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Abstract 

Sediment cores recovered from the Lomonosov Ridge on IODP Expedition 302, the 

Arctic Coring Expedition (ACEX), provided the first major insights into long-term Cenozoic 

history of climate and ocean conditions in the central Arctic. However, the ACEX record is 

hampered by a major hiatus or severely condensed interval (depending on age-model 

interpretations) at 198.7 mcd separating the middle Eocene and Miocene records. Lithologic 

subunit 1/5 lies above this depth horizon, and is informally called the “zebra interval” because of 

distinctive stripes - black and gray tilted and cross-banded silty-clay layers, up to 3 cm thick that 

characterize the lower ~2.5 m of the subunit. Prior studies provide micropaleontological 

evidence for a brackish, shallow water depositional environment below and across the hiatus, 

continuing into subunit 1/5; and the cross-banding suggests a high-energy shallow water setting 

conducive to reworking and erosion. In addition, prior studies place the hiatus and subunit 1/5 

within an overall up-section transition from warmer to cooler temperatures with more persistent 

ice-rafting, and from restricted to more open water circulation. Given the paleoclimatic and 

paleoceanographic differences above and below this interval and its unique lithologic pattern, 

this study aimed to better characterize the sedimentology of the black and gray couplets.  

Twenty-four samples from the black and gray layers and eleven samples from above and 

below the “zebra interval” were analyzed to characterize the XRF elemental composition, XRD 

bulk and clay mineral composition, grain size, and coarse sand composition and abundance. 

Overall, the zebra interval had less Fe and more variability in grain size than the stratigraphic 

intervals above and below it. In addition, the zebra interval showed upcore shifts from smectite 

to illite-dominated clays and greater abundance of terrigenous coarse sand. The sand-sized grains 

are quartz-dominated, showing very little change in composition throughout all three of the 
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lithologic sub-units. Quartz-grains are also generally well-rounded. Differences between the gray 

and black layers within the zebra interval were limited; gray bands tended to have greater 

abundances of quartz and muscovite, slightly higher Ti abundances, and lower abundances of Fe, 

Co, Ni, K, P, As, Sr, and Mn than the black layers.  

The sedimentological observations are perplexing. Rounded quartz suggests reworking in 

a shallow water setting that has wave or tide action, so this, along with the tilted and cross-

banding support the micropaleontological interpretation of an estuarine depositional setting for 

the zebra interval. The compositional differences (abundance of quartz and muscovite) may 

indicate semi-regular differences in transport energy or provenance that could relate to variations 

in input due to seasonal changes, storms or tides. However, the duration of a black-gray couplet 

is unknown, making it difficult to infer a specific depositional control. Complicating this further 

is the lack of graded bedding or other distinct changes in grain size between the gray and black 

layers, which would be expected if shallow water currents produced the tilted and cross-bedded 

layers.  However, these inconsistencies may be artifacts of the sample processing – the samples 

were semi-lithified and therefore difficult to disaggregate. Additional grain size work that does 

not require disaggregation should be conducted. The dominance of the clay mineral smectite in 

subunit 1/5 suggests transport from the Kara and/or Laptev Sea regions. 

An alternative interpretation for the origin of the black and gray layers is that the color 

changes could be the result of post-depositional semi-regular changes in oxidation of the bottom 

waters. In an estuary this might occur due to seasonal overturn, and could be sea-ice influenced 

However, this is difficult to reconcile with the tilted and cross-bedded nature of the black and 

gray layers.  
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At a broader scale, the distinct shift in clay mineralogy and drop in sand abundance from 

subunit 1/5 (“zebra interval”) to overlying subunit 1/4 may indicate a change in circulation from 

a strong transpolar drift current to an increase in terrigenous transport to the central Arctic by the 

Beaufort Gyre. This puzzling time of paleoceanographic and paleoclimatic transition will be 

investigated further in upcoming IODP Expedition 377. 
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1. Introduction 

1.1 Background 

In September of 2004, the Integrated Ocean Drilling Program (IODP) Expedition 302 

(commonly called ACEX) set out to obtain a continuous sedimentary record showing the 

paleoenvironmental evolution of the Central Arctic Ocean. The drilling location, ~88°N, 140°E, 

is about 250 km from the North Pole, along the Lomonosov Ridge (figure 1). Prior to the 

expedition, the Lomonosov Ridge was mapped using seismic reflection and refraction data, 

which showed that the ridge was likely comprised of undisturbed, flat-lying strata. This 

expedition gave the first insight into the long-term Cenozoic history of the Arctic Ocean. 

 

Figure 1: Arctic Ocean with IODP Expedition 302 site locations noted (Modified from NOAA; 
http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/provisionalmap.html). 
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At a water depth of ∼ 1,300 meters, the expedition recovered sediment cores reaching 

depths of 428 meters below the seafloor (mbsf). Cores were taken from four different sites and 

were correlated using several datasets, including seismic data, biostratigraphy, and 

lithostratigraphy. The record recovered extends back to the Late Cretaceous; however, within the 

record two depositional hiatuses are present. The longer and older of the two hiatuses occurs at 

193.13 mbsf and spans 25 million years, according to the expedition report (Expedition 302 

Scientists, 2006). The hiatus occurs at a division between two modes of sedimentation. The 

sediments below the hiatus are rich in organics and siliceous microfossils, which is indicative of 

deposition in a euxinic and anoxic setting, while the fossil-poor silty clays deposited following 

the hiatus suggest an ice-dominated setting (O’Regan et al., 2008). The sediments immediately 

above and below this hiatus are the focus of my undergraduate research. These sediments include 

a section called the “zebra interval”, named for its black and dark gray layering, which give the 

appearance of stripes.  

1.2 Sample Stratigraphy  

Samples were obtained from the IODP Bremen Core Repository for use in this study. The 

sampling strategy aimed to get representative samples from above, within, and below the “zebra 

interval”, including samples from the black and gray zebra stripes (Figure 2). In total, 35 samples 

of ~10 cc volume were available for analyses (Appendix A) from the three different subunits 

shown in figure 2. As reported in the expedition findings (Expedition 302 Scientist, 2006), the 

fundamental characteristics of samples in Subunits 1/4 through 1/6 are summarized below. 

Subunit 1/4  

Samples taken from Expedition 302 Site 2 Hole A Core 46 are above the “zebra interval” 

and are middle Miocene in age. The lithology is silty clay, which alternates in color from dark 
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brown to grayish brown. The sediment is poor in organic carbon and microfossil content. The 

subunit is rich in dropstones and sand lenses.  

Subunit 1/5  

Samples taken from Expedition 302 Site 2 Hole A Core 45 are part of the “zebra interval” 

and are middle to early Miocene in age. The interval is characterized by black to dark gray, 

alternating clayey bands. Packages of stripes are tilted. The light portions of the interval are more 

oxidized while the darker portions are less oxidized (Sangiorgi et al., 2008). Since the initial 

recovery of the core, the colors of the “zebra interval” have faded, as noted by scientists at the 

Bremen Core Repository. This was taken into consideration when selecting the samples. Some 

shifts in the sampling were made to avoid oversampling this critical interval, and to ensure that 

samples were taken in the color distinct bands.  

Subunit 1/6  

Samples taken from Expedition 302 Site 2 Hole A Core 44 are below the “zebra interval” 

and are middle Miocene to middle Eocene in age. The sediments are dark, siliciclastic silt that is 

rich in organic carbon, and they contain pyrite and microfossils. Isolated pebbles are also seen in 

this subunit. Three of the five samples received from this core were shifted from the intervals 

requested. These shifts were to avoid oversampling of an area of the core.  

Post-Recovery Gypsum 

When sampling of the core was completed in January 2018, scientists from the IODP 

Bremen Core Repository documented gypsum crystals on the surface of the core. Gypsum 

(CaSO4�2H2O) is not typically found in deep marine sediments because the ocean is 

undersaturated in gypsum (St. John et al., 2000). Therefore, the gypsum present on (and 
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potentially in) the core probably formed as a precipitate after core recovery, while in the storage 

at the core repository. Likely, the seawater present in the core sediments following recovery 

evaporated, and the calcium sulfate salts precipitated as gypsum. However, in 2009, Kaminski 

noted some interspersed gypsum in the core, which was attributed to subaerial exposure on the 

Lomonosov Ridge. This could mean that gypsum is not only present on the surface, and that 

some of it could be primary. 
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2. Paleoenvironmental Setting of the Lomonosov Ridge 

2.1 Subsidence History  

There is scientific controversy and uncertainty regarding the hiatus and the subsidence 

history of the Lomonosov Ridge. In order to explain the 25-million-year hiatus identified in the 

core recovered during the expedition, subsidence models of the Lomonosov Ridge were 

developed (Moore et al., 2006). Currently the Lomonosov Ridge is located in the central Arctic, 

but ∼57 million years ago it was a part of the Eurasian continental margin, and for approximately 

2 million years following rifting, the ridge remained in neritic conditions before subsidence 

began (Moore et al., 2006).  This subsidence was caused by post-rift cooling. Throughout its 

history, the ridge's depth below sea level also varied with changes in global sea level. Over the 

past 54 million years, the ridge has drifted away from the Eurasian margin, and subsided to its 

current depth.  

The subsidence hypothesis of Moore et al. (2006) attributes the hiatus at 193.13 mbsf to 

an increase in strong bottom currents (at >1000 m paleodepth) that eroded, reworked, and then 

redeposited the upper Eocene and Oligocene sediments, a process that is interpreted as having 

produced sand lenses and cross-bedding observed by the shipboard scientific party (Expedition 

302 Scientists, 2006).  In contrast, other scientists (Sangiorgi et al., 2008; Kaminski 2009) have 

hypothesized that the subsidence history was different, and that it included a lengthy period 

when the ridge was in shallow water, either at or near sea level. Such an environmental setting 

would promote wave erosion and/or non-deposition, thereby producing the hiatus. Supporting 

this shallow model are palynological, micropaleontological, and geochemical data (Figure 3; 

Sangiorgi et al., 2008). In particular, the presence of fungal and fern spores both below and 

above the hiatus is consistent with an environment at or near sea level (Sangiorgi et al., 2008). A 
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third variation on the paleoenvironmental history of the Lomonosov Ridge is one that allows for 

its early subsidence, but with that episode of subsidence then followed by uplift to above sea 

level, all of which is the result of regional tectonic movements associated with the rifting of the 

Yermak and Morris Jesup Plateaus at ~33 Ma (Kaminski 2009).  

	

Figure 3: Summary diagram from Sangiorgi et al (2008) showing changes in a range of 
paleoenvironmental proxy data across the primary hiatus (indicated by the dashed line) in the 

ACEX sediment record. 

 

2.2 Age-Depth-Model  

In addition to the subsidence history, there is also controversy surrounding the age-depth 

model of the Lomonosov Ridge. The two current models differ in methods and in their 

interpretation of the hiatus. Backman et al. (2008) developed an age-depth model based on 

micropaleontology, beryllium isotope stratigraphy, and paleomagnetic data. They interpreted the 

changes at 193.13 mbsf to be consistent with a long hiatus (Figure 3a). However, Poirier and 

Hillaire-Marcel (2011) proposed a new hypothesis for the gap in the record that was based on 

osmium isotope stratigraphy, as well as on some of the age-depth markers from Backman et al. 

(2008). Rather than being a hiatus, the section was reinterpreted as being a condensed section – a 
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continuous record of a time of very little deposition (Figure 4b; Poirier and Hillaire-Marcel, 

2011). Both age depth models and other paleoenvironmental factors are plotted in a summary 

figure (Figure 6) to provide a clearer picture of the Arctic Ocean’s conditions during the time 

interval represented by the sediments being investigated by this study.  

 

Figure 4: Proposed age/depth models for the Arctic Ocean. (a; left) The graph at left is the 
original age/depth model showing the gap in the core as a hiatus. (b; right) The graph at right 

shows the gaps as a continuous record of minimal deposition (after Poirier and Hillaire-Marcel, 
2011). 

 

2.3 Ice-rafting History of the Central Arctic 

A major discovery of ACEX was that ice initiation in the Arctic occurred at ~46 Ma. 

Dropstones were recovered from the middle Eocene sediments of the core (Expedition 302 

Scientists, 2006). Because the Lomonosov Ridge is isolated from land and is on an offshore 

bathymetric high, the only way sediments this coarse could have been transported to it would be 

via ice (icebergs or sea ice). To identify times of ice coverings (Figure 5) two measurements 
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were made, both related to the sediment.  One was quantifying changes in terrigenous sand by 

weight percent (St. John 2008), and the other was the noting the presence of pebbles on the core 

surface (Expedition 302 Scientist, 2006). 

The section above the hiatus (unit 1/5) has a high rate of terrigenous sand mass 

accumulation, however, St. John (2008) noted that the sands were potentially reworked and may 

not represent original depositional conditions. Therefore, these were tentatively disregarded in 

the St. John (2008) study and no further work was done on the potential ice rafted debris (IRD) 

sediments from this interval.  

 

Figure 5: Ice rafted Debris mass accumulation rates plotted versus time. This chart shows ice 
imitation beginning during the Eocene, over 46 mya. Subunit 1/5 is noted as “reworked?” (St. 

John, 2008). 
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3. Data and Methods 

3.1 Maximizing the Range of Analysis 

 With a sample size of only ~10 cc, strategic use of the samples was imperative. In order 

to complete a broad suite of analyses, each sample needed to be sub-divided and used in a 

particular order. The flow chart in Figure 7 represents the sub-division and order in which the 

samples were processed. The methods of analysis were ordered and arranged such that one 

method would not affect the results of another method. For example, x-ray fluorescence 

spectroscopy needed to be completed before x-ray diffraction analysis because of the addition of 

a silicon standard and grain size analysis, and clay x-ray diffraction needed to be completed 

before the addition of Calgon to the sample.  

 

Figure 7: Decision tree for methodology used in this study. 

 

 

Gypsum	Analysis	
(smear	slides)

1/2	of	the	sample
grounded	into	

homogeneous	powder

1.	Used	for	XRF	analysis

2.	Used	for	powder	XRD	
analysis

1/2	of	the	sample	
added	to	water	to	soak	

1.	Samples	were	sieved	
with	250,	150	and	106	

µm	screens

2.	<	106	µm	fraction	of	
the	sample	was	used	for	
grain	size	analysis	and	

clay	XRD

3.	>	250	µm	fraction	was	
reprocessed	using	Calgon	
for	a	better	analysis	of	

sand	abundance		
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3.2 Smear Slides 

 A single smear slide was made from subunit 1/4, a black layer from subunit 1/5, a gray 

layer from subunit 1/5, and subunit 1/6. A small amount of sample was added to a glass slide and 

mixed with water. This slide was left to dry and a glass cover was adhered to the slide with an 

epoxy. These slides were then viewed under a petrographic microscope. Because the samples 

were semi-lithified the creation of the smear slides was difficult. The samples contained clumps 

and it was difficult to clearly see the mineralogy, however, gypsum was not noted as present.  

3.3 X-ray Fluorescence Spectroscopy  

X-Ray fluorescence (XRF) is a non-destructive analytical method for measuring the 

elemental composition of the core samples. The fluorescence emitted by the sample serves to 

identify the elements present. XRF data gives the relative element abundance in the samples, 

which can be used to identify stratigraphic changes in composition. 

Half of each original bulk sample was gently ground with a mortar to form a 

homogeneous powder. A Bruker X-Ray Fluorescence Spectroscopy tool and a core track were 

used for the analyses. Samples were analyzed at both 40 kv and 15 kv voltages (to enhance the 

detection of different elements) using no filter for a 30 second run. Identification of the elements 

present was completed using the Artax software. This study focused on major elements that were 

previously identified during routine, low-resolution shipboard geochemical work (Expedition 

302 Scientists, 2006). The most abundant minerals were plotted relative to aluminum in order to 

normalize the results and compare relative abundances. These ratios were chosen based on 

previous work done involving this study’s subunits (Sangiorgi et al., 2008; Spofforth et al., 

2008).  
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3.4 Powder X-ray Diffraction 

Powder x-ray diffraction (XRD) is another analytical method that was used to examine 

the mineral composition, including the gypsum content in samples. Powder diffraction allows for 

analysis of bulk samples, and produces diffraction patterns for a bulk composition. 

Ten of the powdered samples from the previous XRF analysis were prepared for bulk x-

ray diffraction by the addition of a silicon standard. A single sample from both above and below 

the “zebra interval” were tested for sub-unit comparison and the remaining eight samples were 

chosen from the “zebra interval” (4 black stripe samples and 4 gray striped samples). 10% 

sample weight of a silicon standard was added to the samples. The samples were transferred to a 

16mm backmount slide and analyzed using the X’Pert Pro XRD software. Peak minerals were 

searched based on their interplanar d-spacing based on previous work with these subunits 

(Expedition 302 Scientists, 2006; Vogt, 2009). The area of the element peaks was used to 

determine relative abundances.  

3.5 Sand Composition and Abundance  

The remaining half of the samples were used for coarse grain composition analysis and 

grain size analysis. The original bulk samples were highly indurated. For that reason, they were 

not further oven dried before obtaining a dry weight. Not drying the samples in an oven, 

however, introduces some uncertainty, specifically, the possibility that small quantities of pore 

water might be unaccounted for in the overall sample weight. To address this, unused extra bulk 

material from 2 samples within subunit 1/5 were used to develop a correction factor. These two 

samples were oven dried, weighed, and their water content was assumed to represent the water 

content for other samples from the same lithologic subunit. An average water content was 
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determined. Applying this water content to the other samples, we were able to calculate an 

adjusted dried bulk weight for each of the samples.  

Sieving steps followed the methods in St. John (2008); the bulk samples were prepared 

with deionized water and mixed using an ultrasonic bath. Samples were left to soak for an 

extended period (weeks to months) and were periodically stirred. No deflocculant was added 

because the fine fraction of these samples was to be used for clay XRD, and a deflocculant 

would have made it later difficult to flocculate the clays for that form of analysis. The samples 

were then wet sieved using 105, 150, and 250 µm mesh screens. The greater than 105, 150, and 

250 µm fractions were weighed following their being dried in an oven. The less than 105 µm 

fraction was then used in clay mineral XRD analysis and grain size analysis.  

The > 250 µm faction was processed for a second time using sodium hexametaphosphate 

(i.e., generic Calgon) to deflocculate the clays still attached to some of the grains. These samples 

were re-sieved with a 250 µm mesh screen, dried and weighed. The coarse sands were analyzed 

using a binocular microscope. The composition of 100 randomly selected grains from each 

sample was determined by observation using a binocular microscope. The coarse fraction (sand) 

weight percentages were calculated using the adjusted bulk sample weight and the weight of 

isolated and dried > 250 µm faction. Samples with more than 5% semi-lithified sediment clumps 

remaining even after the dual sample processing steps were not used in the analysis of coarse 

grain weight percent.  

3.6 Clay X-ray Diffraction 

If sufficient volume was present, the < 105 µm fraction obtained from the previous 

compositional work was used to perform clay mineral analysis. Using a centrifuge to remove 
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larger particles from the remaining sample, an oriented clay mount slide was made. The clays 

were glycolated prior to XRD analysis, a technique that helps with differentiation of the clay 

minerals.  X-ray diffraction analysis of these oriented samples was used to determine the peak 

positions of d-spacing, which is the crystallographic parameter used to identify and distinguish 

the clay minerals present in the samples. The Biscaye (1965) method was used to calculate 

relative abundances of the minerals. 

3.7 Grain Size Analysis  

Smear slide observations and bulk powder XRD showed no indication of gypsum being 

present and so post-depositional mineral precipitation would not be a major factor influencing 

grain size results (i.e., grain size result should reflect the size distribution of the original deposit). 

A second assumption was that sieving sufficiently broke down semi-lithified clumps of clay. 

This assumption may not be entirely valid however, because some clay clumps were observed in 

the > 250 micron sieves. Nevertheless, grain size analysis was carried out on the samples to look 

for possible patterns or trends. Using a Beckman Coulter LS 13-320 laser diffraction particle size 

analyzer, the < 105 µm fraction was analyzed. This fraction of the sample had to be analyzed so 

as to not interfere with the sand weight percentage. Samples were run with a 10% obscuration 

using a marine mud model. Obscuration refers to the sample concentration used to complete 

analysis. Three runs were completed. Grain size counts were used to determine clay, silt, and 

(very fine) sand percentages as well as mean, median, and mode grain size.   
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4. Results 

4.1 X-ray Fluorescence Spectroscopy  

 The most abundant elements found in the samples included silicon (Si), potassium (K), 

titanium (Ti), magnesium (Mn), iron (Fe), manganese (Mg), phosphorus (P), nickel (Ni), 

strontium (Sr), rubidium (Rb), and cobalt (Co). As shown by figure 8, both subunit 1/4 and 1/6 

have a higher average abundance of iron (see note in figure caption) than the “zebra interval”. 

Subunit 1/4 has higher abundances of manganese and strontium, while subunit 1/6 has higher 

abundances of potassium.  

 
Figure 8:  Represents the mean relative abundances of the elements in all three subunits. Subunit 

1/5 was divided into both black and gray stripes. The Fe/Al data extends off of the graph and 
was cut off to increase the clarity of the other elements. The Fe/Al ratios for the layers are listed 
– Subunit 1/4 average = 59.99, Gray Average = 31.56, Black Average = 47.14, Subunit 1/6 = 

149.46 
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Element abundances for potassium, silicon, and titanium generally match the work done 

by Sangiorgio et al. (2008) (Figure 9), but the iron data varies. Our data reports subunit 1/4 

having high amounts of Fe while the other study shows lower abundance. 

 
Figure 9: Modified from Sangiorgio et al. (2008). 	Quantitative X-ray fluorescence 

measurements were performed on freeze-dried and homogenized sample powders. Elemental 
ratios plotted against depth. Dashed line indicates the position of the hiatus. 

 

Figure 10 shows the elemental differences between the black and gray stripes from within 

the “zebra interval”. On average, XRF data showed the black layers have more Fe, Co, Ni, K, P, 

As, Sr, and Mn, whereas gray layers have more Ti. 
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Figure 10: Represents the mean relative abundances of elements in the black and gray 

stripes from the “zebra interval”. 

 

4. 2 Bulk Powder X-ray Diffraction 

Due to time constraints (resulting from slow sediment disaggregation), only one sample 

from above and below the “zebra interval and four black layer and four gray layer samples were 

analyzed for bulk mineral composition. Over 30 different minerals were identified during the 

analysis of the bulk samples but many of the minerals varied in their abundances greatly between 

the samples. Plagioclase, quartz, and muscovite were the most abundant minerals and were 

present in all of the samples.   
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Figure 11:  represents variations in abundance (peak area) of plagioclase, quartz, and 

muscovite from a subset of samples 

 

The data show that the gray layers from the “zebra interval” have higher relative 

abundances of quartz and muscovite than the black layers. This difference is puzzling because 

with an increase in quartz, we would expect an increase in grain size associated with the gray 

layers, however we see no consistent difference in grain size between the gray and black layers 

(see section on grain size results). The data also indicate that subunit 1/6 has generally lower 

abundances of all three elements compared to the “zebra interval”. More samples will need to be 

run in order to make more accurate interpretations of these data.  
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4.3 Sand Composition and Abundance  

There was little difference between the three subsections of samples in terms of coarse 

grain composition. In all samples, except samples with a significant amount of semi-lithified 

sediment clumps, the coarse grain fraction was dominated by quartz (clearly seen in figure 12). 

The quartz that was present in the samples showed rounding. The other grains present in the 

samples were feldspar, lithics, micas, and sedimentary rock fragments. One notable difference 

was the abundance of iron stained quartz (Figure 12A) in subunit 1/4, which was not prevalent in 

the other two subunits.   

 

 
Figure 12: Photographs representative of the coarse grain fraction of each subunit. A – subunit 1/4 - 

sample 302 2A 44x 71-72cm >250 µm fraction at 25x magnification. B – subunit 1/5 - sample 302 2A 45x 
43-44 cm >250 µm fraction at 25x magnification (gray stripe). C – subunit 1/5 - sample 302 2A 45x 130-
131 cm >250 µm at 25x magnification (black stripe). D – subunit 1/6 sample 302 2A 46x2 105-106 µm 

fraction at 25x magnification.   

A	 B	

C	 D	
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Figure 13: Coarse grain weight percentage plotted against depth. Gray squares represent gray 
stripes and black triangles represent black stripes. The data points above the “zebra interval” 

represent subunit 1/4 and the data points below represent subunit 1/6.   

The coarse grain weight percentages from subunit 1/6 to the first half of the “zebra 

interval” remains consistent, generally ranging from 0.5% to 1.5%. About half way through the 

“zebra interval”, the weight percentage increases. This change increased the weight percentages 

of the coarse-grained sands to between 1.5% and 2.7%.  Above the “zebra interval”, the coarse 

grain weight percentages drop dramatically. The weight percentages of samples in subunit 1/4 

ranges from 0.1% to 0.43%. There is no clear trend between the black and gray stripes of the 

“zebra interval”. There was no trend in sand abundance within the “zebra interval”. The color of 
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the stripe did not affect the sand weight percent of the sample. This data is consistent with the 

work done by St. John (2008) (figure 13).  Similarly to the data collected for the present study, 

the 2008 study reported an increase in sand abundance in the upper part of subunit 1/5, and a 

large decrease in subunit 1/4.  

 
Figure 14: Terrigenous sand weight percentages from site 302 surrounding the major hiatus (St. 

John, 2008). 

 

4.4 Clay X-ray Diffraction  

Clay composition analysis was conducted for samples that yielded a significant amount 

of grains < 2 μm diameter (13 out of 30 samples). Many of the samples from within the zebra 

unit and all of the samples from subunit 1/6 did not produce a sustainable amount of clay 

material and clay slides were not possible to make. While samples from subunit 1/4 did have a 

higher abundance of clay than subunit 1/5 and 1/6 (Figure 17), the samples that did not produce 

clay slides contained at least 13% clay grains. There was likely an issue with volume of the 

sample available which was puzzling considering the lithology of both units was silty-clay.  

Subunit 1/5 has varied clay mineralogy; however, the gray vs black layers within subunit 

1/5 show no distinct differences in clay mineralogy (Figure 16). This suggests a consistent 
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dominant provenance during the deposition of the light vs dark zebra layers, which is the 

Kara/Laptev Sea region. Based on Vogt’s (2009) mineral provenance map (Figure 15), the shift 

from smectite-dominated (upper subunit 1/5) to illite-dominated (subunit 1/4) may suggest a shift 

in provenance from the Kara/Laptev Sea region to the east Siberian and/or Canadian Arctic 

Ocean margins. The abundance of smectite in subunit 1/5 suggests an environment when there 

was a dominant Transpolar Drift (TD) transporting the smectite material. The Laptev Sea area is 

a source area for Smectite and the Transpolar Drift would be capable of moving the material 

from that region north to the Lomonosov Ridge (Vogt, 2009).  In order for the illite to be 

deposited at site 302 the Beaufort Gyre (BG) would need to transport the illite from the Siberian 

and/or Canadian shield. Quartz is present in both provenance regions making the areas 

appropriate sources for the sand fraction of the samples.  

 
Figure 15: Provenance of minerals and mineral groups in the Arctic (Vogt, 2009). Site location is 

marked by red star. White arrows = downslope sediment transport mainly through troughs. Alm = almandine, 
C(Fe) = Fe-rich chlorite, D = dolomite, Hbl = hornblende/amphibole, I = illite/ mica, blue K = calcite, red K 

= kaolinite, Kfs = K-feldspar, Mg = Mg-rich calcite, OLEM = mixed-layer clay, Plg = plagioclase, Pyx = 
pyroxene, Qz = quartz, S = smectite, Sid = siderite. BG = Beaufort Gyre, EGC = East Greenland Current, 

Lomo = Lomonosov Ridge, TD = Transpolar Drift, TDsib = Siberian branch, WSC = Westspitzbergen Current 
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Figure 16 – Clay abundances plotted against depth for subunit 1/4 and 1/5. Subunit 1/6 did not 
produce enough volume to conduct clay XRD analysis. 

 

Additionally, there is a clear shift of increasing amounts of smectite in the “zebra 

interval” and then it decreased significantly when subunit 1/4 begins. This same increase 

followed by a drop occurs in the sand abundance data too. This pattern may indicate a stronger 

input of material from the Kara/Laptev Sea region from the Beaufort Gyre. 

4.5 Grain Size Analysis  

Grain size analysis was completed for the < 105 μm fraction. The analysis was not done 

on samples that had been treated with Calgon because the same sub-fraction was used to 
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complete clay XRD. This limits our ability to make definitive interpretations because the data 

likely does not show true grain size. All 35 samples were run and from the data percent clay, 

cohesive silt, sortable silt and sand, average, median, and mode grain size, and standard 

deviation of the data and was obtained.  

There is no discernible difference in grain size between the black and gray stripes. The 

layer appearance within the zebra interval would suggest a change in current to account for the 

cross bedding, however there is no grain size data to suggest this change between the layers. 

Figure 16 B & C represent average black and gray stripe grain distribution. These two graphs 

illustrate the similarity in grain size diameter seen between the two different colored stripes. 

Subunit 1/6 (D) is more similar in grain distribution to the “zebra interval” than is overlying 

subunit 1/4.  

Using standard deviation as a way to interpret sorting, the “zebra interval” is more poorly 

sorted in comparison to the other subunits, meaning that there is a wide range of grains sizes 

within the samples. This difference between the subunits in regards to sorting may point to a 

change in energy. This change in energy may be associated with wave erosion or tidal forces 

coming from shallow water that could have produced the hiatus (Sangiorgi et al., 2008). While 

an increase in energy would align with strong bottom currents (Moore et al., 2006) capable of 

reworking the “zebra interval”, the presence of clays in the samples argues against that 

explanation, because the currents would have winnowed them away.    
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Figure 17 – These four graphs show a representative distribution of grain size (particle diameter 
v. volume) from each unit. Grain size distribution is shown in the following order - subunit 1/4, 

subunit 1/5 black stipe, subunit 1/5 gray stripe, subunit 1/6 
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5. Conclusions 

5.1 Limitations of the Study  

The sediment samples from the “zebra interval” were highly indurated and therefore 

difficult to sieve, even after soaking for weeks in DI water. We did not want to treat the full bulk 

samples with a deflocculant (e.g., Calgon) because that would make it difficult subsequently to 

make oriented mounts for clay mineral XRD analyses. Even without Calgon, however, the 

creation of oriented clay slides was nonetheless not without difficulty because of a lack of 

volume of clay-sized grains in many of the samples. Additionally, because the samples were so 

difficult to sieve, the grain size analysis may not be an accurate representation of sample grain 

sizes. The decision was eventually made to treat and then re-sieve the samples following clay 

and grain size analysis. Even with the additional treatment with Calgon, some samples still did 

not completely disaggregate, and some semi-lithified clumps were present in the coarse grain 

fraction. These semi-lithified clumps had to be taken into consideration when analyzing the sand 

abundance. Samples with more than 5% abundance of semi-lithified clumps were not used in the 

analysis of sand abundance.  

 Additionally, when preparing the samples for clay XRD, many of the samples within, 

and all of the samples below, the “zebra interval” did not have enough clay-sized (<2 μm 

diameter) material for analysis making any conclusions made incomplete. Grain size results 

using the Laser Diffraction Particle Size Analyzer may also have been impacted because the 

<106 μm fraction may not have been fully disaggregated and therefore did not fully reflect the 

true grain distribution of the sample. 

5.2 Interpretations 
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 Although there are some differences within and between the elemental data and the 

mineralogy of the black and gray stripes within the “zebra interval”, they are minimal. 

Additionally, there is no consistent pattern with in the grain size data. We cannot confidently 

infer any differences in provenance within the “zebra interval” (subunit 1/5). This implies that 

the sediments were deposited in a consistent environment. The roundedness observed, potentially 

caused by back and forth reworking, on the dominate quartz sand grains supports deposition in a 

shallow water environment, as suggested by Sangiorgio et al. (2008). The color changes within 

subunit 1/5 may have occurred post-depositionally, reflecting changes in organic carbon content 

and alternating oxic-anoxic (Eh) conditions in an estuary setting. One process that might cause 

repeated cycles of oxic-anoxic conditions in an estuary would be a pattern of density 

stratification (producing anoxia in the bottom waters) and seasonal overturn (renewing the 

oxygen). Seasonal sea ice formation might play a role in this.   

  A shift in provenance can be inferred between subunit 1/5 and 1/4. There is an increase 

in sand and smectite abundance towards the top of the “zebra interval” and a decrease at the 

beginning of subunit 1/4.  This pattern not only indicates a change in source material from the 

Kara/Laptev sea to the Siberian and/or Canadian margin, but it also indicates a change in current 

transport. The smectite and the higher abundance of sand grains were likely transported from the 

Kara/Laptev sea regions by the Transpolar drift, whereas the deposition of illite and a decrease in 

sand abundance would represent the Beaufort Gyre becoming an additional important mode of 

sediment delivery from the Siberian and/or Canadian margin. 

 Additionally, the increase in sand abundance in the upper part of subunit 1/5 and 

the large decrease in subunit 1/4 are consistent with the results from St. John (2008). As noted in 
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that study, the sand grains within unit 1/5 were likely reworked and thus are not reliable IRD 

indicators. The results obtained from this study point to a shallow water setting for the 

depositional environment of these samples, and therefore reinforce the conclusion that the sands 

in this unit would not have utility as an indicator for possible IRD.  

5.3 Outstanding Questions 

 There are several inconsistencies within the data that have left outstanding questions 

regarding the deposition of the “zebra interval”. 

If the black and gray layers are post-depositional, could overturning of the water column cause 

the alternating bands? 

 Overturning of the water column could account for the color changes within the “zebra 

interval”. When the water column is stratified the sediments would be deposited in anoxic 

conditions, while a mixed water column would allow the sediments to be deposited in oxic 

conditions. The changing of these two conditions could be a cause of the alternating bands. The 

overturning of a water table can be a seasonal occurrence but it also can be caused by ice. The 

appearance of ice would block winds from mixing the water and therefore cause anoxic 

conditions. Alternatively, when sea ice forms salts are largely excluded, causing the underlying 

surface waters to increase in salinity and therefore become denser and sink. This would cause 

water column overturn and renew the deeper waters with oxygen. The 26-million-year hiatus that 

the “zebra interval” sits on top of covers a transition from a greenhouse to icehouse earth and sea 

ice diatoms and IRD analysis from lithological unit 2 (the unit below this study’s area) indicate 

the onset of seasonal offshore ice at the Lomonosov ridge (Stickley et al., 2009). Seasonal ice 
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would be a reasonable mechanism for overturning the water column, however this mechanism 

would not explain the truncation of the layers. 

If the black and gray layers are not post-depositional, why is there no change in grain size? 

 If the black and gray layers are not post-depositional and actually a change in seasonal 

fluctuation, we would expect to see a change in grain size. If these layers were tidal couplets, we 

would be able to see a distinct change in energy between the two colors. For example, during the 

spring flood the energy would be increased and we would expect to see an increase in grain size. 

During Ebb we would see a decrease in energy and a decrease in grain size. The color banding of 

these samples do not reflect the increase/decrease grain size pattern that would be associated 

with tidal couplets. It is possible however that the issues faced with processing have not allowed 

for grain size of the samples to be truly represented. In order to confirm if these colored layers 

are or are not post depositional, another method must be used to examine grain size.   

5.4 Further Research Opportunities  

A completion of bulk powder X-ray diffraction would lend itself to a clearer idea of the 

mineralogy of the samples. With the 10 samples now completed, it is difficult to conclusively 

determine patterns in the data so further XRD work could eliminate uncertainty. The addition of 

this data would further support the possibility of a change in provenance interpreted from the 

clay XRD data. 

Further work including the examination of quartz grain surface textures may provide 

insight to the depositional history of these samples. Examining grain surface textures within the 

interval can be used in comparison to the St. John study (2008) in which grains from above and 
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below the “zebra interval” have been attributed to sea ice or iceberg transport. Differences in 

quartz grain textures (e.g., significant increase in ground rounding, and dissolution) within the 

“zebra interval” may support a complex transport history, with significant reworking that would 

be expected in an estuarine environment. 

Additionally, due to the lithified nature of the samples, a new method could be used to 

address the grain size aspect of these samples. It is possible that creating thin sections of the 

samples across the core could be used to determine grading. Grading throughout the “zebra 

interval” could provide an insight into the environment in which the samples were deposited.  

This shallow depositional setting was a challenging setting for continuous recovery. 

Changes in relative sea level - whether from sea level fall as glaciers were expanding on land in 

the Arctic region (St. John, 2008) and in Antarctica (Carter et al., 2017), or from changes in the 

Lomonosov ridge subsidence (Moore et al., 2006; Sangiorgi et al., 2008; Kaminski 2009) – 

resulted in a highly discontinuous/limited record. This puzzling time of paleoceanographic and 

paleoclimatic transition will be investigated further in upcoming IODP Expedition 377, which 

aims to recover a complete record of Eocene-Miocene time at a nearby location more conducive 

to continuous deposition and preservation. 
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Appendix A 

IODP 302 (ACEX) Sample Information 
Core Section Top Depth (cm) Bottom Depth 

(cm) 
Volume MBSF  Top Remarks 

44 1 59 60 10 192.58  

44 1 65 66 10 192.64  
44 1 71 72 10 192.7  
44 1 75 76 10 192.74  
44 1 80 81 10 192.79  
44 1 85 86 10 192.84  
45 1 31 32 10 196.24 gray 
45 1 34.5 36 10 196.275 black 
45 1 36 37 10 196.29 gray 
45 1 41 42 10 196.34 gray 
45 1 43 44 10 196.36 gray  
45 1 45 46.5 10 196.38 black 
45 1 49 50 10 196.42 gray 
45 1 59 60 10 196.52 black 
45 1 63 65 10 196.56 gray 
45 1 69 70 10 196.62 black 
45 1 78 79 10 196.71 gray 
45 1 86 88 10 196.79 black 
45 1 90 91 10 196.83 black 
45 1 100 101 10 196.93 black 
45 1 105 106 10 196.98 gray 
45 1 112 113 10 197.05 gray 
45 1 122 124 10 197.15 black 
45 1 126 127 10 197.19 gray 
45 1 130 131 10 197.23 Black 
45 2 5 7 10 197.29 gray  
46 1 70 71 10 197.7 Black 
46 1 87 88 10 197.87 Gray 
46 1 105 107 10 198.05 black 
46 1 109 110 10 198.09 Gray 
46 2 100 101 10 199.5  
46 2 105 106 10 199.55  
46 2 110 111 10 199.6  
46 2 115 116 10 199.65  
46 2 119 120 10 199.69  
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