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CHAPTER I 

GENERAL INTRODUCTION 

While the pervasive soil and water microorganism Pseudomonas aeruginosa 

demonstrates sensitivity to ultraviolet (UV) radiation (94), this species possesses a 

recA gene that based upon structural and functional properties, appears capable of 

mediating damage inducible deoxyribonucleic acid (DNA) repair (89, 90, 124). This 

finding questions whether P. aeruginosa encodes a DNA damage response network 

analogous to the SOS network described in Escherichia coli (200). This question is 

significant due to recent interest in the use of P. aeruginosa for agricultural purposes 

and biodegradation of pollutants (43, 55), since the ability of microorganisms to 

repair and recombine DNA most likely will affect species survival and evolution in 

the environment (126). The objective of this dissertation research was to determine 

whether P. aeruginosa encodes SOS-like stress response genes. This question was 

addressed by studying the response of P. aeruginosa to DNA damaging agents 

including far (254 nm) ultraviolet (UVC) radiation, and the quinolone antibiotic 

norfloxacin. These inducing agents were chosen for investigation since they primarily 

induce an SOS response in E. coli. 

The response of P. aeruginosa to DNA damaging agents was investigated by 

monitoring the expression of fusions linking P. aeruginosa promoters to a ~-gal

actosidase reporter gene. These gene fusions were constructed by mutagenizing a 
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P.aeruginosa genomic library (190) with the transposon TnJ-HoHoI, which encodes 

the promoterless lacZYA reporter gene (183). Examination of greater than 25,000 

colonies allowed identification of about 50 gene fusions which increased their 

production of f3-galactosidase following exposure to UVC radiation and quinolones. 

Restriction analysis revealed the presence of eight different gene fusions which did 

not contain the reporter gene linked to the P. aeruginosa recA gene. The desig

nation sin for ~tress inducible was used to describe these novel fusions since it is 

not known whether DNA damage acts as the actual intracellular inducing signal. 

Three of the gene fusions, sinA::lacZY A, sinB::lacZY A, and sinC:·:lacZYA, 

were selected for further investigation, including characterization of their stress 

responsive behavior. All three fusions were induced in response to UV and 

norfloxacin exposure, but not heat shock. Similar to E. coli SOS genes, the 

sin::lacZYA fusions were induced to different extents and with different kinetics 

following UV irradiation. However, for all three fusions, the maximal inductive 

response was obtained following UVC exposure of about 20 J/m2
• 

As a start in defining P. aeruginosa stress responsive promoters, promoter

-containing regions of the three gene fusions were roughly defined by subcloning 

experiments. Tn501 mutagenesis (13, 74) and exonuclease III/nuclease SI (63) 

digestion of sinA::lacZYA was carried out to more closely define 5' and 3' boundaries 

of the stress responsive sinA promoter. 

Pulsed field gel electrophoresis mapping indicates that the sinA, sinB, and sinC 

genes are located between 34.6 and 37.4 minutes on the Holloway map of the P. 

aeruginosa chromosome (U. Romling and B. Tummler, personal communication). 

Based upon additional hybridization results, the sin genes do not appear to be located 
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within less than 2 kilobase pairs of each other. Results of genetic and hybridization 

experiments suggest that the three sin genes are not previously described UV inducible 

pyocin R2 structural genes, which also cluster within the same region of the 

chromosome (173). However, attempts to integrate sinA::lacZYA and sequences 

flanking sinB: :lacZY A into the chromosome by a single crossover event resulted in 

pyocin expression in transconjugants. These results suggest sin::lacZYA constructs 

may encode or possess Tn}-HoHoI inserted into the pyocin R2 regulatory gene prtP, 

or previously uncharacterized UV inducible pyocin genes. Alternatively, an inability 

to replace chromosomal sin genes with the inactivated sin::lacZYA fusions may reflect 

a requirement for sin gene expression for cell viability. If sin genes function in P. 

aeruginosa recombination or DNA repair, then mutations in these genes might be 

expected to be lethal. 

Regulation of the stress responsive gene fusions was investigated. Inducible 

expression of sinA::lacZY A and sinB::lacZYA is dependent upon P. aeruginosa RecA 

protein function. The UV-mediated induction of the three sin gene fusions was 

sensitive to rifampicin, which indicates that these sin genes are regulated at the level 

of transcription. The stress responsive behavior of sinA::lacZYA was also examined 

in E. coli. Even though the gene fusion appeared to be expressed in this host, UVC 

responsive gene fusion expression was not observed. Thus sinA: :lacZY A is not 

regulated by the E. coli recA and lexA gene products. These results suggest that 

while RecA-dependent stress responsive genes are conserved in P. aeruginosa, 

regulation of these genes may be fundamentally different from regulation in E. coli. 



CHAPTER II 

REVIEW OF THE RELATED LITERATURE 

The SOS Network of Escherichia coli 

Of all the integral components which define the living cell, there is none so 

important as the deoxyribonucleic acid (DNA) molecule. DNA damage may result 

from normal cellular activities such as DNA replication and recombination, or as a 

consequence of exposure to DNA damaging agents such as the common environ

mental stressor, ultraviolet (UV) radiation. Since damage to DNA may lead to 

mutation or cell death, organisms have evolved processes for protecting their genomes. 

Within the past decade, significant progress has been made elucidating the 

processes of recombination and repair used by cells to safeguard genomic DNA. 

These processes have been investigated with the greatest intensity in the bacterium 

Escherichia coli. The experiments of Weigle (210) gave the first indication that repair 

capacity of E. coli can be increased in response to exposure to stress agents. His 

experiments demonstrated that survival (Weigle reactivation) and mutagenesis (Weigle 

mutagenesis) of UV irradiated bacteriophages increases in a host irradiated with far 

(254 nm) UV radiation (UVC) as compared to an unirradiated E. coli host. Subse

quent experiments have verified that E. coli possesses numerous genetic systems which 

are induced following exposure of the cell to various stresses (Table 1). 

4 



Table 1.--Stress responsive networks of Escherichia coli 

Network Description Reference 

sos At least 20 genes are induced upon exposure to DNA damaging treatments. 178 

Heat Shock More than 17 genes are induced upon increasing the temperature. 132 

Adaptive Response At least 4 genes are induced by alkylating agents. 100 

Oxidative Response About 30 genes increase their expression upon exposure to oxidative stress. 44, 205 

Cold Shock Approximately 13 genes are induced when the temperature is abruptly 78 
decreased. 

Starvation At least 30 genes are induced in response to glucose starvation. 163 

Osmotic Pressure E. coli modulates the expression of specific genes in response to changes in 65 
osmolarity. 

Nitrogen Limitation ln response to nitrogen limitation, expression of nitrogen scavenging proteins 156 
proteins is increased. 

Phosphate Limitation In response to phosphate limitation, expression of phosphate scavenging 209 
proteins is increased. 

Thiols Several thiol responsive promoters have been identified in E. coli. 7 
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The SOS regulatory system was one of the first systems characterized in E. 

coli, and remains the largest, most complex, and best understood stress response 

network (202). This system specifically responds to agents which damage DNA such 

as UVC radiation, and agents which inhibit DNA replication such as the quinolone 

antimicrobial norfloxacin (200). Exposure of E. coli to these stressors results in the 

expression of a heterogeneous collection of physiological responses which include an 

enhanced capacity for DNA repair, induction of resident prophages, increased 

mutagenesis, and filamentous growth (103). These responses are now known to be 

due to the increased synthesis of more than twenty coordinately regulated and unlinked 

gamage inducible (din) genes (200). Many of these genes encode products involved 

in the repair and recombination of DNA. 

Expression of din genes is controlled by the recA and lexA gene products (103, 

200, 201). In the uninduced cell, SOS gene expression is repressed by the binding 

of the LexA protein to a consensus operator sequence (the SOS box) present in one 

or more copies in the promoters of each SOS gene or operon. Since din 

operator/promoter regions differ in affinity for LexA protein, in the repressed state 

many SOS genes including recA and lexA are expressed at significant levels. Exposure 

of E. coli to inducing treatments generates an intracellular signal which interacts with 

and alters RecA protein to an activated form, RecA*. RecA* functions as a coprotease 

to facilitate a latent capacity of the LexA protein for autodigestion at a unique -Ala

Gly- bond (102). This inactivation of the LexA monomer results in a decrease in 

intracellular pools of functional LexA, derepression of various SOS network genes, and 

observation of the SOS responses mediated by the products of the induced din genes 

(103, 200, 201). Repressors of the lyric growth cycle of certain bacteriophages which 
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have homology to LexA are similarly cleaved by RecA* at an -Ala-Gly- bond, resulting 

in prophage induction. Following repair of the damaged DNA or removal of the DNA 

replication block, intracellular levels of the inducing signal decrease, and RecA protein 

is no longer activated. As levels of LexA rise within the cell, repression of SOS genes 

is reestablished since the affinity of the lexA operator for LexA protein is such that 

LexA is present in adequate amounts to repress all other din genes before its own 

synthesis is repressed. 

The most compelling evidence for a role of RecA protein in sensing the DNA 

damage-generated signal(s) is the existence of recA protease constituitive (Prf) mutants 

in which RecA protein is continually activated for LexA coproteolytic cleavage, even 

in the absence of inducing treatments (186). Despite intensive study in this area, the 

identity of the intracellular SOS inductive signal(s) detected by RecA protein remains 

elusive. Mutations in several other E. coli genes have been identified which result 

in either subinduction or constituitive expression of SOS responses. These include 

mutations in dam, dnaB, dnaE, dnaG, !ig, polA, recF, ruv, ssb, and uvrD genes (145). 

All of the mutations are alike in that they primarily affect DNA metabolism, 

suggesting that interruptions of DNA synthesis generate a signal or signals capable 

of activating RecA. Candidates for the activator(s) include single stranded regions of 

DNA resulting from inhibition of DNA synthesis following DNA damage, single 

stranded DNA (ssDNA) gaps opposite lesions, oligonucleotides resulting from DNAse 

degradation of damaged DNA, alterations in nucleotide pools following DNA damage, 

and changes in DNA superhelicity (140). Biochemical evidence suggests that RecA 

activation requires the formation of a ternary complex comprised of RecA protein, 

a nucleoside triphosphate such as ATP or dATP, and a polynucleotide such as 
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poly(dT) (128). It is generally believed that this in vitro requirement of a 

polynucleotide for RecA proteolytic activity mirrors an in vivo generation of ssDNA 

regions by SOS inducing treatments. 

DNA Repair Activities of the SOS Network 

A primary factor responsible for recognition of genes involved in the SOS 

response network was the development of the Mud(lac) bacteriophage (30). Using this 

phage, Kenyon and Walker (85) generated random bacteriophage insertions into the 

E. coli chromosome. These insertions were screened to identify fusions linking the 

promoterless Mud lac operon to promoters of genes demonstrating increased 

expression following DNA damaging treatments. The investigators were able to 

identify both previously characterized genes and novel genes of unknown function, 

and establish that expression of these genes was controlled by the RecA and LexA 

proteins (84, 203). This approach has subsequently been used to determine whether 

genes whose products appear to function in DNA repair or mutagenesis (e.g. uvrA 

(86), umuDC (6)) are part of the SOS regulatory network. 

Results of the gene fusion studies have helped to clarify strategies of SOS

-mediated DNA repair in E. coli. The study of these strategies is complicated by the 

fact that repair processes are capable of interacting in lesion repair, and are 

influenced by DNA replication (163). Furthermore, "crosstalk" may occur between 

SOS network gene products and protein components of other stress responsive 

networks. For example, recA gene expression is inhibited by the adaptive response 

regulatory protein Ada (196), and the UV inducible inhibitor of cell septation SulA 

protein is degraded by the heat shock regulated Lon protease (161). Despite these 
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barriers to experimental progress, three main repair activities have been demonstrated 

to be associated with the SOS network: excision repair, postreplication recombination 

repair, and mutagenic repair. 

The SOS repair strategy utilized by the cell appears to be dependent upon the 

amount of genetic information lost as a consequence of DNA damage (164). When 

damage occurs to only a single strand of DNA, sufficient information is available 

in the complementary strand to allow repair of the duplex by excision repair. This 

is the only repair pathway which literally repairs or removes the DNA damage. 

When damage is present in both DNA strands, repair can occur by either one of two 

pathways. If the damaged duplex is capable of interacting with an intact homologous 

duplex, DNA structure and integrity will be restored by postreplication recombination 

repair. In the case where the damage cannot be repaired through recombination, the 

third strategy of repair will operate to prevent complete loss of genetic information. 

This third strategy of mutagenic repair simply allows the cell to tolerate the DNA 

damage, and processes this damage in such a fashion that mutations result. 

Excision repair in E. coli is an error-free process which recognizes and 

removes damage induced distortions of the DNA helix (53, 141, 145, 211). This 

repair mechanism requires the uvrA, uvrB, uvrC and uvrD gene products, as well as 

DNA polymerase I and ligase. The uvrA, uvrB, uvrD, but not uvrC gene products 

have been shown to be regulated by the SOS network. The SOS-associated excision 

repair activity differs from excision repair processes which depend upon specific 

glycosylases and AP (apurinic or apyrimidinic) endonucleases in that it can repair a 

wide variety of structurally dissimilar DNA lesions. A 'repairosome' complex 

consisting of the six proteins has been suggested to effect the entire SOS associated 
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excision repair process (211). In the incision step of this process, UvrA, UvrB, and 

UvrC proteins act in concert to generate two endonucleolytic breaks on either side of 

the lesion in an ATP dependent reaction. The 5'- endonucleolytic break is positioned 

seven nucleotides 5' to the damaged site whether the lesion is a pyrimidine dimer, 

psoralen monoadduct, or cisplatin diadduct (195). In contrast, the 3' endonucleolytic 

break occurs either three or four nucleotides 3' to the damaged site depending upon 

the type of damage generated. The distance separating the two incisions is 

approximately one helical turn of B-DNA (53), suggesting that the complex interacts 

with one face of the damaged helix. 

The incision step is followed by removal and resynthesis of DNA which 

requires DNA polymerase I, UvrD, and DNA ligase. The release of the damage

-containing fragment and repair of the resulting duplex gap is effected by the 

polymerase and 5'-->3' exonuclease activities of DNA polymerase I, and helicase 

properties of UvrD acting in conjunction. Whereas the majority of the repair 

replication patches are 10 to 20 nucleotides long, some repair patches may be up to 

1500 nucleotides in length (38). While both short and long patch repair appear to be 

inducible functions in that Uvr proteins increase following DNA damage (145, 201), 

long patch repair is most definitely an inducible function since such repair is impeded 

in the absence of protein synthesis and does not occur in RecA mutants (38). 

Excision repair can generate substrates for postreplication recombination repair 

(180). Two substrates which can be produced by excision repair are excision repair 

gaps formed when a lesion in the replicated portion of the chromosome is removed, 

and double strand breaks (DSB) resulting from overlapping excision gaps. These 

lesions can also be induced by other cellular mechanisms. For example, daughter 
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strand gaps (DSG) can be produced in nascent DNA when the replication complex 

skips past damage induced lesions and reinitiates downstream of the damaged site 

(206). Similarly, DSB can be induced by the action of hydroxyl radicals (159). 

Regardless of the manner in which the damage is generated, E. coli appears 

to possess two postreplication recombination repair strategies responsible for correcting 

DSG and DSB. These SOS network recombination repair strategies are analogous to 

the cellular pathways of chromosomal recombination, and are primarily defined on a 

genetic basis since the activities of some of the enzymes involved, and the structures 

of DNA substrates and intermediates are largely undefined (113). The recombination 

pathways or repair strategies are named to reflect a gene product or enzyme acting 

uniquely within that process (178). While many gene products have been shown to 

act in more than one recombination pathway or repair strategy, the RecBCD enzyme 

and the RecF gene products characterize the two distinct processes for the conversion 

of substrates (parental DNA or damaged DNA) to products (recombined DNA or 

repaired DNA). 

In both RecBCD and RecF recombinational repair strategies, repair is effected 

through the physical exchange of DNA sequences from an intact sister duplex to join 

discontinuous DNA ends of a homologous damaged duplex into high molecular weight 

DNA (180, 206). The resulting gap in the sister duplex is then filled by repair repli

cation. While the RecBCD dependent strategy allows repair of DSB, the RecF 

dependent strategy is primarily responsible for the repair of DSG. These and other 

results suggest that substrates for recombination and repair presenting double stranded 

blunt ends follow a RecBCD dependent process, whereas substrates presenting 

relatively long single stranded tails follow a RecF dependent process. 
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The RecBCD pathway is the major recombinational pathway in E. coli. 

Mutations in recB and recC reduce recombinational efficiency to no more than 1 % of 

wild-type (33), and result in defects in DNA repair (3). Wild-type levels of DNA 

recombination and repair can be restored by the extragenic suppressor mutations sbcA, 

sbcB and sbcC. Single mutations in sbcA activate a RecE pathway by promoting 

expression of Exonuclease VIII, an ATP- independent nuclease specified by the recE 

gene of the cryptic Rae prophage present in some strains of E. coli (52). The recE 

gene product digests each strand of linear double stranded (dsDNA) in the 5'-->3' 

direction to produce dsDNA with 3 '-ended ssDNA tails (178). Mutations in sbcA 

are cis-acting and dominant to the wild-type allele. Such mutations promote recE 

expression by creating a new promoter for mRNA synthesis, or allow translation of 

RecE by altering the reading frame, creating a new translation initiation codon, or 

creating a new ribosome binding site (81). Combined mutations in sbcB (95) and 

sbcC (104) activate a RecF pathway by inactivating Exonuclease I. Since 

Exonuclease I digests ssDNA in the 3 '-->5' direction (178), it has been suggested that 

this exonuclease converts substrates for the RecF pathway possessing single stranded 

3' tails into substrates for RecBCD-mediated processes (95). While the sbcC single 

mutation has no apparent effect on the phenotype of Rec+, recB or recC strains, this 

mutation is required for full suppression by sbcB of the mutant recB or recC 

phenotype (104). 

RecBCD dependent recombination has been shown to require the recB, recC, 

and recD gene products (17, 109, 207) along with RecA protein, ssDNA binding 

protein (SSB), DNA gyrase, DNA polymerase I, and DNA ligase (178). The recB, 

recC and recD gene products comprise the three subunits of Exonuclease V (17, 207). 



13 

This multifunctional enzyme possesses helicase, dsDNA exonuclease, ssDNA 

endonuclease, ssDNA exonuclease, and ATPase activities (36). The RecBCD 

dependent capacity to repair DSB appears to be an inducible process since pretreat

ment of cells with inducing agents including UVC radiation and nalidixic acid results 

in an increased resistance to further irradiation which is dependent upon the RecB+ 

phenotype (149). This induced radioresistance is controlled by the RecA and LexA 

proteins, and requires ongoing transcription and translation since it can be blocked by 

rifampicin or chloramphenicol (92). Additionally, a RecBCD dependent process has 

been implicated in at least three inducible phenomena: (i) the alleviation of lambda 

restriction observed following UV irradiation or nalidixic acid treatment (187); (ii) 

prophage induction in permeabilized or thymine-starved cells (73, 138); and (iii) 

prophage inactivation in irradiated lysogens incapable of successful DNA repair (193). 

Mutations in recD reduce exonucleolytic degradation of duplex DNA (3, 17), 

whereas mutations in recB or recC decrease nuclease activity and recombinational 

proficiency, and increase sensitivity to DNA damage (39). These results suggest that 

the RecB and/or RecC subunits of Exonuclease V possess the DNA helicase activity, 

whereas recD encodes the exonuclease activity (39). This interpretation is supported 

by the identification of recD mutants which were found to lack nuclease activity, and 

yet demonstrate the same viability, recombinational proficiency, and resistance to 

UVC irradiation as their Rec+ parent (33). These results further suggest it is the 

helicase activity, or some other unidentified enzymatic activity of Exonuclease V 

which is critical in repair and recombination. The demonstration of RecA dependent 

induction of SOS genes in mutants lacking nuclease activity and yet retaining helicase 

activity supports this hypothesis (7, 35). 
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In contrast to RecBCD, RecF appears to function primarily in DNA repair, 

since recF single mutants show increased sensitivity to DNA damaging agents, and 

only a modest deficiency in genetic recombination (68). This increased sensitivity of 

recF mutants has been correlated with a decreased ability to perform DSG repair 

(208): Furthermore, it has been demonstrated that RecF dependent processes are 

inducible and are under SOS control (4, 107). RecF dependent activities have been 

shown tQ require the recF, recA, recJ, recN, recO, recQ, ruv, and uvrD gene products 

(141). While recA, recN, recQ, ruv, and uvrD are regulated by the RecA and LexA 

proteins, recF is not an SOS gene, and regulation of the remaining genes has not yet 

been determined (112, 141). Aside from RecA, an activity has been reported for only 

the recJ gene product, a ssDNA exonuclease (178). Mutations in genes of the RecF 

pathway result in differing phenotypes when exposed to the various stress agents. 

For example, recA, recF, ruv and uvrD single mutations result in sensitivity to both 

UVC radiation and mitomycin C, whereas recN mutants are sensitive to mitomycin 

C but not UV exposure (145). Single mutations in recJ (108) and recQ (132) result 

in UVC sensitivity only in a recBC sbcB genetic background. These results may 

suggest that separate proteins of the RecF pathway are needed to repair different types 

of chromosomal damage. 

Mutations in recF, recB and recC genes have also been examined for their 

effect upon recA mRNA and protein induction in response to various stress agents. 

Mutations in recF inhibit RecA protein and mRNA induction following UVC but not 

nalidixic acid exposure, whereas mutations in recB or recC genes impede RecA 

protein and mRNA induction by nalidixic acid but not UV radiation (82, 120). These 

results imply that the products of these other rec genes are capable of recognizing 
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DNA damage and promoting activation of RecA protein (73, 82). It has been 

suggested that RecA activation and SOS induction by UVC radiation may be 

mediated by the RecF protein, while quinolone induction may require a functional 

RecBCD enzyme. However, a new recF mutation has been identified which results 

in impaired induction but not complete inhibition of SOS genes in response to both 

UV irradiation and nalidixic acid in the presence of a recA operator constituitive 

mutation (188). This suggests that RecF may play a more general role in the 

induction process, modulating interaction of the SOS inducing signal with RecA 

protein. One way in which this could take place would be through an interaction of 

the RecF protein with RecA protein in reactions leading to LexA coproteolytic 

cleavage. This hypothesis is supported by the ability of recA441, a mutation which 

results in constituitive RecA coproteolytic activity at 42°C, to partially suppress the 

UV sensitivity of a recF mutant (199). Other mutations in recA (i.e. srf or 

.§.uppressor of recF) have been identified which suppress RecF recombination 

deficiencies without affecting SOS protein induction (197, 198, 208). In both types 

of recA mutations, suppression of recF has been shown to require the recJ gene 

product and increased amounts of RecA protein (189). These results might suggest 

that RecF is required for two different changes in RecA activity following DNA 

damage. One change would be RecF modulation of RecA protein activation, allowing 

induction of repair processes. The second change would be RecF modulation of the 

ability of RecA protein to participate directly in RecF dependent recombination and 

repair. 

Mutagenic repair, or SOS processing is the third type of repair strategy 

associated with the SOS regulatory network. Mutagenesis has been shown to require 
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the products of at least three genes: recA, umuC, and umuD (6, 144), with the 

umuC and umuD genes constituting an operon (144). RecA appears to have three 

functions in UVC- and chemical-mediated mutagenesis. First, activated RecA 

coproteolytically cleaves LexA, promoting derepression of both recA and umuDC 

encoded proteins. Second, RecA post- translationally activates UmuD for mutagenesis 

by mediating its cleavage at a Cys-Gly bond (26, 134, 169). Third, RecA protein 

appears to participate directly in SOS processing. While the mechanism of RecA 

participation in SOS processing remains to be discovered, this additional role of RecA 

is indicated by experiments in which the carboxyl terminal polypeptide of UmuD 

which is active in mutagenesis is able to suppress the UVC nonmutability of a lexA 

(Def) strain (or a strain containing defective LexA repressor) possessing reduced 

RecA protease activity, but not of a lexA (Def) strain suffering a deletion of recA 

(134). 

Bacteria possessing umuC mutations are normally not mutable by UVC 

radiation and other SOS inducing treatments (6). However, Bridges et al. (22, 24) 

clearly demonstrated that mutagenesis can occur in the absence of UmuC and UmuD, 

provided that irradiated cells are photoreactivated after prolonged incubation in rich 

medium. Based on these results, the investigators propose a two step model of SOS 

processing (23, 24, 25). In the first step, misincorporation, bases are misincorporated 

close to or opposite a segment of damaged DNA. The presence of this damaged 

DNA constitutes a block to DNA replication. This block can be overcome in the 

second bypass step, which requires increased levels of UmuDC proteins. In the 

umuDC strain, the mutagenic process is somehow interrupted, and potential mutants 

fail to survive due to an inability to remove the block to DNA replication. However, 
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delayed photoreversal allows the direct removal of pyrimidine dimers. Following this 

event, DNA polymerization can continue, allowing the observation of mutagenesis in 

a umuDC host. 

The misincorporation step was initially thought to be mediated by activated 

RecA. In support of this hypothesis, investigators were able to demonstrate that the 

yield of mutants obtained varied with the recA allele present in photoreactivated 

umuC bacterium (24). Specifically, umuC mutants containing recA430, which is 

defective in proteolytic activity gave a lower frequency of mutations in the delayed 

photoreversal assay than did umuC recA441 mutants. However, the significance of 

RecA cleavage activity in the misincorporation step was questioned by the finding 

that frequency of mutations in the presence of RecA441 protein showed no difference 

with temperature, even though the cleavage activity of the protein is much greater 

at 42°C than at 30°C. Furthermore, UVC induced mutagenesis of photoreactivated 

phages can be obtained in the absence of both UmuC and RecA function (185). 

These results suggest that the DNA replication complex may normally be able to 

replicate unassisted past UV induced lesions with a relatively high frequency, and in 

this fashion contribute to cell mutagenesis without the need of intervention by an 

induced cellular repair activity. Subsequent studies of UV mutagenesis following 

delayed photoreversal in recA mutants indicate that RecA is unnecessary for 

misincorporation and may even act to inhibit this step of mutagenesis (20). 

Induced mutagenesis may also rely upon properties of the DNA polymerases 

involved in repairing the DNA damage. An altered form of DNA polymerase 1--DNA 

Poll*--has been identified in cells induced for SOS functions (96). DNA Poll* 

possesses lower replication fidelity than does DNA polymerase I present in uninduced 
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cells, and could conceivably be involved in the misincorporation or bypass steps of 

SOS mutagenesis. However, it is unlikely that DNA polymerase I plays any major 

role in SOS processing since mutagenesis is unimpaired in strains carrying a deletion 

of the polA gene ( 11 ). 

In contrast to DNA polymerase I, genetic and physiological studies tend to 

support a role for DNA polymerase III in SOS mutagenesis (21). It has been 

demonstrated that RecA binds UVC irradiated DNA more efficiently than unirradiated 

DNA, and is capable of inhibiting the 3'-->5' exonuclease proofreading activity of 

the epsilon subunit of DNA PolIII encoded by dnaQ (111). These results suggest that 

RecA may act in the lesion bypass step of mutagenesis by preferentially binding to 

damaged regions of DNA and allowing DNA PolIII to replicate across the damaged 

site with reduced fidelity, leading to the misincorporation of bases. In support of this 

hypothesis, the mutagenic potential of recA alleles was found to correlate with the 

capacity of RecA to bind irradiated as compared to unirradiated DNA (110). Whereas 

wild-type RecA protein binds more efficiently to irradiated DNA, RecA441 protein 

binds equally well to both unirradiated and irradiated DNA, and RecA430 protein 

binds poorly to both types of DNA. Correspondingly, when compared to wild-type 

E. coli, recA441 strains demonstrate constituitive mutagenesis whereas recA430 strains 

are defective for mutagenesis. 

The hypothesis of an in vivo interaction between SOS regulated proteins and the 

epsilon subunit was further supported by the finding that UmuDC and RecA· proteins 

enhance the mutator phenotype associated with the defective epsilon subunit encoded 

by the dna049 allele (50). Additionally, overproduction of epsilon markedly decreases 

the frequency of mutations induced by UVC radiation and methyl methanesulfonate 
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through an antimutagenic process which is partially suppressed by excess UmuDC 

proteins (51, 77). In this context, it is interesting that dnaQ has been demonstrated 

to be induced upon exposure to the mutagenic stress agent 2-aminopurine (150). 

However, since a dominant allele of dnaQ (mutD5) does not restore mutability to a 

umuC mutant strain, it appears as if loss of DNA Pollll proofreading activity may be 

necessary, but not sufficient for SOS associated mutagenesis (216). 

E. coli RIN Functions are recA-Dependent and lexA-Independent 

Several RecA promoted activities have been identified in E. coli which are not 

directly repressed by the LexA protein. For reason of clarity, these activities will be 

referred to as RIN functions to signify their independent regulation by RecA protein. 

These RIN activities all share in common the characteristic that they can be observed 

in the presence of mutations which render the LexA protein noncleavable, provided 

that RecA protein is produced in these hosts as a result of a repressor-insensitive 

operator constituitive recA mutation. RIN functions identified in this fashion include 

the partial alleviation of K-specific DNA restriction observed as a consequence of 

UVC exposure (187), the recovery of DNA synthesis following UVC irradiation or 

induced replisome reactivation (214), and the constituitive stable DNA replication not 

dependent upon concomitant protein synthesis observed for rnh mutants deficient in 

ribonuclease H (192). Induced replisome reactivation has been shown to require the 

postirradiation synthesis of one or more protein(s) not regulated by LexA (87). An 

additional RIN function(s) required for the reactivation and mutagenesis of UV 

irradiated lambda phage was identified by examining the chloramphenicol sensitivity 

of these processes in an E. coli host defective for LexA repressor activity (27). 
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Specifically, in a lexA (Def) E. coli host, the protein synthesis inhibitor chloram

phenicol was found to inhibit in a dose-dependent fashion UV inducible repair and 

mutagenesis despite a high level of expression of umuDC and other din genes under 

the same conditions. 

While all of the identified RIN functions appear to require stable or increased 

levels of RecA protein, the activities differ in their dependence upon RecA activation. 

The RecA dependent stable DNA replication observed in E. coli rnh mutants 

apparently depends upon some constituitive function of the RecA protein since 

mutations which block RecA activation fail to nullify the RIN activity of these 

mutants (192). In contrast, restriction alleviation, and expression of a RIN gene 

product(s) which mediates bacteriophage lambda repair and mutagenesis are similar 

to SOS regulated damage inducible phenomena in their dependence upon RecA protein 

activation for induction (27, 187). It is currently unclear whether induced replisome 

reactivation is mediated through RecA or RecA* (87, 214). These experiments 

suggest that RecA and/or RecA* can promote activities independently of an interaction 

with LexA. In this capacity, RecA or RecA* may promote nascent protein synthesis 

by functioning as a transcriptional activator, or by cleaving an unidentified repressor 

in a reaction analogous to that observed for LexA and bacteriophage repressors. 

Alternatively, the recA gene product may participate directly in RIN processes, or 

allow their occurrence through posttranslationally modifying enzymes involved, similar 

to the posttranslational activation of umuD. 
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SOS-Like Genes and Responses of Other Bacterial Species 

The recA gene is highly conserved among bacteria, and has been identified in 

and cloned from a variety of strains other than E. coli including Pseudomonas 

aeruginosa (89, 137), Thiobacillus ferrooxidans (151), Proteus mirabilis (1), 

Agrobacterium tumefaciens (48), Synechococcus sp. (131), Vibrio anguillarum (176), 

Serratia marcescens (8), Bacteroides fragilis (58), Haemophilus influenzae (10, 166), 

Proteus vulgaris (83), Erwinia carotovora (83), Bacillus subtilis (116), Anabaena 

variabilis (142), and Shigella flexneri (83). Genes which have been sequenced and 

compared to E. coli recA demonstrate identity values ranging from 56 to 73% (8, 131, 

151, 158). While an SOS consensus sequence has been identified in the recA 

promoter regions of P. aeruginosa (158),P. mirabilis (1), S. marcescens (8), P. 

vulgaris (83), E. carotovora (83), and S. Flexneri (83), examination of the upstream 

region of T. ferrooxidans (151), and Synechococcus sp. recA genes fails to reveal the 

presence of an SOS box. Of the strains exhibiting the conserved SOS promoter 

element, all appear to be induced in an E. coli recA host following exposure to DNA 

damaging agents (8, 83, 90) with the exception of the P. mirabilis recA gene, for 

which this experiment was not yet performed. In cases where the ability of the recA 

analogue to complement various repair and recombination deficiencies of E. coli recA 

mutants was examined, P. aeruginosa (89, 137), V. anguillarum (175), P. vulgaris 

(83), E. carotovora (83), S. flexneri (83), A. variabilis (116), and A. tumefaciens ( 48) 

recA analogues were found to significantly restore these processes. In contrast, T. 

ferrooxidans (151), B. fragilis (58), and H. influenzae (10, 166) recA genes could only 

partially complement RecA dependent activities, or could complement only a subset 
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of the activities examined. The B. fragilis recA analogue does not increase its own 

expression in an E. coli host in response to DNA damaging treatments. Results of 

similar experiments have not yet been reported for the remainder of the strains. 

Other stress responsive or DNA repair genes which have been identified or 

cloned include B. subtilis damage inducible (din) genes believed to be involved in 

competence development (57, 105, 106), a Streptococcus sanguis DNAse which is 

apparently required for the repair of methyl methanesulfonate or UVC generated DNA 

damage (101), the bacteriocin carotovoricin and pectinolytic enzyme pectin lyase of 

Erwinia carotovora subsp. carotovora (122, 218), the extracellular nuclease gene nucA 

of Serratia marcescens (8), and the recP gene encoding a product of about the same 

size as E. coli RecQ protein which is involved in recombination in Streptococcus 

pneumoniae (153). The S. marcescens nucA gene and the E. carotovora pnlA gene 

encoding pectin lyase are interesting in that they are regulated by the RecA protein 

present in the native species, but are not stress responsive in RecA+ E. coli (8, 121). 

Additional putative SOS-type genes have been identified in bacteria through an 

examination of the phenotype they impart when mutated. For example, the 

Streptomyces fradiae mcr-6 mutation appears to disrupt recA analogue gene sequences 

since it renders the host repair deficient, and since it can be complemented by the E. 

coli recA gene product (118). Similarly, mutations in Streptomyces cattleya (uvrl 

and uvr2; 71) and in Streptomyces lividans (rec-46; 88) have been isolated which 

diminish DNA repair and recombination. 

In bacterial species in which mutants and genetic clones have not yet been 

obtained, attempts have been made to define the recombination and repair capacity of 

the organism by directly assaying for these events. The purple bacteria Rhodobacter 
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capsulatus demonstrates UV dose- dependent mutagenesis of its chromosome, and 

increases the synthesis of a protein of M,. approximately 30,000 between 2 to 3 hours 

postirradiation (9). In other organisms, repair has primarily been assessed by the 

ability of the irradiated bacteria to reactivate and mutagenize UV irradiated 

bacteriophage. Using this approach, Weigle reactivation was demonstrated in 

Acinetobacter calcoaceticus (14), Bacillus thurengiensis (5), Haemophilus influenzae 

(135), and strains of the cyanobacteria Anabaena (99), but is not observed for P. 

aeruginosa (175), and Streptococcus pneumoniae (56). Salmonella typhimurium shows 

only a very low level of Weigle reactivation (139). While Weigle mutagenesis was 

not examined in the cyanobacteria, A. calcoaceticus (14), H. influenzae (135), P. 

aeruginosa (175), and S. pneumoniae (56) do not demonstrate Weigle mutagenesis, 

and B. thuringiensis (5) and S. typhimurium (139) exhibit only a very weak mutagenic 

response (5). It is generally believed that the UVC induced ability to mutate 

irradiated bacteriophage reflects chromosomal possession of sequences analogous to 

umuDC. Direct examination for chromosomal sequences capable of hybridizing to 

E. coli umuDC genes revealed the presence of these sequences in 3 out of 11 related 

species of enterobacteria examined (165). However, it is unclear whether the 

umuDC-like sequences of these strains encode functional proteins, since ~ 

typhimurium was recently demonstrated to encode a defective umuDC-like operon 

(179). 

A Search for SOS-Like Genes and Responses in P. aeruginosa 

Investigation of SOS-like genes and responses in bacteria other than E. coli 

clearly indicates that RecA is conserved (125). In contrast, UV inducible error free 
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and mutagenic repair do not appear to be present in every bacterial species. Potential 

LexA binding sites have been observed in some but not all recA promoters, and stress 

responsive genes which are damage inducible in the native species may or may not 

demonstrate stress responsive expression in E. coli. These experiments question the 

conservation of a RecA and LexA regulated SOS network of damage inducible genes 

outside of the genus Escherichia. Four different scenarios can be envisioned regarding 

SOS repair and recombination gene analogues: (i) these genes may not be conserved; 

(ii) SOS-like genes may be present in other species of bacteria, but may not be 

regulated; (iii) SOS-like genes may be regulated by RecA and LexA analogues; (iv) 

SOS-like genes may be regulated by gene products which are dissimilar to RecA and 

LexA. This question of conservation of SOS-like repair and recombination genes is 

important, since the ability of microorganisms to tolerate stresses including DNA 

damage may determine species survival in certain environments, and since a capacity 

for recombination may affect genetic diversity and evolution of bacterial populations 

(126). This question becomes even more relevant when considering microorganisms 

such as the autochthonous soil and water bacterium Pseudomonas aeruginosa, which 

has tremendous potential for use in environmental remediation, and as a genetically 

engineered microorganism (GEM). 

A search has been conducted for SOS-like responses and genes in P. 

aeruginosa. Initially this search was concentrated upon the identification of repair 

events in this species. The high sensitivity of P. aeruginosa as compared to E. coli 

to UVC radiation lead early investigators to question whether P. aeruginosa was even 

capable of DNA repair (94, 97). However, the isolation and phenotypic analysis of 

UV radiation and methylmethanesulfonate sensitive mutants of P. aeruginosa 
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suggested the presence of a repair system(s). Recombination deficient mutants were 

also identified which altered the ability of P. aeruginosa to recombine DNA .received 

through the processes of conjugation and transduction, and to establish and maintain 

a lysogenic relationship with temperate bacteriophages (54, 127). 

In subsequent experiments, host cell reactivation (or the ability of an unirradiated 

host to repair UVC irradiated bacteriophages), Weigle reactivation, Weigle 

mutagenesis, and chromosomal mutagenesis were investigated following exposure of 

P. aeruginosa to different stress agents. While a slight increase in chromosomal 

mutation frequency has been reported in some experiments (98, 175), compared to 

E. coli, P. aeruginosa appears to be relatively nonmutable by UVC radiation. P. 

aeruginosa also does not demonstrate Weigle reactivation and Weigle mutagenesis in 

response to UVC (175) and quinolone exposure (12). These results suggest that P. 

aeruginosa may lack functional genes analogous to umuDC required for the 

observation of DNA damage inducible repair and mutagenesis. In contrast, this 

species does manifest a norfloxacin inducible response which appears analogous to the 

induced replisome reactivation phenomenon observed in E. coli. Namely, treatment 

of P. aeruginosa with an intermediate concentration of norfloxacin results in inhibition 

of DNA replication followed by secondary or recovery DNA synthesis (12). 

Recovery synthesis is abolished by the inhibition of translation with chloramphenicol, 

which indicates this is an induced function. Similar to results reported for E. coli, 

P. aeruginosa recovery synthesis can be observed in the presence of a recA mutation, 

recA908 (91), which appears to result in constituitive RecA proteolytic activity. P. 

aeruginosa encodes a recA gene which has been cloned by two independent 

laboratories (89, 137). Aside from E. coli recA, the P. aeruginosa recA gene appears 
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to be the best studied of the recA gene analogues (126). The P. aeruginosa recA 

gene is capable of interspecific complementation of deficiencies present in RecA E. 

coli cells, as indicated by the ability of the analogue to restore recombinational 

proficiency, DNA repair, and ability to induce temperate prophage to host cells (89, 

90, 137). Unlike E. coli, P. aeruginosa recA is transcribed as two distinct mRNAs. 

These mRNAs appear to be stress inducible, and differ in the length of their 3' 

termini (69). However, the following properties of the P. aeruginosa recA gene and 

its encoded protein suggest it may act analogously to E. coli recA, as an effector of 

stress responsive gene expression: (i) the proteins demonstrate structural conservation 

(158); (ii) RecA synthesis in P. aeruginosa is increased in response to UVC and 

norfloxacin exposure (124); (iii) E. coli din::lacZYA gene fusions are induced by 

DNA damage in a recA mutant of E. coli when the cloned P. aeruginosa recA gene 

is present on a plasmid (90); (iv) introduction of the truncated recA gene or 

recA::lacZYA gene fusions from P. aeruginosa sensitizes RecA+ E. coli to UVC 

radiation (124). 

There is also some evidence which suggests that the P. aeruginosa recA gene 

product may be capable of interacting with a LexA-like repressor. Specifically, P. 

aeruginosa RecA protein mediates the lyric growth of lambda prophage in E. coli (89), 

and D3 and Fl16 prophages in P. aeruginosa (90) in response to DNA damaging 

agents, presumably via a cleavage type reaction analogous to that demonstrated for 

E. coli RecA protein against lambda and LexA repressors. Also, P. aeruginosa RecA 

protein complements recA deficiencies and maintains regulation of recA-dependent 

functions in a RecA E. coli host (89, 90, 137), which suggests that the P. aeruginosa 

RecA protein is capable of interacting with the E. coli LexA repressor. Experiments 
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have not yet directly addressed whether a lexA gene analogue 1s present in 

P.aeruginosa. 



CHAPTER III 

ISOLATION OF Tn3-lacZYA FUSIONS WITH NOVEL STRESS 

INDUCIBLE (sin) PROMOTERS OF PSEUDOMONAS AERUGINOSA 

There has been considerable recent interest in the use of P. aeruginosa for 

agricultural purposes (43), and for the biodegradation of environmental pollutants (43, 

55). The application of P. aeruginosa in open environments requires knowledge of 

the ability of this species to receive DNA from indigenous bacterial strains through 

the processes of transduction, conjugation, and transformation, to recombine this 

exogenous DNA into its genome, and to repair its cellular DNA when subjected to 

environmental stressors. 

In the enteric organism E. coli, many recombination and repair genes are 

regulated by the RecA and LexA proteins. P. aeruginosa encodes a recA gene which 

structurally and functionally resembles E. coli recA. The P. aeruginosa RecA protein 

is induced in response to exposure to UVC radiation and quinolones (124), is required 

for UV induction of P. aeruginosa temperate prophages (90), and mediates induction 

of lambda prophage (89) and din gene transcription in E. coli recA mutants (90). 

Howeverr, as discussed in a recent review by Miller et al. (126), it is not clear whether 

this gene regulates a response network analogous to the SOS network of E. coli. 

In an attempt to determine whether P. aeruginosa encodes SOS-like stress 

response genes, a promoterless lacZY A reporter gene was inserted into a P. aeruginosa 

28 
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chromosomal library (190) using the Tn3-lacZYA transposon TnJ-HoHol (183). TnJ

-HoHol is a very effective single-site transposon mutagen since it preferentially and 

randomly transposes into extrachromosomal elements. Furthermore, it can be used 

to generate either transcriptional or translational gene fusions, and it produces gene 

fusions which are inherently stable. The promoterless lacZY A reporter gene serves 

as an indicator for transcription of the sequences into which it has inserted in that 

expression of the chromosomal gene can be monitored by following changes in the 

specific activity of the lacZ gene product, ~-galactosidase. 

In the present chapter, the isolation of TnJ-lacZY A fusions with novel, stress 

responsive P. aeruginosa promoters is described. These fusions were identified by 

treating cells with quinolones and UVC radiation. These stress conditions were 

selected for investigation since they result in SOS gene induction in E. coli. 

Mate rials and Met hods 

Bacterial strains and plasmids 

The bacterial strains and plasmids used in this study are indicated in Table 2. 

Culture conditions 

E. coli and P. aeruginosa strains were routinely grown in Luria broth (LB; 

Gibco, Paisley, Scotland). Growth of liquid cultures was monitored using a Klett

Summerson Photoelectric Colorimeter (Klett Mfg. Co., New York, NY). Solid media 

contained 1.2% Bacto-agar (Difeo, Detroit, Ml). Unless otherwise indicated, all 

cultures were incubated at 37°C. Concentrations (ug/ml) of antibiotics used for E. 

coli selection were as follows: ampicillin, 75; carbenicillin, 150 (Pfizer, New York, 

NY); tetracycline, 12.5; kanamycin, 75; nalidixic acid, 60; nitrofurantoin, 2.0; 



Table 2.--Bacterial strains and plasmids 

Strain or plasmid 

Strains 

P. aeruginosa 
PA025 
RM265 

E. coli 
HB101 
C2110 
JM103 

Plasmids 

pCP13 
pCP16 

pHoHol 
pSShe 
pRK.2013 

pKML2 
pKML2003 

pBML2 
pBML7 

Relevant characteristics• Source or reference 

argFl 0 leu-10 
leu-10 recA102 

proA2 leuB6 thi-1 galK lacYl hsdR hsdM recA13 supE44 msL20 xyl mtl 
his rha polA Rif, Nal' 

thi-1 6(lac pro) sbcB15 endA hpsR4 supE [F;traD36 proAB laclqZ Am-15] 

IncPI replicon cosmid; Tc' Km' 
IncPI replicon cosmid derived from pCPl 3 by inverting the EcoRI 

polylinker and deleting the BamHI Km' fragment; Tc' 
pMB8 replicon plasmid carrying the Tn3-lacZY A transposon TnJ.-HoHol; tnpA, Ap' 
p15A replicon plasmid carrying the tnpA coding region of TnJ; Cm' 
pBR322 cointegrate plasmid carrying the mob and tra plasmid transfer 

functions of RK2; Km' 
pBR322 containing the P. aeruginosa recA gene on a 9.2 kb BamHI fragment 
pBR322 containing the P. aeruginosa recA gene on a 2.2 kb 

BamHI-Hindlll fragment 
pCP16::Tn3-lacZYA fusion constituitive for P-galactosidase expression; Tc', Ap'r 
pCPl 6::Tn3-lacZY A fusion expressing a low level of p-galactosidase 

activity; Tc', Ap' 

54 
PA025 

19 
183 
S. Kaplan 

K. Farrand 
K. Farrand 

183 
K. Farrand 
49 

89 
90 

This study 
This study 
This· study 



(Table 2:--Continued) 

Strain or plasmid 

Plasmid 

pBMIAOO 
pBML700 
pBML900 
pBMLlOO 
pBML200 
pBML300 
pBML600 
pBML800 
pBML1200 

Relevant characteristics" 

sinA::lacZY A fusion present in pCP16; Tc', Ap' 
sinB::lacZYA fusion present in pCP16; Tc', Ap' 
sinC::lacZY A fusion present in pCP16; Tc', Ap' 
uncharacterized sin::lacZYA fusion present in pCP16; Tc',Ap' 
uncharacterized sin::lacZY A fusion present in pCP16; Tc',Ap' 
uncharacterized sin::lacZY A fusion present in pCP16; Tc',Ap' 
uncharacterized sin::lacZYA fusion present in pCP16; Tc',Ap' 
uncharacterized sin::lacZYA fusion present in pCP16; Tc', Ap' 

Source or reference 

may contain the sinC::lacZYA fusion present in a larger insert than pBML900 

This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 
This study 

•Nomenclature and abbreviations are essentially those of Demerec et al. (45). Rif, Nal', Tc', Km', Ap' and Cm' refer to 
resistance to rifampicin, nalidixic acid, tetracycline, kanamycin, ampicillin/carbenicillin, and chloramphenicol, respectively. 
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chloramphenicol, 50. Nalidixic acid was prepared by suspending in 0.01 N NaOH, and 

adding 10 N NaOH until the antibiotic dissolved. Norfloxacin (Merck Sharp and 

Dohme Research Lab, Rahway, NJ) used in screening the transposon mutagenized 

library was dissolved in 0.01 N NaOH. 

P. aeruginosa exconjugants were selected on Pseudomonas Isolation agar 

(Difeo) supplemented with tetracycline (200 ug/ml) and/or carbenicillin (500 ug/ml), 

and containing 2% glycerol as a carbohydrate source. When used with P. aeruginosa 

strains, kanamycin was employed at a concentration of 600-800 ug/ml. 56/2 agar 

plates utilized in the construction of pCP16::Tn3-lacZYA controls were supplemented 

with tetracycline, carbenicillin, 0.2% glucose, and 0.03 mM thiamine. 56/2 medium 

contained 16.2 mM N~HP04'7H20, 72.6 mM KH2P04, 0.01 % MgS04, 0.005% 

(Nl!i)2S04, 0.0005% Ca(N03) 2, and 0.000025% FeS04• Pseudomonas Minimal Medium 

(PMM) used in triparental matings consisted of 0.7% K2HP04, 0.3% KH2P04, 0.05% 

sodium citrate, 0.1 % MgS04"7H20, and 0.1 % (NH4) 2SQ4• 

In screening the transposon mutagenized library, expression of f3-galactosidase 

was detected on lactose MacConkey agar (Difeo). To verify results of MacConkey 

agar screening, MacConkey agar was replaced with LB agar containing 40 ug/ml 

5-bromo-4-chloro-3-indolyl-f3-galactosidase (X-gal), or cultures on LB or MacConkey 

agar plates were sprayed with a 1: 10 dilution of a 10 mg/ml suspension of 

4-methylumbelliferyl-f3-D-galactoside (MUG) in dimethylsulfoxide and visualized after 

10 minutes for fluorescence using a long wave UV source (217). 

Restriction enzymes and chemicals 

Most of the restriction enzymes used were purchased from 

Boehringer-Mannheim (Indianapolis, IN). Less frequently the enzymes Sall, Bglll, 
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BamHI, Hind.III, and KpnI were purchased from the Amersham Corp. (Arlington 

Heights, IL) and New England Biolabs (Beverly, MA). For restriction enzyme 

incubations, low salt buffer was 10 mM Tris-HCl pH 7.5, 10 mM MgCl2, and 1 mM 

dithiothreitol. Medium salt buffer contained 10 mM Tris-HCl pH 7.5, 10 mM 

MgCl2, 50 mM NaCl and 1 mM dithiothreitol. High salt buffer consisted of 50 mM 

Tris-HCl pH 7.5, 10 mM MgCl2, 100 mM NaCl, and 1 mM dithiothreitol. BamHI 

buffer used for single digestion with BamHI was 10 mM Tris-HCl pH 8.0, 5 mM 

MgCl2, 100 mM NaCl, 1 mM 2-mercaptoethanol, and EcoRI buffer for single digestion 

with EcoRI contained 100 mM Tris-HCl pH 7.5, 10 mM MgCl2 , and 50 mM NaCL 

Digestions were allowed to proceed for at least 1 hour using the temperature and 

salt buffer recommended by Maniatis et al. (114), and containing a final DNA concen

tration of between 10 and 50 ug/ml digestion volume. 

X-gal was purchased from 5 Prime --> 3 Prime, Inc. (Paoli, Pennsylvania), 

and LE agarose from the FMC Corporation (Rockland, ME). Formamide was obtained 

from International Biotechnologies, Inc. (New Haven, CT). All other chemicals and 

antibiotics were purchased from the Sigma Chemical Co. (St. Louis, MO). 

Tn3-HoHol mutagenesis 

The target sequences for TnJ,-HoHol transposition consisted of a P. aeruginosa 

chromosomal library enriched for DNA fragments of 18 to 25 kilobase pairs (kb) in 

size cloned into the HindIII site of the tetracycline resistant cosmid pCP16 (190). 

Vector pCP16 (Figure 1) is a derivative of pCP13 (40) which possesses the EcoRI 

polylinker in the reverse orientation, and is deleted for the BamHI fragment containing 

the kanamycin resistance gene. The cosmid library packaged into phage lambda heads 

was infected into E. coli HBlOl also containing the plasmids pHoHol and pSShe 
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s 

BP Bg H 

Fig. 1. Restriction endonuclease map of pCP16: box = tetracycline resistance gene; 
triangle = polylinker; S = Sall; Bg = Bglll; B = BamHI; P = Pstl; H = Hind.III; R 
= EcoRI. 
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(183). Briefly, 20 ml of an overnight culture of HBlOl (pHoHoI, pSShe) grown in 

LB supplemented with carbenicillin, chloramphenicol, and 0.2% maltose was pelleted 

and resuspended in 10 ml of 10 mM MgS04• A volume of 200 ul of the resuspended 

cells was incubated with 100 ul of the cosmid infection mixture consisting of the 

cosmid library packaged into phage lambda heads for 15 min at 37°C. To this 

mixture, 3 ml of LB containing 10 mM MgS04 was added, and the culture was 

incubated an additional hour at 37°C. All incubations were performed without shaking 

to prevent disruption of adsorbed phage particles. The culture was plated directly 

onto LB agar containing carbenicillin, chloramphenicol, and tetracycline. Colonies 

resulting from the infection were resuspended in a minimal volume of LB supple

mented with the same antibiotics. This mixed culture became the donor in a 

triparental mating also involving HB 101 (pRK2013) and the polA recipient strain 

C2110. The mixture resulting from this triparental mating was plated onto LB agar 

containing nalidixic acid, carbenicillin, and tetracycline to select for C2110 containing 

Tn].-HoHoI insertions into pCP16 vector and chromosomal insert sequences. The 

plasmids pHoHoI, pSShe, and pRK2013 are incapable of being stably maintained within 

C2110 since all depend upon the polA gene product DNA polymerase I for their 

replication. The resulting colonies were resuspended, and the transposon mutagenized 

library was mobilized into the RecA + P. aeruginosa strain PA025 in a triparental 

mating. 

Triparental matings 

Triparental matings were conducted using a modification of the method of 

Ruvkun and Ausubel (156). E. coli donor cultures and HBlOl containing pRK2013 

were grown at 37°C to 40-60 Kletturo units (107-la8 CFU/ml) in appropriately 
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supplemented LB. One milliliter each of donor and conjugation helper were mixed 

with the same volume of recipient maintained for 10-20 hours preceding the 

experiment at either 37°C (E. coli recipients) or 43°C (P. aeruginosa) recipients. To 

ensure inactivation of the restriction system of P. aeruginosa (154), these cultures 

were maintained at 43°C under low oxygenation conditions (i.e. 15 to 20 ml of culture 

was grown without shaking in a 30 ml capacity test tube). Mating mixtures were 

filtered through a 0.45 um pore size cellulose nitrate filter (Nalge Company, 

Rochester, N.Y.). The filter was placed on LB agar plates and incubated at 37 °C for 

4 to 24 h. Following incubation, filters were recovered and confluent growth was 

resuspended in 2-4 ml of LB or a 1: 1 mixture of LB and PMM. The resuspended 

mixture was plated onto selective medium and incubated at 37 °C for one to two 

days. 

Transformations 

E. coli was made competent for transformation using a modified CaCI2 protocol 

(42). Specifically, a 40 ml culture LB was grown to 40-50 Klet4ro units (approx

imately 108 CFU/ml) was pelleted at 5,000 rpm, 4 °C for 5 min using a SS34 rotor 

in a Sorvall RC-SB centrifuge. The cell pellet was resuspended in 20 ml of ice cold 

50 mM CaCl2, and maintained on ice for 20 min. Cells were pelleted again under 

the same conditions, and resuspended in 2 ml of ice cold 100 mM CaC12 for 5 min. 

Competent cells to which glycerol had been added to a final concentration of 10% 

were routinely aliquotted into microfuge tubes, frozen quickly in a dry ice/ethanol 

bath, and thawed when required for transformation. This treatment appeared to result 

in an increased efficiency of transformation. 
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At the time of transfonnation, 0.1 ml cells was added to DNA in a prechilled 

5 ml polystyrene tube. The amount of DNA used was typically less than 50 ng in 

a volume of water or TE (10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA) between 10 

and 100 ul. Cells and DNA were gently mixed and incubated on ice for 10 min. 

The cultures were heat treated either by incubating at room temperature for 10 min, 

or placing cultures in a 42 °C water bath for 1.5 min. Following heat treatment, 

0.3-1.0 ml LB was added, and the cultures were incubated at 37 °C with gentle 

shaking for 1 h. Cells were plated directly onto selective medium. 

Ultraviolet irradiation 

Bacteria were irradiated using a General Electric germicidal lamp with a ~ 

of 254 nm. The flux was measured with a UVX radiometer (Ultra-Violet Products, 

San Gabriel, CA). Irradiation and all subsequent manipulations were carried out 

under amber light. Liquid cultures and plates not maintained under amber light were 

wrapped in aluminum foil to prevent photoreactivation. In screening the transposon 

mutagenized library, colonies replicated onto MacConkey agar were allowed to grow 

4-6 h before irradiating. This treatment resulted in a greater number of cells exposed 

to UVC radiation, and facilitated detection of induction. 

Isolation of plasmid DNA 

Two approaches were employed in the isolation of small quantities of 

extrachromosomal DNA. The alkaline lysis method of !sh-Horowitz (114) was 

routinely used to isolate better quality DNA which could conceivably be subjected 

to short term storage in the refrigerator. A modified alkaline lysis method ( 129) was 

used less frequently with only E. coli strains when isolated DNA was not to be 

stored. Protocols were followed as indicated, with the exception that in the alkaline 
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lysis method, phenol:chloroform extraction of DNA isolated from P. aeruginosa was 

performed two to three times. Furthermore, using both approaches, DNA yields were 

increased by doubling the time of the last two centrifugations. 

A large scale alkaline lysis protocol (114) was followed for the isolation of 

relatively pure DNA from culture volumes of 250 ml or more. This protocol was 

modified in that the recommended final isopropanol precipitation step was not 

performed. Instead, the . supernatant resulting from potassium acetate precipitation was 

transferred to separate 50 ml tubes, and an equal volume of a 1: 1 mixture of phenol 

and chloroform was intermixed by vortexing. The phases were separated by 

centrifugation for 15 min at 6,000 rpm in a Sorvall GLC-2B centrifuge. 

Phenol:chloroform extraction was repeated at least one more time. Following the last 

extraction, one to two volumes of ethanol were added to the supernatant, and the 

mixture was centrifuged for at least 30 min at 6,000 rpm in a Sorvall GLC-2B 

centrifuge. The resulting pellet was rinsed twice with 1.0 ml 70% ethanol, and dried 

at 65 °C. Up to 1.0 ml of water containing Ribonuclease A was added, and the 

pellet was allowed to hydrate at least 30 minutes before transferring to a different 

tube. 

When necessary, extrachromosomal DNA was purified on a cesium chloride 

gradient. DNA to be cesium purified was isolated using the unmodified large scale 

alkaline lysis protocol (114). Cesium chloride and a 10 mg/ml solution of ethidium 

bromide were added to the isolated DNA in the amounts of 1 gram/ml DNA solution 

and 80 ul/ml cesium solution, respectively. This solution was centrifuged at 20°C 

either for 40-60 h at 40,000 rpm using a Ti50 rotor in a Beckman L5-65 ultrac

entrifuge, or for 16 h at 100,000 rpm using a TLl00.2 rotor in a Beckman TL-100 
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ultracentrifuge. The gradient was examined under long wave UV light to identify 

the closed circular plasmid DNA band. This band was collected and ethidium 

bromide was removed through repeated extraction of the DNA solution with 

isopropanol saturated with 20X SSC buffer (3 M NaCl, 0.3 M sodium citrate, pH 7). 

The sample was diluted one to four with 50 mM Tris (pH 8.0), and a one-tenth 

volume of 3 M potassium acetate was added to facilitate precipitation. The plasmid 

DNA was precipitated by the addition of one volume of 95% ethanol and overnight 

incubation at -20"C. Centrifugation of this mixture at 7 ,000 rpm for 45 minutes using 

a HB4 rotor allowed the recovery of a DNA pellet which was washed with a small 

volume of 70% ethanol and dried at 65 °C. This pellet was resuspended in TE or 

water. 

Gel electrophoresis and fragment electroelution 

DNA fragments were separated by horizontal agarose gel electrophoresis using 

TBE buffer consisting of 89.2 mM Tris base pH 8.0, 90 mM boric acid, and 2.5 mM 

EDTA. Unless otherwise specified, gels contained 0.7% agarose and 0.7 ug ethidium 

bromide/ml TBE buffer. DNA samples were loaded into gel wells with 0.25 volumes 

of tracking dye consisting of 30% glycerol, 7% sodium lauryl sulfate, and 0.07% 

bromophenol blue. Lambda DNA along with Hindlll and HindIII-EcoRI digests of 

lambda were used as molecular weight standards. Electrophoresis was conducted by 

applying between 15 and 100 volts for periods of 2.5 to 15 h. DNA patterns were 

visualized by examining under short wave UV light, and recorded by photographing 

the gel. 

Gel bands containing DNA fragments to be electroeluted were carefully excised 

from the rest of the gel while visualizing using a long wave UV source to minimize 
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DNA shearing. Electroelution was carried out in 0.5X TBE buffer at 100 volts for 

about an hour using an Analytical Electroeluter model 46000 (International 

Biotechnologies, Inc., New Haven, CT). DNA fragments were recovered in conductive 

salt bridges consisting of about 150 ul of 7.5 M ammonium acetate to which 

bromophenol blue had been added to facilitate visualization of the salt bridge. The 

ammonium acetate-DNA solution was transferred to a microfuge tube also containing 

1 ml of 95% ethanol. To this tube, 1 ul of a solution of 5 mg phenol:chloroform 

extracted tRN Nml was added to facilitate precipitation. DNA precipitation was 

carried out by immersing the microfuge tube in crushed dry ice for 10-15 min, and 

centrifuging an equal length of time. The pellet was carefully washed with 70% 

ethanol, recentrifuged 10 min and dried at 65 °C. A total of 5 to 50 u1 of water was 

added and the pellet was allowed to hydrate at least 15 min before quantitating the 

yield and purity of electroeluted fragment on an agarose gel. 

Preparation of radioactive probes and blot hybridization 

Restriction endonuclease digests of plasmid (0.1-1.0 ug/lane) or chromosomal 

(about 10 ug/lane) DNA separated on agarose gels were transferred to a BA85 

nitrocellulose filter (Schleicher and Schuell, Inc., Keene, NH) essentially according to 

the method of Southern ( 181 ). Processing of gels before transfer was carried out at 

room temperature using a rotary shaker to ensure mixture agitation. DNA in gels 

was fragmented to facilitate transfer of large fragments by continual exposure of gels 

for 15 min to short wave UV, followed by immersing the gels in 0.25 N HCL (2.5 

ml acid solution/ml gel) for an equal length of time. Denaturation of fragments was 

achieved by soaking the gels 30 min in an alkaline solution (2 ml solution/ml gel) 

of 1.5 M NaCl and 0.5 M NaOH. Gels were neutralized in a solution of 1.5 M 
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NaCl, 1.0 M Tris pH 7.4 (2 ml buffer/ml gel) for one hour. Capillary transfer of 

DNA to nitrocellulose using a lOX SSC buffer (1.5 M NaCl, 150 mM sodium_ citrate) 

was allowed to proceed about 15 h. DNA was adhered to the filters by incubating 

under vacuum at 65-70°C for 2 to 3 hours. 

DNA was labelled with 32P-dCTP (3000 Ci/mmol, New England Nuclear 

Medicine, Boston, MA) using a nick translation kit purchased from either the 

Amersham Corporation or Boehringer-Mannheim Biochemicals according to the 

recommendations of the manufacturer. A spun column procedure (114) was used to 

separate the labelled probes from unincorporated nucleotides. Prehybridization of 

filters was performed for at least 4 h at 42°C in a reaction volume of 150 u1 

prehybridization solution (M. Kelley, personal communication) per square centimeter 

of filter. The prehybridization solution was filtered through a 0.45 um pore size 

membrane filter, and contained 20% sodium phosphate buffer, 5X Denhardt's solution, 

200 ug/ml sheared and denatured calf thymus DNA, 1 % SDS, and 50% formamide. 

Whereas the sodium phosphate buffer consisted of 5 M NaCl, 50 mM NaP04 pH 6.5, 

and 0.5% tetrasodium pyrophosphate, lOOX Denhardt's was 0.02% each of 

polyvinylpyrrolidone, bovine serum albumin, and Ficoll 400. Formamide was 

deionized prior to use by refrigerating overnight with a gram of Amberlite MB-3 for 

every 10 ml of formamide, and filtering at least twice through a Whatman #1 filter 

(Whatman, Maidstone, England). Either one half or the entire volume of labelled, 

denatured probe was added to the filter in prehybridization solution, and hybridization 

was allowed to proceed approximately 15 hat 42 °C. Radioactive filters were washed 

with a solution of 0.2X SSC and 1.0% SDS one time for 15 min at room 

temperature, and four times for 30 min at 65°C. Autoradiographs were taken at -80°C 
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using Kodak XAR-5 film and when necessary, intensifying screens. Filters were 

stripped by boiling one to three times for 20 min in a mixture containing O.OlX SSC 

and 0.1 % sodium lauryl sulfate. 

Investigation of the ability of sin::lacZYA fusions to 

complement a P. aeruginosa recA mutation 

For complementation tests, sin::lacZYA plasmids were mobilized into the P. 

aeruginosa recA102 host RM265. These strains along with RM265 were replica 

plated and UVC irradiated. UV sensitivity was compared to the RecA+ strain 

PA025, and PA025 also containing the inducible plasmids. 

Results 

Construction of a transposon mutagenized chromosomal library and 

establishment in a RecA + P. aeruginosa genetic background 

Tn3-lacZYA insertions in a P. aeruginosa chromosomal library were generated 

as described in Materials and Methods, and as outlined in Figure 2. Infection of 

HB 101 (pHoHol, pSShe) with the cosmid library packaged into phage lambda heads 

yielded at least 5,000 independent colonies, which corresponds to a 99% probability 

of representing the entire P. aeruginosa genome five to six times (114). To increase 

the chances of obtaining insertions at each chromosomal site, and of establishing the 

entire mutagenized library in P. aeruginosa, the resuspended library present in 

HB 101 (pHoHol, pSShe) was divided into five separate pools designated L4A, L4B, 

L4C, L4D, and L4E. Transposon mutagenized plasmids represented in these pools 

were mobilized en masse into E.coli strain C2110 to isolate these plasmids from 

pHoHol and pSShe. At least 30,000 colonies were obtained from each mating 
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Fig. 2. Construction of a transposon mutagenized P. aeruginosa chromosomal library 
and mobilization into RecA+ PA025: triangle = TnJ-HoHoI; rectangle = cloned 
chromosomal insert; thin line = vector sequences. The procedure followed is described 
in Materials and Methods. 
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involving a separate library pool. Transconjugants were again resuspended in 

separate library pools designated L5A, L5B, L5C, LSD, and L5E, and the library was 

mobilized into RecA+ P. aeruginosa PA025. Successful mobilization was achieved 

for pools L5A and LSE, which yielded about 8,000 transconjugants each. These 

transposon mutagenized libraries in PA025 were designated L6A and L6E, respect

ively. 

Construction of Tn3-lacZYA controls 

Tn3-laczy A insertions into pCP16 were obtained in a similar fashion as the 

transposon mutagenized libraries. Specifically, HB101 (pHoHol, pSShe) was 

transformed with pCP16, and the resulting mixed culture was mated with HBlOl 

(pRK2013) and C2110 to select for transposon insertions into pCP16. The 

transconjugants produced in this mating represent a library of pCPl 6 into which single 

insertions of Tn1-HoHol have occurred at various sites. This pCP16::Tn1-HoHol 

gene fusion library was mobilized into the Lac· strain JM103 using a triparental 

mating. Plasmids expressing high (pBML2) and low (pBML 7) levels of ~-gala

ctosidase were identified and mobilized by triparental mating into PA025. Restriction 

maps of pBML2 and pBML7 are presented in Figure 3. 

Screening the transposon mutagenized library for stress 

inducible gene expression 

Before the L6A or L6E libraries could be screened for stress responsive 

behavior, parameters for screening conditions needed to be determined since the 

relationship between gene induction and cell killing in response to different stress 

treatments is not known for P. aeruginosa. This was accomplished by making use of 

the Tn3-lacZY A positive control pBML2, and negative control pBML 7. These 
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Fig. 3. Restriction endonuclease map of Tn}-HoHoI and Tn}::lacZYA controls 
pBML2 and pBML7. (A) Tn}-HoHol, (fil pBML2, and (Q pBML7: triangle = 
Tn}-HoHol; large arrow = direction of transcription of laczy A; small arrow = 
direction of transcription of bla; S = Sall; Bg = Bglll; K = Kpnl; B =BamHI; R = 
EcoRI polylinker of pCP16. 
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controls and a random sample of the L6A library were replicated onto a series of 

MacConkey agar plates which contained or were subsequently exposed to different 

concentrations of inducing agents. In this manner, the level of each stress agent 

resulting in cell killing was determined. Results of these experiments (Table 3) 

indicated that cell killing of strain P A025 on Mac Conkey agar becomes significant 

at UV exposures greater than 20 J/m2
, and at nalidixic acid concentrations between 

100 and 150 ug/ml. While PA025 appears capable of growth in the presence of 

higher concentrations of norfloxacin, at a concentration greater than 0.40 ug/ml, 

buffering of the medium occurs such that differences in f3-galactosidase expression 

cannot be detected. 

In the actual screen of the transposon mutagenized library, nalidixic acid 

concentrations of 75 and 125 ug/ml, norfloxacin concentrations of 0, 0.25, and 0.37 

ug/ml, and UV exposures of 5, 10, 15 and 30 J/m2 were employed. The screens 

were carried out by spreading the L6A library onto supplemented Luria agar, and 

replicating onto a series of master plates. These master plates were then used to 

replicate control or experimental MacConkey agar plates, with the experimental plates 

being those containing or subjected to stress agents. A total of greater than 25,000 

colonies were screened in this fashion. In the initial screens, 327 putative stress 

inducible colonies were obtained, with 215 and 73 being detected in the nalidixic acid 

and norfloxacin screens respectively, and 39 identified in the UV screen. Repeat 

testing narrowed these inducible colonies down to about 50 colonies which appeared 

to increase their production of f3-galactosidase in response to UV and quinolone 

exposure. These colonies were purified by streaking out cultures for isolated colonies 

two to three times, and checking isolates for inducible behavior. 



Table 3.--Determination of parameters for screening conditions 

MacConkey agar 
. 

Random Library 
containing: PA025(pBML2) PA025(pBML7) 

0 ug/ml Nal 
50 ug/ml Nal + 

100 ug/ml N al + +/-
150 ug/ml N al +/- PG 
200 ug/ml N al PG PG 
250 ug/ml N al NG NG 

0 J/m2 UV + 
2.5 J/m2 UV + 
5.0 J/m2 UV + 

10.0 J/m2 UV + 
15.0 J/m2 UV + PG 
20.0 J/m2 UV PG PG 

0 ug/ml Nor + 
0.25 ug/ml Nor + 
0.30 ug/ml Nor + 
0.40 ug/ml Nor +/- +/-
0.50 ug/ml Nor +/- +/-

Symbols: + indicates red on MacConkey agar 
- indicates white on MacConkey agar 

+/- indicates a light pink color on MacConkey agar 
PG indicates poor growth 
NG indicates no growth 

• Plates also contained carbenicillin and tetracycline. 

sample 

+/-
PG 
PG 
NG 

PG 

+/-
+/-
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Comparison of restriction digests allows the recognition of eight different gene fusions 

Analysis of the BamHI, PstI, BamHI-Hind.III, Bglll- PstI, and BglII-HindIII 

restriction patterns of the isolated inducible plasmids revealed that many were 

identical. Eight different digestion patterns were recognized among nonidentical 

cosmids. However, certain restriction pattern similarities apparent between some of 

these nonidentical cosmids indicated that they may be comprised of overlapping 

regions of chromosomal DNA, or may even contain the reporter gene linked to the 

same promoter. Relationships between restriction patterns of isolated plasmids are 

given in Table 4. 

Determination of restriction sites preceding the reporter 

gene in isolated inducible plasmids 

Restriction sites located within 12 kb upstream of the inserted transposon were 

mapped in each of the stress responsive plasmids to determine whether similarities in 

obtained restriction patterns reflected reporter gene fusions with the same promoter. 

In this approach, the Kpnl-Bglll lacZYA-containing fragment of pHoHol (Figure 3, 

Panel A) was radioactively labelled. The enzymes B gill, BamHI, Pstl, HindIII, and 

Sall all lack restriction sites within this Tn2,-HoHol fragment. In a series of 

experiments, the probe was hybridized to Bglll, BglII-BamHI, BglII-PstI, Bglll-Hind.III, 

and Bglll-Sall digests of the eight inducible plasmids. Results of a representative 

hybridization experiment are presented in Figure 4. The size of the fragments detected 

by the lacZY A probe was used to determine the distance from the transposon bglll site 

to upstream restriction sites. Figure 5 summarizes results of the Southern hybridization 

experiments which were analyzed in this fashion. These data clearly demonstrate that 



Table 4.--Comparison of restriction patterns of plasmids possessing stress responsive gene fusions 

Cos mid 

pBML800 

pBMLlOO 

pBML200 

pBML300 

pBML400 

pBML600 

pBML700 

pBML900 

Description 

characteristic BamHI, BamHI-Hindlll, Pstl, Bglll-Pstl, and Bglll-Hindlll 
restriction patterns 

restriction patterns are similar to pBML800 although extra Pstl bands 
are present and a different Bglll-Pstl pattern is obtained 

characteristic BamHI, BamHI-Hindlll, Pstl, Bglll-Pstl, and Bglll-Hindlll 
restriction patterns 

restriction patterns are similar to pBML200 although extra BamHI, Pstl, 
and BamHI-HindIII bands are present 

characteristic BamHI, BamHI-Hindlll, Pstl, Bglll-Pstl, and Bglll-Hindlll 
restriction patterns 

restriction patterns are similar to pBML400 although extra BamHI, Pstl, 
and BamHI-HindIII bands are present and the Bglll-Pstl pattern is different 

restriction patterns are similar to pBML400 although different Bglll-Pstl 
and BgllI-Hindlll patterns are obtained 

characteristic BamHI, BamHI-Hindlll, Pstl, Bglll-Pstl, and Bglll-Hindlll 
restriction patterns 

Isolated constructs 

36 or 4, 10, 18, 20, 
22, 31, 45 

1 or 16, 19, 21, 37, 
46 

2 or 394, 469, 524 

3 

35 or 42, 44, 48 

9 

11 or 5, 7, 8, 13, 
14, 15, 17, 32, 33, 
34, 38, 39, 41, 43 

28 or 29" 

"Isolated cosmid 29 (pBML1200) may possess the sinC fusion in a larger insert as discussed in Appendix B 
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23 kb 

12 kb 
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• • 
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Fig. 4. Southern analysis performed to determine restncuon sites preceding 
TnJ-HoHol in isolated inducible constructs. ® Ethidiurn bromide stained gel, @) 
autoradiograrn. Lanes 1-.!l: BglII-Sall digests pBMLlOO, pBML200, pBML300, 
pBML800, pBML400, pBML600, pBML700, pBML800, pBML900, pBML400, and 
pBML800, repectively; lane 13, lambda HindIII fragments in low salt buffer. 
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p H 
PS<I pBML 100 I I 

B p H 
621 pBML800 I I I 

1 kb 
------------------------------- H 

SP B 
~ pBML200 I I I 

PB Pa p8ML300 I 

--~--------------------------

PBS H 
PO p8ML400 I I I I 

p SB H rn p8ML600 I I I I 
p H 8 s 

ITT p8ML700 I I I ' 
-------~----------------------

p SHB 
0 p8ML900 I I I I 

Fig. 5. Summary of restriction sites within 12 kb upstream of the inserted transposon: 
rectangle = start of Tn3-lacZYA sequences; P = Pstl; B = BarnHI; S = Sall; H = 
HindIII. Because of the manner in which the restriction maps were constructed, the 
locations of restriction sites farther upstream of the transposon insertion are subject 
to greater error. 
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the eight gene fusions differ in restriction sites preceding the reporter gene, and nost 

likely represent fusions with unique P. aeruginosa promoters. 

Out of the eight inducible plasmids identified, the sinA::lacZYA-containing 

plasmid pBML400, the sinB::laczyA-containing plasmid pBML700, and the 

sinC::lacZYA-containing plasmid pBML900 were selected for further study based upon 

the apparent strongly inducible behavior of pBML400 and pBML700, and based upon 

the unique restriction patterns exhibited by pBML900. The plasmids were established 

in a recA E. coli background to minimize recombination. 

Isolated gene fusions are not recA::lacZYA fusions 

Since the recA gene of P. aeruginosa has been demonstrated to mediate 

its own UVC and quinolone inducible gene expression (124), isolated gene fusions 

could conceivably represent the reporter gene linked to the recA promoter. This 

possibility was investigated by performing Southern analysis of all gene fusions using 

the 2.2 kb BamHI-HindIII fragment of pKML2003 (90) containing the P. aeruginosa 

recA gene as a probe. The recA probe failed to hybridize to the isolated inducible 

plasmids. Hindlll-Kpnl promoter-containing probes generated from the sinA and sinC 

gene fusions, and a Sall-Kpnl probe generated from sinB::laczy A were also 

hybridized to a BamHI-HindIII digest of plasmid pKML2 (89), which contains the P. 

aeruginosa recA gene in a larger, 9 kb chromosomal insert (89). Each sin probe 

failed to hybridize to recA, but did hybridize to a 5.5 kb fragment which occurs 

immediately upstream of the recA promoter. This hybridization may have been due 

to the presence of about 200-500 basepairs of the upstream end of Tn,2-HoHol in 

each of the sin probes, since the labelled Bglll lacZYA fragment of pBML7 (Figure 

3, Panel A) also detected the same fragment. While it was not possible to establish 
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sinC::lacZYA in a recA P. aeruginosa host, both sinA::lacZYA and sinB::lacZY A 

containing plasmids failed to complement the UV sensitivity of a P. aeruginosa 

recA102 mutant. 

Discussion 

A mutagenized P. aeruginosa chromosomal library containing Tn.2,-HoHoI 

insertions at different chromosomal sites was successfully constructed and mobilized 

into the RecA+ P. aeruginosa strain PA025 to allow the isolation of genes which 

respond to various stresses by increasing their level of expression. This library was 

screened under conditions of UVC and quinolone exposure, and fusions linking a 

~-galactosidase reporter gene to stress responsive promoters of P. aeruginosa were 

identified. These sin fusions do not represent the reporter gene linked to recA or 

contain this gene within their insert, since all fusions failed to hybridize to P. 

aeruginosa recA. These results are significant since they clearly indicate that P. 

aeruginosa possesses genes other than recA whose expression increases in response to 

stress agents, and that fusion of a reporter gene to these novel stress responsive genes 

have been obtained. 

Comparison of restriction digests of isolated plasmids suggested the existence 

of eight distinct stress inducible gene fusions. Some of the plasmids demonstrated 

similar restriction digestion patterns which may reflect their possession of overlapping 

regions of chromosomal DNA, or organization of sin genes in operons. Restriction 

sites up to 12 kb upstream of the inserted reporter gene were different in the eight 

gene fusions. These results suggest that the eight sin::lacZYA plasmids most likely 

represent unique gene fusions. Three gene fusions, sinA::lacZY A, sinB: :lacZY A, 
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and sinC::lacZY A were selected for further investigation of stress responsive behavior, 

which is described in the next Chapter. 



CHAPTER IV 

CHARACTERIZATION OF THE STRESS RESPONSIVE BEHAVIOR 

OF sinA, sinB AND sinC GENE FUSIONS 

Bacteria respond to environmental and chemical stressors by inducing 

characteristic sets of proteins specific for each stress (Table 1). Some networks are 

capable of responding to alternative forms of stress. For example, the heat shock 

response can be precipitated by exposure of E. coli to quinolones and UVC radiation, 

which primarily induce an SOS response (194). From an ecophysiological point of 

view, heat shock may be a common environmental stressor of soil and water micro

organisms. Based upon these considerations, the ability of sin::lacZYA gene fusions 

to respond to stresses including heat shock, UVC radiation, and norfloxacin exposure 

was investigated. This study was carried out to determine whether sin genes 

correspond to P. aeruginosa heat shock genes, or potentially represent analogues of E. 

coli SOS recombination and repair genes. 

Mate rials and Methods 

Bacterial strains and plasmids 

The bacterial strains and plasmids used in this study are indicated in Table 

5. 
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Table 5.--Bacterial strains and plasmids 

Strain or plasmid Relevant characteristics• 

Strains 

P. aeruginosa 
PA025 
OT684 

E. coli 
HB101 
AB1157 

argFlO leu-10 
leu-1 l ys-1 res-4 

proA2 leuB6 thi-1 galK lacYl hsdR hsdM recA13 supE44 rpsL20 xyl mtl 
argE3 his-4 leuB6 proA2 thr-1 thi-1 galK2 lacYl Sm-31 supE44 ara-14 

xyl-5 mtl-1 tsx-33 
Plasmids 

pRK2013 pBR322 cointegrate plasmid carrying the mob and tra plasmid transfer 
functions of RK2; Kmr 

pBMlAOO sinA::lacZY A fusion present in pCP16; Tc\ Apr 
pBML700 sinB::lacZYA fusion present in pCP16; Tcr, Apr 
pBML900 sinC::lacZYA fusion present in pCP16; Tcr, Apr 
pRK2013:501 pRK2013 containing an insertion of Tn501; Kmr, Hgr 
pBluescript ColEl replicon phagemid derived from pUC19; Tc', Apr 

sin::lacZYA subclones 
pBMlAOOl Bglll-Pstl religation product of pBML400; Tcr, 
pBML4010 Hindlll religation product of pBMlAOO; Tc\ Apr 
pBML4300 Sall religation product of pBML400; Tcr, Apr 
pBML7019 BamHI religation product of pBML700; Tcr, Ap' 
pBML7070 Hindlll religation product of pBML700; Tcr, Ap' 
pBML7300 Sall religation product of pBML700; Tc\ Apr 
pBML9001 Bglll-Pstl religation product of pBML900; Tcr 

Source or reference 

54 
150 

19 
37 

49 

This study 
This study 
This study 
M.Davidson 
M.Kelley 

This study 
This study 
This study 
This study 
This study 
This study 
This study 

Vt 
0\ 
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Culture conditions and chemicals 

Unless indicated otherwise, all strains were incubated at 37°C. HgC12 was 

used for selection in E. coli and P. aeruginosa at final concentrations of 15-35 ug/ml. 

For the assay of ~-galactosidase expression, bacteria were grown in PMM sup

plemented with 0.4% glucose, 0.2% casamino acids (Difeo) and either 500 ug 

carbenicillin/ml or 200 ug tetracycline/ml. Z buffer used in the ~-galactosidase 

assay contained 60 mM Na2HPQ4·7H20, 40 mM NaH2P04H 20, 10 mM KCl, 1 mM 

MgS04H 20, 50 mM 2-mercaptoethanol, and had a final adjusted pH of 7 .0. 0-

rtho-nitrophenyl-~-D-galactoside (ONPG) used as substrate in the assay reaction was 

solubilized in a 0.1 M sodium phosphate buffer of pH 7.0. 2-mercaptoethanol was 

obtained from Mallinckrodt (Saint Louis, MO). Exonuclease III and Nuclease SI were 

purchased from Promega (Madison, WI), whereas Klenow DNA polymerase, calf 

intestinal alkaline phosphatase (CIAP), and T4 DNA ligase were purchased from 

Boehringer Mannheim. Ultrapure nucleotides used in Exonuclease III/Nuclease SI 

digestion were obtained from Pharmacia (Pleasant Hill, CA). 

Determination of cellular 13-galactosidase levels 

~-galactosidase activity was determined essentially according to the method 

of Miller (123). Cultures grown at 37°C to about 40 Klet4,60 units were divided. 

Some fractions were exposed to different inducing treatments including incubation at 

43°C, the addition of the quinolone norfloxacin, and exposure to various doses of UVC 

radiation. The control fraction did not receive any inducing treatment. At various 

intervals, duplicate 1.5 ml samples were removed and placed on ice for a minimum 

of 20 min. ~-galactosidase was assayed by withdrawing 0.2 ml or 0.5 ml cells 

(depending upon the anticipated level of ~-galactosidase to be measured) to 0.8 ml or 



(Table 5.--Continued) 

Strain or plasmid Relevant characteristics" Source or reference 

sin::lacZY A subclones 
pBML9011 BamHI religation product of pBML900; Tc' 
pBML9090 Hind.Ill religation product of pBML900; Tc', Ap' 

Tn501 mutagenized plasmids 
pBMI.AOll inducible pBML4010::Tn501 construction; Tc', Ap', Hg' 
pBML4012 inducible pBML4010::Tn501 construction; Tc', Ap', Hg' 
pBML4013 inducible pBML4010::Tn501 construction; Tc', Ap', Hg' 
pBML4017 noninducible pBML4010::Tn501 construction; Tc', Ap', Hg' 
pBML4018 noninducible pBML4010::Tn501 construction; Tc', Ap', Hg' 
pBML4019 noninducible pBML4010::Tn501 construction; Tc', Ap', Hg' 

pBluescript subclones 
pBML4200 HindIIl-BamHI fragment of pBML400 containing sinA::lacZYA subcloned into 

pBluescript SK; Ap' 
pBML4240 Hindlll-Bglll fragment of pBML4200 containing sinA::lacZYA subcloned into 

pBML4211 
pBML4212 
pBML4213 

the Hindill and BamHI sites of pBluescript SK; Ap' 
deletion derivative of pBML4240; Ap' 
deletion derivative of pBML4240; Ap' 
deletion derivative of pBML4240; Ap' 

•Nomenclature and abbreviations are essentially those of Demerec et al. (45). Tc', Km', Ap', and Hg' refer to 
resistance to tetracycline, kanamycin, ampicillin/carbenicillin and mercury, respectively. 

This study 
This study 

This study 
This study 
This study 
This study 
This study 
This study 

This study 

This study 

This study 
This study 
This study 

Ul 
-....J 



59 

0.5 ml Z buffer in a 2.0 ml microfuge tube. Cells were lysed by the addition of 

three to four drops of 0.1 % sodium lauryl sulfate and about 5 drops chloroform, 

followed by a 10 min incubation at room temperature. The assay reaction mixture 

was warmed by incubating in a 28-29°C water bath for 5 min. The reaction was 

initiated through the addition of 0.2 ml of a 4 mg/ml solution of ONPG, and was 

allowed to proceed 15 min at the same temperature. Termination of the reaction was 

accomplished by shifting the pH to 11 through the addition of 0.5 ml of a 1 M 

solution of N8.i,C03• Cell debris was removed from the assay solution by centrifuging 

in an Eppendorf centrifuge for 2 min. The absorbance of this solution at 420 nm was 

determined, taking care not to disturb the cell pellet. The remainder of the 

withdrawn sample was used to determine cell density by recording the absorbance 

at 600 nm. A Gilford Response UV-Vis spectrophotometer was used to measure 

absorbance. All aliquots were assayed within 4.5 h following removal from culture. 

P-galactosidase activity was determined according to the formula: 

Units of p-galactosidase = A4w x 1000 I AWJ x T x V 

where A4w is the absorbance at 420 nm, 
AWJ is the absorbance at 600 nm, 
T is the reaction time (15 min), and 
V is the volume of cells assayed (0.2 or 0.5 ml cells). 

A simple computer program was written to facilitate calculation of p-galactosidase 

activity (Appendix A). 

Subcloning 

Deletion subclones in pCP16 were constructed by digesting pBML400, 

pBML700, and pBML900 with single restriction enzymes, and then religating digestion 

products obtained. The ligation reaction was incubated between 15-20 h at 14°C, 
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and contained up to 300 ug total DNA per ml ligation reaction, up to 1 unit of T4 

DNA ligase, 20 mM TrisHCl pH 7.6, 10 mM MgCl2, 10 mM dithiothreitol, and 0.6 

mM adenosine triphosphate. 

The subclone pBMU200 was constructed by ligating the HindIII-BamHI 

sinA: :lacZY A fragment of pBMUOO into the Hind.III and BamHI sites of pBluescript 

SK. The Apal site present in the downstream Tn,2-HoHoI end of pBML4200 was 

removed by subcloning the HindIIl-BglII lacZYA containing fragment of pBML4200 

into the HindIII and BamHI sites of pBluescript SK to generate pBML4240. Using 

the same ligation buffer and reaction conditions as used for construction of pCP16 

deletion subclones, 0.2 ug of vector was incubated with a 3- to 5-fold molar excess 

of insert. The 5' termini of the vector were dephosphorylated by the addition of 

CIAP to the digestion reaction. Dephoshorylation was allowed to proceed about 1 h 

at 37°C. CIAP was removed through repeated phenol:chloroform extraction, or by 

gel purification followed by electroelution of the DNA fragment. The digested insert 

DNA was treated in an identical fashion to remove excess protein. 

Transformations 

Transformation of E. coli strains with ligation mixtures requires a high 

efficiency of transformation. In these cases, a rubidium chloride transformation 

protocol (62) was used to maximize chances of successful subcloning. 

Tn501 mutagenesis 

Tn501 mutagenesis (13, 74) was carried out using a modified conjugation. 

Recipient strains PA025 (pBMUOlO), PA025 (pBML7019) and OT684 (pBML9090) 

were grown at 43°C under selection for 24 h preceding the experiment. The donor 

strain RM1079 was grown at 37°C in the presence of mercury to approximately 108 
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CFU/ml. One milliliter each of donor and recipient were mixed and filtered through 

a 0.45 um pore size filter. The filters were placed on LB agar plates and incubated 

about 15 h at 37°C. The following day, confluent growth on filters was resuspended 

in 3 ml LB and plated onto Pseudomonas Isolation Agar containing 500 ug 

carbenicillin/ml and 35 ug HgClJml. Transposition of Tn501 into recipient strains 

as compared to rescue of pRK.2013::Tn501 through recombination with pCP16 

sequences was verified by replica plating transconjugants onto LB agar containing 

kanamycin. 

Exonuclease III/Nuclease SI deletions 

Deletions proceeding into the sinA promoter region were obtained by 

Exonuclease III/nuclease SI digestion (63) of pBML4240. Nine micrograms of cesium 

purified pBML4240 DNA was sequentially digested with Apa! and HindIII. The 

digested DNA was extracted first with a 1: 1 mixture of phenol and chloroform, and 

then with chloroform alone. Two volumes of 95% ethanol and a 1/10 volume of 2 

M Na Cl were added, and the DNA was precipitated by maintaining in a dry ice bath 

15 min and then centrifuging for 15 min. Precipitation was repeated to increase yield 

of DNA. The obtained pellet was washed with 70% ethanol, recentrifuged, dried at 

65°C, and resuspended in 30 ul of a lX Exonuclease III buffer containing 66 mM 

Tris-HCl, pH 8.0 and 1 mM EDTA. The resuspended DNA was warmed to 3D°C in 

a water bath, and 250 units of Exonuclease III was added. Following a 30 second 

lag, 2.5 ul aliquots were removed at 60 second intervals to microtiter plate wells 

containing 7.5 ul Nuclease SI mix, and maintained on ice. Nuclease SI mix 

consisted of 0.3 units SI nuclease/ul, 40 mM potassium acetate pH 4.6, 340 mM 

NaCl, 1.35 mM ZnS04, and 6.8% glycerol. Upon removal of the last aliquot, 1 ul 
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of Nuclease SI stop buffer containing 0.3 M Tris base and 50 mM EDTA was added 

to each well, and aliquots were incubated at 70°C for 10 min to terminate the reaction. 

The microtiter plate was placed in a 37°C water bath, and 1 ul Klenow mix 

containing 0.1 units Klenow DNA polymerase/ul, 20 mM Tris-HCl, pH 8.0, and 100 

mM MgCl2 was added to each well. This mixture was incubated for 3 min at 37°C 

before adding 1 ul of a dNTP mixture (0.125 mM each of dATP, dCTP, dGTP, and 

dTTP) and incubating an additional 5 min. The microtiter plate was removed to 

room temperature, and 40 ul of a ligation mixture containing 0.005 units T4 DNA 

ligase/ul, 5% PEG, 1 mM dithiothreitol, 50 mM Tris-HCl pH 7.6, 10 mM MgCl2, and 

1 mM ATP was added to each well. Ligation was allowed to proceed 1 h. Ten 

micro liters of each ligation reaction was used to transform competent HB 101. 

Since pBluescript is a high copy number plasmid, deleted plasmids were 

purified by streaking out transformants and isolating DNA from single colonies. This 

DNA was diluted in water and used to retransform HB101 and/or AB1157. In some 

cases this purification was repeated. 

Other methods 

Restriction endonuclease digestion, ultraviolet irradiation, triparental matings, 

Southern analysis, and isolation of plasmid DNA were carried out as described in 

Chapter III. 



Results 

Heat stress does not promote expression from sinA, 

sinB, and sinC promoters 

63 

The E. coli heat shock genes groEL and dnaK can be induced in response to 

both UV and quinolone exposure (93). To investigate whether sin reporter gene 

fusions are controlled by heat shock promoters, the sinA, sinB, and sinC gene fusions 

were tested for heat shock responsive behavior (Figure 6). For these experiments, 

cultures of the RecA + P. aeruginosa strain PA025 containing either pBMIAOO, 

pBML 700, or pBML900 grown at 37°C were heat stressed by shifting the culture 

temperature to 45°C. The temperature shift failed to result in increased f3-gal

actosidase activity within a period of time during which P. aeruginosa heat shock genes 

are normally induced (2). Heat shock induction was not observed for any of the 

cultures within four hours of the temperature increase. 

Kinetics of the ultraviolet light response of sin::lacZYA gene fusions 

Different E. coli SOS genes have been shown to be induced with varying 

kinetics following stress treatment (200). The inducible response of the pBML400, 

pBML700, and pBML900 gene fusions following exposure to UVC radiation was 

investigated in the RecA+ P. aeruginosa strain PA025 (Figure 7). The sinA::lacZYA 

fusion was induced with the fastest kinetics, and exhibited a bimodal induction 

profile. Twenty five- to 30-fold induction of this fusion occurred between 120-160 

min following UV exposure. Induction of sinB::lacZYA of about 22-fold occurred at 

160 min after UV treatment. This gene fusion appeared to demonstrate a second 

2.5-fold inductive peak at 210 min after exposure. The sinC gene fusion was 
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Fig. 6. Heat shock assay of PA025 (pBML400), PA025 (pBl\1L700) and PA025 
(pBl\1L900): (0) PA025 (pBl\1L400) 37°C; (e) PA025 (pBl\1L400) 45°C; (.1) PA025 
(pBl\1L700) 37°C; (A) PA025 (pBl\1L700) 45°C; (II) PA025 (pBl\1L900) 37°C; (I) 
PA025 (pBl\1L900) 45°C. Cultures of PA025 containing the plasmids were grown 
at 37°C, divided, and incubated at either 37°C or 45°C. Heat treated cultures attained 
a temperature of 45°C in less than 3 minutes. In a separate experiment, gene 
induction was not observed within 4 hours of the temperature increase. 



PA02S + pBUL400 
ID 

to 

0-=~~~:.o;;~~~~:::;:g::::;=~~=;:; 
~ »---~~~~~~~~~~~~~~~~~~~--, 

·-> :,iJ PA02S +pSMl.700 
0 ID A 

] .. ~ 
• ~ 0~::;=::;==::;:==1==:;::=F::::;:==4~~=t:=:2:;::=::!i!~~=t=t 

4 /"-.__ 
_;,, ~ 

PA025 + pBML900 

l 

-t-----==============~·~ 

0 IO 120 150 180 210 240 270 

Minutes Fallowing Exposure 

65 

Fig. 7. UV inducible behavior of PA025 (pBML400), PA025 (pBML700), and 
PA025 (pBML900): (0) untreated; (£) 20 J/m2

• Relative activity was calculated by 
dividing P-galactosidase units present at each sampling time by those present in the 
same culture at time zero. Untreated cultures contained 40-60 units of P-galactosidase. 
Maximal activity values ranged from 100 to 1600 units. The plots represent the 
average of at least two independent experiments. Assays were performed in duplicate. 
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induced only about 4-fold at 210 min subsequent to stress treatment. The induction 

profile of sinC::lacZYA also appeared to be multimodal, with a second peak occurring 

at about 270 min. For all three sin gene fusions, induction was not prolonged, and 

p-galactosidase levels returned to approximately baseline levels relatively quickly 

following UV treatment. This recovery phenomenon, along with the observed 

multimodal induction profiles were due to alterations in P-galactosidase activity and not 

changes is cell density, since cell density quickly reached a stable plateau following 

stress treatment (Figure 8). 

Dose dependency of the inductive response to ultraviolet irradiation 

The relatively low level of induction of PA025 (pBML900) might have 

reflected irradiation with a suboptimal dose of UVC. This possibility was investigated 

for the pB.ML400, pBML700 and pBML900 gene fusions by exposing the RecA+ P. 

aeruginosa strain PA025 containing these plasmids to different doses of UVC radiation 

(Figure 9). Experimental results indicated that maximal induction occurred follo~ing 

a UV dose of 20 J/m2
• Exposure of sinA::lacZYA and sinC::lacZYA to greater or 

lesser UV doses resulted in submaximal induction. The response of sinB::lacZYA 

to UV doses above 20 J/m2 was not investigated. 

Stress responsive promoters can be induced upon exposure to norfloxacin 

In screening the transposon mutagenized library, sinA, sinB, and sinC gene 

fusions were identified as both UVC and quinolone inducible. In the case of 

sinA::lac2Y A, this norfloxacin inducible behavior was investigated by exposing 

cultures of the RecA+ P. aeruginosa strain PA025 containing pBML400 to different 

doses of norfloxacin (Figure 10). Induction was maximal following exposure to a 

norfloxacin concentration between 15-19 ug/ml. Similar to the UV dose dependent 
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Fig. 8. Measurement of cell density of UVC irradiated cultures of PA025 
(pBMIAOO), PA025 (pBMI...700), and PA025 (pBMI...900): (0) untreated; (e) 20 
J/m2

• The plots represent the average of two or more experiments. 
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Fig. 9. UVC dose dependent response of PA025 sin::lacZYA gene fusion-contain
ing strains. (A) PA025 (pBML400), (ID PA025 (pBML 700), (Q PA025 (pBML900). 
Plotted values reflect maximum induction values observed within 4 hours of UVC 
exposure. Each bar in Panel A represents the average of two independent 
experiments. Most assays depicted in Panels B and C were repeated. All assays were 
performed in duplicate. 
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Fig. 10. Norfloxacin inducible behavior of PA025 (pBML400). ® Induction profile 
of quinolone treated cultures: (0) 0 ug/ml; C•) 1 ug/ml; (II) 8 ug/ml; (I) 12 ug/ml; (A) 
16 ug/ml; (~) 20 ug/ml. The untreated culture contained around 60 units of 
p-galactosidase, and the highest level of activity observed was 1100 units. (fil Dose 
response of quinolone treated cultures. Plotted values reflect maximum induction 
observed within 3 h following addition of norfloxacin. All assays were carried out 
in duplicate, and with the exception of the 16 ug/ml dose, were repeated. 
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response of sinA::lacZYA, induction was submaximal at norfloxacin concentrations 

greater than or less than the optimal dose. The induction profile of a norfloxacin 

treated culture of PA025 (pBML400) was very similar to a UVC irradiated culture. 

However, the sinA promoter appeared to respond slightly less strongly to a 

norfloxacin as compared to UVC challenge, and a maximum induction value of about 

16-fold was obtained as a consequence of norfloxacin exposure. 

Construction of sin::lacZY A deletion subclones and analysis of inducibility 

An attempt was made to localize cis-acting sequences important in the 

regulation of sin promoters. This attempt entailed subcloning sin: :lacZY A fusions to 

obtain the smallest gene fusion containing fragments. The response of subclones to 

UVC irradiation was monitored using MacConkey agar, or by direct assay of 

~-galactosidase expression (Figure 11). pBML4010 was the smallest inducible 

sinA::laczy A subclone obtained. The sinA promoter is located in pBML4010 in a 

2.0 kb span of DNA immediately preceding the reporter gene. The sinB promoter is 

located in the smallest obtained inducible subclone pBML 7300 in an approximate 

5 kb span of DNA upstream of the Tn}-HoHol insertion. Comparison of the 

pBML900 subclones pBML9090 and pBML9011 initially suggested that the sinC 

promoter was contained within a BamHI-HindIII fragment less than 1 kb in size 

located about 7 kb upstream of Tn3-lacZYA coding sequences. However, further 

examination of pBML9011 (as discussed in Appendix B) revealed the presence of a 

deletion in the region preceding the reporter gene. Based upon examination of this 

deletion, the sinC promoter appears to be located between the upstream HindIII and 

Bglll sites, in a span of DNA less than 2 kb in size. 
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Plasmid Induction Upstream Restriction Sites -·--·-·-·-·-·-·-·-·-·-·-·-·-·-· ·-·-
PBS H 

D pBML400 10-30 I I I I 
pBML4001 + I I I D 

pBML4300 + D 

pBML4010 9 D 
p H BS -·-·-·-

pBML700 5-30 I I I I D 

pBML7070 NT I I D 
1 kb 

pBML7019 + H D 

pBML7300 8 D 
p SHB Bg -·-·-·-

pBML900 5 I I I I I D 

pBML9001 + I I I D 

pBML9090 5 I I I D 

pBML9011 1 1--1 D 

Fig. 11. Localization of sin promoter regions through subcloning sin::lacZY A fusions. 
Subclones were tested on MacConkey agar or assayed for UVC-mediated increases in 
~-galactosidase expression: + = UV induction observed by agar screening; NT = 
induction not tested; P = Pstl; B = BamID; H = Hind.III; S = Sall; Bg = BglII; 
rectangle = start of Tn.2_-HoHol sequences; stippled line = approximate boundaries of 
pBML9011 deletion. Numbers indicate assay fold induction values. Only restriction 
sites up to 12 kb upstream of Tn.2_-HoHol are presented. Bglll sites are indicated only 
for pBML900 and its derivatives. pBML9090 was examined in strain OT684, and all 
other plasmids were tested in PA025. pBML9011 (and possibly pBML4001) appears 
to be unstable. 
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Tn501 mutagenesis of pBMIAOlO, pBML7019, and pBML9090 

Since pBMIAOlO, pBML7019, and pBML9090 represented the smallest, best 

mapped subclones, these plasmids were Tn501 mutagenized (13, 74) to further localize 

sin promoter regions. Greater than 100 colonies each of PA025 (pBML4010), PA025 

(pBML7019), and OT684 (pBML9090) containing Tn501 insertions were obtained and 

tested on MacConk:ey agar. Insertions were scored as Ind- if they abolished UV 

responsive behavior, and Ind+ if they resulted in no change in UVC-mediated 

induction. For pBML7019, Ind- insertions identified were all located in laczy A 

coding sequences, and Ind+ insertions were not examined. In the case of pBML9090, 

Ind+ insertions in the promoter region were not obtained. Four different types of Ind

insertions were identified outside of lacZY A sequences. These Tn501 insertions 

subsequently excised from pBML9090. Tn5 has been demonstrated to undergo 

excision with a frequency dependent upon the location of the insertion, the type of 

extrachromosomal replicon, and the host cell genotype (15). 

In contrast to results obtained with pBML7019 and pBML9090, pBML4010 

was successfully Tn501 mutagenized. Both Ind- and Ind+ insertions in the region of 

the promoter were obtained (Figure 12). All insertions were clustered within 500-800 

bp upstream of Tn3-lacZY A coding sequences. While Ind- insertions lie close to the 

TnJ-HoHoI end, Ind+ insertions are clustered slightly farther upstream. These 

experiments localize the sinA promoter to a span of DNA less than 300 bp. 

Deletion of the sinA promoter region 

Exonuclease III/nuclease SI digestion of the sinA subclone pBML4240 yielded 

deletions from 0.2 to 2 kb in size extending into or completely removing the sinA 

promoter. A few of the deletions generated are diagrammed in Figure 13. Expression 
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Fig. 12. Tn501 insertion mutagenesis of pBML4010. The locations of Ind- and 
Ind+ insertions of Tn501 are indicated: arrow = direction of Tn501 transcription. Ind+ 
insertions demonstrating the same direction of transcription as sinA::lacZYA are in 
the plasmids designated pBMIA012 and pBML4013. The Ind+ insertion demonstrating 
the opposite orientation is in pBML4011. Ind- insertions are in plasmids pBML4018 
and pB:ML4019. 
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lacZYA 
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KAH K Bg/B 
p8ML4240 I ·' I 

K K Bg/B 
p8ML4211 I ·' I 

K K Bg/B 
p8ML4212 1.1 I 

KK Bg/B 
p8ML4213 11 I 
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Fig. 13. Restriction maps of some deletion derivatives of pBML4240. Subclones 
obtained by Exonuclease III/Nuclease SI digestion followed by religation of 
pBML4240 are diagrammed: filled triangle = approximate start of the TnJ-HoHol 
sequences; A = Apal; H = Hindlll; K = Kpnl; Bg = Bglll; B = BamHI. The 
sinA::lacZYA subclones possess identical 3' termini, but differ in their 5' termini. 
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of some of the deleted subclones was examined on MacConkey agar in the RecA + 

E. coli strain AB1157. While pBluescript SK, pBML4212 and pBMI..4213 did not 

appear to express ~-galactosidase, colonies containing pBML4240 and pBML4211 

demonstrated red colony color on MacConkey agar. These results suggest that the 

sinA promoter is able to drive lac2YA expression in pBML4240 and pBML4211, and 

that the deletions present in pBMI..4212 and pBML4213 have removed portions of the 

sinA promoter critical for expression. The results are in agreement with localization 

of the sinA promoter by Tn501 mutagenesis. 

Discussion 

When present in RecA+ P. aeruginosa strain PA025, ~-galactosidase expression 

of sinA, sinB, and sinC gene fusions does not increase when the cultures are abruptly 

transferred from 37°C to 45°C incubation. Since P. aeruginosa heat shock proteins 

have been shown to increase within 15 minutes following such a temperature shift (2), 

these experiments suggest that sinA, sinB, and sinC are not regulated as part of the 

heat shock network. 

In contrast, all three sin fusions are clearly induced upon exposure to UVC 

radiation. The sinA, sinB, and sinC gene fusions all appear to exhibit their maximal 

inductive response at about the same level of UVC exposure. For sinA::lacZYA and 

sinC::lacZYA, induction is maximal following exposure to 20 J/m2
, and is decreased 

following exposure to higher or lower UV doses. For sinB::lacZYA, exposure to a 

UVC dose less than 20 J/m2 resulted in submaximal induction, and exposure to higher 

UVC doses was not investigated. This optimal dose of 20 J/m2 is comparable to UV 

doses required for stress responsive gene expression in E. coli. E. coli SOS genes 
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have been shown to be maximally induced upon exposure to UVC doses ranging from 

5 to 60 J/m2 (160, 203). It is not clear how the optimal dose for P. aeruginosa sin 

gene expression relates to the optimal dose for P. aeruginosa recA induction since 

experiments demonstrating recA induction in response to UVC radiation have used 

doses of 0, 5, 10, 30, but not 20 J/m2 (69, 124). However, fivefold induction of recA 

is observed following doses of 10 and 30 J/m2
, and is not sustained after a lower 

UVC dose (69). 

While the three fusions demonstrate their maximal inductive response at about 

the same dose of UVC radiation, they differ in the kinetics and magnitude of the 

inductive response. In this respect, P. aeruginosa sin genes are similar to E. coli 

SOS genes (200), which demonstrate magnitudes of induction ranging from less than 

5-fold (160) to greater than 150-fold (157). The sinA and sinB gene fusions exhibit 

20 to 30-fold induction following UVC exposure, whereas sinC::lacZYA is induced 

only about 4-fold. Stress responsive expression of the sinA, sinB, and sinC gene 

fusions occurs between 120-160 minutes, between 160-210 minutes, and between 

210-270 minutes, respectively, subsequent to UVC exposure. 

The multimodal induction profiles observed for the three gene fusions may not 

be unusual for P. aeruginosa gene expression. Several genes including lasB, toxA 

(72), and possibly recA (69) exhibit biphasic expression patterns. Expression of some 

E. coli SOS genes including umuD (117) returns to baseline relatively quickly after 

stress exposure, and it has not been shown whether this is in fact followed by a 

second inductive peak. Furthermore, it is possible that the induction profile of sin 

gene fusions may be altered due to the expression of wild type sin genes. Such a 

situation has in fact been reported for stress responsive expression of uvrB (160). 
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It is interesting that the sin inductive peaks occur with about the same periodicity as 

the DNA replication cycle. Further experiments are needed to verify whether sin 

genes are possibly involved in the recovery of DNA synthesis, or whether sin 

induction is related to the DNA replication cycle. 

Induction of sinA::lacZYA in response to the stress agent norfloxacin was 

investigated. Quinolones such as norfloxacin exert a very different type of stress upon 

the cell than UVC radiation. Whereas UVC radiation primarily results in pyrimidine 

dimers, norfloxacin inhibits DNA synthesis and causes DNA double stranded breaks 

(167). Despite this difference in mechanism of action, significant induction was 

observed with norfloxacin doses ranging from 1-25 ug/ml. While the magnitude of 

induction in response to norfloxacin treatment was slightly reduced when compared 

to the UVC-mediated induction profile, the kinetics of induction were almost identical. 

Induction was maximal at a norfloxacin concentration between 15-19 ug/ml. This 

concentration corresponds to the minimum bactericidal concentration (MBC) and is 

about 40 times greater than the minimal inhibitory concentration (MIC) for a 

norfloxacin sensitive strain of P. aeruginosa (12). This concentration-dependence 

is similar to E. coli, as E. coli SOS genes exhibit their maximal inductive response 

upon exposure to a norfloxacin concentration corresponding to 20-40 times the MIC 

(146, 147). 

In order to initiate a study of P. aerugmosa stress responsive promoters, an 

attempt was made to localize sin promoters by subcloning successively smaller 

sin::lacZYA containing fragments, and testing subclones for UVC responsive behavior. 

Using this approach, the sinB promoter was roughly localized to within 5 kb upstream 

of the TnJ-HoHoI insertion. The sinC promoter was found to reside within a region 
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of DNA less than 2 kb occurring about 7 kb upstream of the reporter gene. This 

rather large span of DNA separating the promoter from the reporter gene may suggest 

sinC::lacZYA is a translational fusion, or part of an operon. The sinA promoter was 

localized to within 2 kb upstream of the reporter gene. Exonuclease III/nuclease SI 

deletion analysis and Tn501 mutagenesis of sinA::lacZYA identified the promoter 

within a 300 bp region of DNA occurring 500-800 bp upstream of Tn3-lacZYA. 

These results clearly demonstrate that sinA, sinB, and sinC resemble E. coli 

SOS genes in some aspects of their response to UVC radiation and quinolones. The 

results are significant because they suggest sin genes could potentially represent 

analogues of E. coli SOS recombination and repair genes. To further investigate this 

issue, studies determining whether the chromosomal location of sin genes correspond 

to the known location of mutations altering P. aeruginosa recombination and repair 

were performed and are described in the following Chapter. 



CHAPTER V 

DEFINING THE CHROMOSOMAL LOCATION OF sinA, sinB, and sinC 

Combined investigative efforts have resulted in a relatively well defined map 

of the P.aeruginosa chromosome. Mutations which affect repair and recombination in 

P. aeruginosa have been studied (94, 127, 158), and several of the genes involved 

have been mapped on the bacterial chromosome (Figure 14). Therefore the 

chromosomal map locations of sinA, sinB and sinC could provide clues to the 

function of the corresponding stress responsive gene products. Approximate map 

locations of the stress inducible genes were obtained by hybridizing sin promoter

containing probes to very large chromosomal fragments separated by pulsed field gel 

electrophoresis. Using this approach, the sinA, sinB, and sinC genes were localized 

to a 200 kb region within 34.6 and 37.4 minutes on the Holloway map (67) of the 

P. aeruginosa chromosome (U. Romling and B. Tummler, personal communication). 

The chromosomal region to which the sin genes have been mapped also contains 

a cluster of bacteriocin genes encoding pyocin R2. These bacteriocin genes are 

inserted between the chromosomal markers trpGDC and ~ (173). Bacteriocins are 

conventionally defined as proteins or protein complexes which kill sensitive bacteria 

of the same or closely related species as the bacteriocin producing strain (80). While 

producing strains are normally immune to the effect of their own bacteriocins, 

expression of bacteriocin is lethal for the producer. Bacteriocidal activity requires 
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Fig. 14. Chromosomal map of P. aeruginosa PAO. The locations of markers relevant 
to this study are shown: rectangle= chromosomal region to which sinA, sinB, and sinC 
have been mapped. 
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adsorption of the bacteriocin to specific receptors present on the outer membrane of 

susceptible cells. 

The term bacteriocin has been used to describe bacteriocidal proteins or 

complexes observed in a variety of bacteria. In contrast, pyocins are bacteriocins 

which are produced by P. aeruginosa. Most strains of P. aeruginosa produce 

pyocins which can be categorized into one of three classes: types S, F, or R (79). 

While S-type pyocins are smaller, simpler, and proteinase susceptible protein 

complexes, the latter two pyocins are much larger protein complexes with a structure 

similar to bacteriophage contractile tails (170, 172). One R-type pyocin has been 

shown to consist of more than 400 molecules with about 20 different types of protein 

(171). At least five R-type pyocins have been discovered in P. aeruginosa which are 

morphologi~ally very similar, but can be distinguished based upon range of sensitive 

strains (79). It is conceivable that sin gene fusions could be TnJ-HoHoI insertions 

into pyocin R2 genes, as pyocin R2 is induced upon exposure to the stress agents 

UVC radiation and mitomycin C (79). This stress responsive behavior of pyocins 

is not surprising since analogous E. coli bacteriocin genes are also stress inducible and 

have been demonstrated to be under recA and lexA control (157). 

Genetic techniques, complementation experiments, and hybridization studies 

were used in an attempt to more closely define the chromosomal location of sin genes, 

and to determine whether sin::laczy A fusions contain the reporter gene linked to 

pyocin R2 promoters. 
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Mate rials and Methods 

Bacterial strains and plasmids 

The bacterial strains and plasmids used in this study are listed in Table 6. 

Culture conditions and chemicals 

Unless indicated otherwise, bacteria were incubated at 37°C. Lambda top agar 

used in detection of pyocin expression contained 1 % Bacto-tryptone, 1 % NaCl, 0.5% 

Bacto-yeast extract, and 0.7% Bacto-agar. Bacto-tryptone, Bacto-yeast extract and 

Bacto-agar were purchased from Difeo. When required for selection in P. aeruginosa, 

streptomycin and rifampicin were used at concentrations of 500 and 200 ug/ml, 

respectively. PMM plates used to test chromosomal markers were solidified with 1.2% 

Bacto-agar, and were supplemented with 0.4% glucose and final amino acid 

concentrations of 25-50 ug/ml. All other media, antibiotics, and chemicals were as 

described in previous Chapters. 

Isolation of chromosomal DNA 

Chromosomal DNA was isolated according to the method of Marmur (115). 

Yield of chromosomal DNA was quantitated spectrophotometrically using a Gilford 

Response UV-Vis Spectrophotometer. 

Triparental matings 

Triparental matings were performed as indicated in Chapter III with the 

exception that in cases where transconjugation was not initially obtained, the effect 

of mating different volumes of donor, conjugation helper, and recipient in ratios 

other than 1: 1: 1 was investigated. 



Table 6.--Bacterial strains and plasmids 

Strain or plasmid Relevant characteristics" Source or reference 

Strains 

P. aeruginosa 
PAOl 
PA025 
PA0125 
PA03602 
OT684 
RM6 
RMS 
PA0303 
RM14 
RM43 
RM174 
RM203 
RM241 
RM297 

E. coli 
HBlOl 

Plasmids 

pRK2013 

pKT279 

prototroph 
argFlO leu-10 
argB22 ilvD230 leu-8 proB77 trpA61 pur-136 
met-28 trpC6 nal-302 rec-2 
leu-1 lys-1 res-4 
his lys met trpC 
lesB908 argB21 
argB21 
his-1 lys-12 met-28 trpC6 strA 
!mQ 
argB22 ilvD230 leu-8 proB77 trpA61 pur-136 nal-950 
his-4 ilv-226 lys-12 met-28 proA82 trp-6 
argFl 0 nalA2 
str-990 isolate of PA025 

proA2 leuB6 thi-1 galK lacYl hsdR hsdM recA13 supE44 rpsL20 xyl mtl 

pBR322 cointegrate plasmid carrying the mob and tra plasmid transfer functions 
of RK2; Km' 

ColEI replicon plasmid derived from deletion of a portion of the bla gene 
of pBR322; Ap', Tc' 

66 
54 
B.Holloway 
T.Shinomiya 
150 
R.V.Miller 
126 
126 
RV.Miller 
R.V.Miller 
Nal' PA0125 
41 
153 
This study 

19 

49 

184 
00 
w 



(Table 6.--Continued) 

Strain or plasmid 

pBR325 

pNM16 
pBML400 
pBML700 
pBML900 
pBML4200 

pBMIA399 

pBML7346 

pBML9090 
pBML9323 

Relevant characteristics" Source or reference 

ColEI replicon plasmid derived from the insertion of the Cm' gene into pBR322 
Ap', Tc', Cm' 

R-prime plasmid containing argC trnC trpD prtA-J prtK-N and~; Km' 
sinA::lacZY A fusion present in pCP16; Tc', Ap' 
sinB::lacZYA fusion present in pCP16; Tc', Ap' 
sinC::lacZY A fusion present in pCP16; Tc', Ap' 
13-14 kb Hindlll-BamHI sinA::lacZYA fragment subcloned into pBluescript SK; 

Ap' 
8-9 kb HindIII-BglII sinA::lacZYA fragment subcloned into the BamHI-Hindlll 

sites of pBR325; Ap', Cm', Tc' 
3.5 kb Bglll-Sall fragment flanking the sinB::lacZYA gene fusion subcloned into 

the BamHl-Sall sites of pBR325; Ap', Cm', Tc' 
18-23 kb Hindlll sinC::lacZYA fragment ligated into pCP16 
at least 15 kb pBML9090 BglII-Hindlll fragment downstream of sinC::lacZY A 

ligated into the BamHI-Hindlll sites of pBR325 

19 

T.Shinomiya 
This study 
This study 
This study 
This study 

This study 

This study 

This study 
This study 

"Nomenclature and abbreviations are essentially those of Demerec et al. (45). Tc', Km', Ap' and Cm' refer to resistance 
to tetracycline, kanamycin, ampicillin/carbenicillin and chloramphenicol, respectively. 
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Isolation of a strA mutant 

A spontaneous str-990 mutant of strain PA025 was isolated by growing up 

PA025 to a relatively high cell density (at least 109 CFU/ml) and plating onto LB 

agar plates containing streptomycin. Mutants were streaked out twice for isolated 

colonies onto the same type of selective plates, and sensitivity to other antibiotics 

was verified. str mutations appear to be recessive (174) to wild-type strA. 

Subcloning 

Plasmid pKT279 is an ampicillin-sensitive ColEI vector derived from pBR322 

by a deletion near the beginning of the J3-lactamase gene (184). An attempt was 

made to subclone the HindIII and Sall transposon-containing fragments of inducible 

constructs into the HindIII or Aval sites respectively of pKT279 using the ligation 

conditions described in Chapter N. Similarly, the BglII-Hindlll transposon

-containing fragment of pBML4200, and the Bglll- HindIII fragment of subclone 

pBML9090 lying downstream of sinC::lacZY A were each ligated into the 

BamHI-HindIII sites of pBR325 to yield pBML4399 (Figure 15) and pBM9323 (Figure 

16), respectively. A 3.5 kb Bglll-Sall fragment flanking the transposon in pBML700 

was subcloned into the BamHI-Sall sites of pBR325 to generate pBML 7346. 

Construction of subclones pBML9090 and pBML4200 is described in Chapter IV. 

Pyocin Detection 

Expression of pyocins was detected by inoculating a putative pyocin-producing 

colony into 5 ml LB, and incubating overnight at 37° C. The culture was filtered 

through a 0.45 um pore size filter, and successive dilutions in LB of the filtered 

culture were prepared. The diluent along with 10 ul of each of the dilutions was 

spotted onto LB agar plates overlaid with a lawn of strain PAOl or PA025. Lawns 
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Fig. 15. Construction of pBML4399. ®Restriction map of pBMIAOO (55-60 kb). (fil 
The 14-15 kb HindIII-BamHI sinA::lacZYA fragment of pBMIAOO was subcloned into 
the Hindlll and BamHI sites of pBluescript SK to generate pBMIA200 (17-18 kb). 
(Q The 8-9 kb HindIII-Bglll sinA::lacZY A fragment of pBMIA200 was subcloned 
into the Hind.III and BamHI sites of pBR325 to generate pBMIA399 (13-14 kb). 
Symbols: triangle = Tn3-laczy A; asterisks = chromosomal insert; large arrow = 
direction of transciption of lacZY A; small arrow = direction of transcription of bla; H 
= Hind.III; B = BamHI; Bg = BgllI. 
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Fig. 16. Construction of pBML9323. (A) pBML9090 was generated by HindIII 
digestion of pBML900 followed by religation. (fil pBML9323 was constructed by 
ligating the 17-18 kb BglII-HindIII fragment located downstream of sinC::lacZYA into 
the BamHI and HindIII sites of pBR325. Symbols: triangle = Tn3-lacZY A; asterisks 
= chromosomal insert; H = HindIII; B = BamHI; Bg = Bgll; S = Sall. The only 
BamHI site shown is the pBR325 BamHI site in B. 
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were prepared by inoculating 0.1-0.2 ml of an early exponential phase culture (less 

than 30 Klett6ro units) into 2.5 ml of lambda top agar and pouring over an LB agar 

plate. Cultures were considered to express pyocins or a pyocin-like activity if a visible 

clearing not containing plaques was evident in the spotted dilutions and not the spotted 

diluent. 

Transformations 

Transformation of P. aeruginosa with linear DNA was performed according 

to the method of Mercer and Loutit (122). Briefly, a total of 10 ml of a fresh LB 

culture inoculated with an overnight culture of res- strain OT684 grown at 43°C, was 

incubated with shaking to a cell density of at least 108 cells/ml, and maintained on 

ice for 10 min. Cells were harvested by centrifugation at 5,000 rpm for 10 min at 

4°C. The obtained pellet was resuspended in 5 ml of ice cold 150 mM MgC12 and 

recentrifuged under the same conditions. The cell pellet resulting from this second 

centrifugation was resuspended in 5 ml of 150 mM MgCl2 and maintained on ice for 

20 min. Centrifugation of this mixture yielded a pellet which was resuspended in 1 

ml 150 mM MgCl2• A volume of 0.1 ml competent cells was gently mixed with 

DNA in a prechilled tube and maintained on ice for 1 h. A variety of different DNA 

quantities ranging from 20 to 400 ng in a total volume less than 10 ul were used 

for transformation. DNA was linearized through single digestion with Hind.III or 

sequential digestion with HindIII and Sall, since both enzymes cleave within vector 

and insert sequences of inducible constructs and yet lack restriction sites within 

Tn3-lacZYA coding sequences. CIAP was added in the last half hour of the 

digestion reaction, and dephosphorylation of 5'termini was allowed to proceed an 

additional 30 min at 37°C. CIAP was removed prior to transformation through 
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repeated phenol:chlorofonn extraction or inactivated by heating the reaction mixture 

to 70"C for 10 min. Following the 1 h incubation of cells and DNA, the mixture 

was heat shocked by placing in a 37°C water bath for 2 min. The mixture was then 

chilled on ice for 5 min and 1 ml LB was added. The culture was incubated with 

extremely gentle shaking at 37°C for 2 h, and plated onto LB agar containing 500 

ug/ml carbenicillin to select for chromosomal integration of the gene fusions. 

For E. coli strains, the rubidium chloride transfonnation protocol was used. 

Other methods 

Restriction endonuclease digestions, isolation of plasmid DNA, preparation of 

radioactive probes, and hybridizations were perfonned as described in previous 

Chapters. 

Results 

Hybridization of three sin promoters to P. aeruginosa chromosomal fragments 

In E. coli, some damage inducible genes including umuDC, ruv AB, recA and 

recN either constitute operons or are clustered on the bacterial chromosome (200). 

The possibility of a similar organization for sin genes was investigated by 

detennining the size of the Hindlll and Pstl-Hindlll chromosomal fragments to which 

sinA, sinB, and sinC promoter probes hybridize (Figure 17) and by investigating 

ability to cross hybridize. While sinA and sinC hybridized to a Hindlll fragment of 

about 6 to 6.5 kb in size, sinB detected a slightly larger chromosomal fragment of 

about 7 to 7 .5 kb. The size difference of the sinB hybridizing fragment was verified 

by hybridizing freshly prepared sinA and sinB probes to Hindlll chromosomal 

fragments in a completely independent experiment. The HindIII fragment detected by 
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Fig. 17. Hybridization of sinA, sinB, and sinC promoter-containing fragments to the P. aeruginosa chromosome. Autoradiograms 
of Southern blots following hybridization to sin probes are shown. ® sinA probed blot, (fil sinB probed blot, (Q sinC probed 
blot. Symbols: 400 = pBMIAOO; 700 = pBML700; 900 = pBML900; P = Pstl-Hindlll digest of RM9 chromosomal DNA; H = 
HindIII digest of RM9 chromosomal DNA. The 5.0 kb Sall-Kpnl fragment of pBML700, and the 2.1 kb and 8.0 kb Hindlll
Kpnl fragments of pBMIAOO and pBML900, respectively, were · used as probes. .\0 
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the sinC probe appeared to possess an internal Pstl site located about 500 bp from 

the downstream Hind.III site, since the HindIII-Pstl fragment detected by the sinC 

probe was about 500 bp smaller than the hybridizing Hind.III fragment. The probes 

hybridized less strongly to a higher molecular weight fragment(s) of about 18 - 23 kb 

which most likely reflected uncut or partially cut chromosomal DNA. With longer 

exposure, the sinA probe additionally detected 3 Pstl or Pstl-Hind.III fragments of 

about 3.9, 4.2, and 5.0 kb which may share some sequence homology with the sinA 

probe. Hybridization of all sin probes to the chromosomal fragments appeared to be 

due to chromosomal and not transposon elements present within the probes, since 

stripping the filters and reprobing with the labeled Bglll transposon-containing 

fragment of pBML7 failed to yield genomic hybridization after even very long 

exposures. Hybridization of the same probes to sin::laczy A containing plasmids as 

compared to hybridization of the BglII pBML7 transposon probe revealed hybridization 

to sin promoter-containing sequences which appeared to be due to upstream 

TnJ-HoHoI sequences present in each sin probe. 

Complementation studies 

An attempt was made to further define the map locations of sin genes by 

assessing the ability of pBML400, pBML 700, and pBML900 to complement mutations 

scattered in the 30 to 60 minute region of the chromosome (Holloway map;67). The 

inducible plasmids were mobilized into the various genetic backgrounds by triparental 

matings, and established strains were plated onto different types of marker test media. 

Despite repeated attempts, it was not possible to establish pBML900 in some of the 

different genetic backgrounds. Chromosomal inserts present in pBML400, pBML 700, 

and pBML900 were incapable of complementing the markers tested (Table 7). These 



Table 7:-·Inability of pBML400, pBML700, and pBML900 to complement markers· within the 30 - 60 'region of the chromosome 

Marker Approximate map location• (minutes) Constructs testedb 

!m£ 33-36 pBML400, pBML700 

!mQ 33-36 pBML400, pBML700, pBML900 

strA 33-36 pBML400, pBML700, pBML900 

pro A 36-40 pBML400, pBML 700 

leu-8 40-43 pBML400, pBML700 

argF 43-45 pBML400, pBML700 

nalA 50-55 pBML400, pBML700 

• Holloway genetic map (67). 
b For pBML400 and pBML700, approximately 20 colonies of each of the different transconjugants were tested for 

complementation. For matings involving pBML900, less than 20 transconjugants were obtained and tested. 
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results could indicate that the complementing genes are not present within the cloned 

inserts of pBML400, pB.ML 700, and pB.ML900, or that TnJ-HoHoI has inserted within 

the complementing genes. Alternatively, the initial maintenance of sin constructs 

in a RecA + P. aeruginosa host may have caused rearrangements, deletions or other 

recombinational events resulting in an impaired complementation ability. 

Lack of specific hybridization of the three sin promoters to R' 

plasmids bearing pyocin R2 genes 

R' plasmids containing large PA025 chromosomal inserts spanning the 33-36 

minute region of the chromosome were isolated by Shinomiya et al. to facilitate 

analysis of pyocin R2 genes located between trpGDC and~ (174). To verify 

whether sin genes are also found within this region, sin promoter-containing probes 

were hybridized to the R' plasmid pNM16 (Figure 18). The three sin probes 

hybridized faintly to the top four bands of HindIII digested pNMl 6. These bands 

corresponded to noncontiguous chromosomal fragments of 24, 16, and 14 kb in size, 

and to a 60-70 kb vector band. To investigate the possibility of the observed pNM16 

hybridization being mediated by transposon sequences present in sin probes, one of 

the filters was stripped of all radioactivity and reprobed with the pBML7 BglII 

transposon probe. The pBML 7 probe detected the same pNMl 6 chromosomal 

fragments as did the three sin probes. 

ColEI constructs for replacement of intact chromosomal genes 

with sin: :lacZY A fusions are unstable 

In gene mapping studies, chromosomal genes can be replaced by transposon 

inactivated versions and gene fusions can be integrated into the bacterial chromosome 

to provide markers for chromosomal mapping. Replacement of chromosomal sin 



A 
2.4 24 6.1 

Hind III sites II I I 
4.5 21 

BamHI sites I I 

B 

Chromosomal Genes 

...__ __ , ._1 _ ..... _J 

strA 
rifA 
prtP 

argC trpGCD 
prtO 

c 
Chromosomal Location 

36' 

I 
16 8 9.9 2.5 14 

I 
24 1 1 

.__ _ __..1...,1 L..J 

prtA-J trpE 
·prtK-N 

I I 
19 3 

I I 

33' 
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95 

genes with sin::laczy A fusions, or integration of the reporter gene fusions into the 

chromosome can be accomplished by subcloning gene fusions into a ColEl vector such 

as pKT279, and mobilizing the resulting plasmids into P. aeruginosa. Since ColEI 

plasmids are incapable of replicating in P. aeruginosa, selection for transposon-encoded 

carbenicillin resistance allows selection for single recombinational events forming a 

chromosome-plasmid cointegrate, or double recombinational events replacing the intact 

chromosomal gene with the transposon-inactivated version. While single crossover 

events occur more frequently within a cell, techniques are available which allow direct 

selection for the loss of vector sequences and resolution of the cointegrate structure 

by a second recombinational event (59). 

Several attempts were made to subclone gene fusions into the ampi-

cillin-sensitive vector pKT279 to generate plasmids appropriate for gene replacement. 

For homologous recombination to occur at both ends of the transposon, these 

subclones needed to contain the gene fusions as well as sequences occurring both 

upstream and downstream of Tn3-lacZY A. The enzymes Sall and HindIII lack 

restriction sites within transposon coding sequences, and cleave gene fusion

-containing fragments of at least 18 kb in size from pBMIAOO, pBML700, and 

pBML900. Sall and HindIII digests of pBMI.AOO, pBML 700, and PBML900 were 

ligated to alkaline phosphatase treated Aval and HindIII digests of pKT279 in five 

independent experiments. Initial selection for transformants was made using either 

ampicillin, which allows selection for the transposon-encoded #-lactamase, tetra

cycline, which selects for vector pKT279, or both ampicillin-containing and 

tetracycline-containing plates, since HindIII subcloning into pKT279 results in variable 
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tetracycline sensitivity (18). Putative subclones were then replica plated or patched 

onto plates containing the appropriate antibiotic. 

Transformants obtained ranged between 20 to over 1000 in the separate 

experiments. Three distinct types of transformants could be recognized: colonies 

which had been transformed with undigested pBML400, pBML700, or pBML900 

DNA; subclones in which transposon-containing fragments had ligated back into 

pCP16 instead of pKT279; and transformants possessing pKT279 ligated to a Hindlll 

or Sall fragment which did not correspond to any Hindlll or Sall fragments of 

pBML400, pBML 700, or pBML900. During the course of analyzing this third class 

of transformants, it became apparent that antibiotic resistance and digestion patterns 

had changed and were continuing to change with repeated subculturing. The most 

likely explanation of these experimental results is that large Hindlll and Sall gene 

fusion-containing fragments are unstable in E. coli HB101 when subcloned into the 

pKT279 vector. 

Attempts to integrate the sinA::lacZYA gene fusion 

into the chromosome appear to result in pyocin induction 

While replacement of sinA, sinB, and sinC chromosomal genes requires that 

sequences including and flanking the reporter gene be subcloned into a ColEI vector, 

integration of the gene fusions can be accomplished through recombination with a 

single homologous chromosomal site, and requires subcloning of sequences either 

upstream or downstream of Tn3-lacZY A. An attempt was made to subclone 

promoter-containing fragments of pBML400, pBML700, and pBML900 including the 

beginning portion of Tn3-lacZYA into plasmid pBR325. Only in the case of 

pBML400 was this attempt successful. The plasmid pBML4399 (Figure 15) is a 
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carbenicillin resistant, tetracycline sensitive pBR325 subclone which contains the 

sinA:lacZYA gene fusion. 

In several different experiments, HB101 (pBML4399) along with the negative 

and positive controls HB101 (pBR325) and HBlOl (pCP16) were mated with the P. 

aeruginosa recipients PAOl, PA025, and PA0303 in triparental matings. The 

frequency of mobilization of pCP16 into the various strains was at least 10 

transconjugants/1()6 CFU, whereas transconjugants were not obtained for 

HB101 (pBR325). In matings involving HB101 (pBML4399), colonies were obtained 

at about the frequency expected for single crossover events (0.1-1.0 trans

conjugants/1 ()8 CFU; 41, 190). These transconjugants were viable when patched onto 

LB agar, but were incapable of growth in the presence of carbenicillin, despite the 

fact that the transconjugants were obtained following overnight growth on carbeni

cillin-containing plates. Many of the colonies appeared to be surrounded by a halo 

of clearing. When tested, these transconjugants were found to express a pyocin or 

pyocin-like activity absent from overnight cultures of PA0303, PA025, and 

PA025 (pBML400), and effective against strains PA025 and PAOl. In three 

independent experiments, pyocin activity was detected in transconjugants resulting from 

pBML4399 mobilization. Since pyocin expression is lethal for the producing strain, 

an attempt was made to select for a compensatory tol mutation conferring tolerance 

to this expression by allowing triparental mating mixtures an additional 15 h of 

growth under nonselective conditions before plating onto selective medium. This 

attempt failed to yield transconjugants. 

The possibility that the TnJ-HoHoI upstream end present in pBML4399 might 

interfere with recombination, or somehow mediate the observed pyocin induction was 
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investigated by including the additional donor strains HBlOl (pBML7346) and 

HBlOl (pBML9323) in mating experiments. These donors possessed random 

chromosomal segments of pBML 700 and pBML900 not associated with transposon 

sequences ligated into pBR325. The mating involving HBlOl (pBML7346), but not 

the mating involving HBlOl (pBML9323) resulted in transconjugant expression of a 

pyocin-like activity. 

Gene replacement is not observed upon transformation of a mutant P.aeruginosa 

strain with linearized sin::lacZYA cosmids 

The P. aeruginosa strain OT684 possesses a res mutation which renders it unable 

to degrade linear duplex DNA (149). The res mutation abolishes expression of a 

deoxyribonuclease, and also allows OT684 to uptake and recombine linear, double 

stranded DNA with a frequency of 2-3 transformants /107 CFU (122). Two separate 

attempts were made to transform OT684 with Hindlll or Hindlll-Sall digested 

pBML400, pBML700 and pBML900 DNA. While competent OT684 was transformed 

with closed circular duplex DNA with an efficiency of about 14 transformants/107 

CFU, transformation with linear duplex DNA resulting in replacement of the 

chromosomal gene with the inactive reporter gene fusion was not observed. In fact, 

the only colonies obtained following transformation with the linearized DNA 

contained closed circular cosmid DNA which had escaped restriction enzyme 

cleavage. 
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Discussion 

Pulsed field gel electrophoresis mapping indicates that sinA, sinB, and sinC are 

located within a 200 kb region at 34.6 to 37.4 minutes on the P. aeruginosa 

chromosome. These results are in agreement with experimental results from Chapter 

III, which indicate that sin gene fusions are not recA fusions. The results also 

suggest a reason why pBML400 restriction patterns resemble those of pBML 700. 

Most likely, sinA and sinB are separated by a large Hindlll fragment of about 20 kb. 

This intervening fragment could be present in both pBML400 and pBML 700, along 

with the adjoining sinA-containing fragment in pBML400, and with the contiguous 

sinB-containing fragment in pBML 700. 

Probes generated from sinA and sinB hybridize to different size Hindlll 

chromosomal fragments. The sinC probe hybridizes to a Hind.III fragment of the 

same size as the sinA hybridizing fragment, but which differs from this fragment 

in that it appears to possess an internal PstI site. These results suggest that the 

sinA, sinB, and sinC gene fusions are Tn,1-HoHoI insertions in different HindIII 

chromosomal fragments. Furthermore, promoter regions of the three sin genes have 

been found to occur downstream of a Hindlll site (Chapter IV), and restriction sites 

present upstream of the Tn,1-HoHoI insertion are different in the sinA, sinB, and sinC 

plasmids. The only explanation compatible with these results is that sinA::lacZYA, 

sinB::lacZYA, and sinC::lacZYA are Tn}::lacZYA insertions in independent stress 

responsive genes. In cross hybridization studies, sin probes do not appear to 

hybridize to fragments upstream or downstream of the fragments used as probes. This 
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result indicates that sin genes are ~ not located within less than 2 kb of each other on 

the bacterial chromosome. 

An attempt was made to further define the map location of sin genes by 

analyzing the ability of sinA-, B sinB- and sinC-containing plasmids to complement 

mutations in the 30 to 60 mirxnute region of the chromosome. The sin gene 

containing plasmids were incapat:i>le of complementing the mutations, which most 

likely indicates that the wild- tyRpe alleles of the genes examined are not present in 

the chromosomal insert of the pllLasmids. 

The chromosomal region tc:::> which the three sin genes have been mapped also 

contains a cluster of pyocin R2 genes located between the trpGDC and !!lili genes 

(173). R2 pyocins as well as other pyocin genes are inducible by UVC and 

mitomycin C exposure (79). The ~ possibility that sin::lacZY A constructs contain the 

reporter gene fused to pyocin R2 promoters, or contain pyocin R2 genes within their 

cloned inserts was investigated by~ hybridizing sin probes to a R' plasmid containing 

pyocin R2 genes. Faint hybridiza.a.tion of the three sin probes to R' Hind.III fragments 

of 24, 16, and 14 kb in size was observed. This hybridization was probably due to 

homology with transposon sequ~nces present in each probe, since a Bglll pBML7 

transposon probe also hybridized Eaintly with the same fragments. This interpretation 

is supported by additional evid~nce. First of all, the 14 kb hybridizing fragment 

appears to be located earlier upon the chromosome than 34 minutes (Figure 18, Panel 

C), and is outside of the region to which sinA, sinB and sinC have been mapped. 

Second, the genomic hybridizatioen of sin probes (Figure 17) suggests that sin genes 

are located on Hind.Ill chromosornial fragments which are considerably smaller than 

the large hybridizing pNM16 fraggments. Third, BamHI restriction patterns of the 24 
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and 16 kb fragments and flanking Hind.III segments (Figure 18, Panel A) are 

inconsistent with any of the sin gene fusions representing insertions into these regions. 

Fourth, gene fusions do not appear to represent Tn}-HoHoI insertions into the 24 kb 

Hind.III fragment since this fragment contains trpGDC, and sin gene fusion-containing 

constructs fail to complement either .!!ill2 or !m£ mutations. 

These arguments also indicate that sin gene fusions do not represent 

Tn3-laczy A insertions into the UV inducible pyocin R2 genes prtO and prtA-J, which 

are contained within the 24 and 16 kb Hind.III fragments, respectively. Similarly, sin 

probe failure to hybridize to an 8 kb Hind.III fragment of pNM16 indicates that gene 

fusions are not insertions into pyocin R2 genes prtK-N. Unfortunately, the pyocin R2 

gene prtP is not contained within the R' plasmid pNM16. This gene is thought to be 

involved in regulation of pyocin synthesis, and mapping studies indicate is flanked by 

the genes strA and rifA (173). In this context, the inability of pBML400, pBML700 

and pBML900 to complement a str-990 mutation may indicate an absence of prtP 

from these constructs. However, these results are difficult to evaluate since the 

distance separating prtP and strA is unknown. 

An effort was made to provide markers for gene mapping studies by mobilizing 

different types of ColEI sin::laczy A subclones into P. aeruginosa. Since ColEI 

plasmids are unable to replicate in P. aeruginosa, a double crossover recombination 

event should result in replacement of the chromosomal gene with the transposon 

inactivated version, whereas recombination at a single homologous site should result 

in integration of the reporter gene into the chromosome. It was not possible use 

ColEI subclones for gene replacement, since the necessary gene fusion-containing 

fragments are apparently too large to be stably subcloned into a ColEI vector. Use 
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of the appropriate ColEI subclones to integrate sinA::lacZYA and chromosomal DNA 

flanking sinB::lacZYA into the chromosome had the unusual and unexpected effect of 

inducing pyocin synthesis in transconjugants. In contrast, attempts to integrate 

sequences flanking sinC::lacZYA did not result in the recovery of transconjugants. 

These experiments suggest that the observed transconjugant expression of a pyocin

like activity is not mediated by TnJ-HoHoI sequences, but results from the 

chromosomal integration of the sinA::lac2Y A gene fusion and sequences flanking 

sinB. 

Since pyocin production is a lethal event, pyocin expression in transconjugants 

is reminiscent of 'dominant negative' and 'dominant' mutations discussed by 

Herskowitz (64). Dominant negative mutations are described as an alteration of a 

cloned gene such that it produces a mutated product which inhibits the wild-type 

gene product. Alternatively, a mutant phenotype can be created by the increased 

expression of a wild-type gene. In this latter example of a dominant mutation, an 

imbalance of subunit concentration of a multimeric protein can cause a disruption of 

function. Both types of mutation can be invoked to explain transconjugant production 

of pyocins, which are normally multi-subunit structures, and are regulated in a 

fashion which is complex, most likely stringent, and certainly poorly understood (173, 

174). For example, integration of sinA::lacZYA and DNA flanking sinB::lacZYA 

could result in pyocin induction if these sequences encoded a transcriptional activator 

of pyocins, or were capable of titrating a cellular inhibitor of pyocins. Similarly, the 

TnJ-HoHoI insertion in sinA could represent a translational gene fusion which 

produces a mutated protein. If sinA encoded a repressor of pyocin synthesis, it could 

be inactivated if the transposon insertion impaired repressor ability to bind DNA 
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without affecting ability to oligomerize. In this case, mixed aggregates containing 

mutant and wild-type subunits of a multimeric pyocin repressor protein could be 

formed which would be unable to bind DNA and inhibit pyocin synthesis. These 

situations illustrating a regulatory imbalance could conceivably result in pyocin 

expression. 

A final attempt to provide chromosomal markers for gene mapping studies by 

transforming a Res- P. aeruginosa strain with linear sin::lacZY A-containing DNA 

failed to yield gene replacement strains. It is possible in this experiment that the 

transformation efficiency was not high enough to obtain linear transformation. 

Alternatively, gene replacement strains may have been obtained, but may not be 

viable. Inactivation of certain genes, such as that encoding the topoisomerase gyrase, 

has been shown to result in lethality (119). If sin genes act in P. aeruginosa 

recombination or repair, then it is very likely that the function of these genes may be 

necessary for cell viability. 

In summary, results of the chromosomal mapping studies indicate that sinA, 

sinB, and sinC gene fusions are not pyocin R2 structural gene fusions, and do not 

contain pyocin R2 structural genes within their cloned inserts. The sin::laczy A 

plasmids could potentially encode or contain the reporter gene fused to the pyocin R2 

regulatory gene prtP. Additional pyocin genes have not been mapped to the 

chromosomal region in which the sin genes are located. Therefore if inducible 

plasmids are TnJ-HoHoI insertions into or contain pyocin genes other than those 

encoding pyocin R2 subunits, these genes represent uncharacterized pyocin genes. 

Alternatively, an inability to inactivate chromosomal versions of sin genes by gene 
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replacement could indicate that these genes are involved in processes which are 

critical for cell viability. 

Further studies are clearly required to determine whether stress responsive sin 

genes are pyocin genes, genes encoding products involved in recombination or repair, 

or possess some alternative function. Investigation of regulation of P. aeruginosa sin 

gene expression would clarify whether P. aeruginosa sin genes are regulated in a 

manner analogous to E. coli SOS genes, and would allow an additional comparison 

to be made between P. aeruginosa and E. coli stress responsive genes. This 

investigation was undertaken and is described in the next Chapter. 



CHAPTER VI 

INVESTIGATION OF REGULATION OF sin::lacZYA GENE FUSIONS 

Information is rapidly accumulating concerning the regulation of gene 

expression in the environmentally important species P. aeruginosa. Many genes 

including recA have been cloned and sequenced (158), and both cis-acting sequences 

(16) and trans-acting factors (46, 191) important in the regulation of various genes 

have been identified. Mechanisms of expression including transcriptional activation 

and repression (136), organization of genes in operons (32), and even the occurrence 

of coding sequences which are transcribed but not translated (215) have been 

described for P. aeruginosa. Furthermore, experiments have been conducted 

investigating the ability of several P. aeruginosa genes to interact with, and be 

controlled by, regulatory factors of other bacterial species, including E. coli (60, 90). 

To determine whether sin genes are regulated similar to E. coli SOS genes, 

regulation of sin::lacZYA expression was investigated in both P. aeruginosa and E. 

coli hosts. Experiments were targeted toward understanding regulation of the sinA 

promoter to allow for a more complete analysis of this representative stress responsive 

gene. 

105 
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Materials and Methods 

Bacterial strains and plasmids 

The bacterial strains and plasmids used in this study are indicated in Table 8. 

Properties of E. coli recA and/or lexA strains used to investigate regulation of 

sinA::laczy A expression are described in Table 9. 

Media, growth conditions and chemicals 

E. coli strains possessing the temperature-sensitive recA441 mutation were 

incubated at 30"C. All other strains were maintained at 37°C, unless otherwise 

specified. M9 medium used for growth of E. coli strains for J3-galactosidase assays 

contained 0.6% Na:zHP04, 0.3% KH2P04, 0.05% NaCl, 0.1% Nlf.tCl, 0.03% MgS04H 20 

and was supplemented with 0.4% glucose, 0.2% casamino acids, and 50 ug/ml 

ampicillin. In the E. coli induction assays, adenine was added to 42°C incubated 

cultures to a final concentration of 100 mM (28). Rifampicin used to inhibit 

bacterial transcription was dissolved in methanol. 

Transformations 

The rubidium chloride protocol described was used to construct most E. coli 

strains. However, this transformation protocol proved ineffective for transformation 

of some E. coli recA and lexA mutants with pBML400 DNA. For these transfor

mations, competent cells were prepared using the CaCl2 protocol indicated in Chapter 

III. Freshly prepared competent cells were not frozen, but were used immediately 

for transformation. Transformation involved gently mixing 0.1 ml cells with 

pBML400 DNA which had been modified by passage through E. coli strain DHl. 

Following a 10 min incubation on ice, cells were heat shocked at room temperature 



Table 8.--Bacterial strains and plasmids 

Strain or plasmid Relevant characteristics• Source or reference 

Strains 

P. aeruginosa 
PA025 
RM265 

E. coli 
HB101 
DHI 
AB1157 

DM49 
DM1180 
DM1187 
GC3217 
RM1084 

Plasmids 

pRK2013 

pBMlAOO 
pBML700 
pBML900 

argFlO leu-10 
leu-10 recA 102 

proA2 leuB6 thi-1 galK lacYl hsdR hsdM recA13 supE44 msL20 xyl mtl 
thi-1 supE44 recAl gyrA96 endAl hsdR17 relAl 
argE3 his-4 leuB6 proA2 thr-1 thi-1 galK2 lacYl Sm-31 supE44 ara-1 

xyl-5 mtl-1 tsx-33 
as for AB 1157 except lexA3 
as for AB1157 except recA441 sfiAll argE+ lexA3 
as for AB1157 except recA441 sfiAll supE+ lexA3 spr51 
as for AB1157 except recA441 sfiall supE+ 
as for AB1157 except recA13 

pBR322 cointegrate plasmid carrying the mob and tra plasmid transfer 
functions of RK2; Kmr 

sinA::lacZYA fusion present in pCP16; Tc', Ap• 
sinB::lacZYA fusion present in pCP16; Tc•, Ap• 
sinC::lacZYA fusion present in pCP16; Tc', Ap• 

"Nomenclature and abbreviations are essentially those of Demerec et al. (45). Tc•, Km•, and Ap• refer to 
resistance to tetracycline, kanamycin and ampicillin/carbenicillin, respectively. 
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Table 9.--Properties of E. coli recA and/or lexA strains 

Strain• Relevant genotype 

AB1157 

RM1084 recA13 

GC3217 

DM1180 recA441 lexA3 

DM1187 recA44 l lexA3 spr51 

DM49 

• All strains are derived from AB 1157. 

E. coli SOS gene expression 

SOS genes are induced by exposure to DNA damaging agents 

RecA activity is absent and SOS genes are noninducible 

When the culture temperature is shifted from 30 to 42°C, 
RecA coprotease activity is activated and SOS genes are 
constituitively expressed 

The LexA repressor is resistant to coproteolytic cleavage, 
and SOS genes are noninducible at any temperature 

LexA is unable to function as a repressor, and SOS genes 
are constituitively expressed at any temperature 

The LexA repressor is resistant to coproteolytic cleavage, 
and SOS genes are noninducible 

b Strains possessin& the recA441 mutation are also sfiA 11. 

Reference 

213 

29 

28 

28 
29 

28, 29 
129 

29 

-0 
00 
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for an additional 10 min. A 0.3 ml volume of LB was added, and the culture was 

incubated 1 h at 30"C before plating onto selective media. Plates were incubated at 

30°C. 

Other methods 

Restriction endonuclease digestions, isolation of plasmid DNA, determination 

of UVC sensitivity, measurement of P-galactosidase activity, and triparental matings 

were performed as described in preceding Chapters. 

Results 

Induction of sin::lacZYA fusions in P. aeruginosa is a rifampicin-sensitive process 

Rifarnpicin is an antibiotic capable of selectively inhibiting bacterial 

transcription (212). The effect of rifarnpicin on the UV induction profiles of PA025 

containing pBMIAOO, pBML 700, and pBMI...900 was investigated by adding 200 ug 

rifampicin/ml to cultures immediately following UVC exposure. This treatment has 

been shown to effectively inhibit P. aeruginosa transcription within 1 min after 

addition (2). Under these conditions, UV inducible behavior of gene fusions was not 

observed (Table 10). 

The sinA and sinB promoters are dependent upon the function 

of the P. aeruginosa recA gene product 

The effect of the recA102 mutation on sinA::laczy A and sinB::laczy A 

expression was investigated by monitoring the UVC responsive expression of these 

fusions when present in a recA102 RM265 genetic background as compared to a 

RecA+ PA025 background (Figure 19). The pBMIAOO and pBMI...700 gene fusions 

were not induced in strain RM265 when subjected to UV exposures of 10 and 20 
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Table 10.--Rifampicin inhibition of the UV inducible behavior of fil!! gene fusions 

STRAIN UV DOSE RIFAMPICIN "RELATIVE 
(20 J/m2

) (200 ug/ml) ACTIVITY 

PA025 (pBMI...400) 1.0 

+ 1.0 

+ 12.9 

+ + 1.0 

PA025 (pBML 700) 1.3 

+ 1.1 

+ 33.9 

+ + 1.0 

PA025 (pBMI..900) 1.6 

+ 1.0 

+ 2.9 

+ + 1.0 

• Relative activity values reflect maximum p-galactosidase levels observed within 5 
hours following UV treatment. The Table indicates results of a representative assay 
which was carried out in duplicate. 
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Fig. 19. RecA dependence of sinA::lacZYA and sinB::lacZYA UVC responsive expression. ®: (e) PA025 (pBMIAOO) 
untreated; (0) PA025 (pBMUOO) 10 J/m2

; (I) RM265 (pBMUOO) 10 J/m2
• B: (e) PA025 (pBML700) untreated; (0) PA025 

(pBML700) 20 J/m2
; (II) RM265 (pBML700) 20 J/m2

• Irradiated and control RM265 cultures gave identical results. Basal levels 
of expression were about two-thirds lower in RM265 cultures as compared to PA025 cultures. The graphs represent the average 
of two independent assays which were performed in duplicate. Similar results were obtained using exposures of 5, 10 and 20 J/m2

• 
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J/m2
, respectively. While these data are not shown, induction of RM265 contain

ing pBML400 or pBML700 also could not be detected following UVC exposures of 

5, 10, or 20 J/m2
, even though the sinA gene fusion is clearly induced by these 

treatments in a RecA + P. aeruginosa host 

The sinA::lacZYA fusion does not manifest an ultraviolet dose-dependent 

response when present in E. coli 

The recA gene of P. aeruginosa appears to be both expressed and regulated in 

E. coli (90). An attempt was made to determine whether sin gene fusions are also 

regulated in E. coli using sinA::laczy A as a representative sin fusion. In one approach 

to answering this question, the UVC-mediated response of sinA::laczy A was monitored 

in the RecA+ E. coli host AB1157 (Figure 20). An increase in ~-galactosidase activity 

was not observed within 3.5 h following esposure to UVC doses of 0, 10, 20, 40, and 

60 J/m2 (Figure 20, Panel A). Examination of the response of this strain to higher UV 

doses suggested a slight increase in ~-galactosidase activity following exposure to UVC 

doses greater than 100 J/m2 (Figure 20, Panel B). However, examination of relative 

activity (Figure 21) revealed that this slight increase was not significant, and probably 

reflected normal experimental variation in ~-galactosidase activity. 

pBML400 does not complement various E. coli recA or lexA mutations 

Failure to observe a UVC-mediated response of the sinA::lacZYA gene fusion 

when present in the E. coli strain AB 1157 may have reflected an error in selection 

of the UVC dose range or time frame in which ~-galactosidase activity was 

monitored. One way to avoid this possibility is to examine sinA::lacZYA expression 

in the presence of E. coli recA and/or lexA mutations which result in constituitive, 

temperature sensitive, or noninducible expression of E. coli SOS genes. The 
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Fig. 20. Response of AB 1157 (pBML400) to UVC radiation. ® Response of 
AB1157 (pBML400) to relatively low UVC doses: (0) 0 J/m2

; (•) 10 J/m2
; (Ll) 20 J/m2

; 

(.&) 40 J/m2; (Il) 60 J/m2
• Results represent the average of two independent assays. (fil 

Response of ABl 157 (pBML400) to higher UVC doses: (0) 0 J/m2
; (e) 50 J/m2

; (Ll) 
100 J/m2; (.&) 150 J/m2

; ([] 200 J/m2
• A representative experiment is presented. 
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Fig. 21. Relative activity of ABl 157 (pBML400) exposed to higher UV doses, 
O J/m2; (•) 50 J/m2; (8) 100 J/m2

; (A) 150 J/m2
; (Il) 200 J/m2

• A representative ~ (0) 
which was performed in duplicate is presented. Relative activity was calculated s~Y 
the legend to Figure 7. . ~ iJl 
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sinA::laczy A fusion was introduced into these various genetic backgrounds through 

transformation of wild-type AB 1157 and recA and/or lexA derivatives (Table 9) with 

pBML400. Before sinA::laczyA expression could be monitored in these strains, the 

inability of pBML400 to complement the various recA or lexA alleles needed to be 

verified. Mutant strains both containing and not containing pBML400 were streaked 

onto agar. Portions of the streak were exposed to increasing doses of UVC irradiation. 

UVC sensitivity was compared to AB1157 and AB1157 (pBML400) treated in the same 

fashion. The pBML400 plasmid did not appear to complement any of the UVC

sensitive alleles to UVC resistance. 

The sinA promoter does not respond to E. coli recA or lexA control 

E. coli recA and lexA single and double mutant strains were used to directly 

assess whether the sinA promoter is capable of interacting with E. coli recA and 

lexA regulatory factors. The p-galactosidase activity of the pBML400-containing E. 

coli strains incubated at 30"C, and shifted to incubation at either 30 or 42°C was 

monitored (Figures 22 and 23). 

Temperature shift assays involving recA441 GC3217 (pBML400), recA13 

RM1084 (pBML400) and wild-type AB 1157 (pBML400) (Figure 22) demonstrated that 

the recA441 allele did not result in increased sinA::lacZYA expression upon 

temperature shift up to 42°C. If anything, P-galactosidase expression in all E. coli 

hosts (Figure 22 and 23) decreased slightly following 42°C incubation. This effect may 

simply reflect a reduced efficiency of transcription or translation at the increased 

temperature. Compared to AB 1157 (pBML400), basal levels of p-galactosidase 

expression were slightly elevated in the recA441 GC3217 (pBML400) host, and slightly 
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Fig. 22. Temperature shift assay of ABl 157 and recA· derivatives contammg 
pBML400. ® wild-type strain AB1157 (pBML400), (fil recA13 strain RM1084 
(pBML400), (Q recA441 strain GC3217 (pBML400): (0) 30°C; C•) 42°C +adenine. 
Results for AB 1157 and GC3217 strains represent the average of two assays. 
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Fig. 23. Temperature shift assay of AB 1157 lexA· derivatives containing pBML400. 
® recA441 lexA3 strain DM1180 (pBMIAOO), CID recA441 lexA3 spr51 strain 
DM1187 (pBMIAOO), cg lexA3 strain DM49 (pBML400): (0) 30°C; (8) 42°C + 
adenine. Results for DM1180 and DM1187 strains are the average of two assays. 
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reduced in the recA13 RM1084 (pBML400) host. This small difference does not 

appear to be significant and probably reflects normal experimental variation. 

Upon comparison of lexA hosts (Figure 23), it can be seen that the presence 

of the spr51 mutation resulting in an inactive LexA repressor in the recA441 lexA3 

host DM1187 did not result in increased constituitive sinA::lacZYA expression in 

DM1187 (pBMIAOO) as compared to recA441 lexA3 DM1180 (pBML400). Both 

strains exhibited similar levels of ~-galactosidase at all temperatures as lexA3 DM49 

(pBMIAOO), and wild-type AB 1157 (pBML400). The sinA::lacZYA gene fusion did 

appear to be expressed in the various E. coli hosts, since most pBMIAOO-containing 

strains exhibited ~-galactosidase levels which were approximately twice the activity 

observed in strains not containing pBML400 (Table 11). 

Discussion 

The observed rifampicin inhibition of UVC-mediated induction of 

sinA::lacZY A, sinB::lacZYA and sinC::lacZYA in RecA+ P. aeruginosa indicates that 

the response of these fusions is regulated at the level of transcription. Furthermore, 

the presence of the recA102 mutation, which alters recA activity, abolishes UVC 

radiation-generated increases in ~-galactosidase expression in P. aeruginosa containing 

either sinA::lacZYA or sinB::lac2YA. Similar experiments could not be performed 

with sinC::lac2Y A, because this fusion could not be established in RecA· P. 

aeruginosa strains. Based on these results, it appears that both the sinA and sinB 

gene fusions are regulated by the P. aeruginosa recA gene product, or require the 

function of the recA gene product for their UVC-mediated induction. The fact that 

a UVC-mediated increase in P aeruginosa recA expression occurs at an earlier time 
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Table 11.--Basal expression of E. coli strains containing or not containing pBMIAOO 

STRAIN GENOTYPE - pBMIAOO + pBMIAOO 
Basal activity" Basal activity" 
(Miller units) (Miller units) 

AB1157 wild-type 16 39.1 (9.1) 

RM1084 recA13 17 20.0 +/- 0 

GC3217 recA441 15 44.0 (8.5) 

DM1180 recA441 12 37.1 (8.3) 
lexA3 

DM1187 recA441 14 33.2 +/- 13.2 
lexA3 
spr51 

DM49 lexA3 9 33.6 +/- 9.6 

• Results of a representative assay carried out in duplicate are presented. 
b Numbers indicate the average and either the deviation from the average or the 

the standard deviation (in parenthesis). 
ab Strains were grown at 30°C to about 108 CFU/ml. 
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(69) than sinA::laczy A and sinB::laczy A induction supports this hypothesis. These 

findings are significant since they clearly indicate that recA-dependent genes are 

conserved in P. aeruginosa. 

The sinA::laczy A-containing plasmid does not complement UVC-sensitive 

E. coli recA or lexA mutations. The ability of the sinA promoter to interact with 

E. coli regulatory factors was investigated using two different approaches. In the first 

approach, UVC-mediated induction of sinA::lacZYA was monitored in RecA+ E.coli. 

A UV stimulated increase in sinA expression was not observed following exposure 

to UVC doses ranging from 0-200 J/m2
• P. aeruginosa containing sinA::lacZYA as 

well as E. coli din genes normally demonstrate gene induction within this range of 

UVC doses, and within the time frame examined. 

In the second approach to investigation of sinA promoter activity, sinA::laczy A 

expression was examined in the presence of E. coli recA and lexA single or double 

mutations. Somewhat surprisingly, the sinA::lacZYA fusion did not increase its 

expression in a RecA+ E. coli host in response to UVC radiation, in mutant E. coli 

hosts possessing altered LexA repressor activity, or in thermally induced E. coli 

recA441 strains. It is possible that failure to observe responsive gene expression may 

have resulted from an inability of the sinA promoter to function in E. coli. However, 

increased constituitive f3-galactosidase levels in E. coli strains containing sinA::laczy A 

did not support this idea. It is conceivable but not very likely that f3-galactosidase 

activity in the gene fusion containing strains resulted from the low level expression 

of another promoter present in the chromosomal insert. Results of these experiments 

more likely suggest that sinA::laczy A does not respond to E. coli recA/lexA control. 
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The same type of result has been reported for the stress responsive genes 

nucA of Serratia marcescens and pnlA of Erwinia carotovora subsp. carotovora. While 

nucA encodes an extracellular nuclease (8), pnlA encodes a pectin degrading enzyme 

(121). Both genes have been shown to require the recA function of their native host 

for inducible gene expression (8, 218). However, nucA and pnlA are not induced 

in response to stress in RecA + E. coli. Similar to sinA, both genes do appear to be 

expressed in this host (8, 121). The E. carotovora recA gene has been shown to be 

stress inducible in E. coli (83). Similarly, the S. marcescens recA gene responds to 

stress in the native host. and possesses a strongly conserved SOS consensus sequence 

(8). It is intriguing that the upstream region of the nuclease gene possesses a 

sequence that closely resembles a LexA binding site (8). In the case of both nucA 

and pnlA, experimental results have been interpreted as to suggest the requirement for 

an additional species-specific transcriptional activator for the observation of gene 

induction. It is conceivable that the sinA promoter may similarly require a P. 

aeruginosa-specific activator protein for stress responsive gene expression. In this 

case, sinA::lacZY A would not demonstrate gene induction in E. coli. 



CHAPTER VII 

GENERAL DISCUSSION 

Experimental results clearly demonstrate that fusions linking a j3-galactosidase 

reporter gene with eight novel, stress responsive promoters of P. aeruginosa have been 

obtained. These results are significant because they indicate that P. aeruginosa 

possesses genes other than recA which respond to stress agents. Similar restriction 

digests observed for some of the fusions suggest they may be TnJ,-HoHoI insertions 

in the same general region of the chromosome. For example, sinA and sinB genes 

may be separated from each other by about 20 kb. 

The sinA, sinB, and sinC gene fusions were selected for more thorough 

investigation as representative sin::lacZYA fusions. These three fusions apparently 

are TnJ,-HoHol insertions in separate genes. Neither the sinA, sinB, or sinC reporter 

gene fusions increased their expression following heat stress. This indicates that sin 

genes are not P. aeruginosa heat shock genes. In contrast, all three fusions 

demonstrated induction in response to both UVC radiation and norfloxacin exposure, 

despite the very different effects of these stressors upon the bacterial cell. While the 

magnitude of sinA::lacZY A induction in response to norfloxacin was slightly reduced, 

the general shape of the norfloxacin- as compared to the UVC-mediated induction 

profile was almost identical. These results indicate that P. aeruginosa sin genes 

122 
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resemble E. coli SOS genes in their ability to respond to stress agents which damage 

DNA and impair DNA replication. 

P. aeruginosa sin genes show further similarity to E. coli SOS genes in their 

dependence of induction on stressor dose. For both E. coli SOS genes and P. 

aeruginosa sin genes, maximum norfloxacin induction occurs when the concentration 

of quinolone is high enough to result in cell killing. The P. aeruginosa sinA, sinB, 

and sinC gene fusions exhibit their maximal UVC-mediated inductive response 

following a level of exposure which is comparable to that required to induce E. coli 

SOS genes. This is surprising considering that P. aeruginosa is more UV sensitive 

than E. coli. This result may indicate that some type of inducing signal is generated 

following exposure to a UVC dose of about 20 J/m2
• Alternatively, the dose

response curve of sin gene fusions may be altered due to expression of wild-type sin 

genes. For example, E. coli uvrB induction requires a 10-fold increase in UVC dose 

in a uvr+ as compared to a uvr· host (160). 

Comparison of the induction profiles of the three sin::lacZYA fusions revealed 

they respond with differing kinetics and magnitudes of induction to UVC radiation 

exposure. This is another example of a similarity between P. aeruginosa sin genes 

and E. coli SOS genes. These latter genes are sequentially induced in response to 

stress treatments due to a differing affinity of the LexA repressor for respective 

promoter regions (200). It is not clear whether a LexA-like repressor is required for 

sin gene regulation in P. aeruginosa. Differences in induction profiles of P. 

aeruginosa sin genes could similarly result from differences in the affinity of a 

LexA-like repressor, or alternatively a transcriptional activator for sin promoters. 
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The three gene fusions are unlike E. coli SOS genes in that they appear to 

demonstrate multiphasic induction profiles (69, 72). This phenomenon has been 

reported for additional P. aeruginosa genes and may not be unusual for P. aeruginosa 

gene expression. It is interesting and may prove relevant that sin inductive peaks 

occur with about the same periodicity as the DNA replication cycle. P. aeruginosa 

does demonstrate norfloxacin inducible DNA recovery synthesis (12), and it is 

tempting to speculate that sin genes might be involved in this process. Further 

experiments are clearly needed to verify whether sin gene induction is in fact related 

to the DNA replication cycle. 

The approximate chromosomal location of sin genes was determined by 

analysis of large chromosomal fragments (U. Romling and B. Tummler, personal 

communication). The map location of sin genes does not correspond to the location 

of the few mapped mutations known to affect P. aeruginosa recombination and repair 

(94, 127, 158). An attempt was made to more closely define sin gene map locations 

by integrating sinA::lacZY A and chromosomal DNA flanking sinB::lacZYA in the 

chromosome to provide markers for gene mapping studies. This attempt resulted in 

pyocin synthesis in transconjugants, which may have been due to an imbalance of 

pyocin regulation or subunit expression. Pyocin R2 genes map to the same general 

location as sin genes (173). While sinA, sinB, and sinC gene fusions are not fusions 

to pyocin R2 structural genes, and do not contain pyocin R2 structural genes within 

their cloned inserts, they could potentially encode or contain the reporter gene fused 

to the pyocin R2 regulatory gene prtP. On the other hand, since the sinA, sinB, and 

sinC genes are located within the same 200 kb region of the chromosome, the gene 

fusions may be flanked by or contain the reporter gene inserted into novel pyocin 
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genes. An imbalance in pyocin regulation or subunit expression could similarly 

account for the difficulty in establishing and maintaining sinC::lacZYA constructs 

extrachromosomally in an unaltered form in P. aeruginosa (Appendix B). Namely, the 

sinC gene fusion or a segment of the chromosomal insert may express or regulate 

expression of pyocin. 

A related attempt to define the location of sin genes by replacing chromosomal 

genes of a res· P. aeruginosa strain with transposon-inactivated versions did not yield 

gene replacement. An inherent weakness of this type of experiment is that the 

frequency of crossover events may simply be too low to obtain the desired gene 

replacement strains. Alternatively, gene replacement strains may have been obtained, 

but may not have been viable. In other words, if P. aeruginosa sin genes encode 

pyocin regulatory components, are involved in DNA recovery synthesis, or are 

analogues of E. coli SOS genes mediating recombination and repair, then the function 

of these genes may very well be required for cell viability. 

Investigation of regulation of sin::lacZYA fusions revealed that the 

UVC-mediated induction of sinA::lacZYA, sinB::lacZYA and sinC::lacZYA in RecA+ 

P. aeruginosa is sensitive to rifampicin. The inductive response of E. coli SOS genes 

is also regulated at the level of transcription (200). Both the sinA and sinB gene 

fusions require the function of the P. aeruginosa recA gene product for their 

UVC-mediated induction, which suggests that they may be regulated by recA. These 

findings are significant since they clearly indicate that recA-dependent genes are 

conserved in P. aeruginosa. 

Somewhat surprisingly, the sinA::laczy A fusion did not increase its gene 

expression in a RecA + E. coli host in response to UVC, in mutant E. coli hosts 



126 

possessing altered LexA repressor activity, or in thermally induced E. coli recA441 

strains. It is possible that failure to observe responsive gene expression may have 

resulted from an inability of the sinA promoter to function in E. coli. However, 

increased ~-galactosidase levels in E. coli strains containing sinA::lacZYA did not 

support this idea. 

Results of the E. coli induction experiments more likely indicate that 

sinA: :lacZY A does not respond to E. coli recA/lexA control. It is possible that sinA 

is constituitively expressed in E. coli because this species lacks a transcriptional 

repressor protein required for regulation of stress responsive sinA expression. However, 

it is more plausible that the sinA promoter, like the S. marcescens nucA and E. 

carotovora pnlA promoters, requires an additional species-specific activator protein 

for gene induction. Regulation of P. aeruginosa sin genes would be clarified by 

transposon mutagenesis of the P. aeruginosa chromosome. sin::lacZYA plasmids 

could be mobilized into mutagenized P. aeruginosa, and insertions which alter stress 

responsive expression could be identified and mapped. 

Miller et al. (126) have suggested that the evolutionary divergence in the RecA 

amino acid sequence may reflect interaction of different RecA proteins with 

species-specific coeffector proteins. When considered with similar results observed 

for the S. marcescens nucA gene (8), and the E. carotovora pnlA gene (121), the 

E. coli sinA::lacZYA induction experiments might support this idea. In other words, 

while RecA and RecA-dependent genes are conserved, certain aspects of regulation of 

RecA-dependent stress responsive genes may differ in bacterial species. If a 

LexA-like protein is involved in the regulation of gene expression in P. aeruginosa, 



127 

then the experimental results obtained indicate that it may be fundamentally different 

from the E. coli analogue. 

Earlier experiments have clearly demonstrated that the P. aeruginosa recA gene 

is capable of participating in and potentially regulating stress responsive DNA repair 

(89, 90, 124). While some details of regulation of P. aeruginosa RecA-dependent sin 

genes may differ from E. coli SOS genes, sin genes are similar in many respects to 

SOS genes, and could potentially be involved in stress inducible repair or recovery 

of DNA synthesis. P. aeruginosa has been shown to possess quinolone inducible 

DNA recovery synthesis (12), and it is possible that sin genes may be involved in this 

process. In contrast, P. aeruginosa lacks Weigle reactivation in response to UVC and 

quinolone exposure, and is sensitive to UVC radiation (175). One explanation of this 

stressor-sensitive behavior of P. aeruginosa is that pyocins or possibly cryptic 

prophages may be induced following stress agent exposure. This would result in cell 

killing, which would be interpreted as a lack of inducible DNA repair in the Weigle 

reactivation assay. 

To be of any benefit to P. aeruginosa, stress responsive repair and 

recombination genes would need to be differentially induced than pyocin genes. 

Since P. aeruginosa is a soil and water microorganism, a likely candidate for an 

environmental stressor potentially capable of accomplishing this feat is solar radiation. 

The solar UV spectrum consists of mainly UVA radiation (wavelengths >320 nm), 

a small amount of UVB radiation (290-320 nm wavelengths), and does not contain 

UVC wavelengths (<290 nm) (143). While UVC radiation primarily results in the 

formation of pyrimidine dimers, UV A exposure results in the generation of 

DNA-protein crosslinks, alkali-labile sites, and DNA strand breaks (143). The 
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response of P. aeruginosa to UV A exposure has not yet been studied. However, it 

is enticing to speculate that if P. aeruginosa does encode stress responsive DNA 

repair enzymes, the respective genes might be induced different from pyocin genes 

upon exposure to UV A radiation. 

The studies conducted appear to have opened up new avenues for future 

experimentation in P. aeruginosa. The clarification of regulation of sin genes is of 

importance from an evolutionary standpoint. sin promoter-containing fragments 

could potentially be used to purify trans-acting regulatory proteins, and investigation 

of sin promoters would allow cis-acting sequences to be compared between species. 

In a related experiment, it would be interesting to determine whether induction of any 

E. coli genes such as the RIN genes is mediated by a transcriptional activator. 

Investigation of the size of encoded sin proteins along with studies of their function 

would allow a better comparison with stress responsive genes isolated from other 

bacteria. It may be significant to look at sin gene transcripts to determine if sin 

genes, like the stress responsive recA gene, encode more than one. Perhaps one of 

the most relevant studies to be performed would be an investigation of sin gene 

expression in response to naturally occurring stressors such as solar radiation. These 

studies will hopefully lead to exciting discoveries concerning stress responsive gene 

expression in the environmentally important species P. aeruginosa. 



APPENDIX A 

CALCULATION OF P-GALACTOSIDASE ACTIVITY 

A computer program was written to facilitate calculation of P-galactosidase 

activity of a large number of samples (Figure 24). 
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5 INPUT "NUMBER OF DATA POINTS:":N 
10 DIM A{N},B{N},C{N},D{N},E{N},X{N},Y{N} 
20 INPUT "INDUCING CONDITIONS ARE?";H$ 
30 PRINT "ENTER TIMEPOINT, A420, A600, AND REACTION TIME {MIN} 
40 PRINT : PRINT 
50 FOR I = 1 TO N 
60 INPUT A{I},B{I},C{I},D{I} 
70 NEXT I 
80 INPUT "ARE THERE ANY CORRECTIONS {Y/N}?";A$ 
90 IF A$ { } "N" THEN GOSUB 270 
100 FOR I = 1 TO N 
110 X{I} = B{I} * 1000 
120 Y{I} = C{I} * D{I} * 0.2 
130 E{I} = X{I} I Y{I} 
140 NEXT I 
150 PRINT CHR$ {4};"PR#l": REM ACTIVATES PRINTER 
155 PRINT CHR$ {1};"80N": REM SCREEN OFF AND LINE WIDTH 80 
160 PRINT H$; PRINT 
170 PRINT "TP A420 A600 RTIME{MIN} MILLER UNITS" 
180 FOR I = 1 TO N 
190 PRINT SPC{3}; A{I}; SPC{9}; B{I}: SPC{ll}; C{I}; SPC{13}; D{I}; 

SPC{ 15}; E{I} 
240 NEXT I 
245 PRINT CHR$ {l};"I": REM SCREEN ON AND LINE WIDTH 40 
250 PRINT CHR$ {4};"PR#O": REM DEACTIVATES PRINTER 
260 END 
270 INPUT "ENTER LINE NUMBER TO BE CORRECTED:";! 
280 INPUT "ENTER NEW VALVES FOR TIMEPOINT, A420, A600, AND 

REACTION TIME:":A{I},B{I},C{I},D{I} 
290 INPUT "ANY OTHER CORRECTIONS {Y/N}?;A$ 
300 IF A$ { } "N" THEN GOTO 270 

Fig. 24. Simple computer program for calculation of ~-galactosidase activity. The 
program was written to be executed on an Apple or Apple-compatible computer. Line 
120 was frequently changed to accomodate different volumes of cells (i.e. 0.1, 0.2, or 
0.5 ml) assayed. and the correction loop never did work. 



APPENDIX B 

DIFFICULTY IN THE STABLE ESTABLISHMENT OF pBML900 AND ITS 

DERIVATIVES IN P. AERUGINOSA 

A deletion or other type of recombinational event may have been observed 

within pBML900. Initially pBML900 possessed restriction patterns identical to 

pBML1200. However, with continued maintenance in the RecA+ P. aeruginosa strain 

PA025, pBML900 was observed to lack 16 kb BamHI-HindIII and PstI fragments 

which are present in pBML1200. Carbenicillin resistance, hybridization of a labeled 

lac2Y A probe to an appropriate size pBML900 BamHI-HindIII fragment, and tests of 

UVC-mediated induction of ~-galactosidase expression all verified the integrity of the 

sinC::lacZYA gene fusion in pBML900. It is possible that pBML900 is not derived 

from pBML1200 by deletion or recombination. In this case, the 16 kb bands present 

in pBML1200 could represent some type of partial digestion products. 

A deletion was clearly detected in the pBML900 BamHI subclone pBML9011 

maintained in PA025. A recombinational event was suspected when restriction digests 

of this subclone appeared incompatible with restriction digests of pBML900 and its 

HindIII subclone pBML9090. Southern analysis of pBML900, pBML9090, and 

pBML9011 was performed to confirm the extent of the pBML9011 deletion. Whereas 

a probe consisting of the TnJ-HoHoI KpnI-BglII lacZYA fragment detected the same 

16-17 kb fragment present in BglII-BamHI and BglII-HindIII digests of pBML900, 

PBML9090, and pBML901 l, a probe consisting of the 200 bp upstream end of TnJ-
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HoHol including only the first Kpnl site hybridized to Kpnl-BamHI and Kpnl-HindIII 

fragments of about 8 kb in pBML900 and pBML9090, and hybridized to a high 

molecular weight band present in Kpnl-BamHI and Kpnl-HindIII digests of pBML9011. 

The only explanation compatible with these results is that a B glll site is present in 

pBML900, pBML9011, and pB:ML9090 in the sinC promoter region, between the 

inserted transposon and BamHI and HindIII sites lying slightly further upstream. The 

deletion present in pBML9011 removed the upstream BamHI site, and appears to 

extend from the promoter region Bglll site to further upstream of the BamHI site. 

Additional restriction digests of the three constructs were compatible with this 

interpretation. 

Another pBML900 subclone was demonstrated to be unstable in P. aeruginosa. 

The inducible subclone pBML9001 was obtained through partial Bglll-Pstl digestion 

followed by religation of pBML900, and was mobilized immediately into PA025. 

Growth of PA025 (pBML9001) under nonstressed conditions resulted in the recovery 

of constructs possessing altered restriction patterns. The chromosomal insert present 

in pBML9001 did not appear to be recombining into the chromosome since the 

recovered altered isolates were no longer inducible. Approximately half of the 

colonies obtained upon streaking out a pure stock of PA025 (pBML9001) for isolated 

colonies were found to be noninducible. 

An attempt was made to establish the pBML900 subclone pBML9090 in 

various P. aeruginosa hosts. This attempt was made using pBML9090 since earlier 

attempts using pBML900 had failed. OT684 (PBML9090) transconjugants were 

obtained with a frequency of at least 10-6 transconjugants/recipient, which indicated 

that the failure to establish pBML9090 in strains PA025, RM265, and RM522 did 
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not result from an inability of pBML9090 to be mobilized by pRK2013. In 

mobilization experiments involving pBML400 and pBML 700, transconjugants of the 

various hosts were obtained with a relatively high frequency (10-6-10-5 transconjugants/ 

recipient), which suggests that these strains represent suitable recipients in triparental 

matings. In this context, it is interesting that pBML9090 isolated from OT684 and 

transformed into E. coli HB101 could not be mobilized back into P. aeruginosa 
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