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CHAPTER I 

INTRODUCTION 

Septicemia is a leading cause of morbidity and mortality among hospitalized 

patients. There are approximately 400,000 cases each year in the United States, and the 

incidence continues to increase (1). It has been estimated that gram-negative bacteremia 

occurs in about 30 percent of patients with septicemia (32). Despite the use of potent 

antibiotics and intensive supportive care, the mortality among patients with gram-negative 

bacteremia remains high, varying from 20 to 60 percent (32,132,231). The common fatal 

cause of overwhelming gram-negative bacterial infection is septic shock, a syndrome 

characterized by inadequate tissue perfusion which ultimately leads to organ failure and 

cellular death (3,97). Pathophysiological changes involve hemodynamic, metabolic, 

neuroendocrine and immunologic alterations (3,252). Clinical manifestations include 

chills, fever, hypotension, decreased vascular resistance, glucose dyshomeostasis, 

lactacidemia, and the acute phase response. 

Endotoxin, which is composed of lipopolysaccharide and associated proteins from 

the gram-negative bacterial wall, has long been considered to be the principal causative 

factor in the pathogenesis of gram-negative septic shock (103,167). Striking parallels 

exist between the effects of endotoxin in experimental animals and those observed in 
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patients with septic shock (104,122,168,171). Thus, endotoxin-treated animals have been 

extensively used as an experimental septic model. Alternatively, recent experimental 

findings suggest that endotoxin elicits most (if not all) of its pathophysiological effects 

not directly but via stimulating different cell populations to release mediators. These 

mediators, such as prostaglandins (230), leukotrienes (230), platelet activating factor (45) 

and cytokines (78,79,171), have been linked to the pathogenesis of endotoxic shock. 

Among many pathophysiological changes which occur during endotoxic shock is 

markedly increased sympathoadrenal activity which has been viewed as a compensatory 

response of the body to septic challenge (51). Evidence for this activation includes an 

elevation of plasma catecholamines in septic patients and animal models (17,94, 113,115), 

a depletion of tissue catecholamine content in the terminal state (187), and an enhanced 

norepinephrine turnover in certain tissues during endotoxic shock (188). These findings 

have been interpreted as an increased release of transmitters from sympathetic nerves and 

the adrenal medulla. In addition, direct nerve recording has shown augmented 

sympathetic nerve discharges in selective organs of endotoxic animals (92,185), although 

some conflicting results have been reported (127,128). The sympathoadrenal activation 

has been shown to have both detrimental and beneficial effects during the development 

of septic shock (148). In the early stages, plasma catecholamines may support the 

cardiovascular and metabolic adjustments to septic insult. Overwhelming and sustained 

sympathetic activation, however, may contribute to the irreversibility of septic shock by 

restricting nutritional organ blood flow. Even in light of these detrimental effects, 

adrenergic agents have been widely used in patients with septic shock as a treatment to 
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support the cardiovascular system (33,50, 141). Although concerns were raised regarding 

local ischemia of vital organs, particularly the kidney as a result of increased vascular 

resistance (33), several recent studies report that norepinephrine therapy improves the 

blood pressure and urine output (43,62, 197). The dual-sided effects of sympathoadrenal 

stimulation in septic shock imply that a better understanding of the mechanisms of the 

sympathoadrenal activation may allow prompt manipulations of the system and facilitate 

the management of sepsis. 

The mechanisms responsible for mediating the sympathoadrenal activation during 

sepsis and septic shock are not clear and remain basically unexplored. The critical role 

of centrally mediated mechanisms and neural dependence in the sympathetic activation 

during developing endotoxic shock has been demonstrated in previous studies 

(71,149,176,253). Recent studies using more sensitive catecholamine assay, however, 

suggest the occurrence of peripheral modulations of catecholamine secretion from the 

adrenal medulla during endotoxic shock (112,211). Evidence of non-neurogenic 

stimulation of adrenal epinephrine secretion was provided by experiments showing that 

ganglionic blockade could not prevent catecholamine release from the adrenal medulla 

in septic animals (211). In vitro incubation of adrenal chromaffin cells with endotoxin or 

other endotoxin-elaborated agents enhanced catecholamine secretion (177,225). 

Another consideration emphasizes that the adrenergic discharge may be primarily 

stimulated by endotoxin-induced systemic hypotension and associated baroreceptor reflex 

deactivation (93,148). However, certain experimental findings challenge this concept and 

suggest that the sympathoadrenal system can still be markedly activated by endotoxin or 
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gram-negative bacteria in the absence of significant hypotension (89, 115) and remain 

activated after restoration of blood pressure (185). 

It is now clear that cytokines, a family of protein molecules produced by 

macrophages and other cells, are the key mediators in the pathogenesis of sepsis and 

septic shock. Currently, growing evidence also suggests that cytokines such as 

interleukin- I, interleukin-6 and tumor necrosis factor may mediate interactions between 

the immune and neuroendocrine systems. On one hand, cytokines are produced mostly 

by cells of the immune system and exert many actions during immune responses. On the 

other hand, cytokines have a broad spectrum of actions including influences on 

neuroendocrine functions. Among the cytokine actions, some involve the central nervous 

system and may be initiated in the brain side of the blood brain barrier (107, 118, 194). 

Brain tissues have receptors for and can respond directly to certain cytokines 

(87,107,117,194,250). Furthermore, interleukin-I immunoreactive innervation of brain 

areas was recently reported (34,136). In vivo production of interleukin-I, tumor necrosis 

factor and interleukin-6 in the brain has been demonstrated in infectious and various 

other pathological states (54,82,95,135). In vitro, brain cells have also been shown to 

produce interleukin-I, tumor necrosis factor and interleukin-6 in response to endotoxin 

or virus challenge (138,200). Thus, it is logical to propose that cytokines might be 

plausible factors in mediating the sympathoadrenal activation with endotoxin via their 

central actions. 

Considering the clinical importance of gram-negative bacteremia and septic shock, 

the involvement of the sympathoadrenal system in septic pathogenesis, the reappraisal of 
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norepinephrine therapy in septic patients, and unknown mechanisms for the sympathetic 

activation during sepsis, this dissertation was designed to explore some potential 

mechanisms involved in mediating the sympathetic activation, using endotoxin-treated rats 

as an experimental septic model. The specific aims of the following studies include: 1) 

the examination of the overall contributions of central versus peripheral mechanisms to 

the sympathoadrenal response during endotoxicosis, 2) the evaluation of the role of 

afferent neural inputs from arterial baroreceptors in mediating the sympathoadrenal 

activation in endotoxic animals, and 3) the assessment of the effects of centrally

administered cytokines, interleukin-I, interleukin-6 and tumor necrosis factor, on central 

sympathetic outflow. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

A. SYMPATHOADRENAL ACTIVATION DURING DEVELOPING SEPTIC SHOCK 

I. Evidence for Sympathoadrenal Activation during Septic Shock 

Plasma catecholamines are shown to be elevated in human patients with septic shock 

or serious infection in early stages (17,19,89). In most non-surviving patients, high 

plasma norepinephrine and, to a lesser extent, epinephrine concentrations were sustained 

but fell rapidly just before death (19). This fall is presumably due to either the depletion 

of catecholamines from the adrenal medulla and sympathetic nerve endings or the overall 

failure of the central nervous system. Plasma catecholamines have also been measured 

in a variety of septic animal models (endotoxic, bacteremic, cecal-ligation and puncture 

(CLP)) (112,113,115) and different species (dog, rabbit, cat, and rat) (94,99, 113,218). 

Although the patterns and magnitude of the catecholamine response during 

septic/endotoxic shock varied in these different models, the increases in plasma 

concentrations were frequently demonstrated. For example, endotoxin administration in 

rats resulted in a rapid (within 30 min) and dose-dependent elevation of plasma 

catecholamines, in which norepinephrine elevation was sustained while epinephrine 

6 
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elevation declined with time (114). In contrast, the rat model of CLP had a prolonged 

time course for the increment of plasma norepinephrine which developed hours after CLP 

and remained elevated for 40 hours with only modest increase in epinephrine (126). 

Depletion of tissue catecholamine content has been observed in the terminal state of 

septic shock. Hanquet et al. (96) measured the catecholamine content of the adrenal 

medulla removed from patients who had died of shock and reported a marked depletion 

of catecholamine stores. In different animal species, endotoxic shock was also associated 

with the depletion of adrenergic neurotransmitters in tissues such as heart, spleen and 

adrenal medulla (98,187,254). Pohorecky et al.(195) indicated that such tissue depletion 

was dose- and time-dependent following endotoxin. The depletion is speculated to be due 

to a sustained release combined with decreased synthesis possibly caused by hypoxia and 

acidosis. 

Studies using radio-labeled norepinephrine and subsequent incorporation into the 

existing transmitter pools showed that endotoxin induced a time-dependent decay in 

specific activity of heart and spleen (188). This result indicates an increased 

norepinephrine turnover and, hence, increased sympathetic activity during endotoxicosis. 

Direct recording of sympathetic nerve discharge, in most cases, also revealed an 

enhanced sympathetic nerve activity. In studies with anesthetized dogs and cats, Halinen 

(92,93) demonstrated that endotoxin induced increased discharge of cardiac sympathetic 

efferent nerves 15 min following intravenous administration. Cervical sympathetic nerve 

activity was also found markedly elevated in anesthetized rats following endotoxin (159). 

Using conscious, unstrained rats, Palsson et al. (185) showed that intravenous injection 
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of either endotoxin or bacteria significantly enhanced renal sympathetic nerve activity. 

In contrast to the above findings, Koyoma et al. (127,128) reported that preganglionic 

splanchnic nerve activity and renal sympathetic nerve activity were decreased after 

endotoxin injection in anesthetized cats and rabbits, respectively. It was concluded in 

their studies that endotoxin treatment inhibited the central sympathetic outflow. 

Collectively, a large body of literature can be found regarding the sympathoadrenal 

activity during the development of septic shock and the demonstrations of its activation 

in septic processes have been convincing and generally accepted. More thorough review 

of this topic can be found elsewhere (186). 

II. Effects of Sympathoadrenal Activation during Septic Shock 

The sympathoadrenal system appears to be critically important, if not essential, in 

maintaining life in the early stage of endotoxic shock in animals. Endotoxin treatment in 

rats with adrenal demedullation or/and chemical sympathectomy are usually associated 

with rapid onset of death and markedly increased mortality (131,156). Those animals 

often have a very rapid and more profound fall in blood pressure and attenuated 

tachycardia. This result suggests that both sympathetic and adrenal catecholamines 

contribute importantly to the maintenance of arterial blood pressure and cardiac output 

during endotoxicosis. Catecholamines are known to increase ventricular contractility, 

which improves cardiac output, and mobilize liver glycogen to support increased tissue 

metabolism during endotoxin shock (77, 125). 

On the other hand, the detrimental effects of the sympathoadrenal activation during 
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the development of endotoxic shock have also been suggested. Blunting of the excessive 

sympathetic activation has been shown to protect against the shock pathogenesis (31,88). 

For example, Lillehei and Maclean (140) pretreated dogs with alpha adrenergic 

antagonist to block the vasoconstrictor effects of catecholamines released during 

endotoxicosis. They found that this pretreatment significantly improved the survival rate 

(84% lethality with endotoxin alone, 0% lethality with endotoxin and alpha blockade, 

measured 72 hours after endotoxin) and alleivated the pathological changes. Filkins also 

reported that alpha adrenergic blockade (phentolamine) protected rats against endotoxin 

shock lethality and blunted the development of endotoxic hypoglycemia. In isolated 

hepatocytes, alpha blockade protected against endotoxin-induced depression of hepatic 

gluconeogenesis (76). 

Exogenous catecholamines have been widely used in patients with septic shock to 

support the failing cardiovascular system (33,50,139). Dopamine is particularly indicated 

for treatment of patients with oliguria and decreased peripheral resistance. The use of 

norepinephrine in septic patients is controversial due to the concerns regarding organ 

ischemia as a consequence of diffusive vasoconstriction (33). However, interest in the 

therapeutic use of norepinephrine has recently been reported (43,62, 197). Particularly in 

septic patients with high cardiac output and low peripheral resistance, norepinephrine 

treatment improved blood pressure and renal function without deleterious effects on 

cardiac index, oxygen delivery and oxygen consumption (197). 

A generally accepted view (148) is that in early phases of septic shock, the 

sympathoadrenal activation may be beneficial by virtue of vasoconstriction in non-vital 
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h. ch favors the perfusion of more vital organs. Excessive sympathetic activation 
organs w 1 

be detrimental in the long run by restricting nutritional blood flow which ultimately 
may . 

leads to severe metabolic and circulatory failure. Unfortunately, we still are unable to 

determine with adequate precision when an increased sympathetic tone is no longer 

beneficial during the developing septic shock. 

B. REGULATION OF THE SYMPATHETIC NERVOUS SYSTEM 

I. Spinal Cord Control 

The traditional concept that the spinal cord serves solely as a relay station for 

transmitting information from the medulla to postganglionic neurons innervating the 

cardiovascular system is no longer tenable (14). Several observations indicate that 

information processing in spinal neural circuits can be an important determinant of the 

level of sympathetic control of the cardiovascular system. In animals with maximal 

reduction of blood pressure and sympathetic nerve discharge by medullary transection at 

the level of the obex, secondary section of cervical cord induced increases in sympathetic 

nerve discharge (7). This implies that the final output from the central nervous system 

to the circulation can be modulated by neurons in the spinal locus. Activation of somatic 

and visceral afferent fibers produces reflex responses in sympathetic nerves which do not 

require the integrity of bulbospinal pathways (207). Furthermore, blood pressure can 

gradually return towards control levels and prominent cardiovascular reflexes can be 

elicited in chronic spinal animals and man (14). Local intemeurons have been shown to 
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exist in the intermediate gray matter of the spinal cord which innervate the sympathetic 

preganglionic neurons at all levels of the sympathetic outflow (14). The presence oflocal 

intemeurons implies that there are additional descending and intrinsic spinal pathways 

that indirectly control the sympathetic outflow, but relatively little is known about these 

pathways. 

II. Supraspinal Control 

Several interconnected central networks regulate the sympathetic outflow. The 

incoming afferent fibers carrying visceral sensation from all the major organs of the body 

including the cardiovascular system primarily terminate in the nucleus tractus solitarius 

(NTS), the most important visceral sensory relay cell group in the brain stem. From 

here, information is sent via intemeurons either to a number of key nuclei in the brain 

stem which project directly to autonomic preganglionic neurons of the sympathetic and 

the vagal systems or to the forebrain nuclei in the central autonomic network that are 

capable of regulating both autonomic and neuroendocrine functions (143). Reciprocal 

pathways between the NTS, the brain stem nuclei (ventrolateral medulla, the A5 cell 

group, the parabrachial nucleus) and forebrain areas (the paraventricular hypothalamic 

nucleus, the bed nucleus of the stria terminalis, and the central nucleus of the amygdala) 

are the anatomical substrates for sympathetic regulation (143). Direct projections to the 

intermediolateral cell column, where the sympathetic preganglionic neurons are located, 

have been demonstrated to originate from seven areas of the brain (147,223): 1. the 

rostral ventrolateral medulla, 2. the caudal raphe nuclei (raphe pallidus and raphe 
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obscurus), 3. the A5 noradrenergic cell group, 4. the Kolliker-Fuse nucleus, 5. the 

paraventricular hypothalamic nucleus, 6. the lateral hypothalamic areas, and 7. the 

central gray matter. 

m. Central vs. Peripheral Involvement in Sympathoadrenal Activation during Endotoxic 

Shock 

Lutherer et al. (149) showed that acute lesion of the cerebellar fastigial nuclei in 

anesthetized dogs prevented the recovery and maintenance of blood pressure following 

induction of hypotension either by hemorrhage or by administration of endotoxin. This 

implies that the normal sympathetic response to endotoxin challenge requires intact 

central regulatory mechanisms. 

Intact spinal cord also seems critical to endotoxin-evoked sympathetic response. 

Spinal transection at the C-7 level in dogs abolished the catecholamine release in 

response to endotoxin, suggesting that endotoxin-elicited sympathoadrenal response was 

presumably dependent on descending spinal pathways (71). 

Additionally, endotoxin-induced elevation of plasma epinephrine was eliminated by 

section of splanchnic nerves in the dog (176). Fine and associates (253) also 

demonstrated that acute denervation of hemi-spleens protected against the norepinephrine 

depletion whereas the intact spleen was depleted of norepinephrine, typical of the end 

stage of endotoxic shock. This result suggests that increased catecholamine release during 

septic shock depends on nerve activation. 

Recent studies, using more sensitive catecholamine assay, show that peripheral 
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modulation of catecholamine secretion from the adrenal medulla might be present during 

endotoxin shock. In pithed rats with no centrally-mediated reflexes, endotoxin did not 

elevate plasma norepinephrine but epinephrine was still augmented (112), although this 

elevation was greatly attenuated compared to central nervous system (CNS) intact 

animals. These results indicate that norepinephrine release depends on intact CNS while 

epinephrine release may involve both CNS and peripheral (either neurogenic or non

neurogenic) mechanisms. Evidence of the non-neurogenic stimulation of adrenal 

epinephrine secretion was provided by experiments in newborn rats showing that 

ganglionic blockade could not prevent catecholamine release from the adrenal medulla 

(211). Furthermore, in vitro incubation of adrenal chromaffin cells with endotoxin or 

other endotoxin-elaborated agents enhanced catecholamine secretion (177,225). 

Collectively, only a few studies have been conducted to evaluate central versus 

peripheral involvements in mediating sympathetic activation during sepsis or septic shock. 

The results were not consistent between studies, although it seems that the major 

sympathoadrenal activation during sepsis is dependent on the intact CNS and peripheral 

adrenal modulation may also be present. Further studies are needed to clarify whether 

both central and peripheral mechanisms are involved in this event during septic states. 

Thus, one of the present dissertation projects focuses on examining the central 

dependence of the sympathoadrenal activation during septic shock as well as the 

contribution of peripheral modulation to such activation. 
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c. INVOLVEMENT OF ARTERIAL BARORECEPTORS IN MEDIA TING 

sYMPATHOADRENAL ACTIVATION DURING SEPTIC SHOCK 

I. Baroreceptor Reflex Control of the Circulation 

Reflex regulation of the cardiovascular system is one of the important mechanisms 

in maintaining the homeostasis of the internal environment. Two main types of receptors, 

mechanoreceptors and chemoreceptors, exist in the cardiovascular system and are 

involved in the major reflex control of the circulation. Arterial baroreceptors are the 

mechanoreceptors located in the aortic arch and the carotid sinuses, which monitor 

arterial blood pressure. Afferent sensory fibers from baroreceptors project to the nucleus 

tractus solitarius in the medulla. From there, information is sent to the brain stem nuclei 

which may project directly to the ambiguous nucleus of vagal nerve and the sympathetic 

preganglionic neurons in the intermediolateral column of the spinal cord (220). Studies 

have demonstrated that baroreceptor reflexes can be modified by peripheral as well as 

central mechanisms (47). 

II. Afferent Neural Input from the Arterial Baroreceptors in Mediating Sympathoadrenal 

Activation during Developing Septic Shock 

Since hypotension typically occurs along with increases in heart rate, sympathetic 

nerve discharge and plasma catecholamines during endotoxic shock (93,113,185), it is 

suggested that endotoxin induced-hypotension may be the primary cause of the 

sympathoadrenal activation by unloading baroreceptors and associated deactivation of 
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baroreflexes. In anesthetized dogs and cats, Halinen et al. (92,93) demonstrated that 

endotoxin administration induced a rapid drop of blood pressure which was associated 

with cessation of the aortic arch baroreceptor afferent impulses and increased cardiac 

sympathetic efferent discharges during their 15 min protocol. The author concluded that 

the sympathetic pathways were primarily activated through cardiovascular receptor 

reflexes to maintain blood pressure. Baroreceptor reflex participation in mediating 

sympathetic activation during endotoxic shock has also been suggested by several other 

investigators (159,185). 

However, certain experimental findings in the literature challenge the concept that 

baroreceptor reflexes are the dominant factor in mediating the sympathoadrenal activation 

following endotoxicosis. In rats treated with E. coli bacteria, plasma catecholamines were 

markedly increased while blood pressure was not significantly altered (115). In 

experiments involving bolus administration of endotoxin, plasma catecholamines were 

also markedly enhanced well before hypotension occurred (114). Complete blockade of 

early endotoxin-induced hypotension with platelet activating factor antagonist did not 

prevent catecholamine elevations following endotoxin (196). Direct nerve recording in 

endotoxin and E.coli bacteria treated-animals indicated that sympathetic nerve discharge 

markedly increased with transient decrease in mean blood pressure and remained elevated 

when blood pressure returned to the control levels (185). Mills (159) studied the 

sympathetic response to endotoxicosis in pre-weanling rats before maturation of 

baroreflex and adult rats with matured baroreflex. He reported that sympathetic nerve 

discharge was augmented prior to the onset of hypotension in both groups of rats and 
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additional increases in nerve activity occurred following the fall in blood pressure in 

adults rats but not in pre-weanling rats. The increased activity in both groups persisted 

after blood pressure was restored to basal levels with volume infusion. The author 

concluded that although there was baroreflex participation in the sympathetic activation 

during the hypotensive phase following endotoxicosis, the initiation and continuous 

activation were mediated by non-baroreflexogenic mechanisms. 

Sympathetic activation independent of hypotension was also observed in septic 

patients. Groves et al. (89) reported significantly elevated plasma catecholamines in 

patients with serious postoperative infection. Although some patients in their studies had 

low blood pressures, most were normotensive and none were hypovolemic when plasma 

catecholamines were elevated. They suggest that factors other than the baroreceptor 

reflexes are important causes of increased plasma catecholamines in septic patients. 

Failure to demonstrate a direct relationship between the degree of hypotension and the 

sympathetic activation has been reported elsewhere (96). 

ill. Resetting of Baroreceptor Reflexes during Endotoxin Shock 

The function of the carotid sinus baroreceptors during endotoxemia was investigated 

by Trank and Visscher (238) in pentobarbital anesthetized dogs with cut sinus nerves. 

Endotoxin was shown to produce a left shift of baroreceptor discharge frequency versus 

intrasinus pressure curve. This resetting resulted in post-endotoxin baroreceptor discharge 

frequencies always being higher for a given pressure stimulus compared to control levels. 

The authors speculated that the effect of endotoxin on the carotid sinus baroreceptor 
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activity was not a direct receptor stimulation but an indirect effect produced through a 

chemical mediator released during endotoxicosis. This mediator may sensitize the 

receptors or modify the physical properties of the muscular or elastic components of the 

carotid sinus wall, but the nature of the mediator was not known. 

Recent studies have shown that baroreceptor reflexes can be modulated by certain 

circulating factors. Prostanoids, substance P, atrial natriuretic factor, and vasopressin 

have all been demonstrated to augment the baroreflex control of the circulation 

(35,44,74,249). In other words, at a given carotid sinus pressure those mediators either 

decrease the afferent nerve activity of baroreceptors (peripheral resetting) or increase the 

central efferent sympathetic outflow (central resetting). In contrast, PGI2, opiates, 

endothelial factor, and neurotensin have been linked to the suppression of baroreceptor 

reflexes (48,49,228,256). This suppression was also achieved either by peripheral 

baroreceptor resetting (i.e. increased baroreceptor afferent activity) or by central resetting 

of the coupling between the baroreceptor afferent and nerve efferent activities (i.e. 

decreased central efferent sympathetic activity). These findings may have implications 

in the sympathetic response during septic shock, such that the augmentation of 

baroreceptor reflexes may be involved in reducing sympathetic activity whereas 

suppression of baroreceptor reflex may contribute to enhanced sympathetic outflow. 

As can be summarized from the evidence reviewed in the above two sections (II and 

III), hypotension does not necessarily initiate or maintain the increased sympathoadrenal 

activity which occurs with septic insult despite baroreflex participation for such activation 

during hypotensive state. Modulation of baroreflexes by certain mediators may also 
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influence the sympathetic activation during sepsis, but the nature of such mediator is 

unknown. Regardless of the causes of baroreflex deactivation, the role of baroreceptors 

in mediating sympathetic activation during sepsis/endotoxicosis has never been directly 

evaluated. This will be another focus of the present dissertation studies. 

D. POTENTIAL INVOLVEMENT OF CYTOKINES IN MEDIATING 

SYMPATHOADRENAL ACTIVATION DURING SEPTIC SHOCK 

Cytokines are a family of closely related proteins produced primarily by 

monocytes/macrophages and lymphocytes in response to microbial infection, injury, 

physiological stress, or antigenic challenge (9). Although not released by a specialized 

gland, cytokines, like hormones, can act in autocrine, paracrine, and/or endocrine 

fashions to stimulate their producing cells, local vicinity tissues, or distant sites (65,198). 

Cytokines have a wide range of biological effects on target cells and are responsible for 

mediating a variety of processes in host defense, inflammation, and responses to injury. 

Extensive studies have demonstrated that cytokines are the principal mediators for the 

pathogenesis of endotoxin/septic shock (37,79,174). Particularly, interleukin-1 (IL-1), 

tumor necrosis factor (TNF), and interleukin-6 (IL-6) may be grouped together on the 

basis of related patterns of production and several overlapping activities to mediate 

common effects in the development of septic shock (198). Growing evidence suggests 

that there are interactions between immune and neuroendocrine systems with those 

cytokines as likely mediators. 
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1. Biochemistry of Cytokines 

1. Interleukin- I (IL-1) 

Although activated macrophages are the major source of IL-1, this cytokine is also 

produced by a variety of other cells including fibroblasts, endothelial cells, T and B 

lymphocytes, as well as brain astrocytes and microglial cells etc. (162). IL-1 is initially 

synthesized as a 33,000 dalton precursor, which is subsequently processed during or after 

secretion to molecular weight forms in the range of 13,000-17,000 daltons (86). Two 

distinct genes, IL-1 a and IL-1 {3, have been identified and localized to the long arm of 

chromosome 2. The mature forms of IL-1 a and IL-1 {3 exhibit limited amino acid 

homology (22-26%) and different isoelectric points (pI5 for IL-1 a and pI7 for IL-1 {3) 

(2). In most human tissues IL-1 {3 mRNA predominates over IL-1 a (9). Both molecules 

interact with the same membrane-associated receptors and their biological activities 

appear to be identical (68,198). The human and murine IL-1 {3 or a share approximately 

60-70% homology (198). 

2. Tumor Necrosis Factor (TNF) 

TNF a, also known as cachectin, is a single polypeptide chain of 156-158 amino 

acid residues produced primarily by activated monocytes/macrophages in response to a 

variety of agents including endotoxin, Bacille Calmette Guerin (BCG), and phorbol esters 

(191,233). Natural killer cells, T lymphocytes, astrocytes and some macrophages or 

tumor cell lines can also produce TNF (52,138,192,200,219). TNF is produced as a 
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prohormone which undergoes extensive cleavage to generate the mature protein. Studies 

have suggested that human TNF ex exists as a dimer or trimer which dissociates into a 

monomer with molecular weight of 17,000 daltons under denaturing condition ( 4). TNF 

ex is pH and temperature sensitive. The gene for TNF ex has been found on chromosome 

6 in man (217), which is linked to the gene encoding lymphotoxin that is also called TNF 

{3. TNF ex and TNF {3 have a 28 % sequence homology as well as they bind to the same 

receptor and evoke similar biological responses (173). TNF is a highly conserved 

protein, as illustrated by approximately 80% homology between mouse, rabbit and human 

TNF (109,154). 

3. Interleukin-6 (IL-6) 

IL-6 is a glycoprotein with a molecular weight of 23,000-30,000 daltons 

(heterogeneity in size being a function of different glycosylation) (162). The peptide is 

stable at 56 °C but is rapidly inactivated at 100 °C (198). IL-6 can be produced by 

diverse cell types including fibroblasts, monocytes/macrophages, endothelial cells, T and 

B cells, mesangial cells and astrocytes upon appropriate stimulations (162). Those stimuli 

include endotoxin, IL-1, TNF alpha, platelet-derived growth factor and virus infection. 

The human IL-6 gene is located on chromosome 7 (210). About 60 % homology between 

human and mouse has been shown at the DNA level and 42% at the protein level (123). 

II. General Biological Effects of Cytokines 

IL-1, TNF, and IL-6 are the most typical examples of multifunctional cytokines. 
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Their functions are widely overlapping, but each shows its own characteristic properties. 

IL-1 was originally discovered as an endogenous pyrogen which induced fever 

(198). IL-1 has a broad spectrum of target cells that share a common involvement in 

immune or inflammatory responses. For example, IL-1 aids in the development of 

specific immune responses by regulating the activation of T and B cells and by 

stimulating the release of growth and differentiation factors that act on T and B cells 

(5,63,174). IL-1 has proinflammatory effects on a variety of cells including fibroblasts, 

synoviale cells, chondrocytes, endothelial cells, hepatocytes, and osteoclasts (63,162). 

IL-1 also increases the hepatic acute phase protein synthesis and mediates many other 

metabolic alterations (64, 78). A key feature of IL-1 action is to stimulate the arachidonic 

acid metabolism which may be involved in many responses in different organs or 

systems such as cardiovascular, pulmonary, and neuroendocrine systems (63,140,198). 

TNF was first identified as an endotoxin-induced factor causing hemorrhagic 

necrosis in certain tumors in vivo (42). It is now evident that both TNF a and fJ possess 

cytolytic and cytostatic properties for certain solid tumors in vivo and specific tumor lines 

in vitro (9). TNF a appears to play a major role in trapping neutrophils in a localized 

inflammatory area by increasing the expression of adhesion molecules on the surface of 

both endothelial cells and neutrophils (36,124). TNF a could further stimulate neutrophil 

phagocytosis and superoxide anion production as well as be involved in driving the 

anticoagulant status of the endothelium to a procoagulant state (124). TNF a can also 

induce some cells such as endothelial cells and fibroblasts to secrete a number of 

important immune mediators (198). These mediators, including IL-1, platelet-activating 
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factor, prostaglandins, interferons, colony-stimulating factor (CSF) and collagenase, may 

actively participate in local and systemic immune responses. TNF 0t has been 

demonstrated to induce the differentiation and proliferation of B lymphocytes (110). TNF 

a also has endogenous properties to cause fever (66) and is involved in acute phase 

response (24). Suppression of lipoprotein lipase production may be one of the 

mechanisms for cachexia associated with TNF (163). 

IL-6 was initially described as T cell derived-lymphokine that induced antibody 

production in B cells (123). IL-6 can markedly influence the growth and differentiation 

of T and B lymphocytes, especially in the presence of other stimuli such as IL-1 (5). IL-6 

can also stimulate the growth of hematopoietic colonies composed of granulocytes and 

macrophage and modify the effects of other hematopoietic factors (123). Nerve-growth 

factor-like activity of IL-6 has been suggested. IL-6 can act as a pyrogen (100) and is 

involved in mediating the acute phase responses by liver cells (83). 

A cytokine network exists, as indicated by the induction of these cytokines (5). For 

example, TNF induces IL-1 expression and vice versa. IL-1 and TNF both induce IL-6. 

Unlike IL-1 and TNF, IL-6 does not induce IL-1 or TNF. IL-6 suppresses endotoxin- or 

TNF-induced IL-1 production as well as endotoxin-induced TNF production. Moreover, 

IL-1, IL-6 and TNF are each capable of inducing their own production. Thus, this 

network implies complex functional links between those cytokines. 

III. Involvement of Cytokines in the Pathogenesis of Septic/Endotoxin Shock 

The involvement of IL-1, TNF and IL-6 as key mediators in the pathogenesis of 
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septic/endotoxic shock are mainly demonstrated by three separate lines of evidence. First, 

a marked elevation of production and secretion of each of the cytokines have been 

demonstrated during the development of septic/endotoxin shock. Second, administration 

of exogenous cytokines can duplicate most of the manifestations and pathophysiological 

changes associated with septic/endotoxic shock. Third, treatment of the septic animals 

with specific antibodies against those cytokines shows protective effects and decreases 

lethality. 

1. Circulating Cytokines Levels in Septic Patients and Animal Models 

Several investigators have demonstrated that in septic patients, there are elevations 

of plasma TNF levels, either alone or along with increased IL-1 or IL-6 

(41,57,60,178,245). High level of TNF or IL-6 has been associated with severity and 

high mortality in some studies (178,245). Michie et al. (158) reported that endotoxin 

administration (4 ng/kg) to healthy human volunteers induced a 7 fold single peak 

elevation of plasma TNF levels within 90 -180 min while IL-1 level did not change. 

However, detectable elevations of IL-1 at 120 min and IL-6 at 2 to 4 hr following 

endotoxin in human volunteers have been demonstrated in other studies (80,101). 

Increases in circulating TNF, IL-1, and IL-6 have been substantiated in septic 

models with endotoxin or bacterial injections in different animal species 

(73,81,121,155,244). Mathison et al. (155) reported that elevation of plasma TNF was 

detected within 30 min and peaked between 45 to 120 min after endotoxin challenge in 

rabbits. In studies with baboons, Fong et al. (81) demonstrated that circulating TNF was 
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increased with peak elevation at 1.5 hr after E. coli injection. IL-1 was detectable by 2 

hr and peaked 3 hr after bacterial infusion. IL-6 was detectable within 3 hr and continued 

to rise throughout 8 hrs of the protocol. 

2. Duplication of Septic Syndromes by Cytokine Administration 

Extensive studies have shown that TNF administration in different animal models 

precipitates a syndrome strikingly similar to that of human septic shock (18,53,234,236). 

Tracey et al. (234) reported that recombinant human TNF infusion induced dose-related 

endotoxin-like syndrome, tissue injury, and death. Endotoxic shock-like syndrome was 

also observed in TNF-treated rats, including hypotension, tachycardia, hyperglycemia, 

lactacidemia, hemoconcentration. Pathological analysis revealed organ-specific changes 

indistinguishable from those seen during human septic shock such as adrenal necrosis, 

pulmonary inflammation and hemorrhage. Cardiovascular collapse along with tissue 

necrosis and elevation of stress hormones was also observed in canine models after TNF 

infusion (236). The modulation effects of TNF on endotoxin-induced hemodynamic, 

metabolic and endocrine responses have been demonstrated (53). 

Relatively few studies have examined the pathophysiological alterations associated 

with IL-1 administration. Okusawa et al. (179) reported that intravenous treatment of IL

I /3 (5 mg/kg) to rabbits induced hypotension, decreased vascular resistance and 

decreased central venous pressure. In studies with mice, Beutler et al. (40) demonstrated 

that IL-1 ex and (3 induced dose-dependent lethality and pathological changes similar to 

septic shock. Using nontoxic doses of IL-1 (3 and TNF in combination in rabbits, a 
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profound shock-like state was induced with evidence of pulmonary edema and 

hemorrhage (179). It is suggested that the combination of IL-1 and TNF together is much 

more potent than either agent alone. 

3. Protective Effects of Cytokine Antibodies 

Using polyclonal rabbit antiserum and the derived IgG against TNF to passively 

immunize mice, Beutler et al. (25) reported that endotoxin induced lethal effects were 

significantly attenuated in a dose-dependent manner. The protective effects were most 

effective when antiserum was given prior to endotoxin injection. Tracy et al. (235) 

reported that pretreatment of baboons with monoclonal anti-TNF antibody fragments 

(Fab2) 2 hr before LD 100 of E. coli bacteria infusion provided complete protection 

against shock, vital organ dysfunction, and persistent stress hormone release. Anti-TNF 

antibodies also attenuated the E. coli bacteria-induced elevation of TNF, IL-1 /3 and IL-6 

(81), suggesting that TNF may be essential for the initiation and amplification of IL-1 

and IL-6 release during septic shock. 

Wallach et al. (246) demonstrated that treatment with IL-1 (0.4 µg, ip) 12 hr before 

endotoxin injection (100 µg, iv) to BCG-primed mice prevented the lethal effects of 

endotoxin, suggesting that IL-1 was an important mediator in endotoxin lethal effects. 

In recent studies by Starnes et al. (221) the effects of in vivo anti-mouse IL-6 

antibody treatment were evaluated in a mouse model of septic shock. Anti-IL-6 

antibodies significantly attenuated the lethality caused by E. coli (ip) or murine 

recombinant TNF a, suggesting that IL-6 is an important mediator in lethal E. coli 
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infection. Anti-IL-6 also led to an increase in E. coli induced elevation of serum TNF 

levels, implicating that IL-6 was a negative modulator of TNF in vivo. 

Clearly, extensive studies have demonstrated that TNF, IL-1 and IL-6 are the 

principle mediators in the pathogenesis of sepsis and septic shock. More exhaustive 

review of this topic can be found in a recent monograph (79). 

IV. Centrally-Mediated Effects of Cytokines 

1. Fever 

Fever is well known to be a centrally-regulated response. The temperature regulation 

center is primarily located in the anterior hypothalamus (10). When endotoxin, the 

exogenous pyrogen was administered intravenously (i. v .) to rabbits, it caused monophasic 

fever at small doses but biphasic fever at larger doses (164). It is now recognized that 

the exogenous pyrogens exert their pyrogenic effects by releasing several endogenous 

pyrogens such as TNF a, IL-1, and IL-6. These systemically released cytokines are 

presumably transported to the brain by the blood and initiate fever by increasing 

prostaglandin PGE2 synthesis in the hypothalamus. It is not known how the cytokine 

signals in the circulation get into the hypothalamus (26,222). 

Intravenous injection of human recombinant IL-1 into rabbits resulted in a 

monophasic fever which peaked approximately 50 min after injection (66). This fever 

induction was more rapid than endotoxin-induced fever which peaked approximately 90 

min post administration. TNF a is also pyrogenic and has dose-dependent fever-inducing 
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properties. Small i. v. dose of TNF induced a brisk, monophasic fever which peaked 

coincidentally with IL-I induced fever (66). High doses of TNF a resulted in a biphasic 

fever profile. The initial peak, which was corespondent to the monophasic peak observed 

with small dose of TNF, was followed by a second peak at 3.5 hr post injection. 

Pretreatment with a cyclooxygenase inhibitor could block IL-1 induced fever as well as 

the initial rise in temperature evoked by TNF. The second peak has been demonstrated 

to be mediated by TNF-induced IL-1 release (66,243). Intravenous injection of IL-6 to 

rabbits also produced fever response which was monophasic with peak elevation around 

60 min (100). 

2. Neuro-Endocrine System 

Extensive studies have been conducted to investigate the cytokine effects on the 

neuro-endocrine systems, particularly the hypothalamus-pituitary-adrenal axis. 

IL-1 has been reported to increase serum levels of adrenocorticotrophic hormone 

(ACTH) and corticosterone in different species (22,182). Such elevations are primarily 

mediated through central mechanisms. Intracerebroventricular (ICV) administration of 

IL-I-stimulated secretion of ACTH and corticosterone, whereas the same dose was not 

effective when injected peripherally (119,182). It has been shown that IL-1 stimulates 

ACTH and subsequent corticosterone secretion by triggering release of corticotropin

releasing factor (CRF) from the hypothalamus, as measured from both systemic (22) and 

hypothalamic-pituitary portal circulations (206). Pretreatment with CRF antibodies 

abolished the IL-I-induced increase in ACTH (206). Complete neural dissociation of the 
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medial basal hypothalamus prevented the adrenocortical activation produced by IL-1 

(182). Additional effects of IL-1 at the level of the pituitary and the adrenal gland has 

also been proposed ( 16). 

Similarly, TNF as well as IL-6 have also been demonstrated to stimulate the 

hypothalamic-pituitary-adrenal axis (53,59,72,170,213,236,247). In vitro incubation of 

the pituitary with IL-6 induced ACTH secretion (150). Intravenous administration ofIL-6 

into rats increased the plasma level of ACTH 30 min after the injection (170). 

Pretreatment with anti-CRF completely abolished the IL-6 induced increase of ACTH 

(170), suggesting that IL-6 stimulated the secretion of ACTH through CRF. 

Recent evidence indicates that IL-1 and TNF modulate the secretion of various other 

hypothalamic-pituitary peptides, including prolactin, growth hormone, thyrotropin

releasing hormone, and luteinizing hormone-releasing hormone (26,199). 

3. Sympathetic Nervous System 

Cytokine-induced activation of the sympathetic nervous system has been reported 

by several authors. In 1987, Tracey et al. (236) investigated the stress hormone responses 

to recombinant human TNF in anesthetized dogs. Intra-arterial infusion of sublethal dose 

of TNF (10 µg/kg) induced no significant changes in plasma catecholamines. Lethal dose 

of TNF (100 µg/kg), however, precipitated significant increases of plasma 

catecholamines. Within 15 min after TNF infusion, plasma epinephrine and 

norepinephrine increased from a pre-injection value of 58 and 282 pg/ml to 1148 and 

1400 pg/ml, respectively. By 3 hrs, plasma epinephrine and norepinephrine were elevated 
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to 1623 and 1982 pg/ml, respectively. Since these elevations occurred prior to the onset 

of diminished mean blood pressure or cardiac output, the authors proposed that 

circulating TNF may stimulate the sympathetic response. Sharp et al. (213) showed that 

ICV injection of TNF was more effective than intravenous (iv) injection, which may 

suggest a central site of action for TNF. 

In 1988 Bagby et al.(11) demonstrated that non-lethal dose of TNF (150 µg/kg, iv) 

induced about 2-3 fold increase in plasma epinephrine and norepinephrine in conscious 

rats, which was not associated with hypotension. Similar findings were also observed by 

Darling et al. (59), except that the increment of epinephrine did not reach statistical 

significance. In recent studies with conscious rats, Ciancio et al. (53) reported that 

significant elevation in plasma catecholamine were induced within 90 min after high dose 

of TNF injection (1 mg/kg), with peak elevation of approximately 20 fold. 

In anesthetized dogs Evans et al. (72) reported that 6-hr infusion of sublethal dose 

of TNF increased stress hormone levels including plasma catecholamines, which were 

associated with hemodynamic and metabolic changes. Pretreatment with cyclooxygenase 

inhibitors abolished most of the hemodynamic changes and attenuated elevation of plasma 

catecholamines. In contrast to the plasma catecholamine response to TNF, Holt et al. 

(106) reported that ICV injection of TNF ex resulted in decreased sympathetic firing rate 

to interscapular adipose tissue, whereas lymphotoxin (TNF {3) increased the sympathetic 

nerve activity to that tissue. The authors proposed that both cytokines acted directly in 

the CNS to modulate sympathetic outflow, possibly via separate receptor systems. 

Recombinant IL-1 ex and IL-1 {3 have also been evaluated for their ability to 
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stimulate catecholamine secretion in the rat (202). Intravenous injection of either IL-1 a 

or IL-1 {3 (1-1000 ng) caused dose-related but modest increases in plasma catecholamines 

at 15 min post injection. Similarly, ICY administration of same doses of IL-1 induced 

2-3 fold elevation of plasma catecholamines. In both cases no alteration in blood pressure 

occurred, suggesting that this elevation does not result from a cardiovascular reflex. 

A recent study assessed norepinephrine turnover in various organs of rats after 

intraperitoneal injection of recombinant human IL-1 {3 (6). IL-1 administration increased 

norepinephrine turnover in the spleen, lung and hypothalamus. Modest elevation of 

plasma catecholamine levels was also observed 30 min and 1 hr following intraperitoneal 

IL-1 injection (21). 

Saigusa (204) studied the regional sympathetic response to IL-1 {3 and TNF a using 

anesthetized rabbits. He found that each of the cytokines typically induced a decrease in 

ear temperature, indicative of cutaneous sympathetic activation, and simultaneous 

inhibition of renal sympathetic nerve activity at the initial phase (30 min) which returned 

to control levels around 60 min post treatment. 

4. Others 

In addition to the above-mentioned central effects of cytokines, IL-1 and TNF have 

also been shown to induce many other centrally-mediated host defense responses to 

infectious pathogens. Among those are acute-phase glycoproteinemia (214), 

hyperinsulinemia (55), increased counts of white blood cells, enhanced slow-wave sleep 

(30) and suppression of food intake (194). 
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v. Passages of Cytokines To the Brain 

A prerequisite for a direct CNS effects of systemic endotoxin or cytokines is that 

the specific molecule contacts CNS elements. Controversial results have been reported 

in the literature regarding the possibility of systemic endotoxin and cytokines entering the 

CNS and interacting with the brain parenchyma. 

Prior to the understanding of cytokines, endotoxin was believed to be the causative 

factor for the pathogenesis of gram-negative septic shock. At that time, some evidence 

suggested direct actions of endotoxin on the CNS which might be responsible for some 

of its effects. Experiments were then onducted attempting to establish the basis of direct 

contact of endotoxin with CNS components. Bennett et al. (20) presented evidence that 

endotoxin was found in cerebrospinal fluid (CSF) of dogs within 15-30 min after 

intravenous injection of Shigella endotoxin, using the pyrogenic effects in rabbits as an 

assay. In contrast, most other studies reported negative results in general. When 

radioactive-labelled endotoxin was given systemically, no endotoxin was found in the 

brain parenchyma although radioactivity was detected throughout peripheral organs ( 109). 

In another experiment involving intravenous endotoxin administration, no endotoxin was 

detected in the CSF during the period when plasma endotoxin was at its highest 

concentration (240). Although in a few cases of this experiment, a low level of endotoxin 

was found in the CSF, it was usually correlated with high red blood cell count in the 

CSF, and it was considered to be due to contamination from cerebral bleeding during the 

CSF sampling. From these studies, the generally accepted view is that endotoxin cannot 

cross the blood brain barrier. 
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It is now recognized that host-released factors, primarily cytokines, are responsible 

for most of endotoxin effects, including those involved in the CNS. However, whether 

cytokines have direct physical contact with the brain tissues is not clear. Experiments in 

the past several years have focused on three major aspects: 1) whether cytokines can 

cross the blood brain barrier, 2) whether circulating cytokines enter the brain at the 

circumventricular organs where the blood brain barrier is absent, and 3) whether 

cytokines are produced locally in the brain and, thereby, exert their actions. 

In 1987 Dinarello et al. (67) reported that intravenous injection of 125I labelled 

endogenous pyrogen (EP), prepared from monocytes, did not induce any radioactive 

detection in the anterior hypothalamus. In 1987 the same group (54) reported that when 

endotoxin or IL-1 was given intravenously, CSF IL-1 concentration did not increase at 

any stages of the sustained fever, suggesting that IL-1 did not cross the blood brain 

barrier. In contrast, when pyrogenic doses of endotoxin or IL-1 (3 was administered ICY, 

elevation of IL-1 in the CSF was detected, indicating the ability of brain tissues to 

produce IL-1 in vivo. Bank et al. (12) reported bidirectional transports of IL-1 a across 

the blood brain barrier. In their studies 125I-radiolabled IL-1 a, which retains full 

biological activity, was injected intravenously into mice along with 99J'e-radiolabled 

albumin. When the brain/serum radioactivity ratio was counted at different times post 

injection, the ratio for 125I increased significantly over time whereas the ratio for 99J'e 

stayed constant, suggesting that there was a blood to brain transport of IL-1 but not 

albumin. Many regions of the brain contained IL-1 radioactivity. The brain to blood 

transport of IL-1 was also demonstrated in the same studies. 
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In another line of investigation, the possible role of organum vasculosum laminae 

terminalis (OVLT) in connection with the pathogenesis of fever and activation of 

hypothalamic-pituitary-adrenal axis was extensively studied. OVLT is one of the seven 

or eight so called "circumventricular organs"as it is adjacent to the cerebral ventricles. 

The OVLT is highly vascularized and lacks a blood brain barrier (111). Some big 

molecules such as horseradish peroxidase (HRP) (45,00 dalton) can not cross the blood 

brain barrier but can reach interstitial space of the OVLT (222). The ependyma of the 

OVLT faces toward the third ventricle and the parenchyma of the OVLT is comprised 

of neuronal perikarya, glial and neuronal processes. The OVLT is close to the 

hypothalamus and has direct projections to the hypothalamus which is known to be an 

important area in autonomic, endocrine and fever regulations (111). 

In studies with guinea pigs, Blatteis reported that an extensive lesion of the 

anteroventral third ventricular wall including OVLT resulted in suppression of the febrile 

response evoked by systemically administered endotoxin, IL-1 and TNF (27-29). Direct 

injection of endogenous pyrogen into the preoptic region of the hypothalamus in the 

lesioned rats, however, induced fever similar to that seen in sham rats (27). They 

proposed that the OVLT may be the passage site of systemic endogenous pyrogens to the 

preoptic region of the hypothalamus which directly responds to pyrogens to induce fever. 

Thus, lesions of the OVLT subsequently prevent the entry of pyrogens into the brain. 

In contrast, Stitt et al. (222) reported different findings. Small perhaps incomplete 

lesion of the OVLT region in rabbits greatly augmented the febrile response to 

endogenous pyrogen with maximum responses 3-6 days post lesions which gradually 
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diminished over 3-4 weeks. They suggested that this enhanced response may be due to 

increased phagocytosis in the remaining OVLT cells since zymosan, a phagocytotic 

stimulating agent, produced similar enhancement of the febrile response. Similarly, 

Katsuura et al. (116) demonstrated that OVLT lesion enhanced the intravenous IL-1 {3-

induced ACTH response whereas lesions of preoptic area of the hypothalamus suppressed 

the response. They proposed that the OVLT may be the entry site of blood-borne IL-1 

p into the brain leading to the preoptic area of the hypothalamus, which may contain the 

neurons required for the ACTH response. 

Finally, using antiserum directed against human IL-1 /j to stain the human brain 

immunohistologically (34), IL-1 /j immunoreactive fibers were found in many areas of 

the brain with a heavy innervation to the hypothalamus. Similarly, immunoreactive IL-1 

/j also present in the hypothalamus and the extrahypothalamic regions of the rat brain 

(136). The authors speculated that IL-1 may be an intrinsic neuromodulator in the central 

pathways that may mediate neuroendocrine, febrile and many other responses. In vitro 

production of IL-1, IL-6 and TNF by certain brain cells such as astrocytes and glial cells 

in response to endotoxin challenge or viral infection have also been demonstrated 

(138,200,215). Furthermore, in vivo production of those three cytokines in the brain or 

CSF has also been demonstrated in a variety of infectious or inflammatory states 

(82,95,105,135). For example, Fontana et al. (82) studied the in vivo synthesis of IL

i/endogenous pyrogen within the brain of endotoxin treated mice. They found that IL-1 

activity of brain extract, as determined by stimulating phytohemagglutinin (PHA)-initiated 

proliferation of thymocytes, increased in a dose-dependent manner 5 hr after the injection 
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of 50 µg endotoxin (i.p.). The enhanced IL-1 activity was first detectable 3 hr post 

endotoxin. The febrile response induced by the brain extract was in accord with 

temperature changes observed in purified IL-1 treated mice. A recent study by 

Hallenbeck et al. (95) showed that the ICV injection of endotoxin (at doses of 1.8 and 

3.6 mg/kg) induced a dose-dependent TNF production, as detected in the CSF. Elevated 

mRNA expressions of IL-1, IL-6, and/or TNF in the rat brain particularly the 

hypothalamus have also been observed in vivo following the central administration of 

gamma-interferon and endotoxin, systemic injection of kainic acid, and immobilization 

stress (102,160,161). Immobilization induced IL-1 mRNA was detected as early as 30 

min after the start of the stress and reached a maximum at 60 min (161). 

VI. Evidence for the Hypothalamus as the Potential Action Sites of Cytokines in the 

Brain 

Several authors have reported changes, either increases or decreases, in the 

electrophysiological activity of hypothalamic neurons during the immune response 

(23,205,216). Electrophoretically applied recombinant human IL-1 {3 (rhIL-1{3) and 

rhTNF have also been shown to suppress the activity of glucose-sensitive neurons in the 

rat lateral hypothalamic area and increase the neuronal activity of glucoreceptor neurons 

in the rat ventromedial hypothalamic nucleus (180,194). Hypothalamic neurons could be 

excited by interleukin-I in vitro (107). Enhanced hypothalamic norepinephrine 

metabolism following the IL-1 treatment, either in vivo or in vitro, has also been 

demonstrated (69,183,184,248). Direct injection of cytokines to different areas of the 
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hYPothalamus induces a febrile response (27), hyperinsulinemia (55) and suppression of 

food intake (194). In vitro incubation of the hypothalamus with either IL-1 or IL-6 

stimulated CRF secretion (172,241). Therefore, the hypothalamus has been considered 

to be one of the most important sites for cytokine actions. 

As can be summarized from the cytokine review, many host defense responses to 

infectious and inflammatory processes are mediated by cytokines via their central actions. 

Some of the cytokine effects may be initiated in the brain side of the blood brain barrier, 

particularly the hypothalamus. Relevant to the interest of the present dissertation study, 

cytokines may act in the CNS, possibly the hypothalamus, to mediate the 

sympathoadrenal activation during developing septic shock. However, these possibilities 

have not been examined in a systematic manner, which will be the focus of another 

project of the dissertation study. 
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THE RATIONALE 

Despite extensive demonstrations of the sympathoadrenal activation during 

developing septic shock, mechanisms responsible for this activation are apparently 

unknown and basically unexplored. After review of the limited and indirect data in the 

literature, three themes might be suggested. First, major sympathoadrenal activation in 

response to endotoxin challenge may be dependent on an intact CNS. Peripheral 

modulation of epinephrine release from the adrenal gland might also make minor 

contribution to the overall sympathoadrenal activation during endotoxicosis. Second, 

afferent neural input from arterial baroreceptors may not have a dominant role in 

mediating the sympathoadrenal activation in endotoxin shock. Third, interactions between 

the immune-neuroendocrine systems exist with cytokines as likely mediators. This 

interaction may also be applicable to the sympathetic response to endotoxic challenge 

such that cytokines may mediate the sympathoadrenal activation during septic shock via 

their central actions. However, these three aspects have never been studied directly, or 

in a systematic manner. Thus, the presently proposed dissertation study will focus on 

these potential mechanisms of sympathoadrenal activation in endotoxin shock. The 

specific aims include: 1) to examine the overall contributions of central nervous system 

as well as peripheral modulation (either neurogenic or non-neurogenic) to the 

sympathoadrenal response in endotoxin shock, 2) to evaluate the role of afferent neural 

input from the arterial baroreceptors in mediating sympathoadrenal activation during 

endotoxic shock, and 3) to assess the central roles of three major cytokines, IL-1, IL-6 
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and TNF, as mediators of the sympathoadrenal activation. 



CHAPTER III 

GENERAL MATERIALS AND METHODS 

A. ANIMALS 

Male, Holtzman rats, obtained from Harlan Sprague Dawley Inc. (Indianapolis), 

weighing 300-500 g, were used in all experiments. The rats were housed in shoe box 

cages with filter tops at least 1 week before use in order to recover from the stress of 

shipping and to adjust to the new environment. Ambient temperature was approximately 

22 °C to 25°C, and the illumination was controlled on 12 hr light-dark cycle. Wayne Lab. 

Blox (full nutrient meal) and tap water were provided ad libitum except where indicated 

prior to some experimental protocols. 

B. CARDIOVASCULAR INSTRUMENTATION AND MEASUREMENTS 

Arterial and venous cannulae were implanted either on the day of experiments for 

acute preparations or the day prior to experiments for chronic preparations. These 

cannulae permitted monitoring the hemodynamic changes (e.g. arterial blood pressure, 

heart rate), collecting blood samples, or administering intravenous drugs throughout the 

time course of experiments. In experiments with sinoaortic baroreceptor denervation, 

femoral vessels rather than carotid arteries were cannulated to avoid any potential 

39 
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disturbances in the carotid sinus regions. In all other studies, carotid artery and jugular 

vein cannulae were used. 

For femoral vessel cannulation, a 1 cm long incision was made in the left inguinal 

area. After exposure of the femoral vessels by blunt dissection, the arterial and venous 

cannulae (PE-50 polyethylene tubing, Clay-Adams, NY), filled with heparinized saline 

(100 U/ml), were inserted approximately 5 cm to the level of abdominal aorta and 

inferior vena cava, respectively. 

For carotid artery and jugular vein cannulation, a 2 cm ventral midline incision was 

made in the neck and blunt dissection was employed to expose the vessels. The arterial 

and venous cannulae were advanced approximately 3 cm to the level of the ascending 

aorta and superior vena cava-right atrial junction, respectively. 

In conscious rat experiments the ends of the cannulae were heat sealed, tunneled 

under the skin, and were exteriorized through the back of the neck in the interscapular 

region. The cannulated animals were then placed one per cage to prevent damage to the 

cannulae and fasted for about 24 hrs with free access to water. 

Prior to the onset of experimentation, the arterial cannula was extended to a saline

filled Statham pressure transducer (model P23) via a tygon tubing adaptor and additional 

PE-50 tubing. Pulsatile as well as mean blood pressures (MBP) were monitored 

continuously using a Grass oscillograph (model 7). The heart rate (HR) was determined 

from the pressure pulses. Extension of the venous line provided a convenient means for 

intravenous drug administration and replacing volume for blood sampling. Care was 

taken to minimize heparin administration to each rat during experiments by withdrawing 



41 

the heparinized saline before flushing the cannula with non-heparinized saline. Before 

beginning each experiment, rats were allowed time (approximately 30 min) to become 

acclimatized to their environment as determined by normal, steady mean arterial blood 

pressures (approximately 90-120 mmHg) and heart rates (approximately 300-400 

beats/min) as well as by quiet behavior. 

c. Sinoaortic Baroreceptor Denervation 

Sinoaortic baroreceptor denervation (SAD) was performed by a modification of the 

method originally described by Krieger (133). Anesthetized animals were placed in a 

supine position on a warm pad. Using aseptic technique, a midline incision (2.5-3 cm) 

was made in the neck and the neurovascular sheath enclosing the common carotid 

arteries, the vagi, and the cervical sympathetic nerve trunks were exposed by retracting 

the sternohyoid and sternomastoid muscles. The vagi were carefully separated from the 

neurovascular sheath with the aid of a dissecting microscope (0. 7x-3x, Bausch & Lomb 

Inc.). For aortic baroreceptor denervation, the superior laryngeal nerves were cut near 

the vagi and the superior cervical ganglia including a small segment of the sympathetic 

chain were removed to prevent the possibility of reconnection. Aortic depressor nerves, 

usually found associated with the sympathetic trunk, were sectioned when evident. For 

carotid sinus denervation, the area of the carotid bifurcation was widely exposed. All 

connective tissue and nerve fibers were stripped from the thyroid, occipital, internal, 

external and common carotid arteries. Extra care was taken to prevent injury of vagal 

nerves. Sham operations were performed by exposing the carotid sinuses bilaterally 
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without dissection of the region. Bilateral sinoaortic denervation was normally performed 

in a one-stage operation lasting approximately 30 min. In chronic SAD and sham 

preparations, animals received 40,000 IU penicillin (i.m.) following the surgery and were 

allowed 2-4 weeks for recovery. 

Completeness of the baroreceptor denervation was tested by determining the 

magnitude of the reflex bradycardia in response to phenylephrine-induced hypertension 

( 4 µglkg, i. v.) and the reflex tachycardia in response to nitroglycerine-induced 

hypotension (0.5 µglkg, i.v.). Such observations have been routinely used as the criteria 

of the effectiveness of the SAD (8,13,169,239). Only those animals which exhibited a 

reflex bradycardia of < 20 beats/minute and a reflex tachycardia of < 20 beats/minute 

in response to 40-50 mmHg change in MBP were accepted as SAD rats (8). The 

bradycardia or tachycardia typically observed in sham controls was 60-120 beats/min 

after the same dose of phenylephrine or nitroglycerine. 

D. SYMPATHETIC NERVE RECORDINGS 

Renal sympathetic nerve activity (RSNA) was recorded from a renal branch of the 

left greater splanchnic nerve (61,185). Using aseptic techniques, the left kidney was 

exposed retroperitoneally through a flank incision. The renal nerve branch was usually 

found in the aortic-renal artery angle, coursing to the renal vascular pedicle through the 

perirenal fat and into the hilus of the kidney. Under a dissection microscope, the renal 

nerve was gently separated from fat and connective tissues, and carefully placed on a 

thin, bipolar gold electrode hook. The gold electrodes were teflon-coated with one end 
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bared, bent to a hook, and the other end connected to extension cables. When an optimal 

nerve signal was obtained, the electrode and the nerve were fixed with a mixture of equal 

parts of dental elastomeric impression material base, catalyst (both from Sybron-Kerr, 

Romulus, MI), and RTV silicon gel base (Petrarch Systems Inc., Bristol, PA). After 

closure of the incision in layers, the electrode cables were tunnelled subcutaneously and 

exteriorized on the back of the neck. 

On the next day, the electrode cables were extended to an amplifier while the 

conscious rats were in cages. The nerve signal was amplified 1,000-10,000 fold and 

filtered (low-frequency cutoff at 35 Hz and high-frequency cutoff at 2,000 Hz) by a 

Grass model HIP511A pre-amplifier and a Grass model P511R amplifier. The amplified 

signal was continuously displayed on an oscilloscope (Tektronix Inc., Type 561A) and 

led to an audio amplifier/loud speaker (Grass AM?). Representative oscilloscope displays 

of amplified raw renal sympathetic nerve activity from unrestrained, conscious rats are 

shown in figure 3-1. For estimation of frequencies of RSNA, the signal was full-wave 

rectified and integrated by a Grass model 7P3A integrator with a time constant 0.02 sec 

and the spikes/min were measured. For simultaneous estimation of overall RSNA, which 

involves both frequencies of RSNA and amplitudes of RSNA spikes, the amplified signal 

was also rectified and integrated by a Grass model 7P10E integrator and the slopes of 

integration were determined. In both cases, the rectified-integrated signal was 

continuously recorded using a Grass oscillograph (model 7). 

The background noise level for the nerve recording was determined 30 min after 

each animal was euthanized with i. v. pentobarbital overdose. For RSNA spike 
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I 
- 50 msec/division 

Figure 3-1.0scilloscope display of amplified raw renal sympathetic nerve activity from 
unrestrained, conscious rats. 
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measurement, only spikes with amplitudes greater than background noise level were 

counted. For slope measurement, background noise slope was subtracted from the mean 

rectified nerve signal slope obtained in the living animal. All RSNA were sampled for 

20 sec at indicated sampling times and expressed as percent change from baseline 

control. Percent changes of RSNA were used because the absolute value of multiunit 

activity is influenced by recording conditions that vary between different preparations. 

Such variations include the spatial relationship of the nerve fibers to the electrodes and 

the amount of tissue fluid around each nerve. 

E. IMPLANTATION OF INTRACEREBROVENTRICULAR (ICV) CANNULA 

Anesthetized rats were placed in a stereotaxic apparatus (Trent H. Wells Jr. 

Mechanical Developments Co. South Gate, CA) in a prone position. A 2 cm midline 

incision was made on the skull and the bregma was exposed. After determining the 

coordinates for the right lateral ventricle using the bregma as a reference point, a small 

hole (0.5 mm diameter) was made with an electric drill. A 30 gauge stainless steel 

cannula was inserted through the hole in the skull into the lateral ventricle with the tip 

coordinates: 0.5 mm caudal to bregma, 1.5 mm lateral to the midline, and 4.5 mm below 

the surface of the skull (10). The end of the cannula was pre-bent to a right angle and 

connected to a piece of PE-10 tubing (5 cm long), filled with saline (3-4 µl) and heat 

sealed. Two stainless steel anchoring screws were fixed on the skull, and the cannula 

secured in place by dental acrylic cement. The incision was sutured with the end of the 

PE-10 tubing exteriorized. On the day of experiment, the cannula was connected to a 10 
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µI Hamilton microsyringe filled with test solution. A 10 µl test solution (plus 3-4 µl 

saline in the cannula) was infused over a period of 5 min. 

At the end of each experiment, methylene blue dye solution (15 µl) was injected via 

the cannula. The animals were sacrificed with pentobarbital overdose (i.v.), and the 

brains were removed. The exact location of the injection was verified. Only those 

animals with successful ICV injections, as indicated by staining of the lateral ventricles, 

were included in the data analysis. 

F. IMPLANTATION OF CANNULAE INTO THE PARA VENTRICULAR NUCLEUS 

OF THE HYPOTHALAMUS (PVN) 

Cannulae for injections into the paraventricular nucleus of the hypothalamus (PVN) 

were implanted using a stereotaxic apparatus. After exposure of the bregma under 

anesthesia, a 3 mm x 1 mm slot was prepared across the midsagittal suture on the skull 

with a electric drill. A bilateral guide cannula (Plastic One Inc., Roanoke, VA), 

constructed of two 26-gauge stainless steel tubes with a 1. 0 mm distance between the 

centers, was implanted in the bilateral PVN through the slot in the skull. The coordinates 

for this position were: 1. 7 mm caudal to the bregma, 0.5 mm lateral to the midsagital 

suture, and 8.0 mm ventral to the skull surface with the incisor bar set at 4.0 mm below 

the interaural line (190). Four stainless steel anchoring screws were fixed on the skull, 

and the cannula secured in place with dental acrylic cement. The incision was closed with 

a suture. A dummy wire with two leads was inserted into the guide cannula to prevent 

clotting in the cannula and also prevent dust from getting into the cannula. On the day 
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of experiments, the dummy wires were removed and a double injector cannula (33 gauge, 

Plastic One Inc.), which was 2 mm longer than the guide cannula, was inserted into the 

guide cannula. The injector cannula, filled with test solution, was connected to a 10 µI 

Hamilton microsyringe via a flexible tygon tubing (same size as PE-10, Norton Tubing 

and Molded Products, Akron, OH). Testing solution (500 nl) was injected bilaterally over 

a 5 min period. The volume of an injection was monitored by observing the movement 

of a small bubble through a calibrated distance in the tubing. 

For histological verification of the injection site, pentobarbital-treated animals were 

perfused transcardially with 10% buffered formalin, and their brains were removed and 

preserved in buffered formalin for at least 48 hrs. The brains were then cut on a cryostat 

(40 µm sections) and stained by the cresyl violet method to verify the position of the 

cannula tip. Only those animals in which the cannulae terminated in the dorsal border of 

the PVN without damage to the PVN neurons were included in the statistical evaluation. 

G. PITHING PROCEDURES 

Pithed rats were prepared according to the method of Gillespie and Muir (85). The 

animals were anesthetized with ether, and the trachea cannulated. An aluminum pithing 

rod (2 mm diameter) was passed into the brain through the right orbit and advanced 

down the spinal cord to the sacral vertebrae for a total distance of 15 cm. The rats were 

immediately ventilated with Harvard Apparatus Rodent respirator (room air, 60 

strokes/min, approximately 1-1.2 ml/100 g body weight). Rectal temperature was 

maintained at 36-37 °C with a heating pad and a lamp. The pithing rod served as a 
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stimulating electrode, and another rod was inserted under the skin of the back to serve 

as an indifferent electrode for stimulation of the spinal cord. This pithing procedure 

destroys the entire central nervous system, but leaves the emerging nerve trunks intact. 

Since those parts of the pithing rod in the sacral and cervical regions of the spinal cord 

were coated with high resistance varnish, the stimulating current applied through the 

pithing rod was restricted to the thoracolumbar region where the sympathetic 

preganglionic fibers are located. After curare (3 mg/kg) was given via the dorsal vein of 

the penis to eliminate skeletal muscle contractions, the preganglionic thoraco-lumbar 

sympathetic nerves were stimulated at a constant rate (3 Hz, 10 V, and 0.5 msec) to 

maintain blood pressure at physiological levels. Some rats required small supplemental 

doses of curare. 

The advantages of using pithing combined with stimulation include: 1) sympathetic 

outflow can be maintained at a steady level by applying a constant stimulation to the 

sympathetic preganglionic fibers via the pithing rod, 2) basal blood pressure can be 

maintained at physiological levels, and 3) there are no centrally-mediated compensations. 

By using this model, the CNS mediated fluctuation in catecholamine release from the 

nerve terminals and the adrenal medulla is eliminated, thus, allowing the evaluation of 

the peripheral mechanisms of catecholamine release. 

H. ADRENAL GLAND DENERVATION 

Rats were anesthetized with sodium pentobarbital (60 mg/kg, i.p.). Under aseptic 

conditions, two flank incisions were made on both left and right sides of the back just 
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below the costal margin. With the aid of a microscope, the adrenal glands were isolated 

from the surrounding connective tissues except for the adrenal artery and vein. The 

splanchnic nerve fibers innervating the adrenal gland and any other fibers which might 

enter the adrenals without joining the splanchnic nerves were served. Extra care was 

taken to leave the vessels intact to avoid necrotic damage to the adrenal glands. Phenol 

(10%) was then applied on the surface of the glands and the vessels. Sham operations 

were performed by exposing the adrenal glands without dissecting the nerves. The 

incisions were closed in layers, and rats received 40,000 IU penicillin (i.m.). The 

denervation procedure required about 20 min to complete, and a two week recovery 

period was allowed before the experiment. 

The effectiveness of this adrenal denervation technique was verified in a separate 

group by demonstrating the failure of plasma epinephrine to become elevated in response 

to hemorrhage. Chronic adrenal denervated rats were subject to carotid artery cannulation 

and on the next day, the carotid cannula was extended to a 5 ml glass syringe via a PE-

200 tubing, both pre-rinsed with heparin. The syringe served as a blood reservoir and 

blood was allowed to flow in or out of the reservoir depending on the height of the 

syringe above the rat. The blood pressure was monitored on the Grass oscillograph using 

a stopcock. The rats were bled to 70 mmHg (total volume 4.5-5 ml) in about 10 min by 

adjusting the syringe position. Blood samples were taken at predetemined times (15, 60 

min) for catecholamine assay. Results showed that in sham denervated rats (n=3), 

hemorrhage induced significant elevations in plasma epinephrine (251 +60 pg/ml at 0 

min, 2286+465 pg/ml at 60 min) and norepinephrine (377+44 pg/ml at 0 min, 787+204 
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at 60 min). In contrast, plasma epinephrine elevations were abolished in adrenal 

denervated rats (n=3, 45+16 pg/ml at O min, 48+7 pg/ml at 60 min) while plasma 

norepinephrine was still increased (394+ 102 pg/ml at O min, 764+75 pg/ml at 60 min) 

in response to hemorrhage. 

I. BLOOD SAMPLE COLLECTION 

Arterial blood samples (500 µl) were collected at predetermined times and placed 

in 1.5 microcentrifuge tubes (Sarstedt) containing 10 µl solution consisting of 90 mg/ml 

ethyleneglycol-bis-(B-amino-ethyl ether)N,N'-tetraacetic acid (EGTA) and 60 mg/ml 

glutathione (pH 6-7). The plasma was separated following centrifugation (10,000 g x 2-3 

min, Eppendorf Model 5414 microfuge) and stored at -40 °C (Revco freezer) until 

analysis for catecholamines. A 500 µl volume of donor blood from normal rats or equal 

volume of saline-resuspended blood cells was infused into the venous line following each 

sample withdrawal. 

J. PLASMA CATECHOLAMINE ASSAY 

Plasma levels of norepinephrine and epinephrine were assayed according to the 

radio-enzymatic thin-layer chromatographic procedure described previously (189,193). 

Materials were supplied in kit form (Amersham, Arlington Heights, IL). This single 

isotope radioenzymatic method can measure epinephrine and norepinephrine 

simultaneously with a sensitivity of 2-5 pg per 50 µl sample (40-100 pg/ml plasma) and 

interassay variation of approximately 10%. The analysis is based on the use of the 
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isolated enzyme catecholamine-o-methyltransferase (COMT) to transfer a radioactive 

methyl group from S-adenosyl-L-methionine (3H-SAM) to an endogenous catecholamine 

acceptor molecule to form a O-methylcatecholamine derivative. In the presence of 3H

SAM, epinephrine is converted to 3H-metanephrine and norepinephrine is converted to 

3H-normetanephrine. 

Duplicate 50 µl aliquots of each plasma sample were added to incubates containing 

(in final concentration) 100 mM Tris, 30 mM MgC12, 10 mM EGTA, 10 µl of COMT 

solution, 1 mM reduced glutathione, 5 µCi SAM (3H-methyl, 4.3-5.5 mM). Total volume 

was 100 µland pH was approximately 8.1-8.3. For every 5 samples, one sample was 

added to four tubes rather than duplicate tubes and 100 pg of epinephrine and 

norepinephrine were added to two of the four tubes as internal standards. Reagent blank 

was constituted by substituting distilled H2O for the plasma. 

The samples were incubated in a shaking water bath at 37 °C for 60 min. The 

reaction was stopped by addition of 50 µl of a solution consisting of 800 mM boric acid, 

80 mM ethylenediamine tetraacetic acid-disodium salt (EDTA-Na2) and 4 mM each of 

metanephrine and normetanephrine in 1 NaOH. The resulting solution (pH 10.0) was 

mixed vigorously for 15 sec with 2 ml of toluene/isoamyl alcohol (3:2, v:v). The 3H

methoxycatecholamine derivatives are much more soluble in the organic phase than in 

aqueous phase. The aqueous and organic phases were separated by centrifugation (800 

g x 2 min, Model UV centrifuge, International Equipment Company). The aqueous phase 

was rapidly frozen in an ethanol/dry ice bath, and the organic phase was decanted into 

a tube containing 100 µl of 0.1 M acetic acid. The 3H-methylcatecholamine derivatives 
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were partitioned into the aqueous phase by mixing for 15 sec. The decrease in pH 

effected by the addition of acetic acid greatly reduced the solubility of the derivatives in 

the organic phase. After the tubes were centrifuged at 800 g for 2 min, the aqueous 

phase was quick-frozen, and the organic phase was discarded. One ml of the toluene

isoamyl alcohol was added to the acetic acid mixture. After mixing, centrifugation and 

freezing the aqueous phase, the organic layers were aspirated and discarded. One 

hundred µl of ethanol was then added to the final extract and the solution was applied to 

a silica gel thin glass plate (Uniplate, Analtech) by use of 250 µl Hamilton syringes and 

a thin layer chromatograph (TLC) Multispotter (Analytical Instrumentation Specialties) 

while drying with a hot air blow dryer (60 °C). The plates were developed for 20-30 min 

in a paper-lined tank containing a solution of chloroform/t-amyl alcohol/methylamine 

(8/2/1, v/v/v). Two zones were visualized under 254 nm UV light. The upper zone 

contained metanephrine, and the lower zone contained normetanephrine. Each zone was 

then scraped from the plate into a correspondingly numbered scintillation vial. 

The further steps for epinephrine and norepinephrine assay were identical. One ml 

of0.05 M ammonium hydroxide was added to each vial to elute the amine from the silica 

gel. The 3H-catecholamine derivative was then oxidized to 3H-vanillin by addition of 50 

µl of sodium periodate for 5 min followed by the addition of 500 µl of 10% glycerol. 

The solution was acidified by the addition of 1 ml of 0.1 M acetic acid and vigorously 

mixing. Ten ml of toluene/liquiflor (1000:50) was added to each vial and 3H-vanillin was 

partitioned into the organic phase with 30 sec shaking. Liquiflor is a 2.5-

Diphenyloxazole--p-bis-[2-(5-phenyloxazolyl)]-benzene (PPO-POPPO) toluene 
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concentrate. Radioactivity in these samples was determined by a liquid scintillation 

counter (LKB Instruments Inc., MD). The sample plasma content for each catecholamine 

was calculated by computer using the following equation: 

catecholamine Concentration (pg/ml)= 

CPM sample-CPM blank pg standard 
X 

CPM (sample+standard)-CPM sample ml sample volume 

Above counts per min (CPM) value was the average from each set of duplicates. 

K. AGENTS 

1. Endotoxin {ETX): Lyophilized endotoxin derived from Salmonella enteritidis 

(lipopolysaccharide Boivin, control No. 723198) was purchased from Difeo Laboratories 

(Detroit, Ml). For use in intravenous administration, the lipopolysaccharide was prepared 

freshly in 0.9% sodium chloride (3 mg/ml for the dose of 5 mg/kg, and 1 mg/ml for the 

dose of 1.5 mg/kg). 

2. Interleukin-IP (IL-1/j): Human recombinant interleukin-1/j was purchased in a 

lyophilized form from Biosource International Inc. (Westlake Village, CA). The IL-1 was 

lot 215-llOC with specific activity 1 x107 unit/mg, as assessed by a mitogenic assay 

stimulating 3H-thymidine uptake into C3H/HFJ thymocytes. Endotoxin contamination was 

determined by Biosource to be less than 0.001 endotoxin units/µg (Limulus Amoebocyte 

Lystate Assay; 1 endotoxin unit = 0.1 ng of ETX). 

3. Interleukin-6 (IL-6): Human recombinant interleukin-6 was obtained in a lyophilized 

form from Biosource International Inc. (Westlake Village, CA). The lot No. was 216-
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0()2D, and the specific activity was 6 x 1()6 unit/mg as determined by stimulation of 3H-

tbymidine uptake by B9 cells. Endotoxin contamination was same as in IL-1. 

4. Tumor necrosis factor a (TNFa): Human recombinant tumor necrosis factor a was 

also purchased in a lyophilized form from Biosource International Inc. (Westlake Village, 

CA). The lot No. was 311-010D, and the specific activity was 1 x 1()8 unit/mg as 

determined by the cytolysis of murine L929 cells in the presence of Actinomycin-D. 

Endotoxin contamination was also less than 0.001 endotoxin units/µg. 

L. DATA ANALYSIS 

Data are expressed as mean+SEM. A p value less than 0.05 was considered to be 

statistically significant. Cardiovascular responses, percent change of sympathetic nerve 

activity and plasma catecholamines following test treatments were compared using 

analysis of variance with repeated measurements. Student-Newman-Keul's test was used 

for individual group comparisons. Blood pressure and associated heart rate as well as 

RSNA responses to phenylephrine or nitroglycerine infusion to assess baroreceptor 

denervation were compared between the SAD and sham groups with unpaired Student t 

tests. 



CHAPTER IV 

INVOLVEMENT OF CENTRAL VS. PERIPHERAL MECHANISMS 

IN MEDIATING SYMPATHOADRENAL ACTIVATION IN ENDOTOXIC RATS 

INTRODUCTION 

Gram-negative sepsis with ensuing septic shock is a persistent health problem 

accounting for the major cause of mortality in hospitalized patients (1,32). Numerous 

studies have linked gram-negative bacterial endotoxins to the pathogenesis of sepsis 

(103,104,167,171), which supports the use of the endotoxic animal model for studying 

the basic pathophysiologic process of septic shock. 

Studies of sepsis or endotoxicosis in either clinical or experimental situations have 

demonstrated a marked sympathoadrenal activation. Supportive evidence includes 

elevations of plasma catecholamines ( 17, 94, 113, 114, 134), an enhanced norepinephrine 

turnover (188), augmented sympathetic nerve discharges (92,159,185) as well as 

depletion of the tissue catecholamine content in the end stage of septic shock (96,187). 

This sympathoadrenal activation may support the cardiovascular and metabolic 

adjustments to septic challenge, but overwhelming and sustained activation may 

contribute to the irreversibility of the shock process (31, 88, 125, 148). 

55 
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Mechanisms responsible for mediating the sympathoadrenal activation during 

endotoxicosis are largely unknown. Norepinephrine release from the sympathetic nerve 

terminals and epinephrine release from the adrenal medulla are most likely neurally

controlled via post ganglionic sympathetic nerves and preganglionic adrenal sympathetic 

nerves, respectively. The critical role of centrally-mediated mechanisms and neural 

dependence of the sympathetic activation during developing endotoxic shock have been 

demonstrated in previous studies (71,150,176,253). However, recent experimental 

findings suggest that peripheral modulation of catecholamine secretion from the adrenal 

medulla during endotoxic shock may also be present (112,211). Non-neurogenic 

stimulation of adrenal epinephrine secretion is suggested by evidence that ganglionic 

blockade could not prevent catecholamine release from the adrenal medulla (211), and 

in vitro incubation of adrenal chromaffin cells with endotoxin or other endotoxin

elaborated agents enhance catecholamine secretion (130,141,177,225). 

Thus, the purposes of the present study were: 1) to clarify whether both central and 

peripheral mechanisms are involved in mediating plasma catecholamine responses during 

endotoxicosis, 2) to assess the relative contributions of each of the mechanisms to 

elevations in plasma norepinephrine and epinephrine following endotoxic challenge, and 

3) to examine the neurogenic or non-neurogenic characteristics of peripheral modulations 

of adrenomedullary release following endotoxin, if the modulation indeed exists. 

Specifically, plasma catecholamine responses to endotoxin challenge were compared 

between rats with and without central regulatory mechanisms, i.e. conscious and pithed 

rats, to assess the contribution of central mechanisms. It was hypothesized that the major 
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elevation of plasma catecholamines depends on centrally-mediated mechanisms such that 

destruction of the central nervous system (by pithing) would significantly diminish the 

endotoxin-induced elevation in plasma catecholamines. Meanwhile, pithed rats with 

constant stimulations of the sympathetic chain do not have centrally-mediated fluctuations 

in sympathetic outflow and, thus, permit the evaluation of peripheral modulation of 

catecholamine release. It was hypothesized that peripheral modulations of the adrenal 

medulla are present, which would result in significant elevation of plasma epinephrine 

in pithed rats following administration of endotoxin. The possibility of non-neurogenic 

catecholamine secretion from the adrenal gland was further studied in pithed animals as 

well as conscious rats by means of adrenal denervation. 
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MATERIALS AND METHODS 

Experimental Protocols 

Two sets of experiments were conducted in male rats weighing 407+ 10 grams. In 

the first experiment sympathoadrenal responses were assessed in pithed, endotoxic rats 

with intact or denervated adrenal glands. Under pentobarbital anesthesia, bilateral adrenal 

glands were denervated or sham-operated and penicillin (40,000 JU) was given i.m. 

following the surgery. After two weeks of recovery, experiments were performed. Rats 

were pithed under ether anesthesia and immediately ventilated (60 strokes/min, 1-1.2 

ml/100 g body weight). After administration of curare, the thoraco-lumbar preganglionic 

sympathetic nerve fibers were stimulated at a constant rate (3 Hz, 10 V, and 0.5 msec). 

Carotid artery and jugular vein were then cannulated. Following a 30 min equilibration 

period, endotoxin (1.5 mg/kg) was given intravenously to both adrenal sham-operated 

rats (n=8) and adrenal denervated rats (n=7). Saline treated sham (n=5) and adrenal 

denervated (n=4) rats served as controls. The hemodynamic response was assessed at 

0, 30, 60 and 90 min, and plasma catecholamines were determined at 0, 60 and 90 min 

post endotoxin. Rectal temperature was maintained at 36-37 °C using a heating pad and 

a lamp throughout the protocol. 

In the second experiment sympathoadrenal responses were evaluated in conscious 

rats with intact or denervated adrenal glands. Under halothane anesthesia chronically 

adrenal sham-operated or denervated rats underwent implantation of arterial and venous 

cannulae, and experiments were conducted the following day. Endotoxin was given 
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intravenously (1.5 mg/ml) to both sham operated (n=5) and denervated rats (n=5). 

saline treated sham {n=5) and denervated {n=4) rats served as controls. Hemodynamic 

responses and plasma catecholamines were also assessed at 0, 30, 60, and 90 min post 

endotoxin. 

Pithing Procedures 

Pithed rats were prepared according to the method described in chapter III. Briefly, 

after cannulation of the trachea under ether anesthesia, rats were pithed by inserting an 

aluminum rod through the orbit and foramen magnum, down the spinal cord to the sacral 

vertebrae. The pithing rod served as a stimulating electrode, and another rod inserted 

under the back skin served as an indifferent electrode for stimulation of the sympathetic 

chain. After minimizing skeletal muscle contraction with curare (3 mg/kg, i.v.), the 

preganglionic thoraco-lumbar sympathetic nerves were stimulated at a constant rate (3 

Hz, 10 V, and 0.5 msec) to maintain blood pressure at physiological levels and to 

eliminate the fluctuations of catecholamine secretions. 

Adrenal Gland Denervation 

As described in general methods, bilateral adrenal glands were denervated by 

severing all the surrounding connective tissues which contain the nerve fibers innervating 

the adrenals. Extra care was taken to leave the blood vessels intact to avoid necrotic 

damage to the adrenal glands. Phenol (10%) was then applied on the surface of the 

glands and the vessels. Sham operations were performed by exposing the adrenal glands 
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without dissecting the nerves. Two week recovery period was allowed before 

experiments. The effectiveness of this adrenal denervation technique was verified, in a 

separate group, by demonstrating the failure of the plasma epinephrine elevation in 

response to hemorrhage-induced hypotension (see Chapter III for details). 

Blood Sample Collection and Catecholamine Assay 

Arterial blood samples (500 µl) were collected at pre-determined times and treated 

as described in chapter III. A 500 µl volume of donor blood from normal rats was 

infused into the venous line following each sample withdrawal. Plasma levels of 

norepinephrine and epinephrine were assayed in duplicate 50 µl samples using the radio

enzymatic thin-layer chromatographic procedure described in general methods. 

Materials 

Endotoxin (derived from S. enteritidis) was prepared freshly in 0.9% saline (1 

mg/ml). Materials for catecholamine assay were obtained in kit form from Amersham 

(Arlington Heights, IL). 

Data Analysis 

Data are expressed as mean+SEM (n). A p value less than 0.05 was considered to 

be statistically significant. Cardiovascular responses and plasma catecholamines were 

compared using analysis of variance with repeated measurements and Student-Newman

Keul 's test for individual comparisons. 
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RESULTS 

Hemodynamic and Sympathetic Responses in Pithed Rats Following Endotoxin 

Thirty minutes after pithing, arterial blood pressure and heart rate in all animals 

with constant stimulation reached steady-state levels. As presented in figure 4-1, baseline 

mean blood pressure were not different between the groups. The mean blood pressure 

was within physiological range (100-120 mmHg), indicating that this level of electrical 

stimulation to the sympathetic chain was adequate to maintain the blood pressure in 

pithed rats comparable to levels in conscious rats. There was a gradual decline of the 

blood pressure with time in saline treated animals, as indicated in figure 4-1 where MBP 

was decreased from baseline value of 110+ 10 to 88+6 mmHg at 90 min in sham rats 

and 99 + 3 to 87 + 10 mmHg in denervated rats. By contrast, in both adrenal sham 

operated and denervated rats, intravenous endotoxin treatment induced much greater drop 

in MBP than the time-related fall. The decrease in MBP was similar in sham and 

denervated groups given endotoxin, from pretreatment values of 107+4 and 117+5 

mmHg to 42+3 and 41 +4 mmHg at 90 min, respectively. There were no differences in 

baseline heart rate between the groups. Heart rate was significantly accelerated to 

comparable levels at 60 and 90 min following endotoxin injection in sham and denervated 

rats. Saline treatment did not affect the heart rate during the protocol. 

In both adrenal sham-operated and denervated animals, plasma norepinephrine was 

not significantly elevated by endotoxin administration during the 90 min protocol 
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Figure 4-1.Mean blood pressure (MBP) and heart rate (HR) responses in pithed rats with 
adrenal denervation (ADR DENERY) or sham operation (ADR SHAM) following 
intravenous endotoxin (ETX, 1.5 mg/kg) or saline. x: p<0.05 for both ADR DENERY 
and ADR SHAM post endotoxin vs. 0 min; $: p < 0.05 for both ADR DENERY and 
ADR SHAM post saline vs. 0 min. 
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(figure 4-2). In contrast, intravenous endotoxin induced mild and similar increase in 

plasma epinephrine in both sham and denervated groups. Ninety min after endotoxin 

injection, plasma epinephrine was increased from pretreatment value of 153+ 19 and 

125+38 to 376+87 and 463+ 137 pg/ml in sham and denervated groups, respectively. 

Saline treatment in sham and denervated animals altered neither plasma norepinephrine 

nor epinephrine. 

Hemodynamic and Sympathetic Responses in Conscious Rats Following Endotoxin 

In conscious sham-operated animals, intravenous endotoxin induced a significant 

drop in blood pressure at 60 min post treatment, which recovered at 90 min to a level 

not different from the baseline value (figure 4-3). In adrenal denervated conscious rats, 

however, hypotension appeared at 30 min following endotoxin injection, which was 

significantly lower compared to MBP in the sham group. Furthermore, the denervated 

animals remained in a hypotensive state thereafter with slight recovery at 90 min. In both 

sham and denervated groups, endotoxin treatment evoked a significant tachycardia as 

indicated in figure 4-3 at 30, 60 and 90 min post injection. The heart rate was 

significantly higher in denervated rats at 60 min in comparison to sham animals. Saline 

controls of both sham and denervated rats showed no alterations in MBP and heart rate. 

Plasma catecholamine response to endotoxin challenge in conscious rats is presented 

m figure 4-4. In both adrenal sham-operated and denervated animals, plasma 

norepinephrine was similarly and significantly enhanced from baseline values 
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Figure 4-2. Plasma norepinephrine (NE) and epinephrine (EPI) responses in pithed rats 
with adrenal denervation (ADR DENERY) or sham operation (ADR SHAM) following 
intravenous endotoxin (ETX, 1.5 mg/kg) or saline. x: p < 0.05 both ADR DENERY and 
ADR SHAM post endotoxin vs. 0 min. 
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Figure 4-3. Mean blood pressure (MBP) and heart rate (HR) responses in conscious 
rats with adrenal denervation (ADR DENERY) or sham operation (ADR SHAM) 
following intravenous endotoxin (ETX, 1.5 mg/kg) or saline. *: p < 0.05 for ADR 
DENERY post endotoxin vs. 0 min;#: p<0.05 for ADR SHAM post endotoxin vs. 0 
min; +: p<0.05 for endotoxin-treated ADR DENERY vs. ADR SHAM. 
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following endotoxin throughout the 90 min protocol. Although the norepinephrine level 

at 90 min in denervated group appeared to be higher than that in the sham group, the 

multivariate ANOV A with repeated measures did not indicate a significant difference, 

most likely due to the high variance in the denervated group. The response pattern of 

plasma epinephrine was dramatically different between the sham group and the 

denervated group. As shown in figure 4-4, in sham animals, plasma epinephrine was 

markedly elevated at 30 min following endotoxin and remain elevated thereafter. The 

maximum increment, approximately 12-13 fold above control, was achieved 30-60 min 

post endotoxin after which the increase diminished, but remained 4 fold higher than 

baseline value at 90 min. In contrast, in adrenal denervated rats, the same dose of 

endotoxin did not induce significant enhancement of plasma epinephrine until 90 min post 

injection where the increment was not different from that in sham rats. Saline treatment 

to both sham and denervated animals did not have any significant effects on plasma 

catecholamines during the protocol. 
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Figure 4-4. Plasma norepinephrine (NE) and epinephrine (EPI) responses in conscious 
rats with adrenal denervation (ADR DENERY) or sham operation (ADR SHAM) 
following intravenous endotoxin (ETX, 1.5 mg/kg) or saline. x: p < 0.05 for both ADR 
DENERY and ADR SHAM post endotoxin vs. 0 min;*: p<0.05 for ADR DENERY 
post endotoxin vs. 0 min; #: p < 0.05 for ADR SHAM post endotoxin vs. 0 min; +: 
p<0.05 for endotoxin-treated ADR DENERY vs. ADR SHAM. 
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DISCUSSION 

The data presented in this study demonstrated that in pithed rats with no central 

regulatory mechanisms, intravenous endotoxin did not increase plasma norepinephrine 

during the 90 min protocol. However, endotoxin administration did induce a 2 to 3 fold 

elevation in plasma epinephrine at 90 min post injection. In contrast, data from the 

present and previous studies (114) showed that in intact conscious rats, both plasma 

norepinephrine and epinephrine were markedly elevated 30 min following endotoxin 

(figure 4-4). Thereafter, plasma norepinephrine remained elevated, and epinephrine 

declined gradually but was still significantly above pre-treatment controls. These results 

suggest that increases in plasma norepinephrine during endotoxicosis, largely elaborated 

from sympathetic nerve terminals, depend on central mechanisms. Increases in plasma 

epinephrine with endotoxin, primarily released from the adrenal medulla, were shown 

to involve both central and peripheral regulations with central mechanism being 

dominant. This is demonstrated by the much lower and delayed elevation of plasma 

epinephrine in pithed rats (figure 4-2) compared to conscious rats following endotoxin 

(figure 4-4). Since endotoxin induced a similar elevation in plasma epinephrine in pithed 

rats both with and without adrenal innervation, it appears that peripheral mechanisms 

involve non-neurogenic modulation of release. This non-neurogenic adrenal epinephrine 

release was further substantiated in conscious, adrenal denervated rats, which accounted 

for 1/3 of the maximum epinephrine response as observed in intact rats (figure 4-4). 

Consistent with the finding in pithed rats, the epinephrine elevation in adrenal denervated 
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conscious rats also showed a lower magnitude and a delayed time course compared to 

intact animals. These results imply that central mechanisms are primarily responsible for 

the early epinephrine increments during endotoxicosis whereas the peripheral modulation 

contributes to the more prolonged plasma epinephrine elevation. 

The present results are in agreement with previous reports where the crucial 

involvement of the central nervous system in the sympathoadrenal response during 

endotoxicosis was demonstrated. For example, acute lesion of the cerebellar fastigial 

nuclei in the dog prevents the recovery and maintenance of blood pressure following 

endotoxin-induced hypotension (149), suggesting that the sympathetic response to 

endotoxin challenge requires intact central regulatory mechanisms. Intact spinal cord also 

seems critical to endotoxin-evoked sympathetic response. Spinal transection at the C-7 

level in dogs abolished the catecholamine release during endotoxicosis (71), implying that 

endotoxin-elicited sympathoadrenal response was presumably dependent on descending 

spinal pathways. Section of the splanchnic nerves in the dog eliminated the elevation of 

plasma epinephrine (176), and acute denervation of hemi-spleen protected against the 

norepinephrine depletion (253). These results suggest that increased catecholamine release 

during septic shock depends on nerve activation. 

Unlike the present study, these authors did not report the non-neurogenic modulation 

of epinephrine release from the adrenal glands. This may be attributable to the fact that 

animals species, doses of endotoxin and sampling time course used in the present study 

and previous studies are different. Most importantly, it is noteworthy that the animal 

numbers in the previous studies were small (n=2-3) and the results were variable. 
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Furthermore, the catecholamine assay used in their studies (biological or floremetric 

assay) was less sensitive. 

The peripheral modulation of epinephrine secretion has been previously reported in 

pithed, endotoxic rats (112), but it was not known whether this modulation was neurally 

or non-neurally mediated. In both previous and present studies using pithed rats, 

sympathetic outflow to the adrenal glands was maintained at steady state levels by 

applying constant electrical stimulation to the paravertebral sympathetic chain. In those 

animals endotoxin-induced adrenal modulation could be due to an enhanced epinephrine 

release per nerve impulse or local modulation within the glands independent of nerve 

activity. The data from adrenal denervated rats in the present study suggest that such 

peripheral modulation is most likely non-neurogenic. Although incomplete adrenal 

denervation could account for epinephrine elevation with endotoxin, this is unlikely to 

be the case in the present study. First, the adrenal denervation completely abolished the 

increases in plasma epinephrine in response to hemorrhage-induced hypotension. 

Secondly, 90 min following endotoxin, adrenal denervated animals showed similar, rather 

than attenuated, epinephrine response compared to adrenal intact animals. The non

neurogenic stimulation of the adrenal epinephrine secretion has also been reported in a 

previous study in that ganglionic blockade could not prevent catecholamine release from 

the adrenal glands during endotoxicosis in newborn rats (211). 

One possible mechanism for the endotoxin-mediated non-neurogenic release may 

involve decreased oxygen supply to the adrenal medulla as a consequence of circulatory 

hypoxia and diminished blood flow. Hypoxia has been shown to be a potent stimulus for 
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adrenal catecholamine secretion in newborn rats (212), but in adult rats hypoxia effects 

are not prominent on catecholamine release from the adrenal gland (212). Alternatively, 

certain endogenous substances released into the circulation during endotoxicosis have also 

been demonstrated to act directly on the adrenal gland or cultured adrenal chromaffin 

cells to stimulate catecholamine secretion. Those substances include histamine, 

bradykinin, angiotensin, prostaglandins, and vasoactive intestinal polypeptide 

(130,141,153,177). Prolonged incubation of adrenal chromaffin cells with endotoxin in 

vitro also enhanced catecholamine release (225). Recent studies have shown that protein 

kinase C might be involved in endotoxin effects and activation of protein kinase C is 

associated with enhanced catecholamine release from cultured chromaffi.n cells (151,229). 

The nature of the involvement of the central nervous system in mediating the 

sympathoadrenal activation during endotoxicosis is unknown. Although endotoxin-induced 

hypotension may unload the arterial baroreceptors and result in the sympathoadrnal 

activation via baroreflex deactivation, numerous studies have shown that the 

sympathoadrenal system can still be markedly activated during endotoxicosis in the 

absence of hypotension or remain activated after restoration of blood pressure (115,185). 

Acidosis with resultant alteration in pH may also increase the sympathetic outflow, 

possibly via stimulating the peripheral or central chemoreceptors (50). The activation of 

the hypothalamic-pituitary-adrenal axis, which frequently occurs in sepsis, has been 

linked to the activation of the sympathoadrenal system (38). Recent studies have 

suggested that most endotoxin effects are mediated by releasing cytokines (79). Some of 
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the cyktokine effects involve the central nervous system and may be initiated in the brain 

(118,194). Elevation of plasma catecholamines following systemic or 

intracerebroventricular administration of tumor necrosis factor or interleukin-! has been 

demonstrated (21,202,213,236). 

Hemodynamic responses to endotoxin challenge in the present study appeared to 

follow the circulating catecholamine levels. Intravenous administration of endotoxin to 

pithed rats reduced the arterial blood pressure in a more rapid and severe manner and 

without a transient recovery compared with conscious or anesthetized rats receiving 

similar dose of endotoxin (114). Such results may be accounted for by the elimination 

of centrally-mediated compensatory mechanisms such as the major elevation of plasma 

catecholamines as a consequence of pithing. Thus, pithed rats are much susceptible to 

endotoxin insult. The late tachycardia in pithed rats was presumably due to the late 

increased circulating epinephrine from the adrenal gland. The hypotension and 

tachycardia responses following endotoxin in conscious animals were consistent with 

many previous results (113,114). The earlier and more profound endotoxin-induced 

decreases in MBP in denervated animals compared with sham rats are apparently 

attributable to the abolition of neurally mediated early epinephrine response. The 

explanation for greater tachycardia response at 60 min post endotoxin in denervated rats 

in comparison to that in sham rats is not clear. 

Results from the present experiments suggest that plasma norepinephrine response 

to endotoxic challenge is solely mediated by central mechanisms whereas epinephrine 

response involves both central and peripheral regulations. Centrally-mediated mechanisms 
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are dominant and responsible for the major and early elevation of circulating epinephrine. 

Peripheral modulation of adrenal epinephrine secretion, most likely non-neurogenic, 

contributes to a lesser and prolonged epinephrine response during endotoxicosis. 



CHAPTER V 

PLASMA CATECHOLAMINE RESPONSE IN SINOAORTIC 

DENERVATED RATS FOLLOWING ENDOTOXIN 

INTRODUCTION 

Hyperactivation of the sympathoadrenal system is generally considered to be one of 

the important pathogenic components during the development of septic shock 

(157,176,251). The signals responsible for mediating the sympathoadrenal activation 

during septic challenge are not clear and are basically unexplored. Since hypotension 

typically occurs along with increases in heart rate, sympathetic discharge and plasma 

catecholamines during endotoxicosis (93,113,185), it is possible that endotoxin-induced 

hypotension may be the primary cause of this activation by deactivating arterial 

baroreflexes. It is also important to recognize that in addition to hypotension, decreased 

pulsatile pressure without significant changes in mean blood pressure reduces the 

baroreceptor activity as well (46,47, 70). A study reported by Chapleau et al. (48) showed 

that an endogenous factor derived from activated endothelial cells also diminished the 

baroreceptor afferent discharge. These findings may have implications in the sympathetic 

activation during sepsis, such that baroreflex deactivation, as a result of decreased 

74 
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baroreceptor activity, may contribute to the enhanced sympathetic outflow. 

A variety of experimental findings have challenged the concept that hypotension

induced baroreflex deactivation is a dominant factor in mediating sympathoadrenal 

response during septic shock. In rats treated with E. coli bacteria, plasma catecholamines 

are markedly elevated while blood pressure is not significantly altered (115). In 

experiments involving bolus administration of endotoxin to conscious rats, plasma 

catecholamines were markedly elevated before hypotension occurred (114). Direct nerve 

recording in endotoxic animals indicated that increased sympathetic discharges took place 

prior to the onset of hypotension and additional increases in nerve activity occurred 

following the fall in blood pressure (185). This activity persisted after blood pressure was 

restored to basal levels by volume infusion. Collectively, such evidence suggests that 

hypotension does not necessarily initiate or maintain the increased plasma catecholamines 

which occur with septic insult. 

The aim of the present study was to examine the role of arterial baroreceptors in 

mediating sympathoadrenal activation during endotoxicosis by using acutely, as well as 

chronically, sinoaortic-baroreceptor-denervated rats. It was hypothesized that baroreflex 

deactivation may not be the major factor in mediating the sympathoadrenal activation 

during developing endotoxic shock and, thus, the denervation of the arterial baroreceptors 

would not eliminate the marked elevation of plasma catecholamines that occurs following 

administration of endotoxin. Since endotoxin will initiate dramatic increases in plasma 

catecholamines in rats, experiments were designed to treat all animals with endotoxin and 

to focus on potential differences between sinoaortic-baroreceptor-denervated and sham-
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treated groups. 
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MATERIALS AND METHODS 

Experimental Protocols 

Three groups of experiments were conducted in male rats weighing 386+ 12 grams. 

The first group of experiments were performed in acutely sinoaortic baroreceptor 

denervated rats to obtain a preliminary assessment of the baroreceptor role in mediating 

the sympathoadrenal activation during endotoxicosis. Bilateral sinoaortic denervation 

(SAD, n=6) or sham operation (SHAM, n=6) was performed under xylazin (10 mg/kg, 

i.p.) and a-chloralose (70 mg/kg, i.p.) anesthesia as described below. Femoral arterial 

and venous cannulae were implanted, and baroreceptor reflexes were tested to confirm 

the completeness of SAD. After approximately 1.5 hours equilibration, endotoxin (5 

mg/kg) was injected intravenously. MBP and HR were recorded continuously, and 

arterial blood samples were collected at 0, 30, 60, and 90 minutes after endotoxin 

administration. 

The second group of experiments were performed in chronically sinoaortic 

baroreceptor denervated rats. This design was employed to prevent possible misleading 

results as a consequence of anesthesia and acute surgery. SAD and sham operation were 

performed as in acute preparations, and both groups of animals received 40,000 U 

penicillin (i.m.) following the surgery. After a 2-4 week recovery period, all rats 

underwent surgical implantation of femoral arterial and venous cannulae under halothane 

anesthesia (2.0% in oxygen). On the following day, baroreflexes were tested to confirm 

the SAD as described before. Endotoxin (5 mg/kg) was then given intravenously to both 
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SAD {n=4) and sham (n=5) rats. MBP and HR were recorded continuously, and blood 

samples were taken at 0, 30, 60, and 90 minutes after endotoxin administration. Separate 

groups of SAD (n=4) and sham animals {n=5) were given saline in place of endotoxin 

and were followed during the course of above protocol with subsequent sample collection 

and analysis. 

The third group of experiments were designed to assess the singular contribution of 

hypotension-induced baroreceptor reflexes to the sympathetic activation in the absence 

of endotoxin treatment. The cardiovascular and sympathoadrenal responses of rats with 

either SAD (n=5) or sham operation (n=5) to hypotension induced by hydralazine, a 

vasodilator, were determined. The animals were prepared as in the second group of 

experiments, and on the day of the experiment, the baroreceptor reflex testing confirmed 

the completeness of the denervation. Hydralazine (1 mg/kg) was given intravenously as 

a bolus injection, and MBP and HR were monitored continuously and blood samples 

were taken at 0, 15, and 30 minutes. 

Sinoaortic Baroreceptor Denervation 

Sinoaortic baroreceptor denervation (SAD) was performed as described in chapter 

ill. For aortic baroreceptor denervation, the superior laryngeal nerves, the aortic 

depressor nerves, and the superior cervical ganglia including a small segment of 

sympathetic chain were sectioned. For carotid sinus denervation, all connective tissue and 

nerve fibers were stripped from the thyroid, occipital, internal, external and common 

carotid arteries. Sham operation was performed by exposing the carotid sinuses bilaterally 
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without dissection of the region. Completeness of baroreceptor denervation was verified 

by determining the reflex changes in heart rate following pharmacological alterations in 

blood pressure. See general methods for details. 

Blood Sample Collection and Catecholamine Assay 

Arterial blood samples (500 µl) were collected at pre-determined times and treated 

as described in chapter m. Plasma levels of norepinephrine (NE) and epinephrine (BPI) 

were assayed in duplicate 50 µ1 samples using the radio-enzymatic thin-layer 

chromatographic procedure described in general methods. 

Materials 

Endotoxin (derived from~ enteritidis) was prepared fresh daily in 0.9% saline (3 

mg/ml). Hydralazine was obtained in 20 mg/ml vial and diluted with saline to 1 mg/ml 

for i. v. injection. Materials for catecholamine assays were obtained in kit form from 

Amersham (Arlington Heights, IL). 

Data analysis 

Data are expressed as Mean+SEM (n). A p value less than 0.05 was considered to 

be statistically significant. Cardiovascular responses and plasma catecholamines following 

endotoxin or hydralazine were compared using analysis of variance with repeated 

measurements and student-Newman-Keul's test for individual comparisons. Blood 

pressure and associated heart rate response to phenylephrine or nitroglycerine infusion 
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to assess baroreceptor denervation were compared between the SAD and sham groups 

with unpaired student t tests. 
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RESULTS 

Effects of SAD on Baroreflex Control of Heart Rate 

Effectiveness of the baroreceptor reflex was tested in all denervated and sham 

animals. Pharmacologic-induced changes in blood pressure were very transient lasting 

only a few minutes. As presented in figure 5-1, the increase in MBP induced by 

phenylephrine was not different between sham and SAD rats in either acute or chronic 

preparations although the chronic animals appeared to have a greater increase than the 

acute preparations. Nitroglycerine also caused a similar fall in MBP in acutely prepared 

SAD and sham animals, whereas it induced a slightly greater drop of MBP in chronic 

SAD compared to sham rats. Both acute and chronic SAD eliminated the bradycardia 

caused by the phenylephrine-induced hypertension and the tachycardia associated with 

the nitroglycerine-induced hypotension. In contrast, phenylephrine and nitroglycerine 

infusion evoked significant bradycardia and tachycardia, respectively, in sham-treated 

animals. Low control values of plasma catecholamines prior to the administration of 

endotoxin to either SAD or sham group suggest that there were no prolonged effects of 

the transient manipulation of blood pressure to test baroreceptor reflexes. 

Effects of Acute SAD on Hemodynamic and Sympathoadrenal Activation during 

Endotoxicosis 

The repeated measures ANOV A showed that the pattern of blood pressure responses 

at various times following endotoxin was the same in SAD and sham animals. Within 
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Figure 5-1. Changes of mean blood pressure (MBP) and heart rate (HR) in response 
to intravenous phenylephrine and nitroglycerine infusion in acute sham operation (A
SHAM), acute sinoaortic denervation (A-SAD), chronic sham operation (C-SfIAM) and 
chronic sinoaortic denervation (C-SAD) groups. #: p<0.05 for A-SAD vs. A-SHAM; 
*: p < 0.05 for C-SAD vs. C-SHAM. Unpaired-student t test. 
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each group (i.e. SAD or sham) there were no differences in MBP at 0, 30, 60 and 90 

minutes post endotoxin (figure 5-2). However, there was a significant overall difference 

(regardless of time) in blood pressures between the SAD and the sham groups following 

endotoxin administration. This difference can be seen in figure 5-2, where MBP was 

always lower in the sham group compared to the SAD group. HR was significantly 

increased (above baseline values) in SAD animals at 30, 60 and 90 minutes post 

endotoxin, whereas in the sham group, HR was significantly greater at 60 and 90 minutes 

compared to both 0 and 30 minutes. 

As shown in figure 5-3, the pattern of plasma catecholamine response following 

endotoxin exposure was similar in SAD versus sham animals. In both groups, plasma NE 

and BPI become significantly elevated at 30, 60 and 90 min following endotoxin (figure 

5-3). 

Effects of Chronic SAD on Hemodynamic and Sympathoadrenal Activation during 

Endotoxicosis 

The pattern of blood pressure responses to endotoxin treatment was not altered by 

chronic SAD compared to sham group (figure 5-4). Endotoxin treatment did not induce 

significant hypotension in either group. Pre-endotoxin HR was higher in SAD rats 

compared with sham rats. There was also a gradual increase in HR with time following 

endotoxin administration in the sham group but not in the SAD group (figure 5-4). 

As indicated in figure 5-5, the SAD and sham groups had a similar pattern of 

plasma NE elevation in response to endotoxin. Although it appeared that SAD animals 
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Figure 5-2. Mean blood pressure (MBP) and heart rate (HR) responses in anesthetized 
rats with acute sinoaortic denervation (SAD) or acute sham operation (SHAM) following 
intravenous endotoxin (ETX, 5 mg/kg) or saline. *: p < 0.05 for SAD post endotoxin vs. 
0 min;#: p<0.05 for SHAM post endotoxin vs. 0 min. 
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Figure 5-3. Plasma norepinephrine (NE) and epinephrine (EPI) concentrations in 
anesthetized rats with acute sinoaortic denervation (SAD) or acute sham operation 
(SHAM) following intravenous endotoxin (ETX, 5 mg/kg) or saline. x: p < 0.05 for both 
SAD and SHAM post endotoxin vs. 0 min. 



,......_ 
QI) 

::i:: 
8 
8 ......., 

p... 
~ 
~ 

200,-----------------------,, 

0-0SAD+ETX (n=4) 
e-e SHAM+ETX (n=5) 

150 

100 

50 

6.-6.SAD+SALINE (n=4) 
o----(1) •-•SHAM+SALl~E (n=5) T---~ T i !======!-~1=== ~ t. 

0t------------------------1 

600 

# # 

500 

400 

l l 
# ~t---• 

j::Zi====i ; 
300-t----+----t----+----+----+-----4-__J 

-20 0 20 40 60 80 100 

TIME POST ENDOTOXIN {min) 

86 

Figure 5-4. Mean blood pressure (MBP) and heart rate (HR) responses in conscious 
rats with chronic sinoaortic denervation (SAD) or chronic sham operation (SHAM) 
following intravenous endotoxin (ETX, 5 mg/kg) or saline. #: p < 0.05 for SHAM post 
endotoxin vs. 0 min. +: p<0.05 for endotoxin-treated SAD vs. SHAM. 
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had higher plasma BPI than sham animals at 30 min, lack of statistical difference in the 

between the two groups. Following endotoxin treatment, there were marked elevation 

plasma catecholamines in both SAD and sham groups over time, i.e. plasma NE and BPI 

at 30, 60 and 90 minutes post endotoxin were significantly increased compared to 

baseline values (figure 5-5). Saline-treated SAD and sham rats (as controls) showed no 

alterations in blood pressure, heart rate or plasma catecholamines during the experimental 

protocol. 

Effects of SAD on Hemodynamic and Sympathoadrenal Response to Hydralazine 

To test the degree of hypotension-induced sympathoadrenal activation with and 

without baroreceptor denervation in the absence of endotoxin, measurements of 

hemodynamic and plasma catecholamines were made following intravenous administration 

of hydralazine (1 mg/kg). This treatment caused a rapid and persistent reduction in mean 

blood pressure of both SAD and sham groups over 30 minutes (figure 5-6). However, 

the decrease in blood pressure was greater in the SAD compared to the sham group at 

5, 10, 15 and 20 minutes post injection, with a peak fall to 63+4 mmHg in the SAD and 

78 + 3 mmHg in the sham animals. This more profound hypotension in the SAD group 

is most likely due to the absence of baroreflex compensation for the blood pressure fall. 

The decreases in blood pressure were associated with increases in heart rate in both 

groups over time (figure 5-6). Although the sham group exhibited sustained tachycardia 

while the SAD animals showed variable changes in heart rate post hydralazine, the 

ANOV A statistic showed no significant difference between their patterns, likely due to 
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Figure 5-5. Plasma norepinephrine (NE) and epinephrine (EPI) concentrations in 
conscious rats with chronic sinoaortic denervation (SAD) or chronic sham operation 
(SHAM) following intravenous endotoxin (ETX, 5 mg/kg) or saline. x: p<0.05 for both 
SAD and SHAM post endotoxin vs. 0 min. 
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Figure 5-6. Mean blood pressure (MBP) and heart rate (HR) responses in conscious 
rats with chronic sinoaortic denervation (SAD) or sham operation (SHAM) following 
hydralazine infusion (1 mg/kg, i.v.). *: p<0.05 for SAD post hydralazine vs. 0 min;#: 
p<0.05 for SHAM post hydralazine vs. 0 min; +: p<0.05 for SAD vs. SHAM; x: 
p<0.05 for both SAD and SHAM post hydralazine vs. 0 min. 
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the relatively high total variance. SAD treatment did alter the response pattern of plasma 

catecholamines to hydralazine compared to the sham. 

As shown in figure 5-7, plasma NE and EPI of the sham group were markedly 

elevated at 15 and 30 minutes following hydralazine-induced hypotension, whereas in the 

SAD group, plasma NE and EPI were not significantly elevated in response to a greater 

drop in blood pressure. This indicates that SAD treatment greatly reduced the 

hypotension-induced baroreflex-mediated sympathoadrenal activation. Furthermore, the 

increases in plasma catecholamines of the SAD rats were significantly less than that of 

the sham group at 15 and 30 minutes post injection (figure 5-7). 
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Figure 5-7. Plasma norepinephrine (NE) and epinephrine (EPI) concentrations in 
conscious rats with chronic sinoaortic denervation (SAD) or sham operation (SHAM) 
following hydralazine infusion (1 mg/kg, i.v.). #: p<0.05 for SHAM post hydralazine 
vs. 0 min. +: p<0.05 for SAD vs. SHAM. 
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DISCUSSION 

The mechanisms responsible for mediating the sympathoadrenal activation during 

endotoxicosis are not clear. It is expected that a decrease in systemic blood pressure 

induced by endotoxin would unload the arterial baroreceptors and reflexly enhance 

sympathetic outflow. Previous studies by Halinen et al. (92,93) demonstrated that 

endotoxin administration induced a drop of blood pressure in anesthetized dogs and cats, 

which was associated with cessation of the aortic arch baroreceptor afferent impulses and 

increased cardiac sympathetic efferent nerve discharges during their 15 minute protocol. 

The authors concluded that the sympathetic pathways were primarily activated through 

cardiovascular receptor reflexes to maintain blood pressure. However, they did not report 

what happened later than 15 minutes. Furthermore, their findings did not necessarily 

demonstrate baroreflex mechanism as an exclusive mechanism for sympathoadrenal 

activation during endotoxicosis or rule out the possibility of other parallel mechanisms 

for initiating the increased central sympathetic outflow. 

The experimental data presented here show that SAD treatment did not significantly 

alter the response pattern of plasma catecholamines to endotoxin when compared to 

sham-operated controls. Although in both figure 5-3 and 5-5 it would appear that 

endotoxin induced plasma epinephrine elevations were greater at early stage in denervated 

rats compared to sham rats, the change was in a direction opposite from that anticipated 

if baroreceptors primarily mediate the sympathetic response. It is also important to 

recognize that the hemodynamic and sympathetic alterations observed in the present study 
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are due to the effects of endotoxin and not to the pressure-monitoring or blood sampling 

procedures since saline treatment in SAD and sham rats failed to induce changes in these 

variables. Collectively, these results suggest that arterial baroreceptor disinhibition is not 

the major factor stimulating the sympathoadrenal response to endotoxicosis and suggests 

that non-baroreflex mechanisms may be involved. The profound sympathetic activation 

occurring in the absence of hypotension further supports that hypotension-induced 

baroreflex disinhibition is not essential for sympathoadrenal responses during 

endotoxicosis. 

Although previous studies in conscious rats with intact baroreceptors reported that 

endotoxin-induced sympathetic activation occurred in the presence of hypotension (113), 

sympathetic changes were observed in the absence of significant hypotension in the 

present study. This discrepancy may be attributable to the fact that the animal 

preparations were apparently different between the two studies. The chronic recovery (2-

4 weeks) from a surgery in the present study may somehow altered the blood pressure 

response as compared to acute preparations. The lack of hypotension, however, does not 

limit the examination of the proposed hypothesis since the pattern and magnitude of 

plasma catecholamine response to endotoxin in sham rats were comparable to those 

observed in previous study where hypotension existed (196). Furthermore, decreases in 

barorceptor afferent nerve activity and associated baroreflex deactivation can be induced 

by factors other than hypotension, such as decreases in pulsatile pressure or endothelial 

factors (46,47,70). Although a significant hypotension in the present protocol may 

presumably lead to an even greater elevation in plasma catecholamines, it is also possible 
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that severe hypotension may result in diminished central nervous system function and 

impaired sympathetic outflow. 

Administration of bacterial endotoxin to anesthetized dogs subjected to SAD have 

also been reported by Koyoma et al. (129). Their results showed that endotoxin 

administration induced a fall in both blood pressure and cardiac output with a resultant 

increase in total peripheral resistance in both SAD and sham-operated animals. Such 

increases in total peripheral resistance reflect increased peripheral sympathetic activity 

to peripheral resistance vessels along with decreased cardiac output. In this sense, the 

present results are consistent with their findings. Studies by Mills (159) demonstrated that 

increased sympathetic discharge occurred before endotoxin-induced hypotension in rats, 

indicating that the initiation of sympathetic activation is independent of the baroreflex. 

Following the fall of blood pressure, sympathetic nerve activity increased further and was 

maintained even after blood pressure was restored to basal levels, suggesting that 

maintenance of sympathoadrenal activation is also independent of the baroreflex. Palsson 

et al. (185) observed somewhat similar findings with bolus injection of endotoxin in 

conscious rats in which endotoxin induced a markedly increased renal sympathetic nerve 

activity, that was not diminished after correcting hypotension. 

Additional findings of the present study demonstrate the effectiveness of SAD 

treatment to alter the response pattern of plasma catecholamines to hydralazine-induced 

hypotension. Plasma catecholamines were significantly increased following hydralazine 

in the sham controls but not in the SAD rats during the 30 minute protocol. Thus, SAD 

appears to be an appropriate model to eliminate or significantly blunt the baroreceptor-
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induced sympathoadrenal activation and to test whether such activation occurs during 

endotoxicosis. The increments of plasma catecholamines induced by hydralazine-evoked 

hypotension were far less than that induced by endotoxin administration. Such results 

further suggest that mechanisms other than hypotension-induced baroreflex activation are 

involved in the sympathoadrenal response to endotoxin. 

In both acute and chronic preparations, SAD animals had higher baseline blood 

pressure compared to sham animals. Such relative hypertension is in agreement with most 

of the previous reports (169,239) and may be attributable to the elimination of afferent 

input to the central nervous system, which normally inhibits sympathetic pathways. Thus, 

sinoaortic denervation results in higher basal central sympathetic outflow. In acute 

preparations blood pressures in the sham group were always lower compared to that in 

the SAD group post endotoxin. In an isolated carotid sinus model, Trank and Visscher 

(238) found that the relationship of baroreceptor discharge frequency versus intrasinus 

pressure was shifted to the left during endotoxicosis. Baroreceptor-nerve activity was 

always higher for a given pressure stimulus, which led to a reflex inhibition of 

sympathetic outflow. By denervating arterial baroreceptors, this baroreceptor resetting 

might be eliminated, which could account for the sympathetic outflow being higher in 

SAD rats than in baroreflex intact rats. However, this explanation is unlikely to account 

for the difference in blood pressure following endotoxin between the SAD and sham 

groups, since this difference was not seen in chronic preparations. The most plausible 

factors responsible for the difference between acute and chronic preparations may be cx

chloralose anesthesia and the acute effect of SAD. Alpha-chloralose anesthesia has been 
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reported to possibly augment baroreceptor reflexes to maintain normal blood pressure 

(39). Acute SAD eliminates the inhibitory baroreflex and results in relative hypertension. 

In the literature conflicting results concerning the HR changes following endotoxin 

have been reported (115,128,137). Both tachycardiac and bradycardic reactions have been 

observed. These different results might be due to differences in animal spices, anesthesia, 

basal HR, and reactive states of the baroreceptor reflex. In the present study HR changes 

induced by endotoxin are not uniform from one preparation to another. In acute 

experiments HR of sham animals was not significantly elevated until 60 and 90 minutes 

post endotoxin, whereas the HR of SAD animals continuously increased with time 

following endotoxin. In chronic experiments, HR was increased with time post endotoxin 

in both sham and SAD animals, but only reached statistical significance in the sham 

group. Since endotoxin-treated SAD rats had higher basal HR compared to sham rats, 

the presence of tachycardia in SAD rats may make a further acceleration undramatic. 

Hydralazine-induced hypotension evoked a sustained tachycardia in sham animals, 

whereas SAD rats exhibited variable changes in HR. 

In conclusion, the data from the present study suggest that the afferent input from 

the arterial baroreceptors is not the major factor, or not even essential, in mediating 

sympathoadrenal activation during endotoxicosis. Non-baroreflexogenic mechanisms may 

be involved in stimulating such activation. 



CHAPTER VI 

RENAL SYMPATHETIC RESPONSE IN SINOAORTIC 

DENERVATED, CONSCIOUS RATS FOLLOWING ENDOTOXIN 

INTRODUCTION 

Endotoxin-induced hypotension and associated baroreceptor reflexes have been 

suggested to be the primary cause of the sympathoadrenal activation during endotoxicosis 

(92,93,148). However, accumulating experimental findings suggest that the 

sympathoadrenal system can be markedly activated by endotoxin or bacteria in the 

absence of significant hypotension (89, 115) and remains activated after restoration of 

blood pressure with volume infusion (159). Results from previous chapter further 

demonstrated that in sinoaortic baroreceptor denervated rats bacterial endotoxin 

administration elevated plasma catecholamines to a similar, if not higher, level compared 

to sham-operated animals (255). These results suggest that the afferent input from the 

arterial baroreceptors is not essential in elevating plasma catecholamines with 

endotoxicosis. Although no hypotension was observed in those animals following 

endotoxin, decreased baroreceptor activity and resultant baroreflex deactivation can be 

evoked by factors other than hypotension (see Chapter V for details). 
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Plasma catecholamines, released from the peripheral sympathetic nerve terminals 

and the adrenal medulla, have been widely used as an index of sympathoadrenal activity. 

However, circulating catecholamine levels can be influenced not only by their release but 

also by neuronal uptake and peripheral catabolism (84), such that increases in plasma 

catecholamines may occur without alterations in catecholamine release (152). Therefore, 

plasma catecholamines may not adequately quantitate sympathetic activity as compared 

to direct nerve recording. Despite the frequent demonstration of an elevation of plasma 

catecholamines during clinical or experimental sepsis, contradictory results have been 

reported with direct measurements of sympathetic nerve activity, i.e. direct nerve 

recordings (127,128,159,185). In addition, differential sympathetic responses have been 

observed during shock states (232,242), such that the sympathetic outflow is increased 

to one organ while decreased to another. Thus, although plasma catecholamines and 

sympathetic discharge both represent the functional state of the sympathoadrenal system, 

they may not always change in a parallel manner. 

Considering these factors as well as the fact that plasma catecholamines and 

sympathetic discharge have never been simultaneously determined in septic animals, the 

present study was conducted. Both plasma catecholamine measurements and renal 

sympathetic recording techniques were employed to assess the contributions of afferent 

neural input from arterial baroreceptors to sympathoadrenal responses in conscious, 

unstrained endotoxic rats. Endotoxin was used as a septic agent based on the large body 

of literature showing that endotoxin administration· to experimental animals duplicates 

many pathophysiological changes observed in patients with sepsis or septic shock 
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(104,122,168,171). To accomplish our objective, conscious rats with either sinoaortic 

denervation (SAD) or intact baroreceptors were subjected to intravenous endotoxin 

treatment. Renal sympathetic nerve activity (RSNA) and circulating catecholamines were 

monitored both before and following the injection of endotoxin. It was hypothesized that 

removal of baroreceptor afferent input would not eliminate the endotoxin-evoked 

peripheral sympathoadrenal activation, as reflected in both the renal sympathetic nerve 

activity and plasma catecholamines. 
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MATERIALS AND METHODS 

Experimental Protocols 

Holzman Rats, weighing 396+ 12 grams, were anesthetized with sodium 

pentobarbital (60 mg/Kg, i.p.). Sinoaortic baroreceptor denervation and sham operation 

were performed as described in chapter III. Each animal received 40,000 U penicillin 

(i.m.) following the surgery. After a 2-4 week recovery period, all rats underwent 

surgical implantation of arterial and venous cannulae as well as electrode placement for 

recording renal sympathetic nerve activity under pentobarbital anesthesia (60 mg/kg, 

i.p.). After a 24 hr recovery, cannulae and electrodes were extended to instruments to 

record blood pressure and renal sympathetic nerve activity (RSNA). Following a 0.5 hr 

equilibration period, baroreflexes were tested to confirm the SAD. Endotoxin (5 mg/Kg) 

was then given intravenously to both SAD (n =6) and sham animals (n =7). Separate 

groups of SAD (n=4) and sham {n=5) rats also received equivalent amount of saline for 

time-matched control. Mean blood pressure (MBP), heart rate (HR), and RSNA were 

determined at 0, 5, 15, 30, 60, and 120 min after infusions. Blood samples were taken 

at 0, 15, 90, and 180 min post treatments. 

Sinoaortic Baroreceptor Denervation 

Sinoaortic baroreceptor denervation (SAD) was performed by a method as described 

in chapter III. Briefly, for aortic baroreceptor denervation, the superior laryngeal nerves, 

the superior cervical ganglia including a small segment of sympathetic chain and the 
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aortic depressor nerves were sectioned. For carotid sinus denervation, all connective 

tissue and nerve fibers were stripped from the thyroid, occipital, internal, external and 

common carotid arteries. Sham operation was performed by exposing the carotid sinuses 

bilaterally without dissection of the region. Completeness of baroreceptor denervation 

was tested as described before. 

Sympathetic Nerve Recording 

Renal sympathetic nerve activity (RSNA) was recorded from a renal nerve branch 

of the left greater splanchnic nerve. Briefly, the left kidney was exposed retroperitonealy, 

and the renal nerve branch was found in the aortic-renal artery angle. After the renal 

nerve branch was dissected free the nerve was carefully placed on a thin, bipolar gold 

electrode. When an optimal nerve signal was obtained, the electrode and the nerve was 

fixed with a rubber gel mixture. The electrode wires were exteriorized on the back of the 

neck. On the next day, the electrode wires were extended to the amplifier. The nerve 

signal was amplified 1,000-10,000 fold and filtered (low-frequency cutoff at 35 Hz and 

high-frequency cutoff at 2,000 Hz). Then the amplified signal was full-wave rectified and 

integrated by two separate models of integrator for simultaneous estimation of 

frequencies of RSNA (measured as spikes/min) and overall RSNA (measured as slopes). 

The rectified signal was continuously recorded on a Grass oscillograph. The background 

noise level for the nerve recording was determined 30 min after each animal was killed 

with pentobarbital overdose. All RSNA were expressed as percent of baseline control. 



102 

Blood Sample Collection and Catecholamine Assay 

Arterial blood samples (500 µL) were collected at different time points as described 

above and assayed for plasma catecholamines using the radio-enzymatic thin-layer 

chromatographic procedure described in general methods. 

Materials 

Endotoxin (derived from S.. enteritidis) was prepared freshly in 0.9% saline (3 

mg/ml). Materials for catecholamine assay were obtained in kit form from Amersham 

(Arlington Heights, IL). Phenylephrine, nitroglycerine and penicillin were purchased 

from Sigma, St. Louis, MO, Baxter, McGaw Park, IL and Pfizer, New York, NY, 

respectively. 

Data Analysis 

Data are expressed as mean+SEM (n). A p value less than 0.05 was considered to 

be statistically significant. Cardiovascular responses, RSNA, and plasma catecholamines 

were compared using analysis of variance with repeated measurements and Student

Newman-Keul's test for individual comparison. Blood pressure and associated heart rate, 

RSNA responses to phenylephrine or nitroglycerine infusion were compared between the 

SAD and Sham groups with an unpaired Student t test. 
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RESULTS 

Effects of SAD on Baroreflex Control of HR and RSNA: 

Effectiveness of the baroreceptor reflex was tested in all animals. The 

pharmacologic-evoked changes in blood pressure were very transient, lasting only a few 

minutes. Phenylephrine administration induced an identical rise and nitroglycerine caused 

a similar fall of MBP in SAD rats compared to the sham group. The phenylephrine

induced hypertension was associated with profound bradycardia and inhibition of RSNA, 

and nitroglycerine induced-hypotension evoked significant tachycardia and excitation of 

RSNA in sham-treated animals (figure 6-1 and 6-3). In contrast, SAD eliminated or 

significantly attenuated reflex changes of HR and RSNA in response to those 

pharmacological alterations in blood pressure (figure 6-2 and 6-3). 

Hemodynamic Responses to Endotoxin Infusion: 

The baseline MBP was not different among all animals. SAD and sham rats had 

similar patterns of blood pressure response after endotoxin administration with no 

significant alterations in MBP from control values (figure 6-4). There were also no 

significant differences in baseline HR between SAD and sham animals. Endotoxin 

induced a modest, but not significant, increase in HR in the sham group during the 

experiment. In contrast, SAD rats showed significant tachycardia at 5 min after endotoxin 
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Figure 6-1. Baroreflex test from a conscious sham-operated rat showing blood pressure 
(BP), heart rate (HR), renal sympathetic nerve activity (RSNA) spike and slope responses 
to intravenous phenylephrine (A) and nitroglycerine (B). 
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Figure 6-2. Baroreflex test from a conscious sinoaortic-denervated rat showing blood 
pressure (BP), heart rate (HR), renal sympathetic nerve activity (RSNA) spike and slope 
responses to intravenous phenylephrine (A) and nitroglycerine (B). 
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Figure 6-3. Changes of mean blood pressure (MBP), heart rate (HR), renal 
sympathetic nerve activity (RSNA) spikes and slopes in response to intravenous 
phenylephrine and nitroglycerine in conscious rats with sinoaortic denervation (SAD) or 
sham operation (SHAM). *: p < 0.05 for SAD vs. SHAM. Unpaired-student t test. 
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Figure 6-4. Mean blood pressure (MBP) and heart rate (HR) responses in conscious 
rats with sinoaortic denervation (SAD) or sham operation (SHAM) following intravenous 
endotoxin (ETX, 5 mg/kg) or saline. *: p<0.05 for SAD post endotoxin vs. 0 min; +: 
p<0.05 for endotoxin-treated SAD vs. SHAM. 
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infusion which was maintained for the duration of the protocol. In saline-treated SAD and 

sham rats, there was no alterations in MBP or HR over the course of the experiment. 

Sympathetic Responses to Endotoxin Infusion: 

Endotoxin administration induced very rapid and sustained increases in both RSNA 

and plasma catecholamines. For both SAD and sham groups, RSNA was markedly 

increased as early as 5 min after endotoxin infusion with the peak increase occurring 

between 15-30 min post endotoxin which remained elevated during the protocol (figure 

6-5 and 6-6). RSNA spikes and slopes basically changed in a parallel manner, although 

the magnitudes are not identical. Interestingly, RSNA response at 5 and 15 min post 

endotoxin was 2 fold higher in SAD rats compared to sham rats. Rapid and significant 

elevations in plasma norepinephrine (NE) and epinephrine (BPI) were also apparent at 

15, 90, and 180 min after endotoxin administration in both SAD and sham groups 

compared to baseline values (figure 6-7). Similar to the RSNA response, plasma NE and 

BPI levels at 15 min post endotoxin were also significantly higher in SAD group 

compared to the sham group. Saline-treated SAD and sham rats showed no alterations 

in RSNA and plasma catecholamines during the experimental protocol. 
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Figure 6-5. Blood pressure (BP), Renal sympathetic nerve activity (RSNA) spike and 
slope responses to intravenous endotoxin (ETX, 5 mg/kg) infusion from rats with 
sinoaortic denervation (SAD, A) or sham operation (SHAM, B). BN represents 
background noise level. 
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Figure 6-6. Percent changes of renal sympathetic nerve activity (RSNA) spikes and 
slopes in conscious rats with sinoaortic denervation (SAD) or sham 
operation (SHAM) following intravenous endotoxin (ETX, 5 mg/kg) or saline. *: 
p<0.05 for SAD post endotoxin vs. 0 min; #: p<0.05 for SHAM post endotoxin vs. 
0 min; +: p<0.05 for endotoxin-treated SAD vs. SHAM. 
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Figure 6-7. Plasma norepinephrine (NE) and epinephrine (EPI) concentrations in rats 
with sinoaortic denervation (SAD) or sham operation (SHAM) following intravenous 
endotoxin (ETX, 5 mg/kg) or saline. *: p < 0.05 for SAD post endotoxin vs. 0 min; #: 
p<0.05 for SHAM post endotoxin vs. 0 min;+: p<0.05 for endotoxin-treated SAD vs. 
SHAM. 
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DISCUSSION 

The principal findings of the present study demonstrate a marked elevation in 

sympathoadrenal activity following endotoxin in conscious rats, as indicated by parallel, 

but not identical, changes of direct renal sympathetic nerve recording and plasma 

catecholamine measurements. Such rapid onset and apparently simultaneous increases 

have not been previously reported, and the elevations are of a profound magnitude lasting 

for several hours. Furthermore, since these increments occurred in both sham and SAD 

rats, it suggests that the arterial baroreflex is not essential in mediating such activation. 

The baroreflex control is intact in sham operated rats, as determined by reflex 

bradycardia and sympathoinhibition as well as reflex tachycardia and sympathoexcitation 

in response to pharmacologically induced alterations in blood pressure. With intact 

arterial baroreceptor control of the circulation, intravenous endotoxin administration 

induced rapid and significant increases in both renal sympathetic activity and plasma 

catecholamines. These results further corroborate and also extend previous findings which 

demonstrated significant elevation of plasma catecholamines in different septic models 

of various animal species and septic patients (17,75,113,115,218). The markedly 

increased RSNA in the present study also agrees with the reports from the literature 

showing augmented sympathetic discharge following septic insult in different species 

(93,159,185). Although Koyama et al. reported that efferent sympathetic nerve activity 

in rabbits and cats was decreased following sepsis (127,128), the differences in species 

and the use of anesthesia may account for these observations. 
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In SAD rats, both major arterial baroreceptors, i.e. carotid sinus and aortic arch 

baroreceptors are deafferented. The effectiveness of this treatment is indicated by the 

failure of reflex changes of HR in response to arterial pressure change induced by 

pharmacological agents. Such observations are routinely used as the criteria of the 

completeness of the SAD (8,13,15,169). Direct recording of reflex changes of renal 

sympathetic activity also suggests that baroreflex control of the circulation is greatly 

blunted in SAD compared to intact animals. The significant attenuation in reflex RSNA 

changes in SAD group corresponds to the same directional change of HR. However, the 

degree of attenuation of RSNA changes with vasoconstrictor and vasodilator agents is less 

than that of corespondent HR changes. This observation raises the possibility that the 

cardiomotor component of arterial baroreflex is completely abolished by SAD while the 

vasomotor component of the reflex is not (90). Several lines of evidence suggest that this 

is unlikely. First, we have shown that the same SAD preparation in our laboratory 

significantly abolished reflex elevation of plasma catecholamines in response to 

hydralazine-induced hypotension compared to intact control rats (255), suggesting that 

overall baroreflex-mediated sympathoadrenal activation is disrupted by SAD. Second, we 

and other investigators have observed that SAD markedly potentiates the fall in arterial 

pressure with hydralazine (224,255), indicating that the vasomotor component of 

baroreflexes is also significantly reduced. Third, SAD has been shown to be able to 

eliminate both the cardiomotor and sympathetically-mediated vasomotor components of 

the baroreflex in a parallel manner (90). Taken together, SAD is capable of eliminating 

or significantly blunting the baroreflex-mediated sympathoadrenal activation. The 



114 

remaining changes of RSNA with arterial pressure alterations may be explained by the 

observation that there is still a selective renal sympathetic activation to pressure changes 

after the baroreflex arc is destroyed. Hubbard et al. (108) reported that plasma renin and 

plasma NE were elevated by hydralazine-induced severe hypotension in rats with nucleus 

tractus solitarii lesion {NTS). These elevations were completely abolished by bilateral 

renal denervation, indicating a selective renal sympathetic activation which is controlled 

by an area lying outside of the NTS, independent of baroreflex arc. Another possibility 

is that cardiopulmonary receptor reflex may mediate the RSNA changes (232). These 

receptors are primarily innervated by vagal nerves and not disrupted by SAD. 

Furthermore, these receptors can differentially regulate sympathetic responses, e.g. 

RSNA versus adrenal sympathetic nerve activity (232). 

After disruption of arterial baroreflex control with SAD, RSNA as well as plasma 

catecholamines were still rapidly and markedly elevated by endotoxin. This result implies 

that the baroreflex does not play a major role in turning on as well as maintaining 

sympathoadrenal activation with endotoxin administration. The significant 

sympathoadrenal activation in association with the absence of hypotension following 

endotoxin in both sham and SAD animals in the present study further supports this 

concept. The explanation for the absence of hypotension following endotoxin in the 

present study may again involve chronic recovery (2-4 weeks) from a major surgery, 

which somehow altered the blood pressure response as compared to acute preparations. 

Interestingly and surprisingly, the sympathetic responses to endotoxin were more 

profound in the early phase in SAD animals compared to sham-operated controls. This 
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heightened response was also accompanied by a greater increase in HR in the SAD group 

versus sham rats. Results from Barron and Heesch (15) may provide a possible 

explanation for the present findings. They demonstrated that baroreceptor denervation 

potentiates the cardiovascular effects and sympathetic outflow elicited by the central 

nervous system activation such as posterior hypothalamic stimulation and 

intracerebroventricular injection of angiotensin II. They proposed that arterial 

baroreceptor reflexes exert an effective buffering of pressor stimuli initiated from the 

central nervous system and that elimination of this buffering mechanism with SAD would 

augment the centrally-mediated cardiovascular and sympathetic responses. It is important 

to recognize that the profound sympathoadrenal responses to endotoxin involve intact 

central nervous system (112) and such responses tend to elevate BP. Analogous to Barron 

and Heesch's finding, this endotoxin-induced, centrally-mediated pressor stimuli also can 

not be buffered in SAD animals, since this modulating mechanism is interrupted with 

SAD. As a consequence, higher RSNA and plasma catecholamine following endotoxin 

are seen in the SAD group. 

The mechanisms responsible for mediating sympathoadrenal activation during 

endotoxicosis can not be determined in the present experiment. Such rapid and profound 

activation may suggest a direct action of circulating mediators on the central nervous 

system during endotoxicosis. Alternatively, rapid peripherally-elicited, centrally-mediated 

reflex mechanisms might be involved. Although local modulation of catecholamine 

release from the adrenal gland has been suggested in endotoxic animals (112,211), more 

studies are needed to determine its importance. It is concluded from the present study, 
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that the sympathoadrenal response to endotoxin infusion is a very rapidly-occurring and 

long-lasting event and that afferent neural input from arterial baroreceptors is not 

essential in mediating such activation during developing septic shock. The elimination of 

feedback buffering mechanisms with SAD may account for the augmented sympathetic 

response seen in SAD animals. More studies need to be done to elucidate the mechanisms 

responsible for this activation. 



CHAPTER VII 

SYMPATHOADRENAL RESPONSES TO CENTRAL ADMINISTRATION 

OF ENDOTOXIN, INTERLEUKIN-1 /3, INTERLEUKIN-6, AND 

TUMOR NECROSIS FACTOR ex IN CONSCIOUS RAT 

INTRODUCTION 

Systemic administration of bacterial endotoxin, as a model of septic insult, results 

in the profound sympathoadrenal activation, as indicated by the direct sympathetic nerve 

recording and plasma catecholamine measurements (93, 113,185). Endotoxin effects are 

recognized to be mediated primarly by the release of cytokines, a family of protein 

molecules produced by macrophages and other cells. Interleukin-1 (IL-1), tumor necrosis 

factor ex (TNF ex), and interleukin-6 (IL-6) have been extensively studied and shown in 

particular to be linked to the pathogenesis of the septic syndrome (37,79). Among the 

multifunctional actions of these cytokines are actions on the central nervous system, some 

of which may be initiated on the brain side of the blood brain barrier. The central effects 

include induction of fever, activation of the hypothalamic-pituitary-adrenal axis, 

suppression of food intake, slow wave sleep, and acute phase response (66,118,194,214). 

The brain site of cytokine actions has been proposed in the hypothalamus (69,194). Brain 
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tissues have receptors for, and can respond direct! y to certain cytokines 

(107,117,194,250). Furthermore, IL-1 immunoreactive innervation has been shown to 

exist in various brain areas including the hypothalamus (34,136), and also some brain 

cells can produce IL-1, TNF and IL-6 in response to endotoxin or inflammatory 

challenge either in vitro or in vivo (82,95, 135,138,200). 

Thus, cytokines might be plausible factors in mediating the sympathoadrenal 

activation with systemic endotoxin via their central actions. To test this hypothesis, 

endotoxin, IL-1, TNF or IL-6 was administered into the lateral ventricle of conscious 

rats, and renal sympathetic nerve activity (RSNA) as well as plasma catecholamine 

responses were assessed. Among the potential brain sites of cytokine effects on the 

sympathetic nervous system, the paraventricular nucleus of the hypothalamus (PVN) is 

a likely candidate. First, the PVN has extensive projections to sympathetic neurons in the 

spinal cord (56) and electrical and chemical stimulations of the PVN increase sympathetic 

outflow and plasma catecholamines (226). Second, electrical activity of neurons in the 

PVN is altered during immune responses (23,205) and the PVN may be involved as an 

IL-1 action site for induction of corticotropin releasing factor (CRF) and pituitary-adrenal 

axis activation (203). Third, IL-1 immunoreactive innervation to the PVN has been 

demonstrated (34,136). Thus, to test whether the PVN is a site of cytokine actions in 

mediating sympathoadrenal response, each of the cytokines was administered to the PVN, 

and sympathetic responses were determined. 



119 

MATERIALS AND METHODS 

Experimental Protocols 

Holtzman rats, weighing 396+ 12 grams, were used in this study. Under 

pentobarbital anesthesia (60 mg/kg, i.p.), a carotid artery and a jugular vein were 

cannulated with polyethylene tubing. Bipolar, gold electrodes were then implanted on one 

renal branch of the left greater splanchnic nerve for recording renal sympathetic nerve 

activity (RSNA). The ends of cannulae and electrode wires were exteriorized on the back 

of the neck. A final procedure under the anesthesia was to insert a stainless steel cannula 

into the lateral ventricle through the skull or a bilateral cannula to both sides of PYN. 

After a 24 hr recovery, cannulae and electrodes were extended to instruments to record 

blood pressure and RSNA. Following a 0.5 hr equilibration period, endotoxin (ETX, 

1000 ng, n=6), IL-1 {3 (100 ng, n=5, 1000 ng, n=5), IL-6 (100 ng, n=5, 1000 ng, 

n=5), TNF a (100 ng, n=5, 1000 ng, n=5), or saline vehicle (n=5), all in 10 µl 

volume, was administered ICY using a Hamilton syringe. For PYN injection, IL-1 {3 

(1000 ng, n=7), IL-6 (1000 ng, n=5), TNF a (1000 ng, n=6), or saline vehicle (n=5), 

all in 0.5 µl volume, was delivered bilaterally to the PYN. Those doses were chosen 

mostly based on the doses used in previous studies reported in the literature 

(194,202,213). Hemodynamic responses, RSNA and plasma catecholamines were 

assessed at 0, 30, 60, 90, and 180 min post injection. The localizations of the tips of the 

ICY and PVN cannulae were histologically determined at the termination of the 

experiments. 
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In addition, a control group (n =4) was setup to demonstrate a positive sympathetic 

response with PVN injection of a synthetic opioid peptide [D-Ala2 ,NMe-Phe4
, Gly

ol5]enkephalin (DAGO). DAGO, when injected into the PVN, induces catecholamine 

secretion through activation of the central sympathetic outflow to the adrenal medulla and 

sympathetic nerve terminals. Bilateral PVN administration of DAGO (10 µg in 500 nl 

volume) caused significant elevations of RSNA spikes (25+8% at 5 min, 38+ 11 % at 15 

min) and slopes (45+18% at 5 min, 75+5% at 15 min). Saline infusion to the same 

group of rats changed neither RSNA spikes (-1 +3% at 5 min, -2+ 1 % at 15 min) nor 

slopes (-2+4% at 5 min, -1 +4% at 15 min). 

Sympathetic Nerve Recording 

Renal sympathetic nerve activity (RSNA) was recorded from a renal nerve branch 

of the left greater splanchnic nerve, as described in chapter m. After exposing the left 

kidney retroperitoneally, the renal nerve branch was separated from fat and connective 

tissues. It was carefully placed on a thin, bipolar gold electrode. When an optimal nerve 

signal was obtained, the electrode and the nerve was fixed with a gel mixture. The 

electrode wires were exteriorized on the back of the neck. On the next day the nerve 

signal was amplified, rectified and integrated for estimation of frequencies of RSNA 

(measured as spikes/min) as well as overall RSNA (measured as slopes). The integrated 

signals were continuously recorded on a Grass oscillograph. The post mortem renal nerve 

activity was recorded in all animals as a measure of the background noise level. All 

RSNA was expressed as percent change from baseline control. 
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Implantation of Intracerebroventricular (ICV) Cannulae 

Under anesthesia, a 30 gauge stainless steel cannula was implanted into the lateral 

ventricle with the tip stereotaxic coordinates: 0.5 mm caudal to bregma, 1.5 mm lateral 

to the midline, and 4.5 mm below the surface of the skull. The end of the cannula was 

pre-bent to a right angle and connected to a piece of PE-10 tubing (5 cm long), filled 

with saline (3-4 µl) and heat sealed. On the day of experiment, the cannula was extended 

to a 10 µl Hamilton microsyringe filled with test solution. Ten µl test solution (plus 3-4 

µl saline in the cannula) was infused over a period of 5 min. The ICV injection was 

verified by showing ventricular staining after a dye injection via the canula (examples 

shown in figure 7-1). 

Implantation of PVN Cannulae 

Using a stereotaxic apparatus, a 26 gauge bilateral guide cannula comprised of steel 

tubes with a 1.0 mm distance between the centers was implanted to the bilateral PVN. 

The coordinates for PVN were 1.7 mm caudal to bregma, 0.5 mm lateral to the 

midsagital suture and 8.0 mm ventral to the skull surface. A dummy wire with two leads 

was inserted into the guide cannula to prevent clotting and to prevent dust from getting 

into the cannula. On the day of experiments, the dummy wire was removed and a double 

injector cannula (33 gauge) which was constructed 2 mm longer than the guide cannula 

was inserted into the guide cannula. The injector cannula was connected to a 10 µl 

Hamilton microsyringe. A testing solution (500 nl) was injected bilaterally over a 5 min 

period. The exact injection site was histologically verified in each animal at the end of 
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Figure 7-1. Coronal brain sections showing staining of the lateral ventricles after dye 
injection via an intracerebroventricular (ICV) cannula. 
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experiments. Only those animals with the cannula terminated in the dorsal border of the 

PVN without damage of PVN neurons were included in the statistical evaluation 

(example shown in figure 7-2). 

Blood Sample Collection and Catecholamine Assay 

Arterial blood samples (500 µl) were collected at different time points as described 

above. Plasma levels of norepinephrine and epinephrine were assayed in duplicate 50 µl 

samples using the radio-enzymatic thin-layer chromatographic procedure described 

previously. 

Materials 

For ICV infusion, endotoxin, IL-1, IL-6, and TNF were prepared in phosphate

buffered saline containing 0.2 % bovine serum albumin at a concentration of 10 µg/ml 

for the dose of 100 ng/rat and 100 µg/ml for the dose of 1000 ng/rat. For PVN infusion, 

IL-1 and TNF were prepared in 0.9 % sodium chloride at concentrations of 0.2 mg/ml 

for the dose of 100 ng/rat and 2 mg/ml for the dose of 1000 ng/rat. Saline vehicle 

contained equivalent amount of bovine serum albumin. DAGO was purchased from 

Peninsula, San Carlos, CA. Materials for catecholamine assay were obtained in a kit 

form from Amersham (Arlington Heights, IL). 

Data Analysis 

Data are expressed as mean+SEM (n). A p value less than 0.05 was considered to 
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Figure 7-2. Coronal brain sections at the level of paraventricular nucleus of the 
hypothalamus (PVN). The tips of the cannula were shown to terminate at the dorsal 
border of the PVN. 
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be statistically significant. Cardiovascular responses, RSNA, and plasma catecholamines 

were compared using analysis of variance with repeated measurements and Student

Newman-Keul's test for individual comparisons. 
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RESULTS 

Hemodynamic and Sympathoadrenal Responses to ICV Injection of Endotoxin 

As shown in figure 7-3, ICV administration of endotoxin (1000 ng/rat), given over 

a 5 min period, did not cause significant changes in arterial mean blood pressure (MBP) 

or heart rate (HR) during the 120 min protocol. There were also no significant alterations 

in RSNA, both spikes and slopes, over times following endotoxin. Post treatment plasma 

norepinephrine (NE) and epinephrine (EPI) remained at the levels similar to the controls. 

ICV injection of saline failed to elicit any changes in MBP, HR, RSNA or plasma 

catecholamines. 

Hemodynamic and Sympathoadrenal Responses to ICV injection of IL-1 {3 

As indicated in figure 7-4, neither MBP nor HR was significantly altered by ICV 

administration of low and high doses (100 ng, 1000 ng) of IL-1 {3. These two doses of 

IL-1 induced basically similar patterns of increases in RSNA, as indicated by both spikes 

and slopes. The increments of RSNA were modest, approximately 20-30% of baseline 

values. Peak elevations were reached between 30 to 90 min post injection and remained 

elevated thereafter. In parallel, ICV IL-1 treatment evoked significant elevations of 

plasma catecholamines. Both low dose and high dose of IL-1 elevated plasma NE 

throughout the 180 min protocol. At 60 min, the NE elevation induced by high dose was 

higher than that induced by low dose whereas at 180 min the opposite was seen. Plasma 

EPI was elevated by low dose of IL-1 at 90 and 180 min post injection. 
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Figure 7-3. Hemodynamic, renal sympathetic nerve activity and plasma catecholamine 
responses to ICV injection of endotoxin (ETX) or saline in conscious rats. MBP: mean 
blood pressure; HR: heart rate; RSNA: renal sympathetic nerve activity; NE: 
norepinephrine; EPI: epinephrine. 
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Figure 7-4. Hemodynamic, renal sympathetic nerve activity and plasma catecholamine 
responses to ICV injection of low and high doses of IL-1 (3 or saline in conscious rats. 
MBP: mean blood pressure; HR: heart rate; RSNA: renal sympathetic nerve activity; 
NE: norepinephrine; BPI: epinephrine. x: p < 0.05 for both low and high dose groups, 
compared with baseline values; # p < 0.05 for low dose group, compared with baseline 
values;*: p<0.05 for high dose group, compared with baseline values; +: p<0.05 low 
dose group vs. high dose group. 
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High dose of IL-1 evoked elevation of plasma BPI at all sampling times during 180 min. 

The increments in BPI evoked by low dose of IL-1 were higher than those induced by 

high dose. 

Hemodynamic and Sympathoadrenal Responses to ICV injection of TNF a 

Neither MBP nor HR was altered within 180 min following ICV administration of 

TNF (figure 7-5). TNF induced significant decrease in RSNA, as indicated by both 

spikes and slopes (approximately 20% ). The pattern of these depressions induced by the 

two doses of TNF were similar to each other. The depression in spikes reached 

significance at 30, 60, 90, and 180 min while the depression in slopes reached 

significance at 60, 90, and 180 min post treatment. Plasma NE or BPI did not change 

significantly following ICV injection of TNF. 

Hemodynamic and Sympathoadrenal Responses to ICV injection of IL-6 

As presented in figure 7-6, ICV injection of IL-6 at doses of 100 ng and 1000 ng 

did not alter MBP or HR significantly. The pattern of RSNA responses, both spikes or 

slopes, to low dose and high dose of IL-6 were quite different from each other. Low 

dose of IL-6 did not change RSNA spikes or slopes at any time post injection whereas 

high dose of IL-6 induced significant depression in both spikes and slopes during the 180 

min sampling period. The peak depression was approximately 20% for RSNA spikes and 

was about 30% for RSNA slopes. Plasma NE or BPI did not change significantly 

following IL-6. 
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Figure 7-5. Hemodynamic, renal sympathetic nerve activity and plasma 
catecholamine responses to ICV injection of low or high doses of TNF a or saline in 
conscious rats. MBP: mean blood pressure; HR: heart rate; RSNA: renal sympathetic 
nerve activity; NE: norepinephrine; EPI epinephrine. x: p < 0.05 for both low and high 
dose groups, compared with baseline values. 
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Figure 7-6. Hemodynamic, renal sympathetic nerve activity and plasma catecholamine 
responses to ICV injection of low and high doses of IL-6 or saline in conscious rats. 
MBP: mean blood pressure; HR: heart rate; RSNA: renal sympathetic nerve activity; 
NE: norepinephrine, EPI: epinephrine. *: p < 0.05 for high dose group, compared with 
baseline values; +: p < 0.05 low dose group vs. high dose group. 
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Hemodynamic and Sympathoadrenal Responses to PVN Injection of IL-1 

As shown in table 7-1, PVN injection of IL-1 induced mild but significant elevation 

in mean arterial blood pressure at 60, 90, and 180 min post injection as compared to the 

baseline values. Simultaneously heart rate was slightly but not significantly increased. 

PVN injection of IL-1 had no marked effects on RSNA, both spikes and slopes (table 7-

2). Plasma NE and EPI were slightly elevated at 90 and 180 min after IL-1 injection 

(table 7-3). Plasma NE increased from preinjection value of 331 +45 pg/ml to 520+61 

pg/ml at 90 min and 567+ 103 pg/ml at 120 min. Plasma EPI increased from baseline 

value of 159+23 pg/ml to 349+64 pg/ml at 90 min and 378+59 pg/ml at 120 min. PVN 

injection of saline did not evoke any significant changes in MBP, HR, RSNA, and 

plasma catecholamines. 

Hemodynamic and Sympathoadrenal Responses to PVN Injection of TNF 

There were no significant alterations in blood pressure or heart rate 

following PVN injection of TNF (table 7-1). PVN TNF induced slight ( < 10 %) but 

significant decreases in RSNA slopes at 60, 90, 120 min post injection without significant 

changes in RSNA spikes (table 7-2). PVN TNF had no effects on plasma catecholamines 

(table 7-3). 

Hemodynamic and Sympathoadrenal Responses to PVN injection of IL-6 

As shown in table 7-1, IL-6 injection to PVN induced an increase in HR at 60 min 

without significant alteration in blood pressure. RSNA (both spikes and slopes) and 
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Table 7-1. Effects of saline vehicle, IL-1 {3, TNF a and IL-6 injections into the 
paraventricular nucleus of the hypothalamus (PVN) on mean blood pressure (MBP) and 
heart rate (HR). *: p<0.05 post treatment values vs. baseline value. 

POST TREATMENT MBP {mmH~;u 
Time (min) 0 30 60 90 180 

SALINE 101±1 102±1 105±2 105±2 103±2 
(n=5) 

IL-1 108±3 112±5 116±4* 118±4* 116±4* 
(1000 ng) (n=7) 

TNF 109±3 109±2 110±2 110±2 112±4 
(1000 ng) (n=6) 

IL-6 111±4 111±4 115±8 117±8 115±7 
(1000 ng) (n=5) 

POST TREATMENT HR (beats7min) 

Time (min) 0 30 60 90 180 

SALINE 398±7 388±22 393±21 394±20 401±21 
(n=5) 

IL-1 404±5 411±8 431±10 435±11 436±14 
(1000 ng) (n=7) 

TNF 398±8 415±13 400±16 398±19 400±17 
(1000 ng) (n=6) 

IL-6 420±8 456±21 476±20* 444±22 445±22 
(1000 ng) (n=5) 
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Table 7-2. Effects of saline vehicle, IL-1 (3, TNF a and IL-6 injections into the 
paraventricular nucleus of the hypothalamus (PVN) on renal sympathetic nerve activity 
(RSNA) spikes and slopes in conscious rats. *: p<0.05 post treatment values vs. 
baseline value. 

CHANGE OF RSNA SPIKES l' control! 

Time (min) 0 30 60 90 180 

SALINE 100±0 97±5 97±3 99±3 99±4 
(n=5) 

IL-1 100±0 114±9 99±6 95±7 92±5 
(1000 ng) (n=7) 

TNF 100±0 98±5 96±4 95±3 90±8 
(1000 ng) (n=6) 

IL-6 100±0 96±3 93±2 94±3 100±6 
(1000 ng) (n=5) 

CHANGE OF RSNA SLOPES (% control) 

Time (min) 0 30 60 90 180 

SALINE 100±0 99±3 96±2 99±1 99±1 
(n=5) 

IL-1 100±0 114±9 98±8 97±9 94±10 
(1000 ng) (n=7) 

TNF 100±0 96±2 93±3* 91±2* 92±3* 
(1000 ng) (n=6) 

IL-6 100±0 98±3 97±2 99±4 96±5 
(1000 ng) (n=5) 
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Table 7-3. Effects of saline vehicle, IL-1 [j, TNF ex and IL-6 injections into the 
paraventricular nucleus of the hypothalamus (PVN) on plasma norepinephrine (NE) and 
epinephrine (EPI) in conscious rats. *: p<0.05 post treatment values vs. baseline value. 

PLASMA NOREPINEPHRINE i:e2Lm1 1 
Time (min) 0 30 60 90 180 

SALINE 406±78 423±21 462±21 443±38 456±42 
(n=5) 

IL-1 331±45 430±62 441±48 520±61* 567±103* 
(1000 ng) (n=7) 

TNF 257±47 325±17 319±37 339±27 335±27 
(1000 ng) (n=6) 

IL-6 354±84 372±71 395±95 528±164 360±130 
(1000 ng) (n=5) 

PLASMA EPINEPHRINE (pg7ml) 

Time (min) 0 30 60 90 180 

SALINE 200±41 256±43 217±41 212±33 233±36 
(n=5) 

IL-1 159±23 207±26 256±48 349±64* 378±59* 
(1000 ng) (n=7) 

TNF 123±22 165±18 159±34 162±28 164±31 
(1000 ng) (n=6) 

IL-6 141±17 197±43 166±44 176±54 142±41 
(1000 ng) (n=5) 
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plasma catecholamines were unaffected by PVN injection of IL-6 (table 7-2 and table 7-

3). 
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DISCUSSION 

Systemic administration of TNF has been shown to induce modest to marked 

elevation of plasma catecholamines, depending on the doses and animal species used 

(11,53,236). Intravenous treatment of IL-1 has also been demonstrated to evoke slight 

activation of the sympathoadrenal system (21,202). Such activation induced by these two 

cytokines can occur in the absence of hypotension (21,53), which suggests that baroreflex 

mechanisms are not likely to be important in mediating cytokine effects. A variety of 

experimental findings have suggested that many systemic cytokine effects are mediated 

via their actions on the central nervous system (CNS), particularly the hypothalamus 

(194,201). However, the specific mechanisms by which the central cytokines mediate the 

observed increases in sympathetic outflow is not yet known. 

In the present study we investigated the effects of centrally- administered endotoxin 

and cytokines on the sympathetic outflow in order to gain some insight as to the 

mechanism of sympathoadrenal activation during sepsis. The principle findings of this 

study demonstrated that ICV administration of endotoxin did not cause any change in 

sympathetic activity. ICV injection of IL-1 induced a modest activation of the 

sympathetic nervous system where RSNA and plasma catecholamines changed basically 

in a parallel manner. ICV injection of IL-6 or TNF, however, suppressed the RSNA 

without significant alterations in plasma catecholamines. PVN administrations of IL- I 

induced a mild elevation of plasma catecholamines without significant effects on RSNA. 

PVN treatment of TNF slightly decreased RSNA slopes but did not affect plasma 
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catecholmines. IL-6 injection to PVN altered neither RSNA nor plasma catecholamines. 

These results suggest that IL-1 may be one of the mechanisms involved in mediating 

sympathoadrenal activation during septic shock via its central actions, partially in the 

PVN. 

The enhanced catecholamine secretion following ventricular IL- I in the present study 

is in agreement with the previous report by Rivier et al. (202). In their study similar 

doses of ICV IL-1 induced comparable elevations of plasma catecholamines. The 

magnitude of catecholamine increments with ICV IL-1 also resembled that induced by 

systemic IL-1 treatment where higher doses of IL-1 were often used (21,202). The 

augmented sympathetic outflow with IL-1 was further substantiated, in the present study, 

by demonstration of an increased renal sympathetic nerve activity. Although the 

magnitude of the sympathetic response, in this study and in previous study, is apparently 

less compared to the sympathetic activation following systemic endotoxin (93,113), the 

doses of IL-1 used may not reproduce the true local IL-1 concentration in the brain 

parenchyma during endotoxicosis. The time course of ICV IL-1 induced sympathetic 

activation is, however, delayed (peak at 30-90 min) compared to systemic endotoxin 

evoked activation (peak at 15-30 min), even without considering the time needed for the 

synthesis of IL-1 following endotoxin challenge. These differences may suggest that 

either the doses of IL-1 given are not high enough to induce full stimulation of 

sympathetic nervous system or IL-1 is only one of several factors responsible for the 

initiation of the sympathetic activation. At least we can conclude that the 

sympathoadrenal activation during the development of septic shock may be partially 
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mediated by IL-1 via its central actions. 

The mechanisms by which ICV IL-1 leads to the activation of the sympathoadrenal 

system can not be determined in the present study, but an apparent lack of hypotension 

following central IL-1 does not suggest the involvement of cardiovascular reflexes. 

Several other possibilities should also be considered. First, IL-1 may directly affect the 

CNS neurons which control the central sympathetic outflow. The hypothalamus would 

appear to be the most likely area since it has been shown to be involved in many IL-1 

induced central effects such as fever, acute phase response, CRF secretion and 

suppression of food intake (66,118,194,214). Electrophysiological studies show that IL-1 

can directly stimulate hypothalamic neurons to alter the firing rate (107). Furthermore, 

the hypothalamus, particularly the paraventricular nucleus (PVN), is involved in central 

regulation of the sympathetic nerve system (226). However, IL-1 delivery to the PVN 

at concentration higher than achieved with ICV route evoked a smaller and somewhat 

delayed sympathoadrenal response compared to that induced by ICV IL-1. This result 

suggests that other brain areas in addition to the PVN are involved in ICV IL-1 effects. 

Second, pyrogenic effects of IL-1 usually involve activation of the sympathetic nervous 

system in selective organs. However, this is unlikely to be the case in present study 

because IL-1 induced fever usually involves cutaneous sympathetic activation and 

simultaneous renal sympathetic inhibition (204). Although temperature was not evaluated 

in this study, renal sympathetic nerve activity was not decreased but increased. Third, 

centrally administered IL-1 can stimulate the hypothalamus to secrete corticotropin

releasing factor (CRF) (22,206). Central CRF is known to act within the brain to 
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stimulate sympathetic outflow and result in elevation of plasma catecholamines (38). 

ICV administration of endotoxin has been demonstrated to induce fever production 

(165) and suppression of peripheral immune systems (227). Thus, endotoxin can 

somehow directly interact with the brain elements to cause functional changes. Some of 

the effects can be abolished or attenuated by cyclooxygenase inhibitor or a-MSH 

(165,227). Since prostaglandins have been shown to be the secondary signal of IL-1 

induced fever and a-MSH has anti-IL-I effects, endotoxin effects may indeed be 

mediated by brain-produced IL-1. Studies have shown that IL-1 activity is detected in 

cerebral spinal fluid following central endotoxin administration (54). The failure of ICV 

endotoxin injection to evoke sympathetic activation in the present study does not rule out 

the possibility that brain cells can produce cytokines in vivo. Likewise, the endotoxin

induced IL-1 may not be sufficient enough to stimulate central sympathetic outflow. 

In contrast to IL-1, TNF (at both high and low doses) significantly suppressed the 

renal sympathetic nerve activity following ICV administration. Previous studies have 

shown that TNF a administered peripherally to rabbits at the dose of 10 µg/kg resulted 

in a decrease in ear temperature, indicative of cutaneous sympathetic activation, and 

simultaneous inhibition of renal sympathetic nerve activity at the initial phase (30 min) 

which returned to control levels around 60 min post treatment (204). The parallel 

changes of renal sympathetic activity following peripheral TNF in this previous study and 

the central TNF in the present study suggest a possible central site of TNF action. The 

much higher dose required for peripheral route as compared to the central route adds 

further support to the notion that TNF effects on renal sympathetic outflow are mediated 
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via its central actions. The longer durations of renal sympathetic suppression in the 

present study may be attributed to high central concentration achieved. A previous study 

using ICY TNF 0t in rats also reported decreased sympathetic activity to the 

interscapular brown adipose tissue (106). The absence of plasma catecholamine changes 

concomitant with depression of renal sympathetic activity may be due to the net results 

of non-uniform alterations of sympathetic efferents to different organs, i.e. sympathetic 

impulse to some organs may be depressed while to others augmented. It should be noted, 

however, that systemic TNF usually induces modest to marked elevations of plasma 

catecholamines (11,53,236) whereas centrally administered TNF, in this study, does not 

affect plasma catecholamine levels. This discrepancy may suggest that either the local 

concentration of TNF in the effective site is not sufficiently high or systemic TNF effects 

on sympathetic nervous system are not exclusively mediated via its central actions. To 

expose brain parenchyma cells to a higher local TNF concentration, TNF was further 

administered directly to PVN, one of the important central regulatory areas for the 

sympathetic nervous system as well as the potential site of cytokine actions. TNF 

injection to PYN induced a slight decrease in RSNA slopes and spikes (the latter was not 

statistically significant), but did not affect plasma catecholamines. The smaller decreases 

in RSNA caused by TNF injection to PYN compared to that induced by TNF injection 

to ICY may indicate that PYN is not likely the only site where TNF acts to induce the 

sympathetic suppression. 

One possible mechanism of central TNF action may be a direct effect on the 

electrophysiology of sympathetic regulatory neurons. TNF has been shown to decrease 
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the transmembrane potential of skeletal muscle (237) and influence the firing rate of the 

neurons in the CNS (180,194). For example, electrophoretically applied recombinant 

human-TNF (rh-TNF) suppressed the activity of glucose-sensitive neurons in the rat 

lateral hypothalamic area (194) and increased neuronal activity of glucoreceptor neurons 

in the rat ventromedial hypothalamic nucleus (180). The ionic mechanism of the 

inhibitory effect of TNF has been proposed to be the inactivation of resting sodium 

conductance (209). A decrease in potassium conductance may underline the excitatory 

effects ofTNF (208). We speculate that ventricularly applied TNF may somehow directly 

or indirectly either stimulate the inhibitory neurons or suppress the excitatory neurons 

in the sympathetic control circuit and results in decreases of the renal sympathetic 

activity. 

Similar to TNF, ICV injection of IL-6, at a high dose, also induced suppression of 

the renal sympathetic activity. The mechanisms of this finding are not known, but 

apparently ICV IL-6 effects on the sympathetic nervous system are not mediated in PVN 

since IL-6 injection to PVN affected neither RSNA nor plasma catecholamines. Previous 

studies have shown that IL-6 has various effects on the central nervous system such as 

fever induction and stimulation of hypothalamic-pituitary-adrenal axis (100,170). IL-6 

induced ACTH release in rats could be abolished by pretreatment with anti-CRF 

antibodies, suggesting that IL-6 effects was mediated via CRF. 

As discussed above, the alterations of sympathetic nerve activity associated with 

PVN injection of either IL-1 or TNF were somewhat delayed and less in magnitude 

compared to those induced by ICV injection of a similar dose of these cytokines. An 
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alternative explaination for this observation is that cytokines injected into the PVN may 

migrate with time to adjacent areas such as cerebral ventricles and thereby cause 

subsequent changes in sympathetic nerve activity. 

Whether cytokines can cross the blood brain barrier and gain direct access to the 

brain parencymal cells is controversial. Generally, it is believed that molecules as big as 

endotoxin or cytokines are unlikely to cross the blood brain barrier. Studies with 

intravenous administration of radiolabled endotoxin and IL-1 have shown inconsistent 

results in terms of detection of radioactivity in the brain (12,20,67, 109). Several authors 

have proposed that cytokines may gain access to the brain, particularly the hypothalamus, 

via circumventricular organs such as organum vasculosum laminae terminalis (OVLT), 

where there is no blood brain barrier (26,116,222). Furthermore, all three cytokines can 

be produced in vivo and in vitro by brain cells such as astrocytes, microglial cells or even 

neurons in response to endotoxin challenge or various other pathological conditions 

(82,95,135,182,200). Recently, Breder et al. reported that IL-1 immunoreactive fibers 

were found innervating the key endocrine and autonomic cell groups and were distributed 

in a manner as to suggest that it functions as a neuromodulator or neurotransmitter 

(34,136). Collectively, the substrates for potential interaction of brain cells with 

circulating, even locally produced cytokine, are possibly present. 

It is not known how much the ventricularly applied cytokines might mimic the true 

exposure of the brain cells to circulating, or even locally produced, cytokines during 

septic states. Considering the normal volume of cerebral spinal fluid (300 µl) and rate 

of secretion (2.2+0.3 µI/min) in the rat, the concentrations of the cytokines at 30, 60, 
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90 and 180 min after ICV injection would be 81, 66, 53, and 28% of the initial amount. 

It is also difficult to estimate how much the timely-diluted cytokines diffuse from CSF 

across the ependymal epithelia and pial surfaces into the brain parenchyma. From 

previous reports on radiolabled peptides and chemicals, after ICV administration, their 

concentrations within the brain target region surrounding the ventricular cavities (e.g. the 

hypothalamus) and subarachinoid space may be less than 2 % of the initial amount. This 

represents less than 20 ng after a dose of 1 µ.g/rat of cytokines without taking enzymatic 

peptide degradation and turnover of CSF into account. Although injection of 1000 ng of 

cytokines into the brain parenchyma seems unphysiological, considering the potential 

local production of cytokines in the brain, an even greater amount of the cytokines than 

that measured in the circulation, i.e approximately 10-s to 10-10 g/ml, may be available 

to neuronal target sites. 

In summary, the present study suggests that the sympathoadrenal activation during 

septic challenge may be partially mediated by IL-1 via its central actions. Furthermore, 

paraventricular nucleus of the hypothalamus appears to be one of the sites mediating 

cytokine induced sympathetic response. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

Sympathoadrenal activation is one of the most dramatic pathophysiological changes 

which occur during septic/endotoxic shock. Such increased sympathetic nerve activity has 

been linked to both beneficial and detrimental effects on the development of the shock 

process. The present dissertation study examined potential mechanisms involved in 

mediating sympathoadrenal activation during experimental endotoxicosis. 

The first project evaluated the overall contributions of central versus peripheral 

mechanisms to the sympathoadrenal activation in endotoxic animals. Specifically, plasma 

catecholamine responses to endotoxin challenge were compared between rats with and 

without central regulatory mechanisms, i.e. conscious and pithed rats, respectively. 

Plasma EPI following endotoxin was further assessed in adrenal denervated conscious and 

pithed rats to illustrate the neurogenic or non-neurogenic characteristics of peripheral 

modulation of adrenal EPI release. 

Summary of results from the first project: 

1. Endotoxin induced a marked elevation in plasma NE in conscious rats, but elevations 

were not seen in pithed rats. 

2. Endotoxin also induced a profound increase in plasma EPI in conscious rats, but 
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increases were much less and delayed in pithed rats. 

3. Plasma EPI elevation following endotoxin was delayed in conscious adrenal denervated 

rats compared to adrenal sham-operated rats. This elevation was approximately one third 

of the maximum response observed in sham controls. 

4. The delayed plasma BPI elevation was also seen in pithed adrenal denervated rats, 

which was not different from that in pithed adrenal intact rats. 

Conclusions drawn from the first project: 

1. The increased plasma NE in response to endotoxin challenge is centrally mediated. 

2. The increased plasma BPI following endotoxin involves both central and peripheral 

mechanisms with the former being dominant. 

3. Peripheral modulation of adrenal BPI release is most likely non-neurogenic, which 

contributes to the prolonged plasma BPI response during endotoxicosis. 

The second project examined the role of afferent neural input from arterial 

baroreceptors in mediating the sympathoadrenal activation during endotoxicosis. 

Specifically, plasma catecholamines and/or RSNA were assessed in anesthetized rats with 

acute SAD and conscious rats with chronic SAD. 

Summary of results from the second project: 

1. Bndotoxin induced a similar, if not higher, elevation in plasma catecholamines in 

anesthetized rats with acute SAD compared to baroreceptor intact sham rats. 

2. Bndotoxin induced rapid and sustained increases in both plasma catecholamines and 

RSNA in conscious rats with chronic SAD. The early increments in plasma 
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catecholamines and RSNA were more profound in SAD rats than sham animals. 

3. Plasma catecholamines were significantly increased by hydralazine-induced 

hypotension in sham rats, but not in SAD rats. This elevation was far less than that 

induced by endotoxin. 

Conclusions drawn from the second project: 

1. Afferent neural input from arterial baroreceptors is not essential in mediating 

sympathoadrenal activation during endotoxicosis, and non-baroreflexogenic mechanisms 

are involved in stimulating such activation. 

2. The elimination of feedback buffering mechanisms with SAD may account for the 

augmented sympathetic response seen in SAD animals. 

The third project tested the hypothesis that cytokines may be involved in mediating 

the sympathoadrenal activation during endotoxicosis, via their actions on the central 

nervous system. Specifically, IL-1, TNF, or IL-6 in addition to endotoxin was 

administered into the lateral ventricle of conscious rats, and plasma catecholamines and 

renal sympathetic nerve activities were assessed. To examine whether the PVN is the 

anatomical site of cytokine actions, each of the cytokines was delivered into the region 

of the PVN, and plasma catecholamines and RSNA were determined following the PVN 

injection. 

Summary of results from the third project: 

1. ICV injection of endotoxin did not significantly change plasma catr..cholamines or 

RSNA. 
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2. ICV injection of IL-1 induced modest increases in both plasma catecholamines and 

RSNA. PVN injection of IL-1 also induced a mild elevation of plasma catecholamines 

without significant effects on RSNA. 

3. ICV injection of TNF resulted in a slight attenuation of RSNA without significant 

effects on plasma catecholamines. RSNA was also slightly decreased following PVN 

injection of TNF without significant alteration in plasma catecholamines. 

4. ICV injection of IL-6 caused decreases in RSNA and no changes m plasma 

catecholamines. PVN injection of IL-6 altered neither RSNA nor plasma catecholamines. 

Conclusions drawn from the third project: 

1. The sympathoadrenal activation during developing septic/endotoxic shock may be 

partially mediated by IL-1 via its central actions while the direct effects of cerebral 

ventricular TNF and IL-6 suppress renal sympathetic activity. 

2. The alterations of sympathoadrenal activity associated with ventricular IL-1 and TNF 

may be mediated, in part, by their actions on PVN. The sympathetic suppression with 

ventricular IL-6 is not likely mediated by actions on PVN. 

The sympathoadrenal activation in response to septic/endotoxic challenge involves 

very complicated processes in peripheral sensory structures, afferent nerves, central 

neuronal networks, efferent sympathetic nerves, and the adrenal medulla. Endotoxin, 

endotoxin-elaborated host factors and various pathophysiological alterations associated 

with septic shock may interact with those neuronal elements at different levels and result 

in enhanced activity of the sympathoadrenal system. 
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As can be integrated from the present study as well as previous works, a schematic 

representation of sympathoadrenal regulation during septic/endotoxic shock is presented 

in Fig. 8-1. Endotoxin, released from the invading gram-negative bacterial wall, 

stimulates macrophages as well as a variety of other cell populations to release cytokines 

and numerous other host factors such as eicosanoids, bradykinin and histamine. These 

factors, particularly cytokines, are important mediators of the hemodynamic, metabolic, 

and neuroendocrine alterations associated with septic/endotoxic shock. 

In terms of neuronal reflex mechanisms, decreased blood pressure and venous return 

with ultimate volume depletion during septic shock may deactivate both arterial 

baroreceptors and cardiopulmonary volume receptors, and reflexly result in increment 

of central sympathetic outflow. Blood borne factors such as epithelial derived factors, 

PGl2, opiates, and neurotensin may also modulate baroreflexes at different levels of the 

baroreflex arc including baroreceptors and NTS (48,49,228,256), which may also lead 

to augmented sympathetic activity. However, marked sympathoadrenal activation could 

occur in septic patients and animals without hypotension or hypovolemia (89,115). 

Alternatively, such activation persists after recovery of hypotension with volume infusion 

(185). Furthermore, profound sympathetic activation is observed in baroreceptor 

denervated endotoxic animals in the present study (255). These results suggest that baro

and volume- receptor reflexes are not likely to be essential for turning on and 

maintaining the sympathoadrenal activation during septic shock, despite their participation 

in such activation. It is noteworthy that stimulations of mechano- or chemo-sensitive 

nerve endings in abdominal visceral organs also evoke cardiovascular reflexes, which are 
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frequently excitatory (144,145). Such reflexes can be stimulated by passive distension, 

local temperature changes, altering vessel pressure and intraarterial injection or topical 

application of certain chemicals such as bradykinin, histamine and capsaicin 

(144-146,181). Although this reflex mechanism has implications in the sympathetic 

response during septic shock, the importance has not been studied. 

Metabolic alterations associated with septic shock may also be involved in 

sympathetic response. Changes in blood pH as a result of hyperlacticemia and acidosis 

may stimulate peripheral and central chemoreceptors and result in enhanced sympathetic 

outflow. A previous study showed that the plasma epinephrine response to hemorrhagic 

shock was blunted after prevention of acidosis by intravenous administration of sodium 

bicarbonate (58). Insulin-induced hypoglycemia also leads to elevations of plasma 

catecholamines presumably through both neurogenic and non-neurogenic mechanisms 

(120). The neurogenic mechanism likely involves stimulations of gluco-sensitive receptors 

in the hypothalamus and spinal cord (175). Since these metabolic alterations are usually 

delayed processes, they do not appear to account for the rapid onset of sympathoadrenal 

activation during developing septic shock. 

Recently, increasing attention has been drawn to the cytokine-mediated modulation 

of neuroendocrine systems, which is a plausible mechanism for sympathoadrenal 

activation during septic shock. Although cytokines appear unable to cross the blood brain 

barrier in significant quantities, r~ent studies suggest that cytokines may enter the brain 

at sites where blood brain barrier is absent such as OVLT (26,116,222). A further 

possibility is that circulating cytokines can somehow interact with the brain and stimulate 
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its own cytokine productions (34,203). Systemically and centrally administered cytokines, 

particularly IL-1, have been shown to exert many actions in the brain including the 

stimulation of the sympathoadrenal system (53,202,203). This sympathetic activation can 

be evoked by IL-1 via its direct effects on sympathetic regulatory neurons or via some 

secondary neural or humoral factors. For example, IL-1 is a potent endogenous pyrogen 

which can induce fever, and the associated thermogenesis is usually accompanied by 

selective activation of efferent sympathetics and adrenergic mediated vasoconstriction 

(91). IL-1 also stimulates the hypothalamic-pituitary-adrenal axis primarily via releasing 

CRF from the hypothalamus, and CRF has long been recognized to enhance central 

sympathetic outflow (38). PVN seems to be one of IL-1 action sites in evoking 

sympathetic activation. 

Non-neurogenic modulation of adrenal catecholamine release may involve direct 

actions of hypoxia, endotoxin-elaborated endogenous mediators or endotoxin itself on the 

adrenal medulla (166,225). Numerous endogenous substances such as histamine, 

bradykinin, angiotensin II, and vasoactive intestinal polypeptide have been shown to 

stimulate adrenal gland or chromaffin cells to secret catecholamines (130,142,153,177). 

Further studies are needed to determine, in a more systematic and comprehensive 

manner, the role of cytokine mediated modulation of the sympathoadrenal response 

during developing septic shock and the mechanisms underlying this modulation. 

Hypophysectomized animals could be used to determine whether the hypothalamus is the 

primary center of cytokine modulation. Since the OVLT has been proposed to be the 

entry or action site of circulating cytokines to the hypothalamus to mediate their 
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pyrogenic effects and hypothalamic-pituitary-adrenal stimulation, experiments with OVLT 

lesions or direct injection of cytokines to OVLT may help understanding the OVLT 

involvement in sympathetic response to endotoxin and cytokines. Electrophoretically 

sampling in a confined hypothalamic area may allow the evaluation of the quantity and 

time course of local cytokine production during endotoxicosis as well as its correlation 

with sympathetic activation. Assessment of sympathetic activity in septic animals after 

application of specific cytokine antibodies to the brain areas suspected to be the cytokine 

production and action sites would provide additional valuable information on central 

cytokine involvements in sympathetic response during developing septic shock. 
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