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Abstract

With  electrical  energy  being  a  finite  resource,  feasible  methods  of  reducing  system  power

consumption continue to be of great importance within the field of computing, especially as computers

proliferate. A victim cache is a small fully associative cache that “captures” lines evicted from L1 cache

memory,  thereby  reducing  lower  memory  accesses  and  compensating  for  conflict  misses.  Little

experimentation has been done to evaluate its effect on system power behavior and consumption. This

project  investigates  the  performance  and  power  consumption  of  three  different  processor  memory

designs for a sample program using a field programmable gate array (FPGA) and the Vivado Integrated

Development Environment. One design has no caching whatsoever, one utilizes separate direct-mapped

L1 instruction and data caches, and the last utilizes both direct-mapped L1 and smaller fully associative

victim caches  for  both instructions  and data.  Each of  these  was  given the  same simple  testbench

program, compiled from C, disassembled, and translated into RISC-V machine code. The number of

clock  cycles  for  execution  and  power  estimations  provided  by  the  Xilinx  Vivado  Integrated

Development  Environment  were  compred  for  a  testbench  program.  The  ratio  of  power  over  time

showed a significant benefit in both power consumption and performance for the system with ony L1

caches, not not an overall benefit from including victim caches. However, other instruction streams that

cause more conflict misses may still benefit.
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1. Introduction

With  electrical  energy  being  a  finite  resource,  feasible  methods  of  reducing  system  power

consumption continue to be of great importance within the field of computing, especially as computers

proliferate. Energy-saving solutions exist for users, such as powering down when not in use, or the

replacement of Cathode Ray Tube monitors with less power-hungry Liquid Crystal Displays. Timed

auto-dimming, brightness sliders and sleep mode are ubiquitous in portable devices or monitors. Some

machines have power vs. performance sliders built into their operating systems.

In the last decade, hardware has benefitted from experiments with transistor and materials design

that  have  yielded both  improved system performance at  lower  operating  voltages  and methods of

balancing  lower  power  and  higher  performance  based  on  needs.  Architecture  techniques  such  as

“drowsy-caching” and “sub-banking” with branch predictors [6] and its resources show that innovative

processor designs can reduce energy consumption and potentially improve performance.

1.1 Caching

A  large  part  of  energy  expenditure  within  computer  systems  is  due  to  delays  between

communicating system components. The Central Processing Unit (CPU) of a computer system operates

on data held in system memory, but affordable memory technologies often work at  a substantially

slower rate, leaving the CPU doing practically nothing while waiting for the requested data. Faster

memory technologies such as Static Random Access Memory (SRAM) close the timing gap, but are

substantially more expensive. To get more performance for less cost, smaller, faster memories closer to
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the CPU hold data from larger, slower ones which are further away, forming a memory heirarchy. Most

of the time programs execute from the smaller memory, exhibiting high locality. The smaller SRAM-

based memories usually reside in the CPU, are known as caches, and hold several multiple-byte copies

of data from lower levels known as “lines.” When the CPU requests to operate on data from a specific

address in memory, a controlling circuit for the closest cache looks for a copy of the requested data. If

it is not found, an event known as a cache miss, it forwards the request to the next level down and so

on. Once found, an event known as a cache hit, the data is sent back up as each memory unit in the

chain makes its own local copy for future use. The smaller size of caches means that existing lines must

be replaced to make room for new ones, and the replaced lines may have been changed as part of

execution. To preserve consistency, in most caching implementations lines are copied back down to

lower levels upon being replaced. By using caches, immediately relevant data is made faster for the

CPU to obtain, and reduces the time retrieving less relevant data from main memory. The hierarchy is

known to benefit systems by saving time, but its effect on energy consumption is trickier. Each memory

layer is another piece of hardware, so consideration must be given as to whether or not the energy

expended by the additional hardware is less than the energy lost to CPU idle time.

One factor that affects the performance and usefulness of a cache is its associativity. Cache lines

are held in units called sets. Caching divides binary request addresses into three segments. The “offset”

segment indicates which byte in a line is requested and is comprised of the rightmost log2(bytes per

line) bits of the address. The “index” segment determines which set a given line must reside in, and is

comprised of the next log2(sets in cache) bits of the address. The “tag” segment is used to uniquely

identify the lines in a given set, and is comprised of the remaining bits. Direct-mapped caches hold
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exactly one line per set, whereas an  “n”-way associative cache holds “n” lines per set. Direct-mapped

caches utilize simpler designs, but in the case that two frequently referenced addresses belong to the

same set,  they may be copied in and out over and over, a phenomenon known as “thrashing” that

wastes a lot of time and subsequently power. By holding multiple lines, associative caches are less

prone to thrashing, but depending on the associativity and policy for choosing which line in a given set

to  replace  the  designs  can  be  substantially  more  complex  and  slower  than  their  direct-mapped

counterparts.

Figure 1 demonstrates a direct-mapped cache access. The cache has four-byte lines and eight sets,

therefore the address is divided into a 2-bit offset, 3-bit index and 27-bit tag. The index 101 indicates

set five as the search set. Since the tag in set 5 matches, it is a cache hit and the byte at offset 1 is

retrieved.
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Figure 1. Direct-mapped Cache Hit Demonstration

A victim cache, proposed in [5], is a relatively small but fully associative cache placed between the

highest  “L1” cache and lower memory layers.  It  “captures” lines evicted from L1 cache memory,

thereby reducing lower memory accesses and compensating for conflict misses. Their small size in

comparison to other cache layers make them worth exploring for use in both high-performance and

embedded systems. Victim caching has been shown to improve performance, yet little experimentation

has  been  done  to  evaluate  its  effect  on  system  power  behavior  and  consumption.  This  project

implements  two  memory  heirarchy  designs,  one  with  a  victim  cache  and  one  without  in  a  Field

Programmable Gate Array (FPGA) to gain instight into this question.
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1.2 Project Goals

The intent  is  to  estimate  how the  use of  caching affects  power consumption when applied to

FPGA-based RISC-V based Systems on a  Chip  (SoC).  RISC-V is  an  open-source  Instruction  Set

Architecture (ISA), a standardized specification for the binary machine code instructions a CPU is

capable of decoding and executing.  [9] Three SoCs are compared,  one with no caching, one with

separate L1 instruction and data caches, and one with L1 and victim instruction and data caches, all

designed in Verilog. After simulating and debugging these designs, power estimation tools are used to

compare performance and power behavior for a given RISC-V program.
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2. Related Work

Canturk Isci and Margaret Martonisi [4] propose a power measurement framework adapted from

phase-based performance analysis. The instrumentation tool Pin was used to dynamically inject the

SPECCPU 2000 benchmark suite with calls to an analysis program known as a pintool.  The CPU

running these benchmarks, an Intel Pentium 4 with a Linux Kernel, housed a unit for measuring the

frequency of events such as executions and cache accesses. Additionally, a current measurement probe

was placed on the CPU and the value fed back in as an input. When called, the pintool used buffered

samples of the performance counters and probe measurements to create a sample power history that

accounted for the shift in control. Execution samples were compared for similarity in order to classify

distinct execution phases for which power could be estimated.

In a follow-up paper [3], Isci and Martonosi also described a methodology for measuring power

use for individual components. A Fluke-brand ammeter and Agilent-brand digital multimeter were used

to measure power over time during the execution of similar microbenchmarks, with a sample rate of

1000 readings per second. Access rate heuristics were derived for individual components within the

CPU. L1 cache access rate was defined a function of port replays, front end events and clock cycles.

Power  per  component  could  then  be calculated  as  a  function  of  access  rate,  architectural  scaling,

estimated maximum power and estimated non-gated clock power.

In [6] Kim, Flautner, Blaauw and Mudge consider the effects of transistor leakage on overall power

consumption,  noting  it  as  the  primary  cause  of  power  expenditure  in  caches.  Reducing  threshold

voltage is known to reduce both leakage and performance. The report details experiments with “drowsy
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caches,” in which lines expected to be accessed less frequently are put in a lower-voltage state until

further  notice,  reducing  leakage  temporarily  while  preserving  values.  The  paper  evaluates  via

simulation several drowsy prediction techniques for groups of instruction cache lines called sub-banks.

Accuracy is measured as a function of correct predictions divided by the number of “wake-ups.”

The design of the memory controllers in this report are partially based on examples given in [1].

The design of the RISC-V core and caching systems are partially based on examples given in [7].
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3. Methodology

3.1 Hardware Description Languages and FPGAs

Hardware Description Languages (HDL) are formal programming languages used to create human-

readable  descriptions  of  computational  circuitry.  Verilog  is  a  popular  HDL based  on  C,  in  which

designs are created by defining hardware units called “modules,” their synchronous or asynchronous

sequential  or  combinational  logic,  memory  registers,  inputs,  outputs,  sub-modules,  the  wires  that

connect them together, and a “top module” which binds everything together.” Although mainly used for

simulation,  HDL descriptions  can  be  translated  or  “synthesized”  into  a  format  usable  by  Field

Programmable Gate Arrays (FPGA), a type of chip that can have its structure and function configured

and is  often  used  for  experimenting  with and simulating  dedicated  chip  designs.  The file  used  to

program a specific FPGA with a synthesized design is called a bitstream. This configuration is volatile,

meaning the bitstream must be re-loaded each time the chip is powered on. FPGA manufacturer Xilinx

provides an Integrated Development Environment (IDE) called Vivado for writing HDL and compiling

(synthesizing) it for use with their boards. One helpful feature of Vivado is the ability to abstract part of

the creation process via block diagrams, where modules are represented visually as blocks with I/O

ports. Ports can be connected by drawing lines between them, and Vivado will automatically create a

wrapper module based on the diagram. See the appendix for examples of how block diagrams help the

design process.

All  HDL  code  for  this  project  is  developed  in  the  Xilinx  Vivado  Integrated  Development

Environment  (IDE),  written  in  Verilog  and  simulated  with  the  built-in  behavioral  simulator.  The
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experiment consists of designing three variations of a memory hierarchy system and connecting them

to the same simple RISC-V-based core to compare power/performance behavior among the three.

3.2 BabyRisc

The common RISC-V core is a simplified 32-bit implementation with limited instruction support

and no pipelining. Because of its limited functionality, it has been given the name “BabyRisc.” As of

this writing, BabyRisc only supports aligned loads and stores, doubleword size Arithmetic Logic Unit

(ALU) operations, branches, and a custom halt instruction comprised of all zero bits. It consists of an

instruction decoder, register file, ALU, program counter unit,  and a clock-sensitive main controller.

(See  Figure  2)  The controller  is  a  positive  edge-triggered  eight-state  machine  with  states  “ready,”

“fetch,” “decode,” “calculate,” “memory,” “writeback,” “done” and “error.” and transitions between

states taking place at the positive edge of a periodic clock signal given certain conditions (see Figure 3

for a state transition diagram). These states represent the basic loop every CPU performs in executing a

program:  retrieving  the  next  instruction  from  memory,  determining  the  action  to  take  given  the

instruction, performing a mathematical calculation, reading or writing to external memory, and writing

results back to internal memory units called “registers.” In the “ready” state, this controller awaits a

start signal before transitioning into the “fetch” state, and continues the loop until a halt instruction is

encountered or an invalid instruction is read. Each state has a corresponding component, and signals

are sent upon entering states to trigger their operation. For example, the decoder component reads the

incoming instruction to determine how its outputs should be set, but only sets them when the controller

has entered the decode state. BabyRisc utilizes a byte-aligned 32-bit address space. Memory accesses
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begin  with  a  request  signal  to  an  external  memory  controller  and  end when a  response  signal  is

returned. The req_type signal is used so that the cache memory controller  can distinguish between

instruction and data requests. This is important as each request type causes the controller to behave

differently by branching into type-exclusive states. (See Figures 6 and 8)

Figure 2. A Block Diagram Demonstrating the Design of BabyRisc
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Figure 3. A State Machine Diagram for BabyRisc’s Main Control Unit

3.3 Design 1: Main Memory Only

The main memory modules of the SoC behave similar to a real-world Random Access Memory

(RAM). Upon receiving a request signal, the RAM writes incoming data to the specified address if

necessary, sets the read data on output wires, and sets a response signal. However, as discussed earlier,

in real-world systems the time to access main Dynamic RAM is usually in a magnitude four to five
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times greater than that required to access Static RAM-based caches due to differences in hardware

speed. A raw FPGA implementation would eliminate this delay since every component uses the same

hardware. To simulate this delay, the RAM modules also act like state machines so that they require

eight clock periods per operation instead of the two to four required for cache operations. Because

BabyRisc outputs  instruction  and data  addresses  as  distinct  signals,  for  simplicity’s sake the  main

memory has address inputs and value outputs for both.

The following block diagram demonstrates a BabyRisc system with main memory and no caching.

The request type signal ‘req_o’ is not used in this design, as it is intended for use by a cache controller

which is not present.

Figure 4. A Block Diagram Demonstrating a BabyRisc System with Main Memory

17



3.4 Design 2: L1 Caching and Main Memory

The second design uses shared main memory and distinct caches for instructions and data. The L1

cache modules are direct mapped with a 22-bit tag, 6-bit index and 4-bit offset for a total of 1024 bytes

each.  Both  have  inputs  for  address,  write  enable,  and  data  from  main  memory,  and  outputs  for

combined tag and index for use in cache misses, hit/miss signal, and data. The data cache has additional

inputs for write mode (regular or full line) and size (byte, half, word double), and an additional output

signal for writeback if the set already contains valid data that must be written to lower memory layers

upon replacement. The cache controller for this design does not handle data or address information

itself, but progresses from IDLE through the appropriate sequence of states based on signals from the

caches  and main memory.  Output  signals  from the controller  correspond with specific  states.  (See

Figure 5)

For the two designs in which caching is utilized, the main memory does not accept full 32-bit

addresses, but instead accepts the 28-bit combined tag and index and operates on full 16-byte lines.

Other than this, the function of this line-addressed memory is  nearly identical to that of the byte-

addressed memory.
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Figure 5. Block Diagram for a BabyRisc System with Main Memory and L1 Caching.
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Figure 6. State Machine Diagram for the Cache Memory Controller in Figure 5.

3.5 Design 3: L1 and Victim Caching

The third  design  uses  shared  main  memory,  L1 caches  and victim caches.   The victim cache

modules  hold  the  8  most  recently  evicted  cache  lines,  which  can  be  indexed  and  accessed  in  an

arbitrary order, and are replaced on a least-recently-used basis. This is done via a queue that can be

added to at the front and removed from at an arbitrary location. The L1 and victim caches are checked
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simultaneously, and to mimic real-world systems, upon a victim cache hit lines must be “swapped”

back into the L1 cache before any further reads or writes can be performed. Any lines that are replaced

in the victim cache but not swapped back into L1 are written back to main memory.

The L1 caches work slightly differently to accommodate for this. Both data and instruction L1

caches receive an address from the BabyRisc core, parsing and passing the tag and index to the victim

caches and main memory. Since the L1 and victim caches must be able to exchange data between each

other simultaneously, the lines being written in must not change during the operation. To achieve this,

both L1 and victim caches accept a set_swap input signal, which causes the swap lines to be saved to

output registers. Simultaneous write signals are asserted one cycle later to initiate the swap.

In the case that there is a miss in both caches, writeback from victim cache, eviction from L1 cache

and read-in from main memory occur in respective order, skipping steps when not applicable. A data

writeback is only necessary if the victim cache is completely full, and an eviction from the L1 cache is

only necessary if the target set contains valid data. A read-in from main memory is always necessary

(See figure 8).
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Figure 7. Block Diagram for a BabyRisc System with Main Memory,

L1 Caching and Victim Caching.
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Figure 8. State Machine Diagram for the Cache Memory Controller in Figure 7.

The following is a Vivado behavioral simulation timing diagram demonstrating a successful data

request that misses in the L1 cache but hits in the victim cache. When the request from BabyRisc is

sent (mem_req), a hit in the victim cache has already been found. A few cycles of the clock later, the L1

and victim caches are set to swap lines (set_swap) and those lines are exchanged. Afterwards, the hit is

in the L1 cache (dmc_hm) and a response is sent from the memory controller one cycle later.
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Figure 9. Timing Demonstration of a Victim Cache Swap.

3.6 Testbench and Program

Testing the given designs  requires  two things:  a  program to run and a  testbench file  to  drive

execution. BabyRisc begins program execution by fetching and executing the 32-bit instruction stored

at address 0x0 of memory, then sequentially until  the end of execution,  the exception being when

execution causes the address of the next instruction to change as part of a decision, eg. a jump. Each

testbench program is hard-coded into the main memory modules. For example, the following are a few

RISC-V instructions written in assembly language, followed by the binary representation read by the

CPU.

24



addi sp, sp, -1584 10011101000000010000000100010011
sd s0, 1576(sp) 01100010100000010011010000100011
addi s0, sp, 1584 01100011000000010000010000010011

This binary code is hard-written into the main memory module with the first instruction starting at

address 0x0. As stated before, one main memory design is byte-addressed to 32-bit addresses, while the

other is line-addressed to 28-bit combined tags and indexes. Instantiating the former memory with this

instruction for behavioral simulation takes the form

data[3] = 'b00000000;
data[2] = 'b00000000;
data[1] = 'b00000010;
data[0] = 'b10110011;

Whereas instantiating the same instruction into the latter takes the form

lines[0] = {32'b00000000000100000000111000010011,
            32'b00000000000000000000001110110011,
            32'b00010100000000000000001100010011,
            32'b00000000000000000000001010110011};

The program run for this experiment is a simple Fibonacci sequence calculator which calculates the

first 198 numbers and places them into memory. It is written in the C language and compiled using the

32-bit gcc-based compiler provided in the RISC-V organization’s official toolchain.
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void main() {
 
    #include <stdbool.h>
    #include <stdint.h>
    #define size 192

    uint64_t a = 0;
    uint64_t b = 1;
    uint64_t c = 1;
    uint64_t nums [size];

    uint64_t i = 0;
    while(true) {
        nums[i] = c;
        i += 1;
        if (i == size) break;
        a = b;
        b = c;
        c = a + b;
    }
}

Running  the  toolchain’s  object  dumper  shows  the  program’s  corresponding  assembly

representation. The relevant instructions are copied, modified, translated into machine code and placed

into the main memory module via Verilog statements like the examples above.
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addi    sp, sp, -1584
sd      s0, 1576(sp)
addi    s0, sp, 1584
sd      zero, -48(s0)
addi    a5, zero, 1
sd      a5, -24(s0)
addi    a5, zero, 1
sd      a5, -32(s0)
sd      zero, -40(s0)
ld      a5, -40(s0)
slli    a5, a5, 3
addi    a4, s0, -16
add     a5, a5, a4
ld      a4, -32(s0)
sd      a4, -1568(a5)
ld      a5, -40(s0)
addi    a5, a5, 1
sd      a5, -40(s0)
ld      a4, -40(s0)
addi    a5, zero, 192
beq     a4, a5, 40
ld      a5, -24(s0)
sd      a5, -48(s0)
ld      a5, -32(s0)
sd      a5, -24(s0)
ld      a4, -48(s0)
ld      a5, -24(s0)
add     a5, a5, a4
sd      a5, -32(s0)
beq     zero, zero(-80)
ld      s0, 1576(sp)
addi    sp, sp, 1584
halt

Execution requires use of the Vivado IDE built-in simulator, used for testing Verilog designs and

utilizing three different modes. For behavioral mode, code is interpreted as written and all assignment

statements are treated as instantaneous. The two post-synthesis modes take actual hardware delay into
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consideration, but both are ignored in favor of behavioral since using this mode is outside of the host

computer’s capability  and anticipated to  produce  little  to  no additional  useful  information.  Vivado

simulation requires the creation of testbench files, which wrap the top level modules of Verilog designs

and  allow  users  to  manipulate  and  monitor  input  and  output  over  time.   The  testbench  for  this

experiment wraps all three SoC designs at once, providing each with a 50MHz clock and start signal

while monitoring the ready, done and error outputs. A register also counts the number of cycles passed

since the start signal was sent so that the clock cycles for completion can be compared between each

design. Time measurement for completion is taken from the beginning of simulation to the time when

the “done” signal is asserted by each SoC.

3.7 Power Estimation

Vivado also  provides  a  built-in  post-synthesis  power  estimation tool.  By accounting  for  given

variables, such as ambient temperature, airflow, and input voltage, an estimate of power consumption

in watts when programmed onto an FPGA can be made. This estimation which can be aggregated on a

module-by-module basis for both static and dynamic components. For higher accuracy, Vivado can

generate  usage vector  files  (.saif)  during post-synthesis  simulation which can be applied to  power

estimation  for  improved  accuracy.  Due to  Verilog  infeasibly  long post-synthesis  simulation  times,

however, vector-based estimation is left for future work. More information on Vivado power reporting

can be found at [10]. See the appendix for a summary of the settings used across all power estimations.

With the exception of the clock period,  these are  all  the default  settings  suggested by the Vivado

estimation tool.
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4. Results

Figure 10 is an abridged timing diagram for running the Fibonacci program on each of the three

SoCs in behavioral mode, from slightly before the start signal is asserted to slightly after the done

signals of all three are asserted. “Clk,” “rst_sig,” and “start_sig,” are inputs from the testbench to the

SoC designs; the “done,” “err,” and “ready” wires are outputs. “Clk_en” and “cycle_count” are used

exclusively  by  the  testbench  to  enable  the  clock  and  count  the  number  of  cycles  since  starting

respectively. “Done1” corresponds to the design with no caching system in place, “done2” to the design

with L1 caches, and “done3” to the design with L1 and victim caches. The same applies for the ready

and error signals. The diagram’s scale gives the illusion that “clk” and “cycle_count” remain constant,

but in truth they change very frequently making them appear homogenous.
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Figure 10. Vivado Behavioral Simulation Diagram.

Table 1 summarizes the number of clock cycles and execution time in milliseconds taken from the

assertion of “start” to the assertion of each respective “done” signal, assuming a clock period of 20ns

corresponding to a 50MHz clock.
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Memory Layout Cycles to Completion Time to Completion

Main Memory Only 39388 1.680 ms

L1 Caching 15066 (24322 less) 0.566 ms

L1 and Victim Caching 14874 (192 less) 0.551 ms
Table 1. Simulation Cycles and Time to Completion

Performance comparisons are evident:  The design with L1 and Victim Caching required fewer

cycles and therefore less time to execute, although not by a significant degree for this program. This is

likely due to the nature of the program used for testing, which has only three local variables that are

referenced frequently. A closer observation of simulation showed that lines were recovered from the

victim cache only ten times.

For power estimation, each design was synthesized and run through individually instead of all at

once. Tables 2-5 are a breakdown of power reporting results for each design using the default settings.

The first entries in each table are measurements for each module arranged in order from lowest to

greatest power. The last three entries on any table list the total dynamic power, the total static power,

and the combined total. Dynamic power is a measurement of power spent when a transistor moves

from a high state to a low state and vice-versa, whereas static power is a measure of leakage when a

transistor is not changing state. A higher ratio of dynamic over static power is a ratio of useful power

over wasted power, therefore based on power estimation the design with victim caches is seemingly

more power efficient in the average case.

31



Module Name / Variable Power Percentage of Total

BabyRisc 0.242 W 11.86 %

Regular Main Memory 1.649 W 80.79 %

Dynamic Power 1.893 W 92.75 %

Device Static Power 0.148 W 7.25 %

Total On-Chip Power 2.041 W 100.00 %
Table 2. Power Reporting Results for the Main Memory Only Design

Module Name / Variable Power Percentage of Total

Memory Controller < 0.001 W < 0.003 %

Instruction L1 Cache 0.013 W 3.94 %

Caching Main Memory 0.030 W 9.09 %

BabyRisc 0.046 W 13.94 %

Data L1 Cache 0.133 W 40.30 %

Dynamic Power 0.222 W 67.27 %

Device Static Power 0.108 W 32.73 %

Total On-Chip Power 0.330 W 100.00 %
Table 3. Power Reporting Results for the L1 Caches Only Design
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Module Name / Variable Power Percentage of Total

Memory Controller < 0.001 W < 0.283 %

Caching Main Memory 0.003 W 0.85 %

Instruction Victim Cache 0.017 W 4.81 %

Data Victim Cache 0.018 W 5.10 %

Instruction L1 Cache 0.023 W 6.51 %

BabyRisc 0.053 W 15.01 %

Data L1 Cache 0.130 W 36.83 %

Dynamic Power 0.245 W 69.40 %

Device Static Power 0.108 W 30.59 %

Total On-Chip Power 0.353 W 100.00 %
Table 4. Power Reporting Results for the L1 and Victim Caches Design

Module Name Main Memory Only L1 Caching L1 & Victim Caching

BabyRisc 0.242 W 0.046 W 0.053 W

Main Memory 1.649 W 0.030 W 0.003 W

Memory Controller N/A < 0.001 W < 0.001 W

Instruction L1 Cache N/A 0.013 W 0.023 W

Data L1 Cache N/A 0.133 W 0.130 W

Instruction Victim 
Cache

N/A N/A 0.017 W

Data Victim Cache N/A N/A 0.018 W

Dynamic Power 1.892 W 0.222 W 0.245 W

Device Static Power 0.148 W 0.108 W 0.108 W

Total On-Chip Power 2.041 W 0.330 W 0.353 W
Table 5. A Comparison Between Similar Modules in each Design
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First  of note is  the much higher  power estimate for the main memory only design.  The main

memory module of the first design is responsible for approximately 80% of its power consumption. In

the other two designs, the line-addressed main memory module contributes substantially less, and the

data caches contribute substantially more. This could be due to main memory being called upon much

less frequently in the latter two designs, with the burdens being placed on the data caches. It could also

be due to a disjoint in complexity between the two main memories’ designs - a memory comprised of

2048 single-byte  registers  is  perhaps  more  complex than  one  comprised  of  128 16-byte  registers.

However, observing the estimated behavior of BabyRisc brings both of these theories into question.

The above theories do not  explain the variance in  BabyRisc’s power behavior  despite  its  uniform

design across all  three SoCs. The fact that the BabyRisc instance in the third design has a higher

estimated power than the one in the second also implies that this difference may not be a matter of

access frequency or time until completion; if that were the case the second design would perhaps have

the greater power. The exact cause of this difference will require further testing, and is left for future

work.

Between the two designs that utilize caching, the one with victim caches is estimated to use slightly

more power. Notable, however, is that both have an identical estimated static power, yet the one with

victim caching has a higher estimated dynamic power, skewing the ratio of dynamic against static in its

favor.

Assuming power estimation of this accuracy produces average power at any given point in time,

Table 6 shows the product of power by execution time for each design.
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SoC Design Power Estimation Simulation Execution Time Power * Time

Main Memory Only 2.041 W 1.680 ms 3.429

With L1 Caches 0.330 W 0.566 ms 0.187

With L1 and Victim Caches 0.353 W 0.551 ms 0.194
Table 6. Comparing the Products of Estimated Power and Execution Time

Although  power  efficiency  may  be  increased  on  average  for  L1  and Victim Caching,  for  the

Fibonacci program the product of power over execution time is in favor of the design with L1 caches

only. This is likely due to the aforementioned fact that the victim cache is only accessed ten times,

saving  only  192  cycles.  A different  test  program with  more  active  variables,  and  therefore  more

opportunities  to  retrieve  evicted  lines,  would  likely  produce  results  more  favorable  for  the  victim

caching design. 
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5 Future Work

The power gaps discovered between similar modules require further investigation. Future work

would  first  and  foremost  find  the  cause  of  this  disparity,  complexity  or  access  frequency.

Experimentation with other programs should also be considered, especially those likely to utilize the

victim cache to a higher degree. One consideration was a recursive prime factorization algorithm which

required instructions not yet supported by BabyRisc.  The C code and assembly for this program can be

found in the appendix.

Other future work could take an approach similar to that detailed in Isci and Martonosi’s work [3]

involving the use of power monitoring tools and usage heuristics to detail actual power behavior as

opposed to simulated power behavior. Another possibility would be to improve the accuracy of Vivado

power  estimation  with usage  vectors  from a  post-synthesis  simulation  of  the  implemented  design.

Synthesizing SoC designs will require modification for size and proper post-synthesis instantiation of

memories so that testing and measurement on actual hardware can be performed.
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6 Conclusion

Running Vivado power estimation tools on three RISC-V SoCs with different memory hierarchy

designs, one with main memory only, one with L1 data and instruction caches, and one with L1 and

victim caches, showed the latter design to have a favorable dynamic to static power ratio. Although this

was not reflected in the execution of a Fibonacci sequence calculator due to its low use of the victim

cache,  future work could improve the design of the hardware components,  generate more accurate

power estimation via post-synthesis usage vectors, and test programs more likely to take advantage of

victim caching.
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A Verilog, Block Diagrams and Simulation Settings

This appendix contains The Verilog code, Vivado block diagrams, and power estimation settings

used for design and simulation at the time of writing.

Verilog header for constants op_aliases.vh

parameter
    WB_SRC_ALU = 'b0,
    WB_SRC_DMEM = 'b1,
    
    ALU_SRC_REG = 'b0,
    ALU_SRC_IMM = 'b1,
    
    TYPE_R = 'b000,
    TYPE_I = 'b001,
    TYPE_S = 'b010,
    TYPE_SB = 'b011,
    TYPE_H = 'b100,
    TYPE_ERR = 'b101,
    
    ALU_ADD = 'b00,
    ALU_SUB = 'b01,
    ALU_SLL = 'b10,
    
    BRANCH_EQ = 'b000,
    
    OP_LOAD = 'b0000011,
    OP_ALUI = 'b0010011,
    OP_STORE = 'b0100011,
    OP_ALUR = 'b0110011,
    OP_BRANCH = 'b1100011,
    OP_HALT = 'b0000000,
    
    F3_ALU_ADD_SUB = 'b000,
    F3_ALU_SLL = 'b001,
    
    F7_ADD = 'b0000000,
    F7_SUB = 'b0100000,
    
    PC_OP_NEXT = 'b0,
    PC_OP_BRANCH = 'b1;
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alu.v

module alu(
    input wire alu_src, calc,
    input wire [1:0] alu_op,
    input wire [2:0] branch_op,
    input wire [63:0] rdata_1, imm, rdata_2,
    
    output reg branch_ok,
    output reg [63:0] op_result
    );
    
    `include "op_aliases.vh"
    
    initial op_result = 0;
    
    wire [63:0] opdata = alu_src == ALU_SRC_IMM ? imm: rdata_2;
    
    always @(posedge calc)
        case (alu_op)
            ALU_ADD: op_result = rdata_1 + opdata;
            ALU_SUB: op_result = rdata_1 - opdata;
            ALU_SLL: op_result = rdata_1 << opdata;
            default: op_result = 'b0;
        endcase
        
    always @(*) case (branch_op)
        BRANCH_EQ: branch_ok = (op_result == 0);
        default: branch_ok = 'b0;
    endcase
    
endmodule
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decoder.v

module decoder(
    input wire decode,
    input wire [31:0] inst_i,
    
    output reg alu_src, data_rw, do_mem, halt, pc_op, wb_guard, wb_src,
    output reg [1:0] data_size,
    output reg [2:0] branch_op,
    output reg [1:0] alu_op,
    output reg [4:0] rd, rs1, rs2,
    output reg [63:0] imm
    );
    
    `include "op_aliases.vh"
    
    initial begin
        alu_src = 0;
        data_rw = 0;
        do_mem = 0;
        halt = 0;
        pc_op = 0;
        wb_guard = 0;
        wb_src = 0;
        data_size = 0;
        branch_op = 0;
        alu_op = 0;
        rd = 0;
        rs1 = 0;
        rs2 = 0;
        imm = 0;
    end
    
    wire [2:0] funct3 = inst_i[14:12];
    wire[6:0] funct7 = inst_i[31:25];
    wire [6:0] opcode = inst_i[6:0];
    
    reg [2:0] itype;
    always @(*) case (opcode)
        OP_LOAD: itype = TYPE_I;
        OP_ALUI: itype = TYPE_I;
        OP_STORE: itype = TYPE_S;
        OP_ALUR: itype = TYPE_R;
        OP_BRANCH: itype = TYPE_SB;
        OP_HALT: itype = TYPE_H;
        default: itype = TYPE_ERR;
    endcase
    
    wire [1:0] data_size_next = funct3[1:0];
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    reg [1:0] alu_op_next;
    always @(*) case (opcode)
        OP_LOAD: alu_op_next = ALU_ADD;
        OP_ALUI: case (funct3)
            F3_ALU_ADD_SUB: alu_op_next = ALU_ADD;
            F3_ALU_SLL: alu_op_next = ALU_SLL;
            default: alu_op_next = 'b0;
        endcase
        OP_STORE: alu_op_next = ALU_ADD;
        OP_ALUR: case (funct3)
            F3_ALU_ADD_SUB: case (funct7)
                F7_ADD: alu_op_next = ALU_ADD;
                default: alu_op_next = 'b0;
            endcase
            F3_ALU_SLL: alu_op_next = ALU_SLL;
            default: alu_op_next = 'b0;
        endcase
        OP_BRANCH: alu_op_next = ALU_SUB;
        default: alu_op_next = 'b0;
    endcase
    
    reg [63:0] imm_next;
    always @(*) case (itype)
        TYPE_I: imm_next = {{52{inst_i[31]}}, inst_i[31:20]};
        TYPE_S: imm_next = {{52{inst_i[31]}}, inst_i[31:25], inst_i[11:7]};
        TYPE_SB: imm_next = {{51{inst_i[31]}}, inst_i[31], inst_i[7], 
inst_i[30:25], inst_i[11:8],
                            1'b0};
        default: imm_next = 0;
    endcase
    
    wire pc_op_next = itype == TYPE_SB ? PC_OP_BRANCH : PC_OP_NEXT;
    
    wire wb_src_next = opcode == OP_LOAD ? WB_SRC_DMEM : WB_SRC_ALU;
    
    always @(posedge decode) begin
        // Zero for register if one of these types, otherwise 1 for immediate.
        alu_src <= (itype != TYPE_R) && (itype != TYPE_SB);
        // One if a branching type.
        // Only asserted for stores
        data_rw <= itype == TYPE_S;
        do_mem <= (opcode == OP_LOAD) || (opcode == OP_STORE);
        halt <= opcode == OP_HALT;
        // Register writes happen for all instruction types besides S and SB.
        wb_guard <= (itype != TYPE_S) && (itype != TYPE_SB);
        // Only asserted for loads
        pc_op <= pc_op_next;
        wb_src <= wb_src_next;
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        data_size <= data_size_next;
        branch_op <= funct3;
        alu_op <= alu_op_next;
        rd <= inst_i[11:7];
        rs1 <= inst_i[19:15];
        rs2 <= inst_i[24:20];
        imm <= imm_next;
     end

endmodule
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main_control.v

module main_control(
    input wire clk, do_mem, halt, reg_file_ready, mem_ready, mem_resp, start_sig,
    
    output wire calc, decode, done_o, mem_req, mem_req_type, pc_update, ready_o, 
wb_sig
    );
    
    parameter
        STATE_SETUP = 'b000,
        STATE_READY = 'b001,
        STATE_FETCH = 'b010,
        STATE_DECODE = 'b011,
        STATE_CALC = 'b100,
        STATE_MEM = 'b101,
        STATE_WRITEBACK = 'b110,
        STATE_DONE = 'b111;
    
    reg [2:0] state;
        
    initial begin
        state = STATE_SETUP;
    end
    
    reg [2:0] state_next;
    always @(*) case (state)
        STATE_SETUP: state_next = (mem_ready && reg_file_ready) ? STATE_READY : 
STATE_SETUP;
        STATE_READY: state_next = start_sig ? STATE_FETCH : STATE_READY;
        STATE_FETCH: state_next = mem_resp ? STATE_DECODE : STATE_FETCH;
        STATE_DECODE: state_next = halt ? STATE_DONE : STATE_CALC;
        STATE_CALC: state_next = do_mem ? STATE_MEM : STATE_WRITEBACK;
        STATE_MEM: state_next = mem_resp ? STATE_WRITEBACK : STATE_MEM;
        STATE_WRITEBACK: state_next = STATE_FETCH;
        STATE_DONE: state_next = STATE_DONE;
        default: state_next = state;
    endcase
    
    assign calc = state == STATE_CALC;
    assign decode = state == STATE_DECODE;
    assign done_o = state == STATE_DONE;
    assign mem_req = (state == STATE_FETCH) || (state == STATE_MEM);
    assign mem_req_type = (state_next == STATE_MEM) || (state == STATE_MEM);
    assign pc_update = (state == STATE_WRITEBACK);
    assign ready_o = state == STATE_READY;
    assign wb_sig = (state == STATE_WRITEBACK) || (state == STATE_SETUP && !
reg_file_ready && clk);
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    // State change
    always @(posedge clk) state <= state_next;

endmodule
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pc_unit.v

module pc_unit(
        input wire branch_ok, update_pc,
        input wire pc_op,
        input wire [63:0] imm,
        
        output reg [31:0] iaddr
    );
    
    `include "op_aliases.vh"
    
    wire [31:0] imm_trunc = imm[31:0];
    
    wire [31:0] branch_addr = iaddr + imm_trunc;
    
    initial iaddr = 0;
    
    always @(posedge update_pc) case(pc_op)
        PC_OP_NEXT: iaddr <= iaddr + 4;
        PC_OP_BRANCH: iaddr <= branch_ok ? iaddr + imm_trunc : iaddr + 4;
        default: iaddr <= iaddr + 4;
    endcase
    
endmodule
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reg_file.v

module reg_file (
    input wire wb_guard, wb_sig,
    input wire [1:0] wb_src,
    input wire [4:0] rd, rs1, rs2,
    input wire [31:0] pc_data,
    input wire [63:0] alu_data, imm_data, mem_data,
    
    output wire [63:0] rdata_1, rdata_2
    );
    
    `include "op_aliases.vh"
    
    wire wb_final = wb_guard && wb_sig && (rd != 0);
    reg [63:0] wb_data;
    always @(*) case (wb_src)
        WB_SRC_ALU: wb_data = alu_data;
        WB_SRC_DMEM: wb_data = mem_data;
        WB_SRC_IMM: wb_data = imm_data;
        WB_SRC_PC: wb_data = pc_data;
        default: wb_data = 'bx;
    endcase
    
    reg [63:0] regs [31:0];
    
    initial begin
        regs[0] = 0; regs[1] = 0; regs[2] = 'd2040; regs[3] = 0;
        regs[4] = 0; regs[5] = 0; regs[6] = 0; regs[7] = 0;
        regs[8] = 0; regs[9] = 0; regs[10] = 0; regs[11] = 0;
        regs[12] = 0; regs[13] = 0; regs[14] = 0; regs[15] = 0;
        regs[16] = 0; regs[17] = 0; regs[18] = 0; regs[19] = 0;
        regs[20] = 0; regs[21] = 0; regs[22] = 0; regs[23] = 0;
        regs[24] = 0; regs[25] = 0; regs[26] = 0; regs[27] = 0;
        regs[28] = 0; regs[29] = 0; regs[30] = 0; regs[31] = 0;
    end
    
    assign rdata_1 = regs[rs1];
    assign rdata_2 = regs[rs2];
    
    always @(posedge wb_final)
        regs[rd] <= wb_data;
    
endmodule
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Vivado Block diagram for BabyRisc
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regular_main_mem.v

module regular_main_mem(
    input wire clk, req, rw,
    input wire [1:0] size,
    input wire [31:0] inst_addr,
    input wire [63:0] data_addr, data_i,

    output wire resp,
    output wire [31:0] inst_o,
    output reg [63:0] data_o
    );
    
    parameter
        BYTE = 'b00,
        HALF = 'b01,
        WORD = 'b10,
        MODE_INST = 'b00,
        MODE_DATA_RI = 'b01,
        MODE_DATA_WB = 'b10,
        IDLE = 'b0000,
        FETCH_1 = 'b0001,
        FETCH_2 = 'b0010,
        FETCH_3 = 'b0011,
        FETCH_4 = 'b0100,
        FETCH_5 = 'b0101,
        FETCH_6 = 'b0110,
        FETCH_7 = 'b0111,
        FETCH_8 = 'b1000,
        FETCH_9 = 'b1001,
        RETURN = 'b1010;
        
    reg [3:0] state;
    // reg [7:0] data [31:0];
    reg [7:0] data [2047:0];
    wire we = (state == FETCH_9) && rw;
    reg [3:0] state_next;
    always @(*) case (state)
        IDLE: state_next = (req) ? FETCH_1 : state;
        FETCH_1: state_next = FETCH_2;
        FETCH_2: state_next = FETCH_3;
        FETCH_3: state_next = FETCH_4;
        FETCH_4: state_next = FETCH_5;
        FETCH_5: state_next = FETCH_6;
        FETCH_6: state_next = FETCH_7;
        FETCH_7: state_next = FETCH_8;
        FETCH_8: state_next = FETCH_9;
        FETCH_9: state_next = RETURN;
        RETURN: state_next = (req) ? state : IDLE;
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        default: state_next = state;
    endcase
    
    reg [11:0] init_counter;
    initial begin
        state = IDLE;
        
        init_counter = 0;
        while (init_counter < 2048) begin
            data[init_counter] = 0;
            init_counter = init_counter + 1;
        end
        
        data[3] = 'b10011101;
        data[2] = 'b00000001;
        data[1] = 'b00000001;
        data[0] = 'b00010011;

        data[7] = 'b01100010;
        data[6] = 'b10000001;
        data[5] = 'b00110100;
        data[4] = 'b00100011;

        data[11] = 'b01100011;
        data[10] = 'b00000001;
        data[9] = 'b00000100;
        data[8] = 'b00010011;

        data[15] = 'b11111100;
        data[14] = 'b00000100;
        data[13] = 'b00111000;
        data[12] = 'b00100011;

        data[19] = 'b00000000;
        data[18] = 'b00010000;
        data[17] = 'b00000111;
        data[16] = 'b10010011;

        data[23] = 'b11111110;
        data[22] = 'b11110100;
        data[21] = 'b00110100;
        data[20] = 'b00100011;

        data[27] = 'b00000000;
        data[26] = 'b00010000;
        data[25] = 'b00000111;
        data[24] = 'b10010011;

        data[31] = 'b11111110;
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        data[30] = 'b11110100;
        data[29] = 'b00110000;
        data[28] = 'b00100011;

        data[35] = 'b11111100;
        data[34] = 'b00000100;
        data[33] = 'b00111100;
        data[32] = 'b00100011;

        data[39] = 'b11111101;
        data[38] = 'b10000100;
        data[37] = 'b00110111;
        data[36] = 'b10000011;

        data[43] = 'b00000000;
        data[42] = 'b00110111;
        data[41] = 'b10010111;
        data[40] = 'b10010011;

        data[47] = 'b11111111;
        data[46] = 'b00000100;
        data[45] = 'b00000111;
        data[44] = 'b00010011;

        data[51] = 'b00000000;
        data[50] = 'b11100111;
        data[49] = 'b10000111;
        data[48] = 'b10110011;

        data[55] = 'b11111110;
        data[54] = 'b00000100;
        data[53] = 'b00110111;
        data[52] = 'b00000011;

        data[59] = 'b10011110;
        data[58] = 'b11100111;
        data[57] = 'b10110000;
        data[56] = 'b00100011;

        data[63] = 'b11111101;
        data[62] = 'b10000100;
        data[61] = 'b00110111;
        data[60] = 'b10000011;

        data[67] = 'b00000000;
        data[66] = 'b00010111;
        data[65] = 'b10000111;
        data[64] = 'b10010011;
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        data[71] = 'b11111100;
        data[70] = 'b11110100;
        data[69] = 'b00111100;
        data[68] = 'b00100011;

        data[75] = 'b11111101;
        data[74] = 'b10000100;
        data[73] = 'b00110111;
        data[72] = 'b00000011;

        data[79] = 'b00001100;
        data[78] = 'b00000000;
        data[77] = 'b00000111;
        data[76] = 'b10010011;

        data[83] = 'b00000010;
        data[82] = 'b11110111;
        data[81] = 'b00000100;
        data[80] = 'b01100011;

        data[87] = 'b11111110;
        data[86] = 'b10000100;
        data[85] = 'b00110111;
        data[84] = 'b10000011;

        data[91] = 'b11111100;
        data[90] = 'b11110100;
        data[89] = 'b00111000;
        data[88] = 'b00100011;

        data[95] = 'b11111110;
        data[94] = 'b00000100;
        data[93] = 'b00110111;
        data[92] = 'b10000011;

        data[99] = 'b11111110;
        data[98] = 'b11110100;
        data[97] = 'b00110100;
        data[96] = 'b00100011;

        data[103] = 'b11111101;
        data[102] = 'b00000100;
        data[101] = 'b00110111;
        data[100] = 'b00000011;

        data[107] = 'b11111110;
        data[106] = 'b10000100;
        data[105] = 'b00110111;
        data[104] = 'b10000011;

51



        data[111] = 'b00000000;
        data[110] = 'b11100111;
        data[109] = 'b10000111;
        data[108] = 'b10110011;

        data[115] = 'b11111110;
        data[114] = 'b11110100;
        data[113] = 'b00110000;
        data[112] = 'b00100011;

        data[119] = 'b11111010;
        data[118] = 'b00000000;
        data[117] = 'b00001000;
        data[116] = 'b11100011;

        data[123] = 'b01100010;
        data[122] = 'b10000001;
        data[121] = 'b00110100;
        data[120] = 'b00000011;

        data[127] = 'b01100011;
        data[126] = 'b00000001;
        data[125] = 'b00000001;
        data[124] = 'b00010011;

        data[131] = 'b00000000;
        data[130] = 'b00000000;
        data[129] = 'b00000000;
        data[128] = 'b00000000;
        
    end
    
    assign resp = state == RETURN;
    assign inst_o = {data[inst_addr + 3], data[inst_addr + 2], data[inst_addr + 
1],
                     data[inst_addr]};
    always @(*) case (size)
        BYTE: data_o = {56'b0, data[data_addr]};
        HALF: data_o = {48'b0, data[data_addr + 1], data[data_addr]};
        WORD: data_o = {32'b0, data[data_addr + 3], data[data_addr + 2], 
data[data_addr + 1],
                        data[data_addr]};
        default: data_o = {data[data_addr + 7], data[data_addr + 6], 
data[data_addr + 5],
                            data[data_addr + 4], data[data_addr + 3], 
data[data_addr + 2],
                            data[data_addr + 1], data[data_addr]};
    endcase
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    always @(posedge clk) state <= state_next;
    always @(posedge we) begin
        data[data_addr] <= data_i[7:0];
        if (size > BYTE) begin
            data[data_addr + 1] <= data_i[15:8];
            if (size > HALF) begin
                data[data_addr + 2] <= data_i[23:16];
                data[data_addr + 3] <= data_i[31:24];
                if (size > WORD) begin
                    data[data_addr + 4] <= data_i[39:32];
                    data[data_addr + 5] <= data_i[47:40];
                    data[data_addr + 6] <= data_i[55:48];
                    data[data_addr + 7] <= data_i[63:56];
                end
            end
        end
    end
    
endmodule
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Block diagram for design 1
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caching_main_mem.v

module caching_main_mem(
    input wire clk, req, req_type, rw,
    input wire [27:0] data_ri_tag_index, data_wb_tag_index, inst_tag_index,
    input wire [127:0] line_i,

    output wire resp,
    output wire [127:0] line_o
    );
    
    parameter
        MODE_INST = 'b00,
        MODE_DATA_RI = 'b01,
        MODE_DATA_WB = 'b10,
        IDLE = 'b0000,
        FETCH_1 = 'b0001,
        FETCH_2 = 'b0010,
        FETCH_3 = 'b0011,
        FETCH_4 = 'b0100,
        FETCH_5 = 'b0101,
        FETCH_6 = 'b0110,
        FETCH_7 = 'b0111,
        FETCH_8 = 'b1000,
        FETCH_9 = 'b1001,
        RETURN = 'b1010;
        
    reg [3:0] state;
    reg [127:0] lines [127:0];
    wire we = (state == FETCH_9) && rw;
    reg [3:0] state_next;
    always @(*) case (state)
        IDLE: state_next = (req) ? FETCH_1 : state;
        FETCH_1: state_next = FETCH_2;
        FETCH_2: state_next = FETCH_3;
        FETCH_3: state_next = FETCH_4;
        FETCH_4: state_next = FETCH_5;
        FETCH_5: state_next = FETCH_6;
        FETCH_6: state_next = FETCH_7;
        FETCH_7: state_next = FETCH_8;
        FETCH_8: state_next = FETCH_9;
        FETCH_9: state_next = RETURN;
        RETURN: state_next = (req) ? state : IDLE;
        default: state_next = state;
    endcase
    
    reg [7:0] init_counter;
    initial begin
        state = IDLE;
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        init_counter = 0;
        while (init_counter < 128) begin
            lines[init_counter] = 0;
            init_counter = init_counter + 1;
        end
        
        lines[0] = {32'b11111100000001000011100000100011,
                    32'b01100011000000010000010000010011,
                    32'b01100010100000010011010000100011,
                    32'b10011101000000010000000100010011};

        lines[1] = {32'b11111110111101000011000000100011,
                    32'b00000000000100000000011110010011,
                    32'b11111110111101000011010000100011,
                    32'b00000000000100000000011110010011};

        lines[2] = {32'b11111111000001000000011100010011,
                    32'b00000000001101111001011110010011,
                    32'b11111101100001000011011110000011,
                    32'b11111100000001000011110000100011};

        lines[3] = {32'b11111101100001000011011110000011,
                    32'b10011110111001111011000000100011,
                    32'b11111110000001000011011100000011,
                    32'b00000000111001111000011110110011};

        lines[4] = {32'b00001100000000000000011110010011,
                    32'b11111101100001000011011100000011,
                    32'b11111100111101000011110000100011,
                    32'b00000000000101111000011110010011};

        lines[5] = {32'b11111110000001000011011110000011,
                    32'b11111100111101000011100000100011,
                    32'b11111110100001000011011110000011,
                    32'b00000010111101110000010001100011};

        lines[6] = {32'b00000000111001111000011110110011,
                    32'b11111110100001000011011110000011,
                    32'b11111101000001000011011100000011,
                    32'b11111110111101000011010000100011};

        lines[7] = {32'b01100011000000010000000100010011,
                    32'b01100010100000010011010000000011,
                    32'b11111010000000000000100011100011,
                    32'b11111110111101000011000000100011};

        lines[8] = {32'b0,
                    32'b0,
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                    32'b0,
                    32'b00000000000000000000000000000000};
    end
    
    assign resp = state == RETURN;
    assign line_o = req_type ? lines[data_ri_tag_index] : lines[inst_tag_index];

    always @(posedge clk) state <= state_next;
    always @(posedge we) lines[data_wb_tag_index] <= line_i;
    
endmodule
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data_main_cache.v

module data_main_cache(
    input wire we, wmode,
    input wire [1:0] size,
    input wire [63:0] addr, data_i,
    input wire [127:0] line_i,

    output wire hm, wb,
    output wire [27:0] ri_tag_index, wb_tag_index,
    output reg [63:0] data_o,
    output wire [127:0] line_o
    );
    
    parameter
        BYTE = 'b00,
        HALF = 'b01,
        WORD = 'b10,
        DOUBLE = 'b11;
    
    wire [21:0] tag = addr[31:10];
    wire [5:0] index = addr[9:4];
    wire [3:0] offset = addr[3:0];
    
    reg [63:0] valid;
    reg [23:0] tags [63:0];
    reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line
    
    reg [6:0] init_counter_1;
    reg [4:0] init_counter_2;
    initial begin
        valid = 0;
        init_counter_1 = 0;
        while (init_counter_1 < 64) begin
            tags[init_counter_1] = 0;
            init_counter_2 = 0;
            while (init_counter_2 < 16) begin
                data[init_counter_1][init_counter_2] = 0;
                init_counter_2 = init_counter_2 + 1;
            end
            init_counter_1 = init_counter_1 + 1;
        end
    end
    
    assign hm = (tag == tags[index]) && valid[index];
    assign wb = valid[index];
    assign ri_tag_index = {tag, index};
    assign wb_tag_index = {tags[index], index};
    always @(*) case (size)
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        BYTE: data_o = {56'b0, data[index][offset]};
        HALF: data_o = {48'b0, data[index][offset + 1], data[index][offset]};
        WORD: data_o = {32'b0, data[index][offset + 3], data[index][offset + 2],
                        data[index][offset + 1], data[index][offset]};
        default: data_o = {data[index][offset + 7], data[index][offset + 6],
                            data[index][offset + 5], data[index][offset + 4],
                            data[index][offset + 3], data[index][offset + 2],
                            data[index][offset + 1], data[index][offset]};
    endcase
    
    assign line_o = {data[index][15], data[index][14], data[index][13], 
data[index][12],
                        data[index][11], data[index][10], data[index][9], 
data[index][8],
                        data[index][7], data[index][6], data[index][5], 
data[index][4],
                        data[index][3], data[index][2], data[index][1], 
data[index][0]};

    always @(posedge we) if (~wmode) begin // Normal write
        data[index][offset] <= data_i[7:0];
        if (size > BYTE) begin
            data[index][offset + 1] <= data_i[15:8];
            if (size > HALF) begin
                data[index][offset + 2] <= data_i[23:16];
                data[index][offset + 3] <= data_i[31:24];
                if (size > WORD) begin
                    data[index][offset + 4] <= data_i[39:32];
                    data[index][offset + 5] <= data_i[47:40];
                    data[index][offset + 6] <= data_i[55:48];
                    data[index][offset + 7] <= data_i[63:56];
                end
            end
        end
    end else begin // Line Write
        valid[index] <= 1;
        tags[index] <= tag;
        data[index][0] <= line_i[7:0];
        data[index][1] <= line_i[15:8];
        data[index][2] <= line_i[23:16];
        data[index][3] <= line_i[31:24];
        data[index][4] <= line_i[39:32];
        data[index][5] <= line_i[47:40];
        data[index][6] <= line_i[55:48];
        data[index][7] <= line_i[63:56];
        data[index][8] <= line_i[71:64];
        data[index][9] <= line_i[79:72];
        data[index][10] <= line_i[87:80];
        data[index][11] <= line_i[95:88];
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        data[index][12] <= line_i[103:96];
        data[index][13] <= line_i[111:104];
        data[index][14] <= line_i[119:112];
        data[index][15] <= line_i[127:120];
    end
    
endmodule
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design_2_mem_ctrl.v

module design_2_mem_ctrl(
    input wire clk, co_req, co_rw, co_type, dmc_hm, dmc_wb, imc_hm, mm_resp,

    output wire co_resp, dmc_we, dmc_wmode, imc_we, mm_req, mm_rw
    );
    
    parameter
        // MODE_INST = 'b00,
        // MODE_DATA_RI = 'b01,
        // MODE_DATA_WB = 'b10,
        
        IDLE = 'b0000,
        WRITEBACK = 'b0001,
        WRITEBACK_UNSET = 'b0010,
        INST_READIN = 'b0011,
        INST_WRITEIN = 'b0100,
        DATA_READIN = 'b0101,
        DATA_WRITEIN = 'b0110,
        DATA_WRITEIN_UNSET = 'b0111,
        DATA_WRITE = 'b1000,
        FINISH = 'b1001;
    
    reg [3:0] state;
    reg [3:0] state_next;
    always @(*) case (state)
        IDLE: if (co_req)
                  if (co_type)
                      if (dmc_hm)
                          state_next = (co_rw) ? DATA_WRITE : FINISH;
                      else state_next = (dmc_wb) ? WRITEBACK : DATA_READIN;
                  else state_next = (imc_hm) ? FINISH : INST_READIN;
              else state_next = state;
        WRITEBACK: state_next = mm_resp ? WRITEBACK_UNSET : state;
        WRITEBACK_UNSET: state_next = (mm_resp) ? state : DATA_READIN;
        INST_READIN: state_next = (mm_resp) ? INST_WRITEIN : state;
        INST_WRITEIN: state_next = FINISH;
        DATA_READIN: state_next = (mm_resp) ? DATA_WRITEIN : state;
        DATA_WRITEIN: state_next = (co_rw) ? DATA_WRITEIN_UNSET : FINISH;
        DATA_WRITEIN_UNSET: state_next = DATA_WRITE;
        DATA_WRITE: state_next = FINISH;
        FINISH: state_next = (co_req) ? state : IDLE;
        default: state_next = state;
    endcase
    
    initial state = IDLE;
    
    // Requset is finished
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    assign co_resp = state == FINISH;
    // Request is data type and operation is either a writein or normal write
    assign dmc_we = (state == DATA_WRITEIN) || ((state == DATA_WRITE) && co_rw);
    // Line write for state before and during write-in, otherwise normal
    assign dmc_wmode = (state == DATA_READIN) || (state == DATA_WRITEIN);
    // Request is instrution type and operation is a writein
    assign imc_we = state == INST_WRITEIN;
    // Writeback or read-in request to main memory
    assign mm_req = (state == WRITEBACK) || (state == INST_READIN) || (state == 
DATA_READIN);
    assign mm_rw = ((state == IDLE) && ~dmc_hm && dmc_wb) || (state == WRITEBACK);
    
    always @(posedge clk) state <= state_next;
    
endmodule
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instruction_main_cache.v

module instruction_main_cache(
    input wire we,
    input wire [31:0] addr,
    input wire [127:0] line,

    output wire hm,
    output wire [27:0] tag_index,
    output wire [31:0] data_o
    );
    
    wire [3:0] offset = addr[3:0];
    wire [5:0] index = addr[9:4];
    wire [21:0] tag = addr[31:10];
    
    reg [63:0] valid;
    reg [23:0] tags [63:0];
    reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line
    
    reg [6:0] init_counter_1;
    reg [4:0] init_counter_2;
    initial begin
        valid = 0;
        init_counter_1 = 0;
        while (init_counter_1 < 64) begin
            tags[init_counter_1] = 0;
            init_counter_2 = 0;
            while (init_counter_2 < 16) begin
                data[init_counter_1][init_counter_2] = 0;
                init_counter_2 = init_counter_2 + 1;
            end
            init_counter_1 = init_counter_1 + 1;
        end
    end
    
    assign hm = (tag == tags[index]) && valid[index];
    assign tag_index = addr[31:4];
    assign data_o = {data[index][offset + 3], data[index][offset + 2], data[index]
[offset + 1],
                        data[index][offset]};

    always @(posedge we) begin
        valid[index] <= 1;
        tags[index] <= tag;
        data[index][0] <= line[7:0];
        data[index][1] <= line[15:8];
        data[index][2] <= line[23:16];
        data[index][3] <= line[31:24];
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        data[index][4] <= line[39:32];
        data[index][5] <= line[47:40];
        data[index][6] <= line[55:48];
        data[index][7] <= line[63:56];
        data[index][8] <= line[71:64];
        data[index][9] <= line[79:72];
        data[index][10] <= line[87:80];
        data[index][11] <= line[95:88];
        data[index][12] <= line[103:96];
        data[index][13] <= line[111:104];
        data[index][14] <= line[119:112];
        data[index][15] <= line[127:120];
    end
    
endmodule
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Block diagram for design with L1 Caches
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data_main_cache_v2.v

module data_main_cache_v2 (
    input wire set_swap, we, wmode, write_src,
    input wire [1:0] size,
    input wire [63:0] addr, data_i,
    input wire [127:0] mm_line, swap_line_i,

    output wire do_evict, hm,
    output wire [27:0] evict_tag_index, read_tag_index,
    output reg [63:0] data_o,
    output wire [127:0] evict_line_o,
    output reg [27:0] swap_tag_index,
    output reg [127:0] swap_line_o
    );
    
    parameter
        BYTE = 'b00,
        HALF = 'b01,
        WORD = 'b10,
        DOUBLE = 'b11;
    
    wire [3:0] offset = addr[3:0];
    wire [5:0] index = addr[9:4];
    wire [21:0] tag = addr[31:10];
    wire [127:0] write_line = write_src ? mm_line : swap_line_i;
    
    reg [63:0] valid;
    reg [23:0] tags [63:0];
    reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line
    
    reg [6:0] init_counter_1;
    reg [4:0] init_counter_2;
    initial begin
        valid = 0;
        init_counter_1 = 0;
        while (init_counter_1 < 64) begin
            tags[init_counter_1] = 0;
            init_counter_2 = 0;
            while (init_counter_2 < 16) begin
                data[init_counter_1][init_counter_2] = 0;
                init_counter_2 = init_counter_2 + 1;
            end
            init_counter_1 = init_counter_1 + 1;
        end
    end
    
    assign do_evict = valid[index];
    assign hm = valid[index] && (tags[index] == tag);
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    assign evict_tag_index = {tags[index], index};
    assign read_tag_index = {tag, index};
    always @(*) case (size)
        BYTE: data_o = {56'b0, data[index][offset]};
        HALF: data_o = {48'b0, data[index][offset + 1], data[index][offset]};
        WORD: data_o = {32'b0, data[index][offset + 3], data[index][offset + 2],
                        data[index][offset + 1], data[index][offset]};
        default: data_o = {data[index][offset + 7], data[index][offset + 6],
                            data[index][offset + 5], data[index][offset + 4],
                            data[index][offset + 3], data[index][offset + 2],
                            data[index][offset + 1], data[index][offset]};
    endcase
    assign evict_line_o = {data[index][15], data[index][14], data[index][13], 
data[index][12],
                               data[index][11], data[index][10], data[index][9], 
data[index][8],
                               data[index][7], data[index][6], data[index][5], 
data[index][4],
                               data[index][3], data[index][2], data[index][1], 
data[index][0]};

    always @(posedge set_swap) begin
        swap_line_o <= evict_line_o;
        swap_tag_index <= evict_tag_index;
    end

    always @(posedge we) if (wmode) begin // Full line write
        valid[index] <= 1;
        tags[index] <= tag;
        data[index][0] <= write_line[7:0];
        data[index][1] <= write_line[15:8];
        data[index][2] <= write_line[23:16];
        data[index][3] <= write_line[31:24];
        data[index][4] <= write_line[39:32];
        data[index][5] <= write_line[47:40];
        data[index][6] <= write_line[55:48];
        data[index][7] <= write_line[63:56];
        data[index][8] <= write_line[71:64];
        data[index][9] <= write_line[79:72];
        data[index][10] <= write_line[87:80];
        data[index][11] <= write_line[95:88];
        data[index][12] <= write_line[103:96];
        data[index][13] <= write_line[111:104];
        data[index][14] <= write_line[119:112];
        data[index][15] <= write_line[127:120];
    end else begin // Regular write
        data[index][offset] <= data_i[7:0];
        if (size > 0) begin
            data[index][offset + 1] <= data_i[15:8];
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            if (size > 1) begin
                data[index][offset + 2] <= data_i[23:16];
                data[index][offset + 3] <= data_i[31:24];
                if (size > 2) begin
                    data[index][offset + 4] <= data_i[39:32];
                    data[index][offset + 5] <= data_i[47:40];
                    data[index][offset + 6] <= data_i[55:48];
                    data[index][offset + 7] <= data_i[63:56];
                end
            end
        end
    end
    
endmodule
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data_victim_cache.v

module dvc(
        input wire set_swap, we, wsrc,
        input wire [27:0] evict_tag_index, read_tag_index, swap_tag_index_i,
        input wire [127:0] evict_line_i, swap_line_i,
        
        output wire hm, wb,
        output wire [27:0] wb_tag_index,
        output wire [127:0] wb_line,
        
        output reg [127:0] swap_line_o
    );
    
    parameter
        TARGET_0 = 'b000,
        TARGET_1 = 'b001,
        TARGET_2 = 'b010,
        TARGET_3 = 'b011,
        TARGET_4 = 'b100,
        TARGET_5 = 'b101,
        TARGET_6 = 'b110,
        TARGET_7 = 'b111,
        MATCH_0 = 'b1000,
        MATCH_1 = 'b1001,
        MATCH_2 = 'b1010,
        MATCH_3 = 'b1011,
        MATCH_4 = 'b1100,
        MATCH_5 = 'b1101,
        MATCH_6 = 'b1110,
        MATCH_7 = 'b1111,
        MATCH_NONE = 'b0000,
        VALID_0 = 'b00000000,
        VALID_1 = 'b00000001,
        VALID_2 = 'b00000011,
        VALID_3 = 'b00000111,
        VALID_4 = 'b00001111,
        VALID_5 = 'b00011111,
        VALID_6 = 'b00111111,
        VALID_7 = 'b01111111,
        VALID_8 = 'b11111111;
    
    reg [2:0] target_swap;
    reg [7:0] valid;
    reg [27:0] tag_indexes [7:0];
    reg [127:0] lines [7:0];
    // Target for the line coming in.
    reg [2:0] target_push;
    always @(*) case (valid)
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        VALID_0: target_push = TARGET_0;
        VALID_1: target_push = TARGET_1;
        VALID_2: target_push = TARGET_2;
        VALID_3: target_push = TARGET_3;
        VALID_4: target_push = TARGET_4;
        VALID_5: target_push = TARGET_5;
        VALID_6: target_push = TARGET_6;
        default: target_push = TARGET_7;
    endcase
    reg [3:0] match;
    always @(*) if (valid[0] && (read_tag_index == tag_indexes[0])) match = 
MATCH_0;
                else if (valid[1] && (read_tag_index == tag_indexes[1])) match = 
MATCH_1;
                else if (valid[2] && (read_tag_index == tag_indexes[2])) match = 
MATCH_2;
                else if (valid[3] && (read_tag_index == tag_indexes[3])) match = 
MATCH_3;
                else if (valid[4] && (read_tag_index == tag_indexes[4])) match = 
MATCH_4;
                else if (valid[5] && (read_tag_index == tag_indexes[5])) match = 
MATCH_5;
                else if (valid[6] && (read_tag_index == tag_indexes[6])) match = 
MATCH_6;
                else if (valid[7] && (read_tag_index == tag_indexes[7])) match = 
MATCH_7;
                else match = MATCH_NONE;
    
    reg [2:0] init_loop;
    initial begin
        swap_line_o = 0;
    
        target_swap = 0;
        valid = 0;
        
        for (init_loop = 0; init_loop < 7; init_loop = init_loop + 1) begin
            tag_indexes[init_loop] = 0;
            lines[init_loop] = 0;
        end
        tag_indexes[7] = 0;
        lines[7] = 0;
    end
    
    assign hm = match[3];
    assign wb = valid[7]; 
    assign wb_tag_index = tag_indexes[0];
    assign wb_line = lines[0];
    
    always @(posedge set_swap) begin
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        case (match)
            MATCH_0: begin
                target_swap <= 0;
                swap_line_o <= lines[0];
            end
            MATCH_1: begin
                target_swap <= 1;
                swap_line_o <= lines[1];
            end
            MATCH_2: begin
                target_swap <= 2;
                swap_line_o <= lines[2];
            end
            MATCH_3: begin
                target_swap <= 3;
                swap_line_o <= lines[3];
            end
            MATCH_4: begin
                target_swap <= 4;
                swap_line_o <= lines[4];
            end
            MATCH_5: begin
                target_swap <= 5;
                swap_line_o <= lines[5];
            end
            MATCH_6: begin
                target_swap <= 6;
                swap_line_o <= lines[6];
            end
            MATCH_7: begin
                target_swap <= 7;
                swap_line_o <= lines[7];
            end
            MATCH_NONE: begin
                target_swap <= 0;
                swap_line_o <= 0;
            end
        endcase
    end
    
    always @(posedge we) begin
        if (~wsrc) begin // Eviction mode
            if (valid[7]) begin // Cache is full. Shift everything down and push 
to top.
                tag_indexes[0] <= tag_indexes[1];
                tag_indexes[1] <= tag_indexes[2];
                tag_indexes[2] <= tag_indexes[3];
                tag_indexes[3] <= tag_indexes[4];
                tag_indexes[4] <= tag_indexes[5];
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                tag_indexes[5] <= tag_indexes[6];
                tag_indexes[6] <= tag_indexes[7];
                tag_indexes[7] <= evict_tag_index;
                
                lines[0] <= lines[1];
                lines[1] <= lines[2];
                lines[2] <= lines[3];
                lines[3] <= lines[4];
                lines[4] <= lines[5];
                lines[5] <= lines[6];
                lines[6] <= lines[7];
                lines[7] <= evict_line_i;
            end else begin // Cache is not full. Push new line to top and make 
valid.
                tag_indexes[target_push] <= evict_tag_index;
                lines[target_push] <= evict_line_i;
                valid[target_push] <= 'b1;
            end
        end else begin // Swap mode
            // Everything above the swap target gets pushed down.
            if (target_swap == 0) begin
                tag_indexes[0] <= tag_indexes[1];
                lines[0] <= lines[1];
            end
            if (target_swap <= 1) begin
                tag_indexes[1] <= tag_indexes[2];
                lines[1] <= lines[2];
            end
            if (target_swap <= 2) begin
                tag_indexes[2] <= tag_indexes[3];
                lines[2] <= lines[3];
            end
            if (target_swap <= 3) begin
                tag_indexes[3] <= tag_indexes[4];
                lines[3] <= lines[4];
            end
            if (target_swap <= 4) begin
                tag_indexes[4] <= tag_indexes[5];
                lines[4] <= lines[5];
            end
            if (target_swap <= 5) begin
                tag_indexes[5] <= tag_indexes[6];
                lines[5] <= lines[6];
            end
            if (target_swap <= 6) begin
                tag_indexes[6] <= tag_indexes[7];
                lines[6] <= lines[7];
            end
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            if (valid[7]) begin // Cache is full. Push swapped-in line to top.
                tag_indexes[target_push] <= swap_tag_index_i;
                lines[target_push] <= swap_line_i;
            end else begin // Cache is not full. Push swapped-in line to top - 1.
                tag_indexes[target_push - 1] <= swap_tag_index_i;
                lines[target_push - 1] <= swap_line_i;
            end
        end
    end
endmodule
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instruction_main_cache_v2.v

module instruction_main_cache_v2 (
    input wire set_swap, we, write_src,
    input wire [31:0] addr,
    input wire [127:0] mm_line, swap_line_i,

    output wire do_evict, hm,
    output wire [27:0] evict_tag_index, read_tag_index,
    output wire [31:0] data_o,
    output wire [127:0] evict_line_o,
    output reg [27:0] swap_tag_index,
    output reg [127:0] swap_line_o
    );
    
    wire [3:0] offset = addr[3:0];
    wire [5:0] index = addr[9:4];
    wire [21:0] tag = addr[31:10];
    wire [127:0] write_line = write_src ? mm_line : swap_line_i;
    
    reg [63:0] valid;
    reg [23:0] tags [63:0];
    reg [7:0] data [63:0] [15:0]; // 64 lines, 16 bytes per line
    
    reg [6:0] init_counter_1;
    reg [4:0] init_counter_2;
    initial begin
        valid = 0;
        init_counter_1 = 0;
        while (init_counter_1 < 64) begin
            tags[init_counter_1] = 0;
            init_counter_2 = 0;
            while (init_counter_2 < 16) begin
                data[init_counter_1][init_counter_2] = 0;
                init_counter_2 = init_counter_2 + 1;
            end
            init_counter_1 = init_counter_1 + 1;
        end
    end
    
    assign do_evict = valid[index];
    assign hm = valid[index] && (tags[index] == tag);
    assign evict_tag_index = {tags[index], index};
    assign read_tag_index = {tag, index};
    assign data_o =  {data[index][offset + 3], data[index][offset + 2], 
data[index][offset + 1],
                          data[index][offset]};
    assign evict_line_o = {data[index][15], data[index][14], data[index][13], 
data[index][12],
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                               data[index][11], data[index][10], data[index][9], 
data[index][8],
                               data[index][7], data[index][6], data[index][5], 
data[index][4],
                               data[index][3], data[index][2], data[index][1], 
data[index][0]};

    always @(posedge set_swap) begin
        swap_line_o <= evict_line_o;
        swap_tag_index <= evict_tag_index;
    end

    always @(posedge we) begin // Full line write
        valid[index] <= 1;
        tags[index] <= tag;
        data[index][0] <= write_line[7:0];
        data[index][1] <= write_line[15:8];
        data[index][2] <= write_line[23:16];
        data[index][3] <= write_line[31:24];
        data[index][4] <= write_line[39:32];
        data[index][5] <= write_line[47:40];
        data[index][6] <= write_line[55:48];
        data[index][7] <= write_line[63:56];
        data[index][8] <= write_line[71:64];
        data[index][9] <= write_line[79:72];
        data[index][10] <= write_line[87:80];
        data[index][11] <= write_line[95:88];
        data[index][12] <= write_line[103:96];
        data[index][13] <= write_line[111:104];
        data[index][14] <= write_line[119:112];
        data[index][15] <= write_line[127:120];
    end
    
endmodule
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instruction_victim_cache.v

module instruction_victim_cache(
        input wire set_swap, we, wsrc,
        input wire [27:0] evict_tag_index, read_tag_index, swap_tag_index_i,
        input wire [127:0] evict_line_i, swap_line_i,
        
        output wire hm,
        output reg [127:0] swap_line_o
    );
    
    parameter
        TARGET_0 = 'b000,
        TARGET_1 = 'b001,
        TARGET_2 = 'b010,
        TARGET_3 = 'b011,
        TARGET_4 = 'b100,
        TARGET_5 = 'b101,
        TARGET_6 = 'b110,
        TARGET_7 = 'b111,
        MATCH_0 = 'b1000,
        MATCH_1 = 'b1001,
        MATCH_2 = 'b1010,
        MATCH_3 = 'b1011,
        MATCH_4 = 'b1100,
        MATCH_5 = 'b1101,
        MATCH_6 = 'b1110,
        MATCH_7 = 'b1111,
        MATCH_NONE = 'b0000,
        VALID_0 = 'b00000000,
        VALID_1 = 'b00000001,
        VALID_2 = 'b00000011,
        VALID_3 = 'b00000111,
        VALID_4 = 'b00001111,
        VALID_5 = 'b00011111,
        VALID_6 = 'b00111111,
        VALID_7 = 'b01111111,
        VALID_8 = 'b11111111;
    
    reg [2:0] target_swap;
    reg [7:0] valid;
    reg [27:0] tag_indexes [7:0];
    reg [127:0] lines [7:0];
    // Target for the line coming in.
    reg [2:0] target_push;
    always @(*) case (valid)
        VALID_0: target_push = TARGET_0;
        VALID_1: target_push = TARGET_1;
        VALID_2: target_push = TARGET_2;
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        VALID_3: target_push = TARGET_3;
        VALID_4: target_push = TARGET_4;
        VALID_5: target_push = TARGET_5;
        VALID_6: target_push = TARGET_6;
        default: target_push = TARGET_7;
    endcase
    reg [3:0] match;
    always @(*) if (valid[0] && (read_tag_index == tag_indexes[0])) match = 
MATCH_0;
                else if (valid[1] && (read_tag_index == tag_indexes[1])) match = 
MATCH_1;
                else if (valid[2] && (read_tag_index == tag_indexes[2])) match = 
MATCH_2;
                else if (valid[3] && (read_tag_index == tag_indexes[3])) match = 
MATCH_3;
                else if (valid[4] && (read_tag_index == tag_indexes[4])) match = 
MATCH_4;
                else if (valid[5] && (read_tag_index == tag_indexes[5])) match = 
MATCH_5;
                else if (valid[6] && (read_tag_index == tag_indexes[6])) match = 
MATCH_6;
                else if (valid[7] && (read_tag_index == tag_indexes[7])) match = 
MATCH_7;
                else match = MATCH_NONE;
    
    reg [2:0] init_loop;
    initial begin
        swap_line_o = 0;
    
        target_swap = 0;
        valid = 0;
        
        for (init_loop = 0; init_loop < 7; init_loop = init_loop + 1) begin
            tag_indexes[init_loop] = 0;
            lines[init_loop] = 0;
        end
        tag_indexes[7] = 0;
        lines[7] = 0;
    end
    
    assign hm = match[3];
    
    always @(posedge set_swap) begin
        case (match)
            MATCH_0: begin
                target_swap <= 0;
                swap_line_o <= lines[0];
            end
            MATCH_1: begin
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                target_swap <= 1;
                swap_line_o <= lines[1];
            end
            MATCH_2: begin
                target_swap <= 2;
                swap_line_o <= lines[2];
            end
            MATCH_3: begin
                target_swap <= 3;
                swap_line_o <= lines[3];
            end
            MATCH_4: begin
                target_swap <= 4;
                swap_line_o <= lines[4];
            end
            MATCH_5: begin
                target_swap <= 5;
                swap_line_o <= lines[5];
            end
            MATCH_6: begin
                target_swap <= 6;
                swap_line_o <= lines[6];
            end
            MATCH_7: begin
                target_swap <= 7;
                swap_line_o <= lines[7];
            end
            MATCH_NONE: begin
                target_swap <= 0;
                swap_line_o <= 0;
            end
        endcase
    end
    
    always @(posedge we) begin
        if (~wsrc) begin // Eviction mode
            if (valid[7]) begin // Cache is full. Shift everything down and push 
to top.
                tag_indexes[0] <= tag_indexes[1];
                tag_indexes[1] <= tag_indexes[2];
                tag_indexes[2] <= tag_indexes[3];
                tag_indexes[3] <= tag_indexes[4];
                tag_indexes[4] <= tag_indexes[5];
                tag_indexes[5] <= tag_indexes[6];
                tag_indexes[6] <= tag_indexes[7];
                tag_indexes[7] <= evict_tag_index;
                
                lines[0] <= lines[1];
                lines[1] <= lines[2];
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                lines[2] <= lines[3];
                lines[3] <= lines[4];
                lines[4] <= lines[5];
                lines[5] <= lines[6];
                lines[6] <= lines[7];
                lines[7] <= evict_line_i;
            end else begin // Cache is not full. Push new line to top and make 
valid.
                tag_indexes[target_push] <= evict_tag_index;
                lines[target_push] <= evict_line_i;
                valid[target_push] <= 'b1;
            end
        end else begin // Swap mode
            // Everything above the swap target gets pushed down.
            if (target_swap == 0) begin
                tag_indexes[0] <= tag_indexes[1];
                lines[0] <= lines[1];
            end
            if (target_swap <= 1) begin
                tag_indexes[1] <= tag_indexes[2];
                lines[1] <= lines[2];
            end
            if (target_swap <= 2) begin
                tag_indexes[2] <= tag_indexes[3];
                lines[2] <= lines[3];
            end
            if (target_swap <= 3) begin
                tag_indexes[3] <= tag_indexes[4];
                lines[3] <= lines[4];
            end
            if (target_swap <= 4) begin
                tag_indexes[4] <= tag_indexes[5];
                lines[4] <= lines[5];
            end
            if (target_swap <= 5) begin
                tag_indexes[5] <= tag_indexes[6];
                lines[5] <= lines[6];
            end
            if (target_swap <= 6) begin
                tag_indexes[6] <= tag_indexes[7];
                lines[6] <= lines[7];
            end
            
            if (valid[7]) begin // Cache is full. Push swapped-in line to top.
                tag_indexes[target_push] <= swap_tag_index_i;
                lines[target_push] <= swap_line_i;
            end else begin // Cache is not full. Push swapped-in line to top - 1.
                tag_indexes[target_push - 1] <= swap_tag_index_i;
                lines[target_push - 1] <= swap_line_i;
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            end
        end
    end
endmodule
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vc_mem_ctrl.v

module vc_mem_ctrl(
    input wire clk, co_req, co_rw, co_type, dmc_evict, dmc_hm, dvc_hm, dvc_wb, 
imc_evict, imc_hm,
        ivc_hm, mm_resp,

    output wire co_resp, dmc_we, dmc_write_mode, dmc_write_src, dvc_we, dvc_wsrc, 
imc_we,
        imc_write_src, ivc_we, ivc_wsrc, mm_req, mm_rw, d_set_swap, i_set_swap
    );
    
    parameter
        MODE_INST = 'b00,
        MODE_DATA_RI = 'b01,
        MODE_DATA_WB = 'b10,
        
        IDLE = 'b0000,
        INST_EVICT = 'b0001,
        INST_SET_SWAP = 'b0010,
        INST_SWAP = 'b0011,
        INST_READIN = 'b0100,
        INST_WRITEIN = 'b0101,
        
        DATA_EVICT = 'b0110,
        DATA_SET_SWAP = 'b0111,
        DATA_SWAP = 'b1000,
        DATA_WRITEBACK = 'b1001,
        DATA_READIN = 'b1010,
        DATA_WRITEIN = 'b1011,
        DATA_WRITE_PREP = 'b1100,
        DATA_WRITE = 'b1101,
        FINISH = 'b1110;
        
    reg [3:0] state;
    reg [3:0] state_next;
    always @(*) case (state)
        IDLE: if (co_req)
                  if (co_type) begin
                      if (dmc_hm) state_next = co_rw ? DATA_WRITE : FINISH;
                      else if (dvc_hm) state_next = DATA_SET_SWAP;
                      else if (dmc_evict) state_next = DATA_EVICT;
                      else state_next = DATA_READIN;
                  end else begin
                      if (imc_hm) state_next = FINISH;
                      else if (ivc_hm) state_next = INST_SET_SWAP;
                      else if (imc_evict) state_next = INST_EVICT;
                      else state_next = INST_READIN;
                  end
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              else state_next = IDLE;
        INST_EVICT: state_next = INST_READIN;
        INST_SET_SWAP: state_next = INST_SWAP;
        INST_SWAP: state_next = FINISH;
        INST_READIN: state_next = INST_WRITEIN;
        INST_WRITEIN: state_next = FINISH;
        DATA_EVICT: state_next = DATA_READIN;
        DATA_SET_SWAP: state_next = DATA_SWAP;
        DATA_SWAP: state_next = co_rw ? DATA_WRITE_PREP : FINISH; 
        DATA_WRITEBACK: state_next = mm_resp ? DATA_EVICT : state;
        DATA_READIN: state_next = mm_resp ? DATA_WRITEIN : state;
        DATA_WRITEIN: state_next = co_rw ? DATA_WRITE_PREP : FINISH;
        DATA_WRITE_PREP: state_next = DATA_WRITE;
        DATA_WRITE: state_next = FINISH;
        FINISH: state_next = co_req ? state : IDLE;
        default: state_next = state;
    endcase
    
    initial state = IDLE;
    
    assign co_resp = state == FINISH;
    assign dmc_we = (state == DATA_SWAP) || (state == DATA_WRITEIN) || (state == 
DATA_WRITE);
    // Applicable states and the previous. 1 means full line.
    assign dmc_write_mode = (state == DATA_SET_SWAP) || (state == DATA_SWAP) ||
                                (state == DATA_READIN) || (state == DATA_WRITEIN);
    // 1 means main memory source. Applicable and previous states
    assign dmc_write_src = (state == DATA_READIN) || (state == DATA_WRITEIN);
    assign dvc_we = (state == DATA_SWAP) || (state == DATA_EVICT);
    // 1 means swap data. Applicable and previous states
    assign dvc_wsrc = (state == DATA_SET_SWAP) || (state == DATA_SWAP);
    assign imc_we = (state == INST_SWAP) || (state == INST_WRITEIN);
    // 1 means main memory source. Applicable and previous states
    assign imc_write_src = (state == INST_READIN) || (state == INST_WRITEIN);
    assign ivc_we = (state == INST_SWAP) || (state == INST_EVICT);
    // 1 means swap data. Applicable and previous states
    assign ivc_wsrc = (state == INST_SET_SWAP) || (state == INST_SWAP);
    assign mm_req = (state == INST_READIN) || (state == DATA_WRITEBACK) || (state 
== DATA_READIN);
    assign d_set_swap = (state == DATA_SET_SWAP);
    assign i_set_swap = (state == INST_SET_SWAP);
    // Applicable and previous state (given proper signals)
    assign mm_rw = ((state == IDLE) && co_type && ~dmc_hm && ~dvc_hm && dvc_wb) ||
                       (state == DATA_WRITEBACK);
                       
    always @(posedge clk) state <= state_next;
    
endmodule
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Block diagram for design with L1 and victim caches
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Default Settings used for Vivado power estimation

Junction Temperature 26.183 °C

Ambient Temperature 25 °C

Effective Thermal Resistance 11.533 °C/W

Airflow 250 LFM

Heat Sink None

Board Selection Medium 10”x10”

Number of Board Layers 8 to 11

Vccint (Voltage) 1.000 V

Vccaux 1.800 V

Vcco33 3.300 V

Vcco25 2.500 V

Vcco18 1.800 V

Vcco15 1.500 V

Vcco135 1.350 V

Vcco12 1.200 V

Vccaux_io 1.800 V

Vccbram 1.000 V

MGTAVcc 1.000 V

MGTAVtt 1.200 V

MGTVccaux 1.800 V

Vccpint 1.000 V

Vccpaux 1.800 V

Vccpll 1.800 V

Vcco_ddr 1.500 V

Vcco_mio0 1.800 V

Vcco_mio1 1.800 V

Vccadc 1.800 V

Default Toggle Rate 12.5

Default Static Probability 0.5

Clock Period 20 ns
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B Future Work Example Code

primeFactors.c

#include <stdint.h>

void factor();

void main() {
    int array [32];
    int index = 0;
    factor(15876000, array, &index);
}

void factor(int value, int *array, int *index) {
    int wFactor = 2;
    int lowFactor = 0;
    int highFactor = value;
    
    while (wFactor < highFactor) {
        if (value % wFactor == 0) {
            lowFactor = wFactor;
            highFactor = value / wFactor;
        }
        wFactor += 1;
    }

    if (lowFactor != 0) {
        factor(lowFactor, array, index);
        factor(highFactor, array, index);
    } else {
       array[*index] = value;
        *index += 1;
    }
    return; 
}
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Excerpt from the primefactors object dump created with the RISC-V GCC compiler

00000000000103dc <main>:
   103dc: 7135                addi sp,sp,-160
   103de: ed06                sd ra,152(sp)
   103e0: e922                sd s0,144(sp)
   103e2: 1100                addi s0,sp,160
   103e4: f6042623          sw zero,-148(s0)
   103e8: f6c40713          addi a4,s0,-148
   103ec: f7040793          addi a5,s0,-144
   103f0: 863a                mv a2,a4
   103f2: 85be                mv a1,a5
   103f4: 00f247b7          lui a5,0xf24
   103f8: fa078513          addi a0,a5,-96
   103fc: 00e000ef          jal ra,1040a <factor>
   10400: 0001                nop
   10402: 60ea                ld ra,152(sp)
   10404: 644a                ld s0,144(sp)
   10406: 610d                addi sp,sp,160
   10408: 00000000               halt

000000000001040a <factor>:
   1040a: 7139                addi sp,sp,-64
   1040c: fc06                sd ra,56(sp)
   1040e: f822                sd s0,48(sp)
   10410: 0080                addi s0,sp,64
   10412: 87aa                mv a5,a0
   10414: fcb43823          sd a1,-48(s0)
   10418: fcc43423          sd a2,-56(s0)
   1041c: fcf42e23          sw a5,-36(s0)
   10420: 4789                li a5,2
   10422: fef42623          sw a5,-20(s0)
   10426: fe042423          sw zero,-24(s0)
   1042a: fdc42783          lw a5,-36(s0)
   1042e: fef42223          sw a5,-28(s0)
   10432: a815                j 10466 <factor+0x5c>
   10434: fdc42703          lw a4,-36(s0)
   10438: fec42783          lw a5,-20(s0)
   1043c: 02f767bb          remw a5,a4,a5
   10440: 2781                sext.w a5,a5
   10442: ef89                bnez a5,1045c <factor+0x52>
   10444: fec42783          lw a5,-20(s0)
   10448: fef42423          sw a5,-24(s0)
   1044c: fdc42703          lw a4,-36(s0)
   10450: fec42783          lw a5,-20(s0)
   10454: 02f747bb          divw a5,a4,a5
   10458: fef42223          sw a5,-28(s0)
   1045c: fec42783          lw a5,-20(s0)
   10460: 2785                addiw a5,a5,1
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   10462: fef42623          sw a5,-20(s0)
   10466: fec42703          lw a4,-20(s0)
   1046a: fe442783          lw a5,-28(s0)
   1046e: 2701                sext.w a4,a4
   10470: 2781                sext.w a5,a5
   10472: fcf741e3          blt a4,a5,10434 <factor+0x2a>
   10476: fe842783          lw a5,-24(s0)
   1047a: 2781                sext.w a5,a5
   1047c: c785                beqz a5,104a4 <factor+0x9a>
   1047e: fe842783          lw a5,-24(s0)
   10482: fc843603          ld a2,-56(s0)
   10486: fd043583          ld a1,-48(s0)
   1048a: 853e                mv a0,a5
   1048c: f7fff0ef          jal ra,1040a <factor>
   10490: fe442783          lw a5,-28(s0)
   10494: fc843603          ld a2,-56(s0)
   10498: fd043583          ld a1,-48(s0)
   1049c: 853e                mv a0,a5
   1049e: f6dff0ef          jal ra,1040a <factor>
   104a2: a02d                j 104cc <factor+0xc2>
   104a4: fc843783          ld a5,-56(s0)
   104a8: 439c                lw a5,0(a5)
   104aa: 078a                slli a5,a5,0x2
   104ac: fd043703          ld a4,-48(s0)
   104b0: 97ba                add a5,a5,a4
   104b2: fdc42703          lw a4,-36(s0)
   104b6: c398                sw a4,0(a5)
   104b8: fc843783          ld a5,-56(s0)
   104bc: 439c                lw a5,0(a5)
   104be: 2785                addiw a5,a5,1
   104c0: 0007871b          sext.w a4,a5
   104c4: fc843783          ld a5,-56(s0)
   104c8: c398                sw a4,0(a5)
   104ca: 0001                nop
   104cc: 70e2                ld ra,56(sp)
   104ce: 7442                ld s0,48(sp)
   104d0: 6121                addi sp,sp,64
   104d2: 8082                ret
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