in GP neurons (Bergstrom et al., 

1984). To determine whether different schedules of administration influence the 

magnitude or direction of the responses of VP/SI neurons, effects of single injection 

treatments of QUIN and SKF were tested. Doses of the agonists selected were those 

that resulted in near Emax responses as determined from the above studies (i.e., 0.1 

mg/kg for QUIN and 3.2 mg/kg for SKF). The firing rate of 8 of 13 (623) neurons 

tested with QUIN decreased, and 19 of 23 (833) neurons tested with SKF increased 

(Fig. 6B-C). Eight of9 neurons that demonstrated a Di-mediated excitation were tested 

with vehicle solutions. Vehicle treatments did not affect the ongoing increase in firing 

rates, and SKF-induced rate increases lasted for at least 20 min (Fig. 6A). The average 

suppression induced by a single injection of QUIN was 50 ± 6.1 %, which was not 

different from the response following a cumulative dose of 0.1 mg/kg QUIN (mean: 62 

± 103; df = 12, t = -1.02, p > 0.1). The average increase in firing rate induced by 

administration of SKF38393 was 228 ± 373, which was not different from the 

response after a 3.2 mg/kg cumulative dose of the same agonist (mean: 174 ± 19%; df = 

34, t = 1.25, p > 0.1). Responses of the other neurons tested with QUIN or SKF are 

provided in Table 1. 

SUL (12.5 mg/kg) injected 10 min after administration of QUIN attenuated the 

agonist-induced decreases in 5 of 8 (633) neurons (Fig. 6C), and 1 of 2 remaining 

neurons tested was attenuated with a subsequent injection of 0.1 mg/kg of SCH. Firing 

rates following initial administration of QUIN were different from those observed with a 

subsequent injection of SUL (Table 2). 
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Fig. 6. VP/SI RESPONSES TO INJECTION OF SINGLE DOSES OF SKF38393 
(SKF) AND QUINPIROLE (QUIN). (A and B) Rate histograms illustrating the 
increase in firing rate of VP/SI neurons after administration of single 3.2 mg/kg dose of 
SKF. (A) Administration of a 0.33 tartaric acid solution (TT A), the vehicle for 
SCH23390 (SCH) injected in volumes equal to those used for the antagonist, did not 
alter the SKF-induced rate increase. This recording depicted one of the more marked 
rate increases in response to SKF, but the duration of agonist induced excitation (more 
than 1 h) was similar to responses of other VP/SI neurons. (B) A dose of 0.1 mg/kg of 
SCH attenuated the SKF-induced increase, and a subsequent injection of sulpiride 
(SUL) reduced neuronal firing to pretreatment rates. (C) A histogram illustrating the 
rate decrease frequently observed following administration of 0.1 mg/kg of QUIN. 
Subsequent injection of SUL antagonized this D2-mediated response. 
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Ten neurons demonstrating SKF-induced increases also were tested with SCH, 

and the response of 7 of these was attenuated by SCH. A subsequent injection of SUL 

reversed rates to pretreatment levels or below in these 7, as well as an additional 2 of the 

1 o neurons. The firing rate change induced by SKF was different than that after 

administration of SCH, as well as the subsequent SUL injection (Table 2). 

,Comoarison of D1- or D2-mediated Responses 

The distribution of responses to SKF (i.e. the number of neurons with increased 

or decreased activity, and the insensitive neurons) versus that following QUIN was 

conditional to the agonist administered (Table 1). QUIN- or SKF-induced responses 

were antagonized more often when lower doses rather than higher ones were 

administered (Table 2). SKF-induced increases in firing rate were attenuated by SCH 

administration at each dose ranges tested, suggesting that the response to SKF was 

selectively mediated by D1 receptor activation even at a total dose of 25 mg/kg of the 

agonist (Table 2). In contrast to the selectivity of SKF for the D1 receptor at high 

doses, QUIN-induced decreases were attenuated by SUL at the 0.2 mg/kg, but not at 

the 25.6 mg/kg total dose of the agonist (Table 2), suggesting that these high doses of 

QUIN may induce nonselective alteraction of VP/SI activity. 

Discussion 

The present experiments demonstrated that VP/SI neurons were sensitive to 

intravenous administration of either D1 or Di agonists, and that the specific activation of 

the distinct receptor subtypes produced opposite effects on activity of these neurons. Di 

DA receptor stimulation altered the firing rate in 45 of 51 (88%) neurons tested with 

QUIN, and rate suppressions were observed in 30 of 51 (593) neurons. Responses to 
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0.002 _ 0.2 mg/kg of QUIN were usually attenuated, and the rate decreases were 

reversed completely by SUL administration verifying that the agonist-induced effects 

involved Di receptor activation for this dose range. The effects of QUIN in the present 

study occurred at doses that facilitate defense behaviors in cats (Sweidan et al., 1990), 

indicating that the systemically administered doses used in the present study are 

behaviorally relevant. 

D1 DA receptor stimulation by SKF altered neuronal activity in 52 of 61 (853) 

VP/SI neurons tested. In contrast to QUIN-induced responses, SKF increased firing 

rate in 42 of 61 (693) neurons. The specific D1 receptor antagonist, SCH was more 

effective in attenuating the responses to lower doses of SKF, but agonist-induced 

increases were attenuated in approximately 703 of all neurons tested. The agonist

induced effects in the present study occurred at doses that also induce grooming in rats 

(Meller et al., 1988; Vasse et al., 1988) indicating that these systemically doses are 

sufficient to influence neuronal activity and behavior. Thus, behaviorally relevant doses 

of QUIN and SKF administration altered VP/SI neuronal activity in opposite directions 

via stimulation of specific receptor subtypes. 

Although the VP/SI is a ventral extension of the GP with similarities in cell 

morphology and neurotransmitter content, the present study revealed that the effects of 

D1 or D1 DA agonists on VP/SI neuronal activity contrasts with those previously 

demonstrated in the GP. For example, 713 of VP/SI neurons tested responded by the 

0.2 mg/kg dose of QUIN, whereas 0.3 mg/kg of QUIN affects only 543 of GP 

neurons tested (Carlson et al., 1988). The predominant response direction observed for 

the Di agonist also differs for each area; activity of VP/SI neurons decreased, but GP 

neurons respond with excitation (Carlson et al., 1987a, 1988). D1 receptor activation 

initiated responses in 52of61 (853) VP/SI neurons tested with SKF doses that were 

less than 6.4 mg/kg. GP neurons are insensitive to these doses, and at 20 mg/kg SKF, 
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only 54% of the recorded neurons are affected (Carlson et al., 1988). Furthermore, 

dopaminergic agonist pretreatment in the GP diminishes the effect of subsequent 

administration of higher doses of the same agonist (Bergstrom et al., 1984); a 

phenomenon that was not observed for the VP/SI in the present study. Thus, changes 

in activity induced by systemically administered DA agonists discriminate between 

VP/SI and GP neurons. 

To determine the contribution of DA receptor subtypes in agonist-induced 

responses of VP/SI neurons, both D1 and Di antagonists were administered after 

agonist treatments if the first antagonist did not attenuate the agonist-induced response. 

Decreases induced by single dose treatment of QUIN usually were attenuated with SUL, 

and subsequent administration of SCH was tested on only two neurons. These results 

suggest that the effects induced by quinpirole were mediated through Di receptor 

activation without involving the D1 receptor. In contrast, SCH attenuated the effects of 

SKF, although subsequent administration of SUL often reduced rates to or below 

control levels. These results imply that SKF-mediated effects of VP/SI neurons may 

involve the Di receptor. However, SUL administration alone has been observed to 

suppress VP/SI activity (unpublished results). Thus, SUL-induced rate suppression 

may not be due to antagonism of the response to SKF, but through a blockade of a 

tonically active dopaminergic input. This would explain the observation that SUL was 

able to induce rate decreases that surpassed pretreatment levels in the present study. 

An additional interpretation involves the possibility that endogenous DA is 

released by SKF, and the neurotransmitter acts at the D1 receptor to contribute to the 

SKF-mediated response. Carlson et al. (1988) observed that the electrophysiologic 

effects of high doses of SKF in the GP are attenuated by removal of endogenous DA. 

However, pharmacologic inactivation of central dopaminergic systems did not eliminate 

SKF-induced rate increases in the VP/SI (Maslowski et al., 1990), suggesting that the 
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expression of SKF-induced responses may involve, but do not require, dopaminergic 

systems. Further studies are necessary to determine if removal of endogenous DA 

eliminates the ability of SUL to influence SKF-induced responses in the VP/SI. 

The present experiments suggest that Di and Dz receptors fulfill oppositional 

roles in mediating VP/SI neuronal activity. In addition, the VP/SI generates cue

elicited, event-related potentials in the cortex (Pirch et al., 1986; Rigdon and Pirch, 

1986), and these slow potentials respond in opposite directions to D1 and Dz agonists 

(Pirch et al., 1988). These observations concur with the opposite effects of these 

agonists in the modulation of adenylate cyclase (Stoof and Kebabian, 1981). In 

contrast, many studies of other dopaminoceptive brain regions demonstrate that 

responses to Di or Dz receptor activation are in the same direction (e.g., Carlson et al., 

1988). Thus, the VP/SI may be unique in its responses to separate administration of 

DA agonists selective for receptor subtypes. 

The location of DA receptor subtypes that mediate agonist-induced alterations in 

firing rate of VP/SI neurons has not been determined. Receptors located within the 

VP/SI as well as inputs from other dopaminoceptive brain regions may contribute to 

responses observed after systemic administration of DA agonists. Previous studies 

indicate that approximately 403 of the VP/SI neurons sampled are sensitive to 

microiontophoretic application of DA, and rate suppression was observed more often 

than excitation (Napier et al., 199lb). Thus, inhibitory effects of the DA agonists 

demonstrated in the present study may reflect receptor activation within the VP/SI. 

Although NA inputs to VP/SI are substantial (for review see, Heimer et al., 

1985), and the dopaminergic modulation of this input increases activity in the VP/SI, 

microinjection of QUIN or SKF individually in the NA does not alter VP/SI activity (for 

review see, Mogenson and Yang, 1991). In addition, inactivating the NA with procaine 

microinjections does not eliminate responses of VP/SI neurons to systemic 
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administration of QUIN or SKF (Napier, 1990). Thus, the responses of VP/SI neurons 

in the present study may be independent of NA inputs. 

Alteration of dopaminergic projections from the midbrain is another means that 

VP/SI activity could be changed by systemic administration of DA agonists. However, 

the contribution of this input may be modest since pharmacological suppression of 

midbrain dopaminergic neuronal activity by systemic pretreatment with gamma

butyrolactone, did not eliminate the effects induced by systemic administration of either 

QUIN or SKF (Maslowski et al., 1990). 

AMN neurons also project to the VP/SI (for review see Zaborszky et al., 1991). 

In addition, the AMN receives dopaminergic inputs from the midbrain (for review see, 

De Olmos et al., 1985). The activity of AMN neurons is altered by systemic 

administration (Bashore et al., 1978) and local application (Nakano et al., 1987) of DA 

agonists. Preliminary evidence suggests that inactivation of the AMN by local injection 

of procaine, attenuated the responses to systemically administered SKF (Napier, 

unpublished results). Thus, the effects of systemic administration of dopaminergic 

agents may involve the summated activation of DA receptors within VP/SI, as well as 

indirect influences from the AMN afferents to the VP/SI. 

Dopaminergic modulation of neuronal activity may propagate changes in the 

transmission of VP/SI efferents. The VP/SI is located between projection neurons of 

extrapyramidal motor (for review see, Mogenson and Yang, 1991) and limbic systems 

(Haber et al., 1985) which may permit the VP/SI the capacity to integrate motoric, 

cognitive, and motivational processes. For example, neuronal activity is enhanced in 

VP/SI when an animal performs task-related movements and during appropriate 

responses to rewarded stimuli (for review see Richardson and Del.ong, 1991). Recent 

findings indicate that the VP/SI is involved in alterations of specific behaviors in the rat, 

including cocaine self-administration (Hubner and Koob, 1990). Changes in firing rate 
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of VP/SI neurons in response to DA activation ofD1 or Di receptors may mediate these 

behaviors, thus underscoring the importance of continued investigation of the 

dopaminergic influence on VP/SI neurotransmission. 

63 



CHAPTER IV 

EFFECTS OF D1 AND D2 ANTAGONISTS ON APOMORPIIINE

INDUCED 

RESPONSES OF VENTRAL PALLIDAL NEURONS 

Abstract 

The ventral pallidum and adjacent substantia innominata (VP/SI) is innervated by 

dopaminergic terminals and contains Di and Di DA receptors. Repeated systemic 

injections of the DA agonist, apomorphine (APO), induce dose-dependent alterations in 

VP/SI neuronal activity. The present studies evaluated the contribution of Di and D1 

receptor subtypes to APO-induced alterations in extracellularly recorded VP/SI neuronal 

activity. Both sulpiride (SUL; D1 antagonist) and SCH23390 (SCH; Di antagonist) 

attenuated many of these responses; however, pretreatment with either antagonist did 

not alter the number of responding neurons, or the maximal effect induced by APO. 

Thus, activation of either receptor subtype by APO is sufficient to initiate the observed 

responses, and both may be involve in dopaminergic modulation of VP/SI neurons. 

Introduction 

The ventral pallidum and substantia innominata (VP/SI) are basal forebrain 

regions involved with the processing and transmission of motor, cognitive and 

motivational functions. Dopaminergic modulation of these behaviors may occur since 
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the activity of VP/SI neurons is affected by manipulation of dopaminergic systems. The 

VP/SI is directly innervated by dopaminergic inputs (Voorn et al., 1986), and both D1 

and D2 DA receptor subtypes are present in this area (Contreras et al., 1987). VP/SI 

neurons demonstrate dose-dependent changes in firing rate after intravenous 

administration of the D1/D2 DA agonist, APO (Napier et al., 199lb). In the dorsal 

globus pallidus (GP), which is morphologically similar to the VP/SI, APO stimulates 

Di and Di receptor subtypes, and both are necessary for maximal responding (Carlson 

et al., 1987a). GP neuronal responses to APO also are attenuated when the agonist 

dose is administered in multiple injections, a phenomenon the authors termed a "priming 

effect" (Bergstrom et al., 1982). 

The present electrophysiologic studies evaluated the contribution of DA receptor 

subtypes to APO-induced effects in the VP/SI by determining (1) whether antagonists 

selective for either the D1 or Di receptor influenced the effects of APO, and (2) whether 

pretreatment with either antagonist precluded the agonist-induced effects. In addition, a 

single dose of APO was tested to determine if the agonist-induced rate changes with this 

protocol were higher than those obtained previously in this laboratory for the VP/SI 

using the same dose administered in multiple injections (Napier et al., 1991b). 

Methods 

Extracellular activity of single VP/SI neurons was monitored in chloral hydrate 

(400 mg/kg, i.p.) anesthetized, male Sprague-Dawley rats (270-330 g). Chloral hydrate 

supplements were intravenously administered to maintain surgical levels of anesthesia. 

Supplementation was discontinued prior to test treatments with DA agents. Only one 

neuron per animal was tested. Action potentials (spikes) were recorded with a glass 

pipette containing a 2 M sodium chloride solution saturated with fast green dye. 

65 



Standard recording techniques were used as described elsewhere (Maslowski and 

Napier, 1991 a). VP/SI neurons were recorded within the stereotaxic coordinates 0.5 

mm p from Bregma, ± 2.5 mm L from the midline and 7.5-8.5 mm below the dura 

(according to Paxinos and Watson , 1986). Stable baseline firing was obtained for 5 

min, and treatments were then injected in 10 min intervals through a tail vein cannula. 

The following vehicle solutions were tested in equal volumes to the respective 

drug treatments: saline (0.12 ml) and 0.33 tartaric acid (0.19 ml), which were vehicles 

for APO and SCH (D1 specific antagonist), respectively; and buffered acetic acid (0.19 

ml; pH = 5), which was the vehicle for both SUL (D2 specific antagonist) and 

haloperidol (D1/D2 nonselective antagonist). The dose of APO selected (0.5 mg/kg, 

i.v.) is known to produce near maximal responding in VP/SI neurons (Napier et al., 

199lb), and the duration of APO-induced rate changes persists for longer than 20 min 

(Napier et al., 1986). APO was administered as a single dose, followed at 10 min post

injection by SUL (12.5 mg/kg) or SCH (0.1 mg/kg). In 10 neurons tested with SCH, 

haloperidol (0.5 mg/kg) was also administered to evaluate the possible role of D2 

receptors in APO-induced effects. The antagonist doses selected are sufficient to 

reverse APO-induced behavioral changes in rats (Kendler et al., 1982; Martres et al., 

1984; Molloy and Waddington, 1985). 

In additional experiments, a 10 min pretreatment of SUL or SCH preceded APO 

administration. These neurons were also tested with a saline vehicle before the 

antagonist pretreatment. Neurons that remained sensitive to APO after competitive 

antagonism of one receptor subtype, subsequently were tested with the specific 

antagonist for the other subtype. Responses were considered significant if baseline 

firing was altered by greater than 203. Antagonism was defined as an attenuation of 

agonist-induced responses by at least 303. A more stringent criterion than that for 

agonist-induced responses was select to assess antagonism since most of the antagonist 
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effects exceeded the usual 203 criterion. At the end of each experiment, the rat was 

overdosed with chloral hydrate, and the recording site was determined by the 

histological location of a fast green dye deposit from the electrode tip (Maslowski and 

Napier, 1991a). 

Neuronal activity after drug injections is presented as mean percent of 

pretreatment activity ± S.E.M., determined by comparing the firing rate averaged over 

the last minute of pre-drug period (considered as 1003) with that observed during the 

last minute interval following each injection. Alterations in mean firing rate among 

different drug treatments or time intervals were evaluated with repeated measures, 

ANOV A and t - test. Differences in the distribution of effects were examined with Chi

square analysis. The criterion of significance for all statistical tests wasp < 0.05. 

Results 

Sixty-five neurons were recorded within the VP/SI (Fig. 7). These VP/SI 

neurons displayed biphasic, and infrequently triphasic, action potentials with a mean 

duration of 1.4 ± 0.04 ms, and peak to peak amplitude of 350 ± 20 µV. VP/SI neurons 

demonstrated regular, irregular, or bursting firing patterns with an average firing 

frequency of 10.5 ± 1.0 spikes/s. APO induced responses in 28 of 35 (803) neurons 

tested (eg., Fig. 8), and 7 were insensitive (data not shown). The average rate 

suppression (N=15, 64 ± 83 below baseline rate; baseline= 1003) and excitation 

(N=l3, 105 ± 293 above baseline) induced by this single injection of APO were similar 

to responses previously observed after a cumulative dose of 0.5 mg/kg administered in 

multiple injections (95 ± 53 and 96 ± 123, respectively Napier et al., 1991). Neuronal 

activity was not affected by vehicle solutions in all 7 neurons tested using the protocol 
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for drug treatments, nor by saline injected prior to antagonist pretreatments in 20 of 23 

neurons tested. 

The magnitude of the difference between APO-induced rate suppression 

compared to excitation was not statistically significant (df = 26, t = 1.45, p > 0.1), and 

the Di or D2 DA receptor-selective antagonists demonstrated a similar capability to 

attenuate APO-induced effects regardless of the agonist-induced response direction. 

Thus, the data were combined omitting direction of responses (Table 3). SUL 

attenuated the effects of APO in 5of12 neurons tested, and SCH antagonized 11of16 

neurons tested (eg., Fig. 8; Table 3). In 10 neurons, haloperidol was administered after 

SCH, and did not potentiate the SCH-induced antagonism in 8 neurons, but attenuated 

the APO-induced responses in 2 of 4 neurons that were not affected by SCH (data not 

shown). 

APO effects also were evaluated after pretreatment with either SUL or SCH to 

determine whether functional removal of either receptor subtype would eliminate APO

induced effects. Four of 12 (333) neurons pretreated with SUL, and 1 of 11 (93) 

pretreated with SCH were insensitive to APO. The APO-induced effects of these 5 

VP/SI neurons appear to be mediated specifically through one receptor subtype. 

However, APO mediated responses through either receptor subtype in the majority of 

neurons tested. Thus, the proportion of APO sensitive compared to insensitive neurons 

was unaltered by antagonist pretreatment (df = 2; x2 = 2.08; p > 0.1). The magnitude 

of APO-induced effects was also unchanged ( df = 2, 43; F = 0.96; p > 0.1 ). 

Table 3 illustrates the effects of antagonist pre- and post-treatment on APO

induced responses in VP/SI neurons. The ratios indicate the number of neurons 

responding to a treatment compared to the number tested. For both SUL and SCH post

treatment groups, this is the number of APO-sensitive neurons whose agonist-induced 

response was attenuated by greater than 303 by the antagonists, compared to the 
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number of APO-sensitive neurons tested with the antagonists. Following pretreatment 

with SCH or SUL, the proportion of neurons that were sensitive to APO and 

subsequently antagonized by SUL or SCH post-treatment (df = 1, x2 = 1.02; x2 = 1.07, 

p > 0.1, respectively), was not different from neurons tested without antagonist 

pretreatment. 
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Fig. 7. STEREOTAXIC MAPS ILLUSTRATING THE HISTOLOGICAL 
LOCATIONS OF EXTRACELLULAR RECORDING SITES WITHIN THE 
VENTRAL PALLIDUM (maps obtained from Paxinos and Watson, 1986. Reproduced 
with kind permission from: The Rat Brain in Stereotaxic Coordinates. 2nd edition; 
copyright 1986, Academic Press, Orlando, Florida). Three recording sites were also 
!ocated (in the section labeled - 0.80) media] to the ventral pa1lidum within the substantia 
mnominata. The number on each map indicates the distance posterior to Bregma in 
millimeters. 
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mg/kg, i.v.) attenuated the response below pretreatment rate. 
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TABLE 3 

EFFECT OF ANTAGONIST PRE- AND POST-TREATMENT ON 
APOMORPHINE-INDUCED RESPONSES BY VP/SI NEURONS 

Antagonist Pretreatment3 

Antagonist None Sulpiride SCH23390 
Post-treatmentb n (%) n (%) n(%) 

Sulpiride 5112 (42) ........ 6/8 (75) 

SCH23390 11/16 (69) 4/10 (40) ........ 

a Animals receiving an antagonist pretreatment were injected with sulpiride (12.5 
mg/kg, i.v.) or SCH23390 (0.1 mg/kg, i.v.) 10 min before the administration of 
apomorphine (0.5 mg/kg, i.v.). 

b Animals receiving antagonist post-treatment 10 min after the administration of 
apomorphine. 

Discussion 

The present study revealed that activation of either the D1 or Dz receptor subtype 

by APO was sufficient to induce neuronal rate changes in the VP/SI. The magnitude 

and distribution of responses was similar among neurons receiving APO alone and after 

either receptor subtype was blocked by pretreatment with specific antagonists. This 

suggests that the receptor subtype that was not blocked by the antagonist is adequate to 

maintain the response to APO. In agreement, previous experiments demonstrated that 

stimulation of Dz receptors by the specific D2 agonist, quinpirole, or D1 receptor 
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activation by the specific D1 agonist, SKF38393, is sufficient to alter VP/SI neuronal 

activity (Maslowski and Napier, 199la). 

The present study determined that the response magnitude of VP/SI neurons 

after single dose of the APO was similar to that observed when the dose is achieved 

through multiple injections (Napier et al., 1991 b ). This contrasts with results reported 

for the GP, where prior APO injection at a dose that does not induce a response, 

attenuates the response to an effective dose of the agonist (termed a priming effect by 

the authors; Bergstrom et al., 1982). APO-induced responses of substantia nigra pars 

reticulata neurons do not display a priming effect (Waszczak et al., 1984), and 

additional studies in the VP/SI revealed that responses to quinpirole or to SKF38393 

also do not exhibit priming (Maslowski and Napier, 1991a). Thus, absence of the 

priming effect of APO may differentiate the VP/SI from the GP, but is not unique for 

the VP/SI. 

These studies illustrate that regional variations exist with regard to dopaminergic 

influences, and underscore the necessity of obtaining pharmacological profiles for the 

individual dopaminoceptive brain regions. The results demonstrate that stimulation of 

one DA receptor subtype can alter neuronal activity within the VP/SI, which concurs 

with previous experiments using agonists selective DA receptor subtypes (Maslowski 

and Napier, 199la). Further studies are needed to determine if the responses involve 

endogenous DA, and if these effects are mediated within the VP/SI or through other 

dopaminoceptive regions that impinge upon the VP/SI. 
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Conclusion 

The present study indicates that activation of either the D1 or Di DA receptor 

subtype is sufficient to initiate changes in VP/SI neuronal firing, and further supports 

the independence of function for the subtypes. 
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CHAPTER V 

DOPAMINE WITHIN THE VENTRAL PALLIDUM MODULATES 

NEURONAL ACTIVITY THROUGH Di AND Di RECEPTORS, AND 

ATTENUATES VENTRAL PALLIDAL RESPONSES TO AMYGI>AI~A 

STIMULATION 

Abstract 

The ventral pallidum and adjacent substantia innominata (VP/SI) receive 

dopaminergic afferents, demonstrate binding for D1 and Di dopamine (DA) receptors, 

and intra-VP/SI DA application alters the firing rate of these neurons. The present 

studies evaluated the effects of stimulating the ventral tegmental area (VTA) or the 

substantia nigra pars compacta (SNc), which presumably releases endogenous DA 

within the VP/SI, and of microiontophoretic application of DA within the VP/SI on the 

spontaneous and amygdala-evoked activity of VP/SI neurons. The contribution of 

VP/SI Di and D1 DA receptor subtypes to DA-mediated effects also was examined. 

VP/SI neurons often responded to VTA/SNc stimulation with short latency(~ 12 ms) 

inhibition, indicative of monosynaptically-mediated events. Intra-VP/SI application of 

SCH23390 (a Di antagonist) or sulpiride (a Di antagonist) attenuated this response. 

VT A/SNc-evoked VP/SI responses were mimicked by DA applied in the VP/SI. Intra

VP/SI application of the Di agonist SKF38393 or the Di agonist quinpirole modified 

VP/SI activity, confirming that either receptor subtype can modulate VP/SI neuronal 

activity. Thus, endogenously-released DA or exogenously-applied dopaminergic 

75 



agonists alter(s) VP/SI neuronal activity via Di or Dz receptors. Stimulation of 

amygdaloid nuclei (AMN) evoked short and long(> 12 ms) latency VP/SI responses, 

and the effects of AMN and VT AfSNc stimulation converged extensively within the 

VP/SI. Attenuation of AMN-evoked VP/SI responses was observed by: 1) prior 

stimulation of the VT AfSNc, and 2) intra-VP/SI DA application. The results suggest 

that activation of VTA/SNc releases DA within the VP/SI where it can act as a 

physiological antagonist of AMN-evoked VP/SI responses. Thus, DA displays 

neuromodulatory effects on the activity of the ventral striatopallidal system at the level of 

the VP/SI. 

Introduction 

The ventral pallidum (VP/SI), defined as the ventral subcommissural extension 

of the globus pallidus, and the adjacent substantia innominata (Heimer and Wilson, 

1975), receives ventral striatal and nucleus accumbens (NA) projections that transmit 

limbic information from cortical and basolateral amygdaloid inputs (for review see, 

Heimer and Alheid, 1991). The VP/SI can integrate and transmit this limbic information 

to medial dorsal thalamic (Young et al., 1984) and brainstem regions (Swanson et al., 

1984) that govern motoric behaviors (Bruclzynski and Mogenson, 1985; Swerdlow and 

Koob, 1987). Thus, the VP/SI, as a component of the ventral striatopallidal system, 

"must participate in the execution and modulation of motor responses resulting from 

various sensory and cognitive activities in the cerebral cortex" (Heimer and Alheid, 

1991). 

Midbrain dopaminergic neurons can influence the ventral striatopallidal system 

via a dopamine-induced suppression of NA neuronal firing (Yim and Mogenson, 1982) 

that may alter the activity of NA efferents to the VP/SI and result in VP/SI rate increases 
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(Yang and Mogenson, 1989). Considerable evidence demonstrates that DA within the 

NA can mediate locomotor activity via the VP/SI (Austin and Kalivas, 1991; Jones and 

Mogenson, 1980; Mogenson and Nielson, 1983; Swerdlow et al., 1984). However, 

recent studies indicate that dopamine (DA) within the VP/SI is sufficient to influence 

VP/SI neuronal activity (Napier and Potter, 1989; Napier et al., 199lb) and locomotion 

(Napier and Chrobak, 1992). 

The VP/SI is innervated by midbrain dopaminergic neurons (for review see, 

Napier et al., 1991 a; Zaborszky et al., 1991) that originate from both the ventral 

tegmental area (VTA; Grove, 1988; Haring and Wang, 1986; Jones and Cuello, 1989; 

Russchen et al., 1985; Semba et al., 1988; Zaborszky, 1989) and the substantia nigra 

pars compacta (SNc; Fallon and Moore, 1978; Haring and Wang, 1986; Jones and 

Cuello, 1989; Martinez-Murillo et al., 1988; Russchen et al., 1985; Semba et al., 1988; 

Zaborszky, 1989), regions often associated with mesolimbic and extrapyramidal 

motoric functions, respectively. Biochemical studies demonstrate the presence of DA 

and its metabolites within the VP/SI (Geula and Slevin, 1989; Napier and Potter, 1989). 

VP/SI neuronal activity frequently exhibits short latency inhibitory responses, 

suggestive of monosynaptic effects, to the electrical stimulation of the SNc (Napier et 

al., 199la), and often is inhibited by microiontophoretic applications of DA within the 

VP/SI (Napier and Potter, 1989; Napier et al., 199lb). 

Recent studies using molecular biological techniques reveal the existence of 

several DA receptor subtypes within the brain (for review see, Civelli et al., 1991). The 

effects of activating the Di and/or the Di receptor subtypes within the VP/SI were 

examined in the present study. The D1 receptor subtype within the VP/SI was defined 

pharmacologically by the ability of the selective D1 agonist, SKF38393 (SKF) to alter 

VP/SI neuronal activity, and the attenuation of the agonist-induced effects by the 

selective Di antagonist, SCH23390. Likewise, the D2 receptor subtype within the 
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VP/SI was characterized by the actions of the selective Di agonist, quinpirole (QUIN), 

and the attenuation of agonist-mediated effects by the selective Di antagonist, sulpiride 

(SUL). Biochemical studies, using radioligands that selectively bind the Di or D1 

receptor subtype confirm the presence of both receptor subtypes within the VP/SI 

(Contreras et al., 1987; Beckstead et al., 1988; Napier et al., 1991a). Similarly, DA

induced alterations of VP/SI neuronal activity involve both receptor subtypes, since 

systemic administration of SCH or haloperidol (a D1 antagonist) attenuates the 

responses to systemic treatments of apomorphine (Maslowski and Napier, 1991 b) and 

microiontophoretic applications of DA (Napier et al., 1991b). Previous studies indicate 

that systemic activation of Di or D1 receptor is sufficient to alter the spontaneously 

activity of VP/SI neurons (Maslowski and Napier, 1991a). However, it has not been 

determined whether specific activation of Di or D1 receptor subtypes »ithin the VP/SI 

can alter VP/SI neuronal activity. The involvement of these receptor subtypes in the 

responses of VP/SI neurons to endogenously-released DA via electrical stimulation of 

midbrain dopaminergic neurons is also unknown. 

In addition to NA and midbrain dopaminergic inputs, amygdaloid nuclei (AMN) 

provide limbic influences on the ventral striatopallidal system and subsequently affect 

the activity of VP/SI efferents to brain regions involved with motoric behaviors. The 

AMN, which is innervated by midbrain dopaminergic afferents (Fallon et al., 1978; 

Fallon, 1981) and is influenced by administration of dopaminergic agents (Anderson 

and Rebec, 1988; Bashore et al., 1978; Nakano et al., 1987), impinges directly onto 

VP/SI neurons (Krettek and Price, 1978; Zaborszky et al., 1984; Price, 1986), as well 

as providing afferents to the NA (Krettek and Price, 1978; Price, 1986). Evidence 

from combined anatomical and histochemical studies indicate that AMN projections 

contain the excitatory neurotransmitter, glutamate (or aspartate) (Fuller et al., 1987). 

Electrical stimulation of the AMN usually excites NA neurons (Yim and Mogenson, 
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1982), which presumably activates NA inhibitory efferents to the VP/SI to produce the 

observed late onset (polysynaptic) inhibition of VP/SI activity (Yim and Mogenson, 

1983). However, AMN stimulation also evokes short onset inhibitory and excitatory 

effects on VP/SI neuronal activity that are independent of the NA (Yim and Mogenson, 

1983), and may involve to some extent the direct innervation of the VP/SI by the AMN. 

VTA stimulation (presumably releasing endogenous DA), attenuates the 

monosynaptically-mediated, excitatory NA responses (Yim and Mogenson, 1982), as 

well as the polysynaptically-mediated, inhibitory VP/SI evoked by AMN stimulation 

(Yim and Mogenson, 1983). The modulatory effects of VT A stimulation are mimicked 

by exogenously-applied DA within the NA. However, only a portion of the VTA

induced modulation of the AMN-evoked VP/SI responses is eliminated through 

procaine-induced inactivation of the NA (Yim and Mogenson, 1983), suggesting other 

pathways for DA modulation AMN-evoked VP/SI responses. Since both midbrain 

dopaminergic and AMN afferents converge within the VP/SI, DA influences on AMN 

inputs may occur within the VP/SI, providing additional processing of the information 

transmitted to brainstem locomotor regions. 

The present electrophysiological study was designed to address the following 

questions: 1) Are the effects of intra-VP/SI DA application mediated through Di or D1 

receptor subtypes within the VP/SI? 2) Are selective Di or D2 DA receptor agonists 

within the VP/SI sufficient to induce rate changes in VP/SI neurons? 3) Does 

stimulation of the VT A evoke similar responses in VP/SI neurons as SNc stimulation? 

4) If the VTA/SNc influence VP/SI neuronal activity, are the evoked responses mediated 

through Di and/or D1 receptor subtypes within the VP/SI? 5) Does VTA/SNc 

stimulation modulate AMN-evoked activity of VP/SI neurons? 6) Does exogenously

applied DA within the VP/SI mimic the effects of VT A/SNc stimulation on VP/SI 

neuronal activity? 
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Materials and Methods 

s_urgical Preparation of Animals 

Male Sprague-Dawley rats weighing 250-350 g were anesthetized with chloral 

hydrate (400 mg/kg, administered intraperitoneaJly; Sigma Chem. Co, St. Louis, MO). 

A lateral tail vein was cannulated for intravenous injection of anesthetic supplements to 

maintain surgical levels of anesthesia. The animals were then placed into a stereotaxic 

apparatus (David Kopf Instruments, Tujunga, CA) with the nose piece set at 3.3 mm 

below the horizontal, and the skull exposed. Coordinates used for recording the VP/SI 

were 0.5 mm posterior to Bregma (P), 2.5 mm lateral to the midline (L) and 7.5-8.5 

mm below dura (V). Those for the VTAfSNc were 5.7 mm P, 1.0 mm L for VTA and 

1.6-2.0 mm L for SNc, 7.8-8.0 mm and 7.6-7.8 mm V for VTA and SNc, respectively. 

Coordinates for the AMN were 2.8 mm P, 4.8 mm Land 7.2-7.5 mm V. Rectal 

temperature of the animals was monitored throughout the experiments, and maintained 

at 35-37°C with a thermostatically controlled heating pad (Fintronics Inc., Orange, CT). 

Electrical Stimulation 

Stainless steel concentric bipolar electrodes (NEX-100, 0.5 mm shaft diameter and 

0.5 mm tip separation; David Kopf Instruments) were used for delivery of electrical 

stimulation, generated by Grass S88 stimulators, each coupled to a Grass stimulation 

isolation unit (SIU 5) and a Grass constant current unit (CCU 1; Grass Instrument Co., 

Quincy, MA). For experiments involving single pulse stimulation to the AMN or 

VT A/SNc, monophasic pulses of 0.1 ms duration were applied at a frequency of 1 Hz 

and with a current range of 0.05-1.5 mA (see Fig. 9). For experiments in which the 

interaction of VT AfSNc with AMN on the activity of VP/SI neurons was examined, the 

stimulation was sequenced as follows: 1) the VT AfSNc was stimulated with a train 
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consisting of 10 pulses, each 0.1 ms in duration and the pulses within the train occurred 

at a frequency of 10 Hz. 2) Following a delay of 100 ms, a single pulse of 0.1 ms 

duration was delivered to the AMN. 3) The effect of this stimulation on VP/SI neuronal 

activity was recorded for approximately 900 ms. 4) This entire VTA/SNc train - AMN 

single pulse sequence was repeated at a rate of once every 2 s for 128 stimulation 

epochs. 
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Fig. 9. SCHEMATIC DRAWING ILLUSTRATING IBE ORIENTATION OF THE 
MICROIONTOPHORETIC RECORDING ELECTRODE IN IBE VP/SI AND THE 
STIMULATING ELECTRODES IN THE AMYGDALA AND VENTRAL 
TEGMENT AL AREA (VTA) OR THE SUBSTANTIA NIGRA, PARS COMPACT A 
(SNC). A single glass pipette used for recording action potentials within the VP/SI was 
attached to five-barrel glass pipette that was used for microiontophoresis of 
dopaminergic agonists and antagonists. Bipolar electrodes were used for: 1) single 
pulse, orthodromic stimulation of the amygdaloid nuclei, often within the basolateral 
nucleus of the amygdala (blA), and 2) either single pulses or a train of pulses to 
orthodromically stimulate the VTA or SNc. See text for detailed description of 
methods. nA - nanoAmps of current used to eject drugs from the microiontophoretic 
electrode; µA - microAmps of current used for orthodromic stimulation of blA or 
VTA/SNc. 
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~tracellular Sinele-Neuron Recordin2s and Microiontophoresis 

Standard extracellular recording of single neurons and microiontophoresis 

techniques were employed as described previously (Fig. 9; Napier et al., 199lb). Pre

assembled five-barrel glass pipettes (A-M Systems, Inc., Everett, WA) were pulled with 

a vertical electrode puller (Narishige PE-2, Tokyo, Japan) and the tips broken back to 8-

12 µm. A single barrel pipette, with a tip diameter of approximately 2 µm, was then 

glued in parallel to the five barrel assembly such that the single barrel was positioned 

below the five barrels by 8-15 µm. The single barrel, filled with 2 M NaCl saturated 

with fast green dye (Fisher Scientific Co., St. Louis, MO), served as the recording 

electrode. The in vitro impedance of the recording barrel was 3-6 MO, measured at 165 

Hz with a micro-electrode tester (Winston Electronics, San Francisco, CA). The center 

barrel of the five-barrel pipette also was filled with 2 M NaCl saturated with fast green 

dye, and was using for automatic current balancing of the other barrels. 

The remaining four barrels each contained one of the following drugs: DA 

hydrochloride (0.2 M, pH 4; Sigma), quinpirole (QillN; LY 171555; trans-(-)-4aR-

4,4a,5 ,6, 7 ,8,8a,9-octahydro-5-propyl-1H (or 2H)-pyrazolo-(3,4-g) quinoline 

monochloride; 0.01-0.02 M, pH 4; Lilly Research Lab., Indianapolis, IN), SCH23390 

(SCH; (R)-( + )-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-IH-3-benzazepin-7-ol 

hemimaleate; 0.01 M, pH 4; Schering Corp., Bloomfield, NJ), SKF38393 (SKF; 

2,3,4,5-tetrahydro-1-phenyl-lH-3-benzazepine-7 ,8-diol hydrochloride; 0.01 M, pH 4; 

Research Biochemicals Inc., Natick, MA), and sulpiride (SUL; 5-(aminosulfonyl)-N

((l-ethyl-2-pyrrolidinyl) methyl)-2-methoxybenzamide; 0.02 M, pH 4; Sigma). The 

high concentration of agonists and antagonists used were selected to allow the passage 

of ionized drug through high resistance (20-60MO) barrels of the microiontophoretic 

pipette. Microiontophoresis of these agents (some of which have low solubility) 
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necessitates the use of saturable concentrations to achieve satisfactory conductance 

(Duggan, 1983; Salmoiraghi and Weight, 1967), and to minimize electrical noise on 

drug ejection (Duggan, 1983). All drugs were dissolved in sterile deionized water, but 

SCH and SUL were solubilized with HCl before being diluted to the final volume with 

deionized water, and then ION NaOH was added until a pH of 4 attained. 

In some experiments, the D1/Di dopamine receptor antagonist, flupentixol (4-[3-

[2-(trifluoromethyl)-9H-thioxanthen-9-ylidene] propyl)-1-piperazine ethanol 

dihydrochloride; Research Biochemical Inc.) was injected through a lateral tail vein 

cannula at a dose of 0.5 mg/kg. A concentration of 1 mg/ml of flupentixol was 

dissolved in sterile water, and a pH of 4 was established by addition of ION NaOH. 

For recording VP/SI neurons, the electrode assembly was lowered to 7.0 mm V, 

and a six-channel current generator and programmer (Fintronics, Inc.) was used to 

apply maximal ejection currents to each barrel for at least 30 min to concentrate the 

drugs at the pipette tips. Drugs were ejected with cationic currents, and negative 

retaining currents of 10 nA were applied to drug barrels between ejection periods. 

Action potentials were sampled from the VP/SI (7.5-8.5 mm V) using a hydraulic 

microdrive (Trent Wells, South Gate, CA), were filtered (200 Hz and 2 KHz) via a 

high-impedance amplifier (Fintronics, Inc.), and monitored on an oscilloscope 

(Tektronix Inc., Beaverton, OR) and audiomonitor (Grass Instruments Co.). To 

quantify the neuronal activity, the digital output from the window discriminator 

(Fintronics, Inc.) was transmitted to an IBM AT compatible computer, and Brainstorm 

Systems Spikes to Stats software (Chapel Hill, NC) was used to display rate histograms 

and to store and analyze data. 
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nata Collection and Analysis -
For experiment 1, it was determined if VP/SI neuronal responses to 

microiontophoretically-applied DA were mediated through the Di and/or the Di DA 

receptor subtype within the VP/SI by assessing DA response attenuation produced by 

locally applied SCH (a Di antagonist) and/or SUL (a D1 dopamine antagonist). 

Whether the DA-mediated effects could be mimicked by the Di DA receptor agonist, 

SKF, and/or the Di dopamine receptor agonist, QUIN also was examined. The 

following protocol was used: 1) A spontaneously active VP/SI neuron was isolated and 

stable pretreatment activity was obtained. 2) The agonist often was applied with an 

ejection current of 100 or 120 nA for at least 1 min. 3) If this current produced a rate 

change of greater than 203 of pretreatment activity that was reversible and reproducible, 

the agonist was considered effective. When the current tested affected VP/SI neuronal 

activity, often lower ejection currents were tested to determine if a current-response 

relationship existed. If the maximal ejection current did not produce a rate change of 

greater than 203 of control rates after being tested three consecutive times, the neuron 

was considered insensitive to agonist. 4) After an agonist response was characterized, 

either SCH or SUL was applied for at least 5 min prior to, and during the ejection of the 

agonist. 5) An attenuation of the agonist-induced response of greater than 203 was 

considered antagonism. The other antagonist was tested to verify that the agonist 

response was receptor subtype specific. 

To evaluate the responses of VP/SI neurons subsequent to electrical activation of 

the VTNSNc and/or the AMN, the following protocol was used: 1) A spontaneously 

active VP/SI neuron was isolated and pre-stimulation activity was monitored. 2) 

VT AfSNc or AMN stimulation-evoked effects on VP/SI activity were determined using 

a stimulation current that was shown in preliminary stimulation experiments to be 

effective for these regions (i.e., 0.3 and 0.5 mA for VTNSNc and AMN, respectively). 
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3) If an evoked response occurred in the VP/SI neuron (criteria for evoked response is 

defined below), the procedure was repeated at lower stimulation current to determine the 

response threshold. In contrast, if the VP/SI neuron was insensitive, currents up to 1.5 

mA were used, after which an unresponsive neuron was considered insensitive, and 

was not studied further. 4) Often the VP/SI neuron was assessed for sensitivity to 

stimulation of the other brain region (for example, VT A/SNc stimulation would then be 

followed by AMN stimulation) to determine if this VP/SI neuron expressed convergent 

effects from these two brain regions. 5) DA was microiontophoretically-applied as 

described above. If VP/SI neuronal activity was altered by DA, the SCH or SUL were 

co-applied with DA. The antagonist ejection current necessary to attenuate the effects of 

DA was used to evaluate the effectiveness on the VT A/SNc evoked VP/SI response. If 

DA either had no effect on VP/SI activity or the antagonist (s) did not attenuate the DA

induced effect, the maximal ejection current that did not produce nonspecific membrane 

effects (i.e., without reducing the amplitude or widening the duration of the action 

potential) was used for antagonist ejection during the period of VT A/SNc stimulation. 

6) During antagonist application, VT A/SNc stimulation was repeated using a stimulation 

current that previously evoked a response on VP/SI neuronal activity that was clearly 

above threshold but not the maximum effect observed (i.e., a stimulation current 

producing approximately 503 of the maximal evoked response over the range of 

stimulation currents tested for that neuron, or ECuso). 

For experiment 2, which characterized the effects of VT A/SNc stimulation and 

DA application on the AMN-evoked responses of VP/SI neurons, the following 

protocol was used. 1) A spontaneously active VP/SI neuron was determined to be 

sensitive to both VT A/SNc and AMN stimulation. 2) DA was microiontophoretically

applied during AMN stimulation using an ECuso for the AMN. 3) Subsequently, a train 

of 10 pulses was delivered to the VTA/SNc, at stimulation currents at or below ECu50, 
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100 ms prior to AMN stimulation to examine whether VT A/SNc stimulation could 

attenuate the AMN-evoked VP/SI responses. A train of pulses was used for activating 

VT A/SNc neurons, even though dopaminergic neurons in these regions fire with either 

single spikes or in bursts of up to 10 pulses (Grace and Bunney, 1984a,b), since 

biochemical studies indicate that the latter firing pattern elicits higher concentrations of 

extracellular DA (Gonon, 1988; Gonon and Buda, 1985; Manley et al., 1992). In 

addition, Yim and Mogenson (1982) observed that while both single or train stimulation 

of the VT A is sufficient to evoke NA responses, only train stimulation is capable of 

attenuating the NA excitatory responses to AMN stimulation. 

A peristimulus rate histogram was generated for each sample of 128 stimulation 

epochs, using a bin width of 2 ms. To test for significance in the evoked responses, the 

mean number of action potentials (or counts) per bin occurring 80-100 ms before the 

stimulation was determined and considered as the control interstimulus baseline. The 

onset of an evoked response was delineated by the first of three consecutive bins with 

counts that were greater than 1 standard deviation from the control mean, and the offset 

was similarly defined by the first of three consecutive bins with a count within 1 

standard deviation of the control mean (similar to methods used in Yim and Mogenson, 

1983). Counts occurring within this time period were compared to the number of 

counts occurring within this same time period after antagonist administration (or, in 

experiment 2, the counts observed after AMN stimulation was compared for the same 

boundary after dopamine application or VTA/SNc stimulation). 

In some VP/SI neurons, drug application and/or stimulation of the VT A/SNc 

prior to AMN stimulation (considered "treatment") altered the interstimulus baseline. To 

compensate for any influence this baseline change might have had on action potential 

occurrence during the evoked response period, a more stringent criterion was 

determined by calculating an "expected value" (E) as described previously (Napier et al., 
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t983). E was defined as the number of action potentials (or counts) which would be 

predicted to occur in the evoked period if the treatment did not alter interstimulus 

baseline. To calculate E, the mean counts/bin occurring during the 80-100 ms period 

prior to stimulation in the treatment sample (i.e., mean counts/bin of the interstimulus 

baseline for the treatment) was divided by the mean counts/bin during the same period 

of the interstimulus baseline in the control sample; this value was multiplied by the 

number of counts occurring during the evoked period in the control sample (i.e., (mean 

counts/bin for the treatment interstimulus + mean counts/bin for the control 

interstimulus) X (mean counts/bin for the evoked response during control stimulation)). 

Ethen was compared to the mean counts/bin actually observed during the evoked period 

in the treatment sample. If the ratio of the observed counts to E was altered by greater 

than 253, the treatment was considered effective. 

Statistics 

The magnitude of agonist-induced alterations of VP/SI firing rate is presented as 

mean ± S.E.M. Comparisons of the magnitude of agonist-induced effects on VP/SI 

neuronal activity for different DA agonists was assessed by an analysis of variance 

(ANOV A) followed by a post-hoc Newman Keuls test. Paired t -tests are used to 

assess differences in VP/SI neuronal activity induced by agonist application versus 

agonist-induced effects with concomitant application of antagonists. Chi-square 

analysis was used to detect changes in: 1) the distribution of VP/SI responses to 

microiontophoretically-applied agonists, 2) the number of VT AfSNc-evoked VP/SI 

responses that were sensitive or insensitive to the different antagonist treatments, and 3) 

the number of AMN-evoked VP/SI responses that were attenuated or insensitive to DA 

application versus VT NSNc stimulation. The criterion of significance for all statistical 

tests was p < 0.05. 
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Ujstoloeical Procedures 

At the end of each experiment, the rat received an overdose of chloral hydrate 

intravenously. The location of the last recording site was marked with fast green dye by 

passing anionic current through the recording barrel of the electrode for 10-20 min. The 

brain was removed, mounted, frozen and then cut with a microtome to locate the 

electrode tracks as well as the fast green dye deposit. The brain sections were stained 

with cresyl violet and the location of each recording site was determined using the fast 

green spot and electrode tracks as reference points. The location of the stimulation sites 

were assessed from the position of stimulation electrode tracks and reconstructed on 

stereotaxic maps (according to Paxinos and Watson, 1986). 

Results 

Characteristics of Spontaneously Active VP/SI neurons 

The data for this study were assessed for recordings of 233 neurons that were 

histologically verified to be within the ventral pallidum/substantia innominata (VP/SI; 

e.g., Fig. 10). All of the VP/SI neurons monitored were spontaneously active with a 

mean discharge rate of 12.2 ± 0.63 spikes per second. The most frequently 

encountered recording demonstrated a firing pattern with a broad interspike interval 

histogram denoting an irregular distribution of action potential occurrence intervals. Of 

the total recorded neurons, 211 (91 3) displayed biphasic and 22 (93) had triphasic 

action potentials. The mean duration of the action potentials was 1.2 ± 0.02 ms, with a 

89 



A 

E 

EFF 
VTAl8Nc: • 

CD \ AllN * 
.._-------c:'.'"'.'::: IOTH • 

NC 
0 

Fig. 10. LOCATION OF RECORDING SITES IN THE VP OR THE SI, AND 
STIMULATION SITES WITHIN THE AMN AND THE VTA OR SNc. (A, C, E) are 
cresyl violet stained coronal sections that are representative photomicrographs of the 
recording and stimulation sites. The arrows: in (A) indicates the position of the fast 
green dye spot, in (B, E) indicate the position of the stimulating electrode. The right 
column denotes individual recording and stimulation sites on maps redrawn from 
Paxinos and Watson (1986). Many recording sites overlapped. Numbers in the left 
comer indicate the distance (mm) from Bregma. Sections in (A, C, E) are denoted in the 
~ 0:80, - 2.56, and - 5.30 maps in (B, D, F), respectively. In (B) , filled symbols 
md1cate effective (EFF) and clear symbols indicate no change (NC) after stimulation of 
VTA/SNc (diamonds), of AMN (stars) , or convergence (circles). All VP/SI neurons 
responded to at least one of the AMN stimulation currents tested. 
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peak to peak amplitude of 338 ± 22 µV. One hundred ninety-eight recordings (853) 

bad initially negative action potential waveforms, and the remaining 35 (153) had 

initially positive waveforms. The recordings obtained in this study had similar 

characteristics to those from previous studies on the effects of dopaminergic agents on 

VP/SI firing rate (Maslowski and Napier, 1991a,b; Napier et al., 1991b; Napier, 1992). 

Effects of D1 andfor D2 DA Receptor Activation on YPISI Neuronal 

Firin&: Rate 

In agreement with our previous studies (Napier and Potter, 1989; Napier et al., 

199lb), approximately half of the VP/SI neurons tested were sensitive to 

microiontophoretic application of DA; responding with both rate suppressions and 

excitations (Fig. 11 and Table 4). Since DA can mediate responses through both Di and 

Di receptor subtypes, the Di DA agonist, SKF and the Di DA agonist, QUIN, were 

applied onto VP/SI neurons to determine whether separate activation of either receptor 

subtype was sufficient to affect VP/SI neuronal firing rate. VP/SI neurons responded to 

SKF with rate suppressions more often and with a greater magnitude than to either DA 

or QUIN (Table 4 and Table 5). Of the VP/SI neurons tested, 403 were inhibited by 

SKF but only 153 were inhibited by QUIN. The reverse was observed for VP/SI 

neuronal excitations, which occurred in only 73 of the neurons tested with SKF, but in 

243 of the neurons tested with QUIN. In addition, of the 20 VP/SI neurons tested with 

both agonists, 1 each demonstrated inhibition, excitation, or opposite effects to both 

agonists; 5 were inhibited and 1 was excited only by SKF; 3 were excited only by 

QUIN, and 8 were not affected by either of these compounds. 

VP/SI neurons often were insensitive to QUIN, even when the concentration of 

QUIN was twofold that of SKF (0.02 M versus 0.01 M, respectively). Higher QUIN 

ejection currents used for unresponsive neurons frequently produced action potential 
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Fi~. 11. CUMULATIVE RA TE HISTOGRAMS ILLUSTRATING THE EFFECTS 
OF MICROIONTOPHORETIC APPLICATION OF DA, SKF AND QUN ON THE 
FIRING RA TE OF VP/SI NEURONS. DA application induced both rate suppression 
(A) or rate excitation (B). SKF application typically induced a decrease in VP/SI firing 
rate that was current-dependent, but QUN application often did not alter activity (C). 
~ugs were applied during the time indicated by the horizontal bars above the 
histograms, and the magnitude of the ejection current is represented by number (in 
nanoamps) above the bar. 
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TABLE 4 

DISTRIBUTIONa OF AGONIST-INDUCED RESPONSESb OF VP/SI NEURONS 

Response Category 

Agonist Decrease Increase No Effect 

Dopamine 21/93 26/93 46/93 
(0.2 M; 5 - 120 nA) (23 3) (28 3) (49 3) 

SKF38393c 12/30 2/30 16/30 
(0.01 M; 10 - 120 nA) (40 3) (7 3) (53 3) 

Quinpirole 5/33 8/33 20/33 
(0.01 - 0.02 M; 10- 120 nA) (15 %) (24 3) (61 3) 

a The ratio of the number of neurons affected by the agonist divided by the number 
tested. 

b A significant decrease or increase in ventral pallidal firing rate was defined as a 
change of greater than 203 of baseline activity. No effect was determine as a change 
of less than 203 of baseline activity with agonist ejection currents ~ 100 nA. 

c Chi-square analysis of the number of neurons in each response category following 
the application of SKF38393 differed from that after dopamine or quinpirole 
application (df = 2; x2 = 7.15 or 6.80, respectively; p < 0.05). 

changes indicative of nonspecific 'membrane effects. In addition, the onset of SKF

induced inhibitory responses of VP/SI neurons occurred with significantly lower 

ejection currents (N = 12, mean current: 40 ± 7 nA) than QUIN-induced excitations (N 

= 8, mean current: 76 ± 15 nA; df = 18, t = -2.42, p < 0.05) or suppressions (N = 5, 

mean current: 92 ± 14; df = 15, t = 3.75, p < 0.01). 

Subsequent applications of the D1 receptor antagonist, SCH, or the Di receptor 

antagonist, SUL, were used to assess whether the effects of DA on VP/SI neuronal 

activity were mediated through D1 and/or Di receptors, as well as the receptor 

specificity of SKF- and QUIN-mediated effects on VP/SI firing rate (Fig. 12). 

93 



TABLE 5 

MAGNITUDE OF AGONIST-INDUCED RESPONSES OF VENTRAL PALLID AL 
NEURONS 

Agonist 
Response Category (3 of control) b 

(100 or 120 nA) a Decrease Increase 

Dopamine (0.2 M) 59.79 ± 4.03 145.22 ± 6.81 
(N = 16) (N = 16) 

SKF38393 (0.01 M) 38.77 ± 6.79 c 147.30 
(N = 11) (N = 1) 

Quinpirole (0.01-0.02 M) 69.63 ± 4.81 133.70 ± 2.16 
(N = 16) (N= 4) (N = 4) 

a Data include only the response of neurons that were tested with the agonist at 
maximum ejection current 

b Control (pretreatment) rate was standardized to 1003. 

c The magnitude of the SKF38393-induced decrease differs from both dopamine and 
quinpirole (ANOV A, df = 30; F = 6.15; p < 0.01, and significant Newman Keul's 
post-hoc analysis, df = 1; q = 4.18 and 4.13; p < 0.05). 

Suppression of VP neuronal activity by DA or SKF was attenuated by SCH (Fig. 12A). 

In addition, SCH attenuated DA-induced excitations (Fig 12B). SKF-induced rate 

excitations (N = 2) were not tested with antagonists. SCH did not antagonize QUIN

induced rate inhibitions or excitations (Fig. 12A-B). SUL attenuated DA-induced rate 

suppressions (Fig. 12C) but, in contrast to SCH, SUL application was not sufficient to 

attenuate DA-mediated increases (Fig. 12D). Excitations induced by QUIN were 

antagonized by SUL (Fig. 12D). Thus, DA-induced effects on VP/SI neuronal activity 

were mediated through either Di or Di receptor subtypes, but SKF was specific for Di 

receptor-mediated rate suppressions and QUIN was specific for Di receptor-mediated 
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Fig. 12. BAR GRAPHS DEPICTING THE MAGNITUDE OF A TIENUA TION OF 
DA-, SKF- AND QUN-MEDIA TED EFFECTS ON FIRING RA TE OF VP/SI 
NEURONS BY CONCOMITANT APPLICATION OF SCH OR SUL. Only those 
VP/SI neurons tested with both agonist and antagonist are included. DA- (0.2 M; 5-120 
nA) and SKF- (0.01 M; 10-120 nA) induced VP/SJ rate suppressions (A) were 
attenuated by SCH (0.01M;10-100 nA) application (Paired r - test, df = 6, r = -2.60, 
p < 0.05 for DA vs. SCH; and df = 5, r = -5.02, p < 0.01 for SKF vs. SCH). (B) 
SCH also attenuated DA- but not QUN-mediated VP/SI rate excitations (df = 10, r = 
4.28, p < 0.01 for DA vs. SCH). SKF induced rate excitations in only 2 VP/SI 
neurons that were not subsequently tested with antagonists. (C) SUL (0.02 M, 10-120 
nA) attenuated DA-induced rate suppression of VP/SJ neurons (df = 13, t = -2.13, p < 
0.05). (D) QUN-mediated excitations were antagonized by SUL (df = 3, t = 5.49, p < 
0.05). Horizontal lines indicate control level of neuronal activity (considered as 100% ). 
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rate excitations. Microiontophoretic application of vehicle solutions for agonists (as 

well as antagonists) did not alter the firing rate of VP/SI neurons (N = 10; data not 

shown). 

Responses of VP/SI Neurons to Sin&le Pulse Stimulation of the Midbrain -
Jl.ppaminer&ic Re&ion 

Figure 10 illustrates the location of the VP/SI neurons assessed for sensitivity to 

stimulation of VTA/SNc (Fig. IOA,B), and the stimulation sites within these midbrain 

dopaminergic regions (Fig. IOE,F). Of 138 VP/SI neurons tested, 135 were sensitive 

to midbrain stimulation of the ventral tegmental area VT A (N = 82) or the substantia 

nigra pars compacta SNc (N = 53). Stimulation of the VTA or the SNc produced 

similar number and types (i.e., inhibition or excitation) of evoked VP/SI responses, and 

the distribution onset latencies of each response type overlapped. Therefore, the results 

of activating these brain regions were combined. Although some VP/SI neurons 

responded to VTA/SNc stimulation with simple inhibition (Figs. 13A-C, 14, 15, 16) or 

excitation, 603 the sensitive VP/SI neurons exhibited a complex sequence of evoked 

responses (Fig. 13D-F and Table 6). The distribution of the latencies of the inhibitory 

responses was bimodal, with one peak in the range of 4 to 6 ms, and the other from 15 

to 21 ms. The distribution of the latencies of the excitatory responses was also bimodal, 

with one peak in the range of 4 to 6 ms, and the other from 28 to 30 ms. The most 

frequently observed response was an inhibition with a range of onset latencies from 2 to 

12 ms (Fig. 13A-C and Table 6). Since these distributions may indicate the 

involvement of distinct midbrain efferents to the VP/SI for the evoked response 

observed, the response were categorized into short(~ 12 ms) or long(> 12 ms) latency, 

as well as inhibitions or excitations (Table 6). 
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The effects of VT A/SNc stimulation on VP/SI neuronal activity were assessed 

further in 111 VP/SI neurons to determine if there was a relationship between the 

characteristics of the evoked response and increasing stimulation intensity to the 

VTA/SNc. The duration of the VP/SI inhibitory responses was augmented by 

increasing the stimulation intensity to the VTA/SNc (Fig. 14A-C) suggesting the 

recruitment of additional inhibitory inputs. Similarly, VP/SI neurons that displayed an 

initial excitatory evoked response, often exhibited a secondary inhibition whose duration 

was augmented by increasing the stimulation currents. In 7 VP/SI neurons tested with 

VT A/SNc stimulation, currents up to 0.8 mA appeared to be restricted to a distance of 1 

mm, since VP/SI evoked responses were terminated when the stimulating electrode was 

moved 1 mm from the "active site", and greatly attenuated when moved 0.5 mm away 

(Fig. 15). 

DA Receptor Subtypes Involved with VP/SI Responses to VT A/SNc 

Stimulation 

VP/SI responses to VTA/SNc stimulation often were mimicked by the effects of 

microiontophoretic application of DA on the firing rate of VP/SI neurons. Of the VP/SI 

neurons that responded to both VTA/SNc stimulation and microiontophoretic DA, 

1003 of the VTA/SNc-evoked inhibitory VP/SI responses also demonstrated DA

induced rate suppressions (N = 13), and 603 of VTA/SNc-evoked excitatory VP/SI 

responses, demonstrated DA-induced rate excitations (N = 15), and the remaining 403 

displayed DA-induced rate inhibitions. 
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Fig. 13. EXAMPLES OF VP/SI RESPONSES TO SINGLE PULSE 
STIMULATION OF THE VTA. The most frequent response to VTA/SNc stimulation 
was a short latency inhibition depicted by a VP/SI neuron in (A-C). VTA stimulation 
also evoked short latency excitation in the activity of second VP/SI neuron in (D-F). 
Oscilloscope traces, composed of 10 superimposed sweeps (A, D); raster stepper 
recordings composed of 128 consecutive sweeps (B, E); and peristimulus rate 
histograms (C, F) of the same 128 sweeps as in B and E, respectively. Triangle 
indicates the stimulus artifact. Connected arrows indicate the onset and offset of VP/SI 
evoked responses. Vertical bars in (C and F) indicate the number of action potentials 
per 2 ms time bin. Stimulation parameters: 0.1 ms; 1 Hz; A-C. 0.5 mA; D-F. 0.1 mA. 
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Table 6 

SUMMARY OF VENTRAL PALUDAL EVOKED RESPONSES TO 
STIMULATION OF THE VENTRAL TEGMENTAL AREA/SUBST ANTIA NIGRA 

PARS COMPACTA AND AMYGDALA 

Response Category a 

Region Number of Short Short Long Long 
Stimulated Neurons Latency Latency Latency Latency 

Sensitive to Inhibition Excitation Inhibition Excitation 
Stimulation b (~ 12 ms) (~ 12 ms) (> 12 ms) (>12 ms) 

VTA/SNc 135/138 80/135 41/135 70/135 70/135 
(593) (303) (523) (523) 

AMN 86/ 86 39/ 86 42/ 86 67/ 86 52/ 86 
(453) (493) (783) (603) 

a The response categories were defined by the latency in ms to the onset of a 
particular evoked response, as described in the Methods. 

b Only 3 VP/SI neurons were insensitive to VTA/SNc stimulation (stimulation 
current range: 0.5 to 1 mA) and were not included in the table. Sixty percent of 
VP/SI neurons responding to VTA/SNc stimulation and 803 responding to AMN 
stimulation exhibited a complex response sequence consisting of more than one 
evoked response. Thus, the sum of the percents is greater than 100, since the 
occurrence of each response is indicated in the numerator and each neuron tested is 
indicated in the denominator. 
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Fig. 14. AN EXAMPLE OF A VTA STIMULATION CURRENT-DEPENDENT 
INHIBITORY RESPONSE JN THE SAME VP/SI NEURON. As the current used to 
stimulate the VTA (0.1 ms, 1 Hz) was increased from 0.1 mA to 0.3 mA, a short 
latency inhibitory response was evoked in the VP/SI neuronal activity (A-B). With an 
increase of stimulation current to 0.5 mA the duration of the short latency inhibitory 
response increased to greater than 100 ms (C). Triangles indicate the stimulus artifact, 
the arrows depict the onset and offset of the VP/SI evoked responses. The vertical bar 
indicates the number of action potentials per 2 ms time bin. 
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Fi~. 15. RELATION SHIP BETWEEN THE LOCATION OF THE MID BRAIN 
STIMULATING ELECTRODE AND THE EVOKED VP/SI RESPONSE. VT A 
stimulation did not alter firing when the stimulating electrode was 1 mm above the active 
site within the VTA (A), but produced a slight inhibitory response when the stimulating 
electrode was located within 0.5 mm of this site on the periphery of the VT A (B). 
When the stimulating electrode was placed near the center of the VTA a VP/SI long 
latency inhibitory response of about 30 ms duration was evoked (C). The number in the 
upper left comer of the stereotaxic map represents the distance from Bregma. Triangles 
indicate the stimulus artifact, and the connected arrows depict the onset and offset of the 
inhibitory response to stimulation of the center of the VT A area (C). The vertical bar on 
the peristimulus histograms indicates the number of action potentials per 2 ms bin. 
Stimulation parameters were 0.1 ms; 1 Hz; 0.8 mA. 
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To determine the receptor subtype (s) involved in VP/SI responses to VTNSNc 

stimulation, SCH or SUL was microiontophoretically applied within the local milieu of 

the recorded VP/SI neuron during the period of VTA/SNc stimulation. Figure 16 

illustrates a typical VP/SI response to VTNSNc stimulation (short latency inhibition), 

an attenuation by SCH, as well as the less frequently observed, and more modest 

attenuation by SUL. Seventeen of 20 evoked responses attenuated by SUL also were 

antagonized by SCH, but simultaneous application of the antagonists did not induce a 

greater magnitude of attenuation. Evoked responses that were not attenuated by either 

antagonist alone could not be attenuated by concurrent application of the antagonists 

(Table 7). However, intravenous administration of the D1/D2 DA antagonist, 

flupentixol was sufficient to attenuate the VP/SI short latency inhibitory responses in all 

4 neurons tested (Table 7). In addition to the short latency inhibitions, both short and 

long latency excitations evoked in the VP/SI were attenuated by SCH or by SUL (Table 

7). 

Effects of VP/SI Neurons to Sin&le Pulse Stimulation of the AMN 

Figure 10 illustrates the location of VP/SI neurons affected by stimulating the 

AMN (Fig. lOA,B). Most of the AMN stimulation sites were within the basolateral 

nucleus (Fig. lOC,D), which evoked VP/SI responses with the lowest stimulation 

intensity. The evoked responses were not antidromically mediated since the criteria of 

constant onset latency and ability to follow pulse-pair stimulation at high frequency was 

not fulfilled (Lipiski, 1981). The distribution of latencies of evoked VP/SI inhibitory 

responses was bimodal, with one peak between 2 to 6 ms, and the other from 16 to 18 

ms. The distribution of latencies of evoked VP/SI excitatory responses also was 

bimodal, with one peak occurring between 4 to 12 ms, and the other from 16 to 18 ms. 
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Fig. 16. PERISTIMULUS HISTOGRAMS OF A SHORT LATENCY 
INHIBITORY RESPONSE IN A VP/SI NEURON TO VTA STIMULATION (0.1 ms, 
1 Hz), AND THE ATTENUATING EFFECTS OF CONCURRENT 
MICROIONTOPHORETIC APPLICATION OF SCH OR SUL. (A) VTA stimulation 
produced an inhibitory response of 2 ms latency and 14 ms duration for this VP/SI 
neuron (indicated by arrows). SCH antagonized this inhibitory response (B), while 
SUL application only produced a slight attenuation (C). The vertical bar in (A) indicates 
the number of action potentials per 2 ms bin, and triangles indicate the stimulus artifact. 
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Table 7 

OOPAMINEANTAGONIST-INDUCEDATTENUATION OFVENTRAL 
PALLIDAL RESPONSES EVOKED BY STIMULATION OF Tiffi VENTRAL 

TEGMENTALARENSUBSTANTIA NIGRA PARS COMPACTA 

Response Category a 
Antagonist Short latency Short latency Long latency Long latency 

Inhibition Excitation Inhibition Excitation 
(s 12 ms) (S 12 ms) (> 12 ms) (> 12 ms) 

SCH23390 16/23 31 8 6/10 7110 
(10-100 nA) (703) (383) (603) (703) 

Sulpiride 10/22 3111 9114 7113 
(5-100 nA) (453) (273) (643) (543) 

SCH23390/Sulpiride 31 8 b 
(10-100 nA) (383) 

Flupentixol 4/ 4 
(0.05-4 mg/kg, i.v.) c (1003) 

a The response category was defined as the ratio of the evoked responses displaying a 
203 attenuation to the number of responses tested with the antagonist. 

b These 3 evoked responses also were attenuated by individually applied sulpiride or 
SCH23390. 

c Of the 4 neurons tested, 1 responded to dose of 0.05, another to 2.0, and the 
remaining 2 neurons responded to 4 mg/kg, i. v. of the antagonist. 

Thus, the VP/SI responses (both excitatory and inhibitory) were categorized as short (s 

12 ms) or long(> 12 ms) latency (Table 7). Although some VP/SI neurons displayed 

only one type of evoked response (Fig. 17A-C), the most frequent effect of AMN 

stimulation was a complex sequence of evoked VP/SI responses (Figs. 17D-F, 18, 

19B). The most often observed AMN-evoked VP/SI response category was a long 

latency inhibition (Fig. 18, 19B, 20A; Table 7). For many VP/SI neurons tested, 

increasing the stimulation intensity evoked more complex response patterns (Fig. 18), 

rather than an increase in response duration observed with VTAfSNc activation. 
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Modulation of VP/SI Responses to AMN Stimulation by Activatin2 the 

VTA/SNc and Microiontophoretically Applyin2 DA 

The majority of VP/SI neurons that responded to AMN stimulation also 

responded to activation of the VTA/SNc (Fig. lOB). Of sixty-one VP/SI neurons that 

displayed short latency effects to AMN stimulation, 923 also demonstrated short 

latency VP/SI responses to VT A/SNc, suggesting extensive convergence of these to 

inputs within the VP/SI (e.g., Fig. 19). Similarly, of 48 VP/SI neurons with long 

latency effects evoked by AMN stimulation, 793 also exhibited short latency effects to 

VTA/SNc stimulation, suggesting that VT A/SNc may modulate, at the level of the 

VP/SI, the polysynaptically-mediated effects of AMN stimulation. To determine if 

VTA/SNc can influence AMN-evoked VP/SI neuronal activity, the effects of both 

endogenous DA (presumably released through VTA/SNc stimulation) and exogenously

applied DA (microiontophoretic) were examined. To assess the modulatory effects of 

activating the VTA/SNc with a train of 10 pulses on AMN-evoked responses of VP/SI 

neurons, a VTA/SNc stimulation current that minimally evoked (e.g., Fig. 19C-D), or 

did not evoke (Fig. 20B-C), a VP/SI response was employed (see Methods). 

Figures 19 and 20 illustrate DA-mediated attenuation of a VP/SI long latency 

inhibitory response to AMN stimulation by prior stimulation of the VTA and by 

microiontophoretically-applied DA (Fig. 19E). The long latency excitatory response of 

this neuron also was diminished by VTA stimulation and DA (Fig. 19C-E). Modulation 

of the AMN-evoked VP/SI response by prior VTA/SNc activation was observed even 

when VTA/SNc stimulation did not evoke a VP/SI response (Fig. 20B-C). Likewise, 

microiontophoretic application of DA, even at ejection currents that did not affect 

baseline interstimulus rate (Fig. 19B, E), effectively modified the AMN-evoked VP/SI 

response similar to the attenuation produced by VT A/SNc stimulation (Fig. 19D, E). 
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Fig. 17. TWO VP/SI NEURONAL RESPONSE SEQUENCES EVOKED BY 
SINGLE PULSE STIMULATION OF THE AMN (0.1 ms, 1 Hz). A short latency 
inhibition is illustrated by one VP/SI neuron in (A-C), and a short latency excitation 
represented by another VP/SI neuron in (D-F) Oscilloscope traces (A, D), composed of 
IO superimposed sweeps, il1ustrating the VP/SI evoked responses. A faster sweep 
speed was used in (D) to more clearly illustrate the onset of the short latency excitation. 
Raster stepper recordings in (B, E) are composed of 128 consecutive sweeps of evoked 
VP/SI activity;. peristimulus rate histograms in (C, F) are of the same 128 sweeps as in 
Band E, respectively. The vertica1 bar in (A) indicates the number of action potentia1s 
per 2 ms bin; triangles indicate the stimulus artifact and connected arrows depicted the 
onset and offset of VP/SI evoked responses. 
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Fig. 18. AMN STIMULATION CURRENT-DEPENDENT INCREASE OF THE 
COMPLEXITY OF RESPONSES EVOKED IN A VP/SI NEURON. As the current 
used to stimulate the AMN (0.1 ms, 1 Hz) was increased from 0.3 mA to 0.5 mA, the 
long latency inhibitory response evoked in the VP/SI neuronal activity was preceded by 
a short latency excitation (A-B). With a further increase of stimulation current to 0.8 
mA, the duration of the long latency inhibitory response increased from 28 to about 40 
ms (C). Triangles indicate the stimulus artifact, the connected arrows depict the onset 
and offset of the VP/SI evoked responses. The vertical bar indicates the number of 
action potentials per 2 ms time bins. 
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Fig. 19. CONVERGENCE OF VT A AND AMN INFLUENCES WITHIN THE 
VP/SI, AND MODULATION OF AMN STIMULATION-INDUCED VP/SI 
RESPONSES BY VTA STIMULATION AND BY DA. VTA stimulation (0.1ms,1 
Hz) produced a short latency inhibitory response (A). AMN stimulation (0.1 ms, 1 Hz) 
produced a short latency inhibitory, a long latency excitatory and a long latency 
inhibitory response on the same neuron (B). A train of 10 pulses (0.1 ms, 0.1 or 0.05 
mA) at IO Hz to the VTA evoked a VP/SI short latency inhibitory response that 
attenuated the long latency excitatory and inhibitory responses to AMN stimulation 
(C,D). The short latency inhibition evoked by the AMN was potentiated by VT A 
stimulation in this neuron, although this phenomenon was not typically observed. 
Microiontophorectically-applied DA (0.2 M; in E) mimicked the attenuation of AMN
evoked VP/SI responses produced by the 0.05 mA VT A stimulation current in (D). 
Triangles indicate the stimulus artifacts, and connected arrows indicate the onset and 
offset of the evoked responses. The vertical bar represents the number of action 
potentials per 2 ms bin. In (C,D) the numbers 1, 2, 10 indicate the stimulus artifact for 
the first, second and last pulses of a 10 pulse train delivered to the VT A. 
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Fig. 20. MODULATION OF AN AMN-EVOKED VP/SI RESPONSE BY PRIOR 
STIMULATION OF THE VTA WITH A SUBTHRESHOLD CURRENT. AMN 
stimulation (0.1 ms, 1 Hz) induced a long latency inhibitory VP/SI response (A). 
Stimulation of the VT A with a train of 10 pulses at 10 Hz was below the threshold for 
evoking activity of this VP/SI neuron (B). However, train stimulation of the VTA I 00 
ms prior to AMN stimulation was sufficient to attenuate the AMN-evoked VP/SI long 
latency inhibitory response. Triangles indicate the stimulus artifacts, and connected 
arrows indicate the onset and offset of the VP/SI response evoked by AMN stimulation 
as shown in (A). The vertical bar represents the number of action potentials per 2 ms 
bin. 
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This example concurs with the similar effects of DA application and VTA/SNc 

stimulation on each of the AMN-evoked VP/SI response categories (Table 8). Thus, the 

modulatory effects of VT A/SNc stimulation on AMN-induced VP/SI responses may 

involve DA. 

Table 8 

ATTENUATION OF VENTRAL PAWDAL RESPONSES TO AMYGDALA 
STIMULATION BY EXOGENOUS OR ENDOGENOUS DOPAMINE 

Response Category a 

Physiological Short Latency Short Latency Long Latency Long Latency 
Antagonist Inhibition Excitation Inhibition Excitation 

(~ 12 ms) (~ 12 ms) (> 12 ms) (> 12 ms) 

Dopamine 7/11 7/15 20/25 5/13 
(5-120 nA) (643) (473) (803) (383) 

VT A/SNc Stimulation 11/13 10/18 26/33 11119 
(0.05-0.8 mA) (853) (563) (783) (583) 

a Indicates the number of VP/SI evoked responses to amygdala stimulation that were 
attenuated by the physiological antagonist divided by the number of amygdala-evoked 
responses tested. Chi-square analysis comparing the response to dopamine versus 
VTA/SNc stimulation for each response category was not significantly different. 

Discussion 

Contribution of DA Receptor Subtypes to DA-mediated Effects on VP/SI 

Neuronal Acthity 

The present study demonstrated that microiontophoresis of DA alters the firing 

rate of VP/SI neurons, producing both inhibitions and excitations. Previous studies 

also indicate that DA can suppress or excite VP/SI neuronal activity, and collectively it 

appears that the predominant effect of DA is a current-dependent decrease in firing rate 

(Napier and Potter, 1989; Napier et al., 199lb). DA-induced changes in the activity of 
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yp/SI neurons are antagonized by systemically administered SCH or haloperidol 

(Napier et al., 199lb), suggesting an involvement of both Di and Di receptor subtypes. 

Similar results are observed following the systemic administration of the D1/Di agonist, 

apomorphine, which also induces rate suppressions and excitations that are sensitive to 

haloperidol (Napier et al., 199lb), SCH or SUL (Maslowski and Napier, 199lb). The 

present data concur that the DA-induced inhibitions involve the activation of both D1 and 

Dz DA receptors within the VP/SI, since locally-applied SCH or SUL antagonized the 

inhibitions. However, DA-induced rate excitations were antagonized by SCH but not 

by SUL, suggesting that the excitations were mediated through activation of the D1 

receptor subtype within the VP/SI. When the selective D1 and Di antagonists were used 

to determine the contribution of D1 and Di receptors to DA-induced changes of VP/SI 

neuronal activity, inhibitory effects of DA were mediated by D1 or Di receptor activation 

within the VP/SI; moreover, D1 receptor activation also mediated the excitatory effects. 

The present results also demonstrated that activation of either the D1 or the Di 

receptor within the VP/SI was sufficient to induce VP/SI rate changes. Forty-seven 

percent of VP/SI neurons tested were sensitive to SKF application, and the activity in 

86% of these neurons was suppressed. This effect was attenuated by SCH but not by 

SUL, confirming that SKF-induced rate suppressions were mediated through the 

activation of the D1 receptor subtype. In contrast, QUIN induced slightly more rate 

excitations than rate inhibitions. The excitations were antagonized by SUL but not by 

SCH, verifying the involvement of the Di receptor in this response. Di-mediated 

increases in VP/SI activity induced by QUIN appear to be independent of DA-induced 

excitations, since the latter were not antagonized by SUL. These results suggest that D1 

and Di agonist applications within the VP/SI have opposing effects on VP/SI firing rate, 

since activating D1 plus Di receptors with DA induces rate suppressions whose 

magnitude is less than activating the D1 receptor with SKF. 
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Oppositional VP/SI responses also are obtained with systemic administration of 

SKF and QUIN, however, the direction of the responses is reversed such that 

intravenous SKF increases and QUIN decreases firing rate (Maslowski and Napier, 

. t99la). This data, together with the observation from the present study that 

polysynaptically-mediated effects were produced by VT A/SNc stimulation, suggest the 

possibility that VP/SI responses to systemically administered DA agonists reflect 

changes in the activity of dopaminoceptive regions that are afferent to the VP/SI. 

Previous studies support this hypothesis since inactivation of the AMN produced by 

procaine microinjections reduce the number of VP/SI neurons sensitive to systemically 

administered SKF (Napier, 1992). 

Similarities between the Effects of Endoienous and Exo2enous DA on 

the Spontaneous Activity of VP/SI Neurons 

With the demonstration that VTA/SNc stimulation alters the activity of VP/SI 

neurons, the present results provide a function for anatomical reports of dopaminergic 

innervation of the VP/SI from the VTA (Grove, 1988; Haring and Wang, 1986; Jones 

and Cuello, 1989; Russchen et al., 1985; Semba et al., 1988; Zaborszky, 1989), and 

the SNc (Fallon and Moore, 1978; Haring and Wang, 1986; Jones and Cuello, 1989; 

Martinez-Murillo et al., 1988; Russchen et al., 1985; Semba et al., 1988; Zaborszky, 

1989) to the VP/SI, and concurs with previous findings that VP/SI neurons often are 

inhibited by SNc stimulation (Napier et al., 199la). VP/SI neuronal activity was 

similarly altered by VT A and SNc stimulation, which implies that limbic (VT A) and 

extrapyramidal motor (SNc) pathways both influence the output of VP/SI neurons. 

Many of the VT A/SNc evoked responses of VP/SI neurons exhibited latencies 

less than 12 ms. The distance from the VTA/SNc to the VP/SI (as calculated from 

stereotaxic coordinates) is approximately 5-6 mm. With a conduction velocity of 
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dopaminergic fibers of approximately 0.5 mis (Guyenet and Aghajanian, 1978; Yim and 

Mogenson, 1980) and a synaptic delay accounting for another 0.5 ms (Kuffler et al., 

1984), the onset of monosynaptic DA-mediated effects can occur within 12 ms. In 

VP/SI neurons with slower firing rates, the onset of evoked responses appears to occur 

immediately after the stimulus artifact because the interspike interval of the spontaneous 

activity was longer than the delay for orthodromic conduction, whereas neurons with 

faster firing rates displayed action potentials prior to the evoked response that were not 

driven by the stimulus. Some of the short latency VP/SI responses may be mediated by 

dopaminergic neurons from the VTA/SNc. This conclusion is supported by evidence 

that these short latency responses were attenuated by intra-VP/SI application of DA 

antagonists. Thus, the results indicate that some of the VT A/SNc inputs to the VP/SI 

are monosynaptic and dopaminergic. 

According to criteria established by Werman ( 1966) for potential 

neurotransmitters, exogenously-applied DA should mimic the response to evoking the 

endogenous system. The present results fulfill this criterion, since all of the inhibitory, 

and 603 of the excitatory VP/SI responses produced by VT A/SNc stimulation were 

mimicked by microiontophoretic applications of DA within the VP/SI. In addition, 

SCH or SUL applied within the VP/SI antagonized the evoked responses, as well as 

DA-induced VP/SI rate suppressions. Thus, endogenous DA is released within the 

VP/SI during electrical stimulation of the VT A/SNc, and DA then alters the spontaneous 

activity of this region through the activation of Di or Di receptor subtypes. 

VT A/SNc stimulation also evoked VP/SI responses that exhibited long onset 

latencies characteristic of polysynaptic transmission. These polysynaptic events may be 

mediated through interneurons within the VP/SI or through afferents to this brain 

region. Afferents to the VP/SI, including the NA and AMN, receive midbrain 

dopaminergic innervation (Fallon and Moore, 1978; Fallon et al., 1978). Thus, 
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VTA/SNc evoked responses of the VP/SI may be mediated indirectly through alterations 

in neuronal activity of these systems. NA neurons display a variety of responses to 

VT A stimulation, and 503 of the responses are attenuated by systemic administration of 

the DA antagonist, haloperidol (Yim and Mogenson, 1982). Since microinjections of 

DA into the NA excites VP/SI neurons (Yang and Mogenson, 1989), it is possible that 

VT A stimulation-induced, endogenous release of DA affects VP/SI neuronal activity 

indirectly through altered output from NA afferents. The effects on VP/SI neuronal 

activity of DA receptor stimulation within the AMN are unknown. Since long latency 

responses of VP/SI neurons to VT A/SNc stimulation were readily attenuated by intra

VP/SI application of Di or Di antagonists, VT A/SNc stimulation-evoked responses of 

VP/SI neurons, regardless of their monosynaptic or polysynaptic nature, are under DA 

modulatory control at the level of the VP/SI. 

Effects of Endo1enous and Exo1enous DA on AMN-evoked Responses 

of VP/SI Neurons 

VP/SI is site of convergence for midbrain and AMN inputs, where 56 of 61 

VP/SI neurons tested (923) displayed short latency (monosynaptic) evoked responses 

to stimulation of both regions. This extensive convergence may allow the VT AfSNc to 

modulate AMN-evoked VP/SI responses, since 853 of the AMN-evoked short latency 

inhibitory, and 563 of the short latency excitatory, VP/SI responses were attenuated by 

prior stimulation of the VT AfSNc. Activation of these midbrain areas can function as a 

physiological antagonist of the monosynaptic AMN input to the VP/SI. Similarly, intra

VP/SI DA application attenuated 643 of the inhibitory, and 473 of the excitatory, short 

latency VP/SI responses to AMN stimulation, suggesting that DA may be the transmitter 

involved. Thus, VT AfSNc dopaminergic efferents to the VP/SI modulate the output of 

A.MN efferents to the VP/SI. 
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AMN stimulation also evoked long latency inhibitory and excitatory VP/SI 

responses, the long latency inhibitions being the most frequently observed of all AMN

evoked effects. Long latency inhibitory effects can be produced via the NA, since Yim 

and Mogenson (1983) observed that procaine-induced inactivation of the NA attenuates 

54 % of the AMN-evoked long latency inhibitions of VP/SI neurons. The AMN-evoked 

long latency inhibitory responses of VP/SI neurons also are attenuated by the VT A 

stimulation (Yim and Mogenson, 1983; present study). DA release within the NA is 

thought to mediate the VTA stimulation-induced attenuation of AMN-evoked VP/SI 

responses, since d-amphetamine injected within the NA mimics this effect in 54 % of the 

VP/SI neurons (Yim and Mogenson, 1983). The present study indicates that activating 

the VTA/SNc can modify the AMN-evoked long latency responses (either inhibitions or 

excitations) within the VP/SI, since 38 of 48 VP/SI neurons (79%) with AMN-evoked 

long latency responses, also were affected monosynaptically by VT A/SNc stimulation. 

Likewise, 80% of the long latency inhibitory, and 38% of the long latency excitatory 

VP/SI responses evoked by AMN stimulation were attenuated by intra-VP/SI DA 

application. Thus, the attenuating effects of VT A/SNc stimulation on long latency 

inhibitions (and excitations) of VP/SI activity evoked by AMN stimulation may be 

mediated through DA release within the VP/SI. 

Functional Si2nificance of the Conver2ence of VT A/SNc Dopaminer2ic 

and AMN Limbic Influences within the YP/SI 

The AMN has been implicated in a number of functions, including modulation 

of hormonal secretion and autonomic activity, as well as defensive behaviors (Carlsen, 

1989; Gloor, 1978; Nakano et al., 1987). Electrical stimulation of the AMN alters the 

activity of VP/SI neurons (Tsai et al., 1989; Yim and Mogenson, 1983; and the present 

study). VP/SI responses to AMN stimulation may involve transmission of limbic 
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influences from the AMN to the VP/SI. With the changes in VP/SI neuronal activity, 

the output of these neurons to its targets also may be altered. This hypothesis is 

supported by the finding that more than two-thirds of the VP/SI neurons that are 

antidromically activated by stimulation of the pedunculopontine nucleus exhibit AMN

evoked excitatory responses (Tsai et al., 1989). The excitatory effects of AMN 

stimulation on the VP/SI can be transmitted to the pedunculopontine nucleus altering the 

activity of this nucleus. Thus, AMN afferents to the VP/SI may contribute limbic 

influences on the VP/SI efferents to brainstem regions associated with locomotor 

activity. The attenuation of AMN-evoked VP/SI neuronal responses by VTAfSNc and 

DA suggests that DA modulates the effectiveness of AMN limbic influences on VP/SI 

activity. 

The role of the VP/SI in the ventral striatopallidal system proposed in previous 

studies (for review see Mogenson and Yang, 1991) was as an intermediary between NA 

outputs, that are extensively modified by limbic inputs from the AMN and 

hippocampus, and the mesencephalic locomotor region. This system is modulated 

further by midbrain dopaminergic neurons to the NA which can activate VP/SI neurons, 

since 1) intra-NA DA application increases the spontaneous activity of VP/SI neurons 

(Yang and Mogenson, 1989), and 2) intra-NA d-amphetamine attenuates the VP/SI 

inhibitory responses to AMN stimulation (Yim and Mogenson, 1983). A significant 

finding of the present study is that the VP/SI is affected monosynaptically by VT AfSNc 

stimulation, suggesting the potential for modulation "downstream" of NA disinhibitory 

effects on VP/SI activity. AMN-evoked VP/SI activity is also modulated at the level of 

the VP/SI by VT AfSNc stimulation and DA. These results expand the functions of the 

VP/SI from a relay site for NA output to an active processing center of AMN and 

VTNSNc inputs beyond the level of the NA. 
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In conclusion, DA appears to be intimately involved in modulating processes 

mediated by the ventral striatopallidal system. Extensive findings indicate that the 

ventral striatopallidal pathway participates in consolidating the information from the 

limbic system and the extrapyramidal motor system (Mogenson et al., 1980, 1988; 

Heimer et al., 1982; Heimer and Alheid, 1991; Mogenson and Yang, 1991). These 

reviews are complemented by recent studies revealing that the VP/SI "may be an 

important site in the processing of the reinforcing effects of drugs" and that the NA to 

VP/SI innervation "may be a common pathway for both stimulant and opiate 

reinforcement" (Koob et al., 1991). Considering the multifarious effects of DA on 

neuronal activity and behavior mediated through many brain regions, including the 

ventral striatopallidal system, the actions of DA are currently undergoing reevaluation 

(Alexander and Crutcher, 1990; Graybiel, 1990; Smith and Bolam, 1990; Le Moal and 

Simon, 1991). DA is thought to act as a neuromodulator to set the gain, or level of 

output rather than activating or inactivating the ventral striatopallidal system (Graybiel, 

1990). The affects of DA within a brain region may be determined by the neuronal 

activity and functions encompassed by that brain region (Le Moal and Simon, 1991). 

Previous studies demonstrate that DA within the NA attenuates the effects of AMN 

stimulation on the neuronal activity of the NA (Yim and Mogenson, 1982). In the 

present study, DA application within the VP/SI modulated the effectiveness of AMN 

stimulation to alter the activity of VP/SI neurons. Thus, dopaminergic innervation at 

each level of the circuit could then serve as a dynamic modulator of specific behaviors 

elicited by ventral striatopallidal system via its efferent innervation. 
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Introduction 

CHAPTER VI 

GENERAL DISCUSSION 

Role of the D1 and the D2 Receptor Subtypes 

Previous studies have provided adequate anatomical, biochemical and functional 

evidence that the VP/SI is a dopaminoceptive brain region. The results presented in this 

dissertation indicate that the effects of DA on VP/SI activity can be mediated through 

separate stimulation of the D1 or the D2 receptor subtype. In the first experiment, 

systemic administration of selective D1 or Di agonists was sufficient to elicit changes in 

VP/SI neuronal activity. These changes were subsequently attenuated by administration 

of the antagonist that is selective for the stimulated receptor subtype. It was also 

demonstrated that individual activation of the D1 or the D2 receptor subtypes had 

opposing influences on the neuronal activity of the VP/SI. 

The opposite effects of D1 and Di receptor activation on VP/SI neuronal activity 

differentiates this brain region from the morphologically similar GP (Heimer and 

Wilson, 1975). VP/SI neurons appear to be more sensitive than GP neurons to 

systemic administration of either QUIN or SKF, since: 1) more VP/SI neurons were 

responsive, and 2) responses were observed at lower doses of these agonists (compare 

results of Chapter III with Carlson et al., 1988). However, the magnitude of the rate 

increases induced by SKF in either brain region is similar (Chapter III; Carlson et al., 

1988). In contrast to the effects of D1 receptor activation in VP/SI, the predominant 
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response to Dz receptor activation was suppression of VP/SI activity (Chapter III), and 

stimulation of GP activity (Carlson et aL, 1987a; 1988). 

The difference between the VP/SI and the GP is obvious in the independent 

effects (and oppositional effects) of SKF and QUIN on VP/SI activity versus the 

synergistic effects of these same agonists on GP activity. The predominant difference 

between these brain regions is their sensitivity to Dt receptor activation, which may be 

explained, in part, by studies demonstrating greater numbers of Di binding sites within 

the VP/SI as compared to the GP (Bardo and Hammer, 1991; Beckstead et al., 1988; 

Boyson et al., 1986; Dawson et al., 1986a, 1986b; Mansour et al., 1990; Napier et al., 

199la; Richfield et al., 1987; Savasta et al., 1986). Recent studies using polyclonal 

antbodies against the Di receptor indicate that Di receptors are heavily concentrated 

within limbic regions including the VP/SI (Huang et al., 1992). 

There is also evidence from molecular biological studies that the VP/SI has post

synaptic (Fremeau et al., 1991; Mengod et al., 1991; Weiner et al., 1991), whereas the 

GP does not appear to have post-synaptic Dt receptors. In addition, the Dl post

synaptic receptors within the VP/SI may also be independent of ACy and cyclic AMP 

generation. Thus, DA or Di agonists can induce Di-mediated responses within the 

VP/SI by activating both pre- and post-synaptic receptors, but only by activating pre

synaptic receptors within the GP. The differences in the amount and location of Di 

receptors, along with the possibility of activating alternative second messenger systems, 

may be responsible for the disparity of DA agonist effects on VP/SI versus GP activity. 

The second set of experiments confirmed that the actions of the nonselective DA 

agonist, APO, were mediated through both Di and Dz receptor subtypes, and that 

stimulation of either subtype is sufficient to influence the neuronal activity of the VP/SI. 

Alterations of VP/SI neuronal activity to a single dose of APO did not exhibit a 

predominant direction; approximately 40% of the tested neurons were excited, another 

119 



40% were inhibited, and the rest were insensitive to the agonist. These results are 

similar to the APO-induced effects on the neuronal activity of the SNr in rats that have 

not been treated with the catecholaminergic toxin, 6-0H-DA (Waszczak et al., 1984). 

The interpretation of the effects of APO are complicated since the VP/SI is extensively 

innervated by other dopaminoceptive brain regions (also true for the SNr). Thus, the 

effects of a systemically administered, nonselective DA agonist on VP/SI neuronal 

activity may reflect the summated stimulation of all dopaminoceptive afferents to this 

brain region, as well as the simultaneous activation of the Di and Di receptor subtypes 

within the VP/SI. 

The results of the third series of experiments demonstrated that DA receptors 

within the VP/SI mediated the effects of selective D1 or Di DA agonists, and that 

stimulation of either receptor within this brain region was sufficient to alter the activity 

of VP/SI neurons. Furthermore, locally-applied DA often inhibited VP/SI activity, 

confirming the results of earlier studies (Napier and Potter, 1989; Napier et al., 199lb). 

Likewise, attenuation of these effects by intra-VP/SI application of selective D 1 or Di 

receptor antagonists concur with previous results of systemically administered Di or Di 

receptor antagonists (Napier et al., 199lb). Interestingly, the inhibitions induced by 

intra-VP/SI application of SKF occurred more often, and to a greater extent than those 

induced by DA. Since intra-VP/SI application of QUIN often excited VP/SI neurons, 

the effects of DA may reflect the summation of opposing activation of Di and D2 

receptors within this brain region. However, most of the VP/SI neurons that were 

tested with both D1 and Di DA agonists were sensitive to only one agonist, suggesting 

that the opposing effects of D1 and Di receptor activation may be mediated by different 

neurons. 

Stimulation of the VT Af SNc also evoked inhibitory and excitatory responses of 

VP/SI neurons. Most of the VP/SI neurons that were tested with VT AfSNc stimulation 
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and intra-VP/SI microiontophoretic application of DA demonstrated similar effects to 

both treatments. This suggests that endogenous release of DA within the VP/SI may 

mediate the VT A/SNc-evoked VP/SI responses. Likewise, the effects of stimulating the 

VTA/SNc were attenuated by either application of SCH or SUL within the VP/SI, 

verifying that the effects are DA-mediated, and indicating that activation of the either 

receptor subtype is sufficient for inducing these changes in VP/SI neuronal activity. 

Thus, 1) separate D1 or Di receptor stimulation is sufficient to alter the activity of VP/SI 

neurons, 2) D1 receptor activation is more effective than Di receptor activation within 

the VP/SI, and, 3) since both subtypes are present within the VP/SI, DA can mediate its 

effects on the VP/SI through either receptor subtype. 

Modulatory Effects of DA 

Current reviews suggest that the role of DA within the brain may be to act as a 

neuromodulator, regulating and integrating functions of the neuronal systems that 

receive dopaminergic innervation (Bunney et al., 1991; Graybiel, 1990; Le Moal and 

Simon, 1991; Smith and Bolam, 1990). This neuromodulatory role of DA takes into 

account the variety of behavioral responses attributed to activation or inactivation of the 

DA system (Le Moal and Simon, 1991), and suggests that DA acts as a gain-control 

system, adjusting the amount of influence that each brain region has on the final 

behavioral output (Graybiel, 1990; Le Moal and Simon, 1991). Moreover, studies of 

DA replacement in animals with DA-depleting lesions and humans suffering from 

Parkinson's disease support a neuromodulatory role for DA. Loss of dopaminergic 

neurons in Parkinson's disease or DA-depleting lesions results in the impaired ability of 

initiate movement. However, the anatomical substrate for motoric behavior is not 

eliminated by dopaminergic cell loss, since these behaviors are restored by the 

exogenous replacement of DA (Le Moal and Simon, 1991). Thus, it appears that the 
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normal function of DA is to enable the initation of appropriate movement to 

environmental or internal stimuli. 

Similarly, both intracellular and extracellular recording studies support the 

neuromodulatory actions of DA. Intracellular recording studies in the STR indicate that 

DA acts as a neuromodulator, attenuating both excitatory (glutamate-induced) and 

inhibitory (GABA-induced) effects on the activity of STR neurons (Bernardi et al., 

1984; Mercuri et al., 1985). DA acts as a functional antagonist of excitatory STR 

neurons evoked by local stimulation of the STR by activating Di receptors, which 

induces a depressant action on the postsynaptic membrane, and limits the excitability of 

STR neurons to a depolarizing event (Calabresi et al., 1987, 1988). Prior stimulation of 

midbrain dopaminergic regions attenuates the extracellularly recorded: 1) excitatory 

STR responses to cortical stimulation (Hirata et al., 1984), 2) excitatory NA responses 

to stimulation of the hippocampus, AMN (Yang and Mogenson, 1984; Yim and 

Mogenson, 1982) or parafascicular nucleus of the thalamus (Akaike et al., 1984), 3) 

inhibitory GP responses to cortical stimulation (Hirata and Mogenson, 1984 ), and 4) 

excitatory (Chapter V) and inhibitory (Yim and Mogenson, 1983; Chapter V) VP/SI 

responses to AMN stimulation. 

The results from the third series of experiments (Chapter V) confirmed that the 

convergence of midbrain dopaminergic and AMN inputs within the VP/SI allowed for 

dopaminergic modulation of VP/SI responses evoked by electrical stimulation of this 

AMN input. Electrical stimulation of the VT A/SNc, which presumably involves the 

release of endogenous DA, or exogenously-applied DA within the VP/SI attenuated the 

VP/SI responses to AMN stimulation. Historically, the effects of DA on the 

spontaneous and AMN-evoked activity of the VP/SI are thought to occur at the level of 

the NA (Mogenson and Yang, 1991; Yang and Mogenson, 1989; Yim and Mogenson, 

1983). The present results suggest that the VP/SI is also a site of the modulatory effects 
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of DA on the monosynapticalJy- and polysynaptically-mediated VP/SI responses to 

AMN stimulation. Furthermore, the VP/SI long latency inhibitory responses to AMN 

stimulation appeared to be more sensitive to DA than the AMN-evoked excitatory 

responses of VP/SI neurons, suggesting that certain limbic information from the AMN 

which excites the VP/SI may bypass DA modulation. Thus, future studies should 

investigate whether the modulatory role of DA is selective for certain alterations of 

VP/SI neuronal activity (i.e., are other inhibitory influences on VP/SI activity, such as 

those from the NA, also attenuated more readily by DA). 

Potential Si2nificance of DA within the VP/SI 

Locomotor Behavior. Studies indicate that the VP/SI, with its innervation to 

the pedunculopontine nucleus (Swanson et al., 1984), is involved in the initiation of 

locomotor behavior (Mogenson and Nielson, 1983, 1984; Mogenson et al., 1985; 

Mogenson and Wu, 1986; Mogenson and Yang, 1991). The input from the NA to the 

VP/SI, and the dopaminergic modulation of this NA afferent system, has been similarly 

implicated in the induction of locomotor activity (Austin and Kalivas, 1991; Jones and 

Mogenson, 1980; Kalivas et al., 1991; Mogenson and Nielson, 1983; Mogenson and 

Yang, 1991). Anatomical and electrophysiological studies concur that the VP/SI is 

dopaminoceptive and its neuronal activity can be altered by DA (Napier et al., 1991a). 

The present studies confirmed that electrical stimulation of the ascending dopaminergic 

projection from the VT AfSNc evoked responses in VP/SI neurons. Recent evidence 

suggests the VP/SI is also a site for DA-mediated activation of locomotor behavior 

(Napier, 1992b; Napier and Chrobak, 1992). Thus, DA-mediated changes in the 

activity (and thus, the output) of VP/SI neurons may be reflected by an initiation of 

locomotor behavior. 
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Reward. Arousal and Dru2 Reinforcement. The VP/SI may also be 

involved with the increased arousal due to reinforced stimuli since changes in activity of 

many of these neurons occur in response to rewards and reward-associated stimuli (for 

review see, Richardson and DeLong, 1991). DeLong (1971) observed that some SI 

neurons in rhesus monkeys exhibit consistent alterations in discharge when a juice 

reward is delivered. These neurons also respond to the sight and taste of food, as well 

as to the satiety level of the animal (Rolls et al., 1980). VP/SI neurons are highly 

responsive to events that precede a reward or movements made to obtain a reward 

(Richardson and DeLong, 1986). However, the VP/SI neurons that respond to 

appetitive stimuli also respond to aversive stimuli, suggesting that this region may be 

influenced by the arousing nature, and the behavioral significance, of these stimuli 

(Richardson and DeLong, 1991). Furthermore, the VP/SI is also an important site for 

mediating the reinforcing effects of cocaine (Hubner and Koob, 1990; Robledo and 

Koob, 1992) and heroin (Hubner and Koob, 1990). Although studies indicate that 

dopaminergic transmission within the NA contributes to some aspects of drug self

administration (Koob et al., 1991), the contribution of DA within the VP/SI to 

motivated behavior and drug reinforcement should also be investigated. Since 

motivated behaviors and the reinforcing properties of drugs are both processed through 

the VP/SI in the rat, the circuitry involved with the former may assist in the discovery of 

the anatomical substrate for drug dependence in humans (Koob et al., 1991). 

VP/SI Choliner2ic Neurons. Previous electrophysiological studies have 

demonstrated that the VP/SI provides a substantial cholinergic innervation of the cortex 

(Aston-Jones et al., 1984, 1985; Lamour et al., 1986; Reiner et al., 1987) and that these 

cholinergic neurons exhibit heterogeneous physiological properties (Aston-Jones et al., 

1984, 1985; Reiner et al., 1987). Cholinergic neurons that comprise the VP/SI cortical 
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projection display a variety of impulse amplitudes and waveforms, and have discharge 

rates of 0-40 Hz (Aston-Jones et al., 1984). Since the VP/SI neurons studied in this 

dissertation have similar characteristics to these cholinergic neurons, and the recording 

sites overlap with those of the previous studies, it is likely that the present data included 

a portion of these VP/SI cholinergic neurons. Preliminary intracellular 

electrophysiology studies of VP/SI neurons in an in vitro slice preparation (Maslowski 

et al., 1991) al so suggest that some VP/SI neurons may be cholinergic since they 

displayed similar characteristics to septum/diagonal band cholinergic neurons (Griffith 

and Matthews, 1986; Griffith et al., 1991 ). 

The VP/SI may influence cognitive function through its cholinergic projection to 

the cortex. Electrical stimulation of the VP/SI has been shown to affect the firing rate of 

cortical neurons (Rigdon and Pirch, 1984), and kainic acid-induced lesions in the VP/SI 

result in a 603 reduction in cortical ChAT activity (Pirch et al., 1985). In addition, 

frontal cortex neurons in unanesthetized rats trained to associate a light cue with medial 

forebrain bundle stimulation exhibit cue-elicited rate changes which are attenuated by 

kainic acid-induced lesions of VP/SI (Pirch et al., 1986, 1991). These conditioned 

responses of the frontal cortex are associated with cognitive processes (Pirch et al., 

1985). Amphetamine produces a dose related depression of these potentials that is 

subsequently blocked by haloperidol (Pirch and Corbus, 1983). Systemic 

administration of QUIN mimics the effects of amphetamine whereas SKF has the 

opposite effect on the response of cortical neurons to the conditioning stimulus (Pirch et 

al., 1988). Cognitive processes associated with cue-elicited changes in cortical activity 

involve the dopaminergic modulation of VP/SI cholinergic neurons (Pirch and Corbus, 

1983; Pirch et al., 1988), even though working memory tested on a 12 arm radial maze 

was not altered by intra VP/SI injections of DA (Napier and Chrobak, 1992). The 

effects of dopaminergic agents within the VP/SI on the conditioned potentials, and the 
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assessment of cognitive behaviors with testing paradigms other than the radial arm maze 

requires further investigation. 
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future Directions of VP/SI Research 

Potential experiments may inc1ude identifying VP/SI neurons through their 

efferent projection by antidromic stimulation, and determining the effects of 

dopaminergic agents within the VP/SI on these antidromical1y-activated VP/SI neurons. 

Similarly, the VP/SI responses to orthodromic stimulation of the VTA/SNc (which 

presumably releases endogenous DA) can be assessed for VP/SI neurons whose 

efferent targets have been identified. Previous studies have demonstrated that VP/SI 

neurons projecting to the pedunculopontine nucleus are differentially affected by AMN 

or hippocampal stimulation (Tsai et al., 1989). Thus, differences in the effects of DA 

may be revealed for VP/SI neurons which project to the pedunculopontine nuc1eus 

versus those innervating the AMN and cortex. 

Another electrophysiological technique that may assist in characterizing the 

different types of VP/SI neurons is intracellular recordings of VP/SI slices. As 

described above, preliminary studies indicated that at least three different cell type exist 

in this region (Maslowski et al., 1991), and that one type exhibits similar characteristics 

to cholinergic neurons of the medial nucleus and the nucleus of the diagonal band 

(Griffith and Matthews, 1986; Griffith et al., 1991). Future studies using intracellular 

fluorescent dyes in combination with ChA T staining may confirm these VP/SI neurons 

as cholinergic. In addition, inactivation of afferent input to the VP/SI, which can be 

done readily in this in vitro preparation, can determine the direct effects of dopaminergic 

agents on VP/SI neurons and may explain the multifarious effects of DA in vivo. 

The VP/SI in Alzheimer's Disease and Parkinson's Disease 

This dissertation involved the study of normal brain activity as a basis for the 

initial understanding of the clinical manifestations of Alzheimer's disease and 

Parkinson's disease. Anatomical studies have demonstrated that the midbrain 
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dopaminergic system, which is primarily involved in Parkinson's disease, projects to 

the cholinergic and non-cholinergic neurons of the VP/SI (Zaborszky et al., 1991). The 

results presented in this dissertation indicate that stimulation of the VT NSNc alters the 

activity of VP/SI neurons. Since location of the cholinergic and non-cholinergic neurons 

within the VP/SI overlap, the VP/SI may be an integrative site for dopaminergic 

afferents with both VP/SI cholinergic and non-cholinergic neurons. Thus, degeneration 

of dopaminergic afferents to the VP/SI in Parkinson's disease may seriously affect the 

normal neuronal activity of the VP/SI. In addition, loss of VP/SI cholinergic neurons in 

Alzheimer's disease (l..ehericy et al., 1991) may result in transneuronal degeneration of 

dopaminergic neurons. The association of the VP/SI with motoric and cognitive 

behavior suggests that altered activity of this brain region due to disease or drug 

intervention may result in aberrant movement and thought processes. 
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