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DECIPHERING THE CONSEQUENCES OF YOLK TESTOSTERONE METABOLISM IN BIRDS 

 

NICOLE A. CAMPBELL 

38 Pages 

 Maternal steroids transferred to eggs can elicit permanent effects on various aspects of 

offspring phenotype. Although testosterone was thought to be a key mediator of maternal 

effects in birds, we now know that vertebrate embryos actively regulate their exposure to 

maternal testosterone through steroid metabolism, suggesting testosterone metabolites may 

elicit the observed phenotypic effects. To address the role steroid metabolism plays in 

mediating yolk testosterone effects, we used European starling (Sturnus vulgaris) eggs to 

characterize the timing of testosterone metabolism and determine whether etiocholanolone, a 

prominent testosterone metabolite in avian embryos, is capable of influencing early embryonic 

development. Tritiated testosterone (3H-T) was injected into freshly laid eggs to characterize 

the movement and metabolism during early development. Varying levels of etiocholanolone 

were also injected into starling eggs and incubated for either three or five days to test whether 

etiocholanolone influences the early growth of embryonic tissues. Interestingly, the conversion 

of testosterone to etiocholanolone is initiated within the first 12 hours of embryonic 

development, but the increase in etiocholanolone is transient; etiocholanolone is also subject 

to metabolism, suggesting embryos are exposed to elevated levels of etiocholanolone for a 

short period of time in early development. We found exogenous etiocholanolone manipulation 

had no significant effect on the growth rate of the embryos or extra-embryonic membranes 

early in development. These findings suggest the conversion of yolk testosterone to 



etiocholanolone may be an inactivation pathway that buffers the embryo from the effects of 

maternal steroids and the observed effects of yolk testosterone may be modulated by the 

fraction of testosterone that escapes metabolism.  

KEYWORDS: testosterone, steroid metabolism, etiocholanolone, embryology, Sturnus vulgaris 
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CHAPTER I: TESTOSTERONE METABOLISM AND ETIOCHOLANOLONE EFFECTS 

Introduction 

Successful offspring development requires that the mother provides a variety of 

resources (Starck and Ricklefs, 1998; Deeming and Reynolds, 2015), but the amount of these 

resources can vary between offspring. When maternal resource variation occurs, maternal 

effects, manifesting in phenotypic variation, can arise (Mousseau and Fox, 1998). One maternal 

resource that has been implicated in mediating maternal effects is steroids (Eising et al., 2001; 

Groothuis et al., 2005; von Engelhardt et al., 2009; Reidstra et al., 2013; Williams and 

Groothuis, 2015). Much of the early interest in investigating maternal effects focused on 

steroids, in part because steroids have long been known to influence developing tissues and 

produce organizational effects that are permanent (Phoenix et al., 1959; Goy and McEwen, 

1980). From this work, we recognize that steroids can coordinate sex-specific development of 

target tissues including the brain and genitalia (Goy and McEwen, 1980; Jost, 1970).  

Given that avian eggs contain testosterone at laying (or oviposition) (Schwabl, 1993; Groothuis 

et al., 2005), it has been hypothesized females have the ability to alter testosterone levels in 

their eggs, thereby influencing offspring development and phenotype. For example, 

manipulations of maternal testosterone can affect the development of muscles associated with 

hatching (Lipar and Ketterson, 2000; Lipar, 2001; Navara and Mendonça, 2008) and flight 

(Navara and Mendonça, 2008; Chin et al., 2009). Skeletal development is also affected by 

testosterone; nestlings from eggs injected with testosterone had larger tarsi (Navara et al., 

2005, 2006; Navara and Mendonça, 2008), although this increase has recently been found to 

only occur in male offspring during the first half of embryonic development (Muriel et al., 
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2013). Increased exposure to testosterone during development can lead to altered 

development and functioning of the immune system. For example, both humoral (Groothuis et 

al., 2005; Clairardin et al., 2011) and cellular (Navara and Mendonça, 2008) immunity are 

suppressed by androgen exposure. With these findings, it is apparent that testosterone 

exposure during early development does affect offspring phenotype; however, not all studies 

report effects from early androgen exposure (Rubolini et al. 2006a), indicating these effects 

may be context-or species-dependent. Although, one aspect of development in which all 

studies report similar findings is the inability of yolk testosterone to affect the sexual 

differentiation of tissues, such as the brain (Carere and Balthazart, 2007). 

After studies on the effects of yolk testosterone began to accumulate, the question of 

how effects of maternal testosterone in the yolk could arise without any apparent effects on 

sexual differentiation, which was known to be modulated by testosterone (Carere and 

Balthazart, 2007), quickly arose. A study performed in ring-necked pheasants found that 

injections of testosterone into egg yolks prior to incubation did not affect sexual ornamentation 

of the hatchlings (Rubolini et al., 2006b). However, in studies of Japanese quail, estradiol 

benzoate (EB) injected into eggs prior to day 12 of incubation affects the sexual differentiation 

of both male and female offspring (Adkins, 1979; Schumacher et al., 1989). Males hatched from 

eggs injected before day 12 of incubation, showed a demasculinization of their sexual behavior 

in adulthood, whereas males hatched from eggs injected after day 12 of incubation showed no 

effect of EB treatment on behavior (Adkins, 1979). These findings suggest there is a critical 

development window in the process of sexual differentiation by which steroid manipulations 

can elicit activational effects later in life (Carere and Balthazart, 2007).  
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While a number of hypotheses have been put forth to address this issue (e.g. “temporal 

dissociation” and “dose differences”), one question receiving increased attention is whether or 

not developing embryos modulate the effects of maternal steroids in the yolk via steroid 

metabolism (Paitz and Bowden, 2008, 2013; Paitz et al., 2011). For example, placental 

vertebrates also develop in an environment rich in maternal steroids, yet steroids produced by 

embryonic gonads, not from maternal circulation, direct sexual differentiation (Fuchs and 

Klopper, 1971). In these taxa, the metabolism of maternal steroids by the placenta is critical to 

maintaining an endocrine environment that allows developing gonads to properly direct sexual 

differentiation (Pepe and Albrecht, 1995). In egg-laying species, the chorioallantoic membrane 

(CAM), which is derived from the chorion and allantois like most placentas (Mossman, 1987), is 

also capable of steroid metabolism (Paitz and Bowden, 2008; Albergotti et al., 2009).  

Evidence is now accumulating to suggest embryos of egg-laying vertebrates modulate 

their exposure to maternal steroids via steroid metabolism (reviewed in Paitz and Bowden, 

2013). While dilution by albumen during development, or simply steroid movement from yolk 

to the embryo, could explain a decline in yolk steroid levels during development (Groothuis and 

Schwabl, 2008), many studies demonstrate this decline in yolk steroids is due to steroid 

metabolism (Paitz and Bowden, 2008; von Engelhardt et al., 2009; Paitz and Casto, 2012). Birds 

such as chickens (Gallus gallus) (von Engelhardt et al., 2009), Japanese quail (Coturnix japonica) 

(Vassallo et al., 2014; Vassallo et al., 2018), and the starling (Paitz et al., 2011; Paitz and Casto, 

2012) all metabolize yolk steroids early in development. In European starling eggs, yolk 

testosterone levels decline rapidly during the first five days of development (Paitz et al., 2011). 

In rock pigeons, a similar decrease in yolk progesterone, 17-hydroxyprogesterone, 
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androstenedione, and testosterone occurs after 4.5 days of development (Kumar et al., 2018). 

Evidence of steroid metabolism in fertilized eggs, but not unfertilized eggs, of both starlings 

(Paitz and Casto, 2012) and rock pigeons (Kumar et al., 2018), suggests the embryo plays a role 

in steroid metabolism. Given the evidence that maternal steroids are metabolized during 

development, one critical remaining question is whether or not the respective metabolites are 

capable of influencing subsequent embryonic development. 

 

Metabolic Fate of Yolk Steroids 

The testosterone metabolites, dihydrotestosterone (DHT) and estradiol (E2), influence 

development through their role in sexual differentiation (Siiteri and Wilson, 1974; McEwen et 

al., 1977). The conversion of testosterone to DHT or E2 is crucial to the development of the 

brain and gonads of developing offspring in many taxa (Callard et al., 1978; Ball et al., 2014). 

The enzyme 5α-reductase is responsible for converting testosterone to DHT while aromatase 

converts testosterone into E2 (Andersson et al., 1991; Thigpen et al., 1992), and the localized 

distribution of these two enzymes has a large effect on how the developmental effects of 

testosterone are mediated. For example, androgen receptors have a much higher affinity for 

DHT than testosterone (Siiteri and Wilson, 1974). So in a tissue that contains androgen 

receptors, it is important that 5α-reductase is also present in order to convert testosterone to 

its more potent form if needed. On the other hand, E2 and other estrogens bind to estrogen 

receptors to produce distinct biological effects, such as activating the neural pathway for the 

elicitation of lordosis behavior in rats (McEwen et al., 1977). Therefore, it is crucial that 
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aromatase is localized to tissues which respond best to estrogens, otherwise the steroids will 

not be able to bind the proper receptor nor elicit their effects.  

The metabolic fate of testosterone is not just limited to DHT or E2. Another metabolite 

of testosterone is etiocholanolone, which is created through the 5β-reduction pathway, and 5β-

reductase is one of the enzymes responsible for converting testosterone to etiocholanolone 

(Steimer and Hutchison, 1981). 5β-reduction is the major pathway for testosterone metabolism 

is chick blastoderms (Parsons, 1970), and 5β-reductase activity is high in recently hatched quail 

chicks (Balthazart and Ottinger, 1984). In fact, major sites of 5β-reduction include the brain and 

liver of both young and adult birds (Steimer and Hutchison, 1981), with 5β-reductase activity 

being two to three orders of magnitude greater in the brain than either 5α-reductase or 

aromatase activity (Vockel et al., 1990). The 5β-reduced metabolite, 5β-DHT, injected in eggs at 

day nine of incubation elicited no effects on male sexual behavior after hatching (Schumacher 

et al., 1989), suggesting that this metabolite is inactive with respect to the process of sexual 

differentiation. Etiocholanolone has been identified as a major metabolite of yolk testosterone 

in the starling (Paitz et al., 2011) and the rock pigeon (Kumar et al., 2018), where yolk 

testosterone is converted to etiocholanolone by day five of embryonic development. Prior 

research suggests that the 5β-reduction metabolism pathway may be crucial for early 

development of multiple avian species (Aragonés et al., 1991). Therefore, understanding how 

and when steroid metabolism and the conversion of steroids to other metabolites occurs in the 

egg, we can enhance our current understanding of the mechanisms through which yolk 

testosterone influences embryonic development. 
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Biological Effects of Etiocholanolone 

Unlike testosterone metabolites produced by 5α-reductase and aromatase, which are 

more biologically active than testosterone, 5β-reduction of testosterone has been implicated in 

biological inactivation of testosterone (Balthazart et al., 1990). Research demonstrating 

implants of 5β-reduced androgens appear to be inactive with respect to sexual differentiation 

in bird embryos (Schumacher et al., 1989; Balthazart et al., 1990) supports this proposed role of 

inactivation. One such study proposed that the high levels of 5β-reductase in the embryonic 

brain serve as an inactivation shunt to protect specific areas of the brain from the 

organizational effects of testosterone or its reduced metabolites (Balthazart et al., 1990).  

While 5β-reduced androgens might not affect sexual differentiation, these metabolites 

were shown to increase erythropoiesis (red blood cell production) during embryonic 

development in birds (Levere et al., 1967). Previous work demonstrates that etiocholanolone 

stimulates the formation of heme and hemoglobin directly in erythroid cells (i.e. not by 

erythropoietin) (Levere et al., 1967). Additional evidence shows 5β-reduced compounds 

influence the production of enzymes in the liver (Granick, 1966; Levere et al., 1967; Anderson, 

et al., 1982; Aragonés et al., 1991) that increase cytochrome P450 activity in chick embryos 

(Anderson et al., 1982). Therefore, it is possible that the 5β-reduced metabolite, 

etiocholanolone, may elicit similar effects and influence offspring phenotype in birds.  

Given the observation that maternal testosterone is metabolized to etiocholanolone in 

several bird species (Paitz et al., 2011; Kumar et al., 2018), we hypothesized the phenotypic 

effects of testosterone during early avian development are mediated by the response of the 

embryos and their extra-embryonic membranes to the 5β-reduced metabolite, 
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etiocholanolone. The objectives of this experiment were to determine when and where 

testosterone is metabolized, and whether its major metabolite, etiocholanolone, affects the 

growth of the embryo and extra-embryonic membranes. 

 

Experimental Methods 

Egg Collection 

Eggs of European starlings (Sturnus vulgaris) were used in all experiments in this study, 

as previous evidence demonstrates that starling mothers transfer testosterone to the yolks of 

their eggs (Lipar 2001; Pilz et al., 2003), and that etiocholanolone is a metabolite of yolk 

testosterone metabolism in starling eggs (Paitz et al., 2011). Starlings are abundant across the 

Midwestern United States and readily occupy artificial nest boxes during the breeding season. 

Eggs were collected from nests found in four nest box colonies in McLean County, Illinois, 

located on properties owned by Illinois State University (see Eisner Pryor and Casto, 2015 for a 

detailed description). As starlings are an introduced agricultural pest species, permits are not 

required to collect their eggs, but monitoring of nests, collecting of freshly laid eggs, and use of 

painted wooden decoy eggs to encourage normal patterns of egg laying was reviewed and 

approved by the Illinois State University Institutional Animal Care and Use Committee. 

 

In ovo Metabolism of 3H-Testosterone 

Since previous work demonstrated that 3H-testosterone injected into starling eggs was 

completely metabolized by day five of incubation (Paitz et al., 2011), our initial goal was to 

more precisely determine when this metabolism occurs. In 2017, 38 starling eggs from 36 
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different clutches were collected and taken to the laboratory. Eggs were then injected with 

150,000 CPM of 3H-Testosterone (Specific activity = 100) (Perkin-Elmer, Waltham, MA, USA) in 

5 μL of sesame oil with a Hamilton microliter syringe. Super glue (Henkel Corporation, Rocky 

Hill, CT, USA) was used to seal the hole in each egg shell and allowed to dry. The eggs were then 

placed in a rotating incubator (G.Q.F. Manufacturing Co., Savannah, GA. Model “1202” 280W 

Circulated Air Incubator) at a constant 37.5 °C and 60% humidity. Eggs were removed at 

designated sampling times: 12, 24, 48, 72, 96, or 120 hours of incubation. Following removal 

from the incubator, all eggs were frozen at -20°C until analysis of steroids occurred. Frozen eggs 

were thawed and the yolk was separated from the albumen and each component was weighed. 

Some of the eggs incubated for more than 72 hours contained distinct blood pools from early 

stage embryos and this tissue was included in the yolk mass recordings as it was not feasible to 

separate it.  

To extract testosterone and its metabolites, each yolk was then homogenized and 0.5 g 

of the homogenate was placed in 4 mL methanol and vortexed for 10-15 seconds on a Vortex 

(Fischer Scientific Model G-560). Samples were then frozen at -20˚C for at least 24 hours to 

precipitate proteins and neutral lipids then removed from the freezer and centrifuged (Thermo 

Scientific Sorvall R1 Centrifuge) at 2000 rpm for 15 minutes. The supernatant was collected and 

solid phase extraction was used to separate free and conjugated steroids (Paitz et al., 2011). 

Solid phase extraction was performed using Sep-Pak® cartridges (Waters, Ireland, Sep-Pak® Plus 

single use C18 cartridges). Each Sep-Pak® cartridge was numbered to match a yolk/methanol 

solution from the eggs sampled. Yolk extracts were diluted with 45 mL of water and run 

through cartridges under vacuum pressure. Free steroids were then eluted with 5 mL of diethyl 
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ether followed by conjugated steroids being eluted with 5 mL methanol. The conjugated 

steroids from each cartridge were collected in separate numbered test tubes and later 

characterized and quantified for radioactivity. In order to further separate free steroids, the 

free steroid fraction was subjected to celite chromatography (Wingfield and Farner, 1975; Paitz 

et al., 2011). Following this separation protocol, 5 mL of increasing concentrations of an ethyl 

acetate:isooctane solution (0%, 10%, and 20%) were added to each column. Androstenedione 

elutes in the 0% fraction, etiocholanolone in 10% fraction, and testosterone in the 20% fraction 

(Paitz et al., 2011). Each fraction was then dried and quantified for radioactivity.   

Because the results of the 2017 study suggested testosterone was already completely 

metabolized prior to the 12 hour sampling period, we conducted a follow up study in 2018 

using higher concentrations of exogenous testosterone and earlier sampling points. In the 

summer of 2018, 25 freshly laid starling eggs were injected with 2x106 CPM of 3H-testosterone 

in 5 μL of sesame oil with a Hamilton microliter syringe and sealed as mentioned previously. 

The five eggs randomly selected to be sampled at hour zero were snap frozen immediately 

following the injection on dry ice to prevent any steroid metabolism. The remaining 20 eggs 

were then placed in a rotating incubator at a constant 37.5 °C and 60% humidity to be randomly 

sampled at either four, eight, or 12 hours of incubation. Eggs were frozen upon sampling, but 

unlike in 2017, we homogenized the yolk with the albumen and extracted steroids from 0.5 g of 

this homogenate, as we wanted to recover as much of our injected 3H-testosterone as possible.  
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In vitro Metabolism of 3H-Testosterone  

 Given that metabolism of 3H-testosterone occurred so early in development, we 

wanted to examine which, if any, components of freshly laid eggs were capable of metabolizing 

testosterone. To do this yolk, albumen, or a 1:1 mixture of the two were used as tissue sources. 

We mixed 0.5 g tissue samples from freshly laid eggs and mixed with 100,000 CPM of 3H-

testosterone in 200 µl of homogenization buffer (250mM sucrose, 5mM MgCl2, 100mM Tris-

HCl), and ran 120-minute metabolism assays that were quenched by the addition of 4 mL of ice 

cold methanol. These samples were then subjected to solid phase extraction and celite 

chromatography as described above. To further verify that 3H-testosterone metabolism occurs 

in the yolk of freshly laid eggs, a time course experiment was conducted in which the assays 

described above were terminated at 0, 30, 60, 120 minutes respectively and samples from five 

different eggs were tested at each time point. 

 

Endogenous Etiocholanolone Levels   

In addition to characterizing when testosterone is metabolized, we quantified the 

endogenous levels of etiocholanolone in freshly laid eggs (presumably of maternal origin) and 

examined how those levels change during development. To quantify endogenous 

etiocholanolone levels present in starling eggs, 10 freshly laid starling eggs were frozen at -20°C 

until steroid analysis was performed and 10 eggs were incubated for five days and then frozen. 

To extract etiocholanolone, eggs were thawed and de-shelled as mentioned previously, and 

yolk and albumen mass was recorded in order to back correct sample concentrations to the 

total amount in the egg. Yolk fractions from all incubated eggs contained early stage embryos 
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that were not separated out, but included in the yolk mass. The yolks were homogenized and 

0.5 g of the homogenate was mixed with 4 mL methanol as mentioned previously and was 

subjected to the same solid phase steroid extraction technique as described previously.  

Etiocholanolone levels were quantified using LC/MS/MS at the Metabolomics Center at 

University of Illinois (Urbana-Champaign, IL, USA) using a 5500 QTRAP mass spectrometer (AB 

Sciex, Foster City, CA, USA) . This technique has been used to quantify a variety of steroids in 

the yolk of passerine eggs (Merrill et al., 2017; Merrill et al., 2018). Briefly, the LC separation 

was performed on a Phenomenex C6 Phenyl column (2.0 × 100mm,3m.) with mobile phase A 

(0.1% formic acid in water) and mobile phase B (0.1% formic acid in acetonitrile). The flow rate 

was 0.25 mL/min. The linear gradient was as follows: 0–1 min, 80%A; 10 min, 65%A; 15 min, 

50%A; 20 min, 40%A; 25 min, 30%A; 30 min, 20%A; 30.5–38 min, 80%A. The autosampler was 

set at 5˚C. The injection volume was 5 µL. Etiocholanolone had a retention time of 20.2 minutes 

and was quantified on a 5500 QTRAP mass spectrometer (AB Sciex, Foster City, CA, USA) under 

positive electrospray ionization (ESI) with the ion spray voltage of 5500V. The source 

temperature was 500˚C. The curtain gas, ion source gas 1, and ion source gas 2 were 36 psi, 50 

psi, and 65 psi, respectively. Multiple reaction monitoring (MRM) was used to measure 

etiocholanolone with the Q1–Q3 transition of 291.0–255.0 (m/z). 

 

Effects of Etiocholanolone on Embryonic Growth 

In the spring of 2018, 133 starling eggs were collected on the day they were laid and 

brought back to the lab. Clutches were divided among four different injection treatments: 

sesame oil vehicle (control), 2.5 ng (low), 5.0 ng (medium), or 10.0 ng (high) injections of 
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etiocholanolone dissolved in sesame oil. Etiocholanolone doses were chose based on the data 

on etiocholanolone levels in freshly laid starling eggs that were collected in 2017, where eggs 

contained on average 4.6 ng of etiocholanolone ± 1.8 (mean ± SD). We chose these doses as 

they represented an approximate increase in etiocholanolone of one, two, and four standard 

deviations.  In addition to the injected eggs, nine eggs were immediately frozen at -20˚C after 

weighing to serve as controls for baseline steroid levels. Following injections, eggs were 

incubated for either three or five days.  

Following incubation, embryos and their extra-embryonic membranes were collected 

and weighed to collect wet mass and the yolk and albumen were separated and stored frozen 

for subsequent steroid analysis. Embryos and their membranes were then placed in a drying 

oven at 37˚C and dried to a constant mass. After noting dried mass, the tissue was then used 

for molecular sexing of the embryo (Nettle et al., 2013). Briefly, 50 µL of 0.2M Sodium 

Hydroxide (NaOH) was added to each dried embryo, and placed in a 75˚C heat block for 20 

minutes to promote cell lysis (Haunshi et al., 2008). Samples were removed from the heat block 

and 300 μL of 0.04M Tris-HCl was added to neutralize the solution. Sex was determined by 

amplifying the sexually dimorphic chromodomain-helicase-DNA binding (CHD) genes using CHD 

forward primer (5’-GTTACTGATTCGTCTACGAGA-3’) and CHD reverse primer (5’-

AATTCCCCTTTTATTGATCCATC-3’) (Nettle et al., 2013). Each PCR reaction contained: 6.7 μL 

nanopure water, 4.0 μL 5X GoTaq Flexi buffer (Promega, Madison, WI, USA), 1.6 μL 25mM 

MgCl2, 1.0 μL 20mM CHD forward primer, 1.0 μL 20mM CHD reverse primer, 0.5 μL dNTPs, 0.2 

μL Taq, and 5 μL (100 ng) DNA from each embryo sample for a final reaction concentration of 

20 μL. Samples were visualized using gel electrophoresis (1.5% agarose gel) under UV light. The 
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gels ran for 90 minutes at 95 V. Using this protocol, male individuals show a single band while 

females produced two bands.  

We used a subset of eggs to confirm that our etiocholanolone manipulations were 

within the physiological range. The subset contained nine freshly laid eggs, three oil-injected 

eggs that were incubated for 3 days, six oil-injected eggs that were incubated for 5 days, six 

high-dose etiocholanolone-injected eggs that were incubated for 3 days, and five high-dose 

etiocholanolone-injected eggs that were incubated for 5 days. Because it was not feasible to 

separate yolk and albumen while also sampling embryos during development, for all eggs, yolk-

albumen homogenates were used for steroid quantification. Etiocholanolone was extracted 

from 0.5 g of homogenate and quantified using LC/MS/MS as described above. 

 

Statistical Analyses 

 All analyses were run using SAS statistical software (v. 9.4, SAS Institute, Cary, NC, USA). 

Analyses of variance were used to examine how tritiated metabolite levels changed across 

development in both the 2017 and 2018 in ovo metabolism studies. Separate analyses of 

variance and post-hoc comparisons were performed for each metabolite. Concentrations were 

log transformed prior to analysis to normalize the data as well as homogenize variances. 

Sampling period was included as a fixed effect. Post-hoc comparisons (Tukey’s HSD) were 

performed to test for differences between sampling periods.  

 An analysis of variance and post-hoc comparisons were used to compare the 

concentrations of etiocholanolone produced from each tissue type in our in vitro metabolism 

study. Tissue type was included as a fixed effect in this analysis. We also used an analysis of 
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variance to examine the change in etiocholanolone produced over the course of two hours in 

vitro. Post-hoc comparisons were performed for each 30 minute time point from zero to 120 

minutes. The concentration of etiocholanolone was log transformed prior to analysis to 

normalize the data and homogenize variances. Time point was included as a fixed effect. To 

determine the change in endogenous etiocholanolone levels over the first five days of 

development, an analysis of variance was used including the day of development as a fixed 

effect. 

Analyses of variance were used to analyze the treatment effects on mass of the embryo 

and extra-embryonic membranes. Day of development, treatment, and sex of the embryo were 

included as fixed effects, while clutch was included as a random effect. Masses of the 

embryonic tissues were log transformed prior to analysis to normalize the data and 

homogenize variances, as the raw data did not produce a normalized distribution.  

 

Results 

In ovo Metabolism of 3H-Testosterone 

Our average recovery of radioactivity per egg was 68% (102,125 CPM per egg), which is 

consistent with similar studies (Paitz and Bowden, 2008; von Engelhardt et al., 2009). We found 

the concentration of the injected 3H-testosterone dropped over the course of development in 

ovo (F5,29 = 5.27, p = 0.0015). Unexpectedly, the levels of testosterone recovered at the initial 12 

hour sampling period (1535 ± 178 CPM) (mean ± SE) only represented 1% of the total 

radioactivity recovered. We examined testosterone levels changed over the first five days of 

development (F5,29 = 5.27, p = 0.0015) (Figure 1a). Other metabolism patterns, such as a change 
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in androstenedione levels (F5,29 = 26.35, p <0.0001) (Figure 1b) and an accumulation of the 

conjugated steroid, etiocholanolone glucuronide (F5,29 = 30.31, p < 0.0001) (Figure 2d), were 

shown to occur during this time period of development. Levels of etiocholanolone changed 

over the first five days of development (F5,29 = 5.80, p = 0.0008), and this change resulted in a 

transient peak occurring between days two and four of development (Figure 1c). 

In our follow-up study in 2018, with increased 3H-testosterone and earlier sampling 

periods, we were able to demonstrate that testosterone metabolism is occurring in the first 12 

hours of development. We observed testosterone levels change over the first 12 hours of 

development (F3,15 = 5.56, p = 0.0091) (Figure 2a) and again, observed changes in 

androstenedione (F3,15 = 23.05, p < 0.0001) (Figure 2b) and etiocholanolone (F3,15 = 5.49, p = 

0.0095) levels (Figure 2c) during this time.  

 

In vitro Metabolism of 3H-Testosterone 

We also sought to examine where in the eggs this metabolism takes place; either in the 

yolk, the albumen, or both through in vitro testing. We determined the yolk is most capable of 

producing etiocholanolone from testosterone. While there is a small amount of 

etiocholanolone produced in the albumen, the yolk and mixed tissues produced significantly 

more etiocholanolone (F2,12 = 97.42, p < 0.0001). Post-hoc comparisons show that both yolk and 

mixed tissues produced significantly higher amounts of etiocholanolone than albumen (both p < 

0.001); however, yolk did not differ from the mixed tissues in the amount of etiocholanolone 

produced (p = 0.5169). 
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The ability of yolk to convert testosterone to etiocholanolone was further verified with 

the time course data (Figure 3). We determined there was significantly more etiocholanolone 

produced in the yolk after two hours in vitro (F3,16 = 28.15, p <0.0001). Post-hoc comparisons 

show that there is a significant change in etiocholanolone levels after just 30 minutes (p = 

0.0032) and in the amount of etiocholanolone produced after 120 minutes of mixing with yolk 

(p < 0.0001). 

 

Endogenous and Manipulated Etiocholanolone Levels 

 Yolks from freshly laid eggs contained an average of 4.6 ng ± 1.8 of etiocholanolone 

(mean ± SD). There was a significant increase in the amount of etiocholanolone present in eggs 

after five days of incubation (F1,18 = 45.99, p <0.001) (Figure 4). 

We then tested to see if etiocholanolone injections produced detectable increases in 

etiocholanolone levels within various components of the egg. We measured the levels of 

etiocholanolone between the freshly laid, control, and high etiocholanolone treatments. There 

was a significant effect of day (F1,10 = 18.16, p = 0.0017) and treatment (F1,10 = 22.28, p = 0.0008) 

on etiocholanolone levels (Figure 5). Sex of the embryo did not affect etiocholanolone levels (p 

= 0.9411). We also evaluated the difference in etiocholanolone concentrations by incubation 

duration between our frozen and control treatments and found that levels of etiocholanolone 

changed across development in unmanipulated eggs (F2,15 = 15.30, p = 0.0002) (Figure 5) . Our 

post-hoc comparisons show that levels on day three of incubation are higher than on days zero 

and five (both p < 0.0004), while levels on day zero did not differ from day five of incubation (p 

= 0.9602).  
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Effects of Etiocholanolone on Embryonic Growth 

 We used tissue mass as a proxy for growth and found no significant effect of our 

treatments on mass of the embryo and extra-embryonic membranes (F3,12 = 0.73, p = 0.5347)  

(Figure 6). There was a significant effect of day on growth (F1,12 = 25.77, p < 0.0001), although 

sex of the embryo did not affect mass (F1,12 = 0.22, p = 0.6405). Overall, the sex ratio was 

approximately 50:50 with 49.5% males produced. 

  

Discussion 

 Previous studies provide evidence for the metabolism of testosterone in bird eggs, but a 

detailed understanding of when and where this metabolism takes place was lacking. We 

determined testosterone metabolism occurs rapidly, essentially as soon as incubation begins, 

and this metabolism results in the production of the metabolite, etiocholanolone. In vitro 

assays, using freshly laid eggs, demonstrate the yolk possesses the enzymes necessary to carry 

out this metabolism. Our investigations of 3H-testosterone metabolism in ovo, as well as 

endogenous etiocholanolone levels, show an early rise and subsequent fall in etiocholanolone 

levels over the first five days of development. We hypothesize the fall in etiocholanolone is due 

to conversion to a conjugated form as our data illustrate an increase in conjugate concentration 

that corresponds with the reduction in etiocholanolone levels (Paitz et al., 2011). The 

metabolism of maternal testosterone creates a scenario whereby embryos are exposed to 

potentially active, metabolites, such as etiocholanolone. A transient peak in etiocholanolone 

was found during early development; however, we determined through our study that this 

transient exposure does not affect the growth of the embryo or the extra-embryonic 
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membranes. With this evidence, we propose testosterone metabolism to etiocholanolone is an 

inactivation pathway which may serve to buffer the process of sexual differentiation in the 

embryo from the effects of yolk testosterone. 

Our findings are some of the first to provide a detailed characterization of what happens 

to yolk testosterone during development. Studies have demonstrated testosterone is 

metabolized in ovo very early in development (von Engelhardt et al., 2009) and that 

etiocholanolone levels rise during this same developmental time period (Kumar et al., 2018). A 

recent study also determined that this metabolism pathway occurs in chicken eggs during the 

first five days of development (Kumar et al. 2019). Through the use of tritiated testosterone, we 

were able to demonstrate this early metabolism of testosterone results in the production of 

etiocholanolone as opposed to etiocholanolone produced from other potential precursors. 

Several of our findings support the idea that maternally derived enzymes are present in the yolk 

when eggs are laid and contribute to this metabolism. We showed testosterone metabolism 

occurs by hour 12 of development, suggesting that this metabolism starts at the onset of 

incubation. We also determined that the yolk of starling eggs is capable of metabolizing 

testosterone, presumably through enzymes found in the yolk. Thus, these enzymes are likely to 

originate from the mother, as ovarian follicles produce 5β-reductase (Wiebe et al., 1990); 

however, we cannot ignore studies which report this metabolism does not occur without a 

viable embryo (Paitz and Casto, 2012; Kumar et al., 2018). Therefore, it is possible maternal 5β-

reductase enzymes are transferred to the yolk during oogenesis, but the developing embryo 

may either play a role in activating these enzymes or by creating an environment conducive to 

metabolism since unfertilized eggs do not exhibit testosterone metabolism.  
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Although testosterone metabolism results in an increase of etiocholanolone, we 

observed that this increase was transient over the first five days of development. As 

testosterone metabolism begins, we saw an increase in the amount of etiocholanolone 

accumulating in the yolk; however, these levels quickly decline by day five due to conjugation 

(Paitz et al., 2011). Our results indicate etiocholanolone is present not only at day five of 

development, but at day zero as well, suggesting the embryo is likely exposed to these transient 

etiocholanolone levels during the critical early stages of development. However, using mass as 

a proxy for growth, we found no effect of etiocholanolone on the development of the embryo 

or extra-embryonic membranes. 

Etiocholanolone production has been attributed to a mechanism of inactivation of 

testosterone (Balthazart and Ottinger, 1984). Evidence relating the activity of 5β-reduced 

metabolites in young and adult birds may provide some insight into the importance of this 

metabolic pathway. In 20 day old Zebra finches, 5β-reductase activity is two to three orders of 

magnitude more active than both aromatase and 5α-reductase in selected brain regions of the 

telencephalon, an area of the brain which regulates learning and birdsong (Vockel et al., 1990). 

Developing quail also have high levels of 5β-reductase activity in their brains which is often 10 

times more active than in adults (Balthazart and Schumacher, 1984) and these levels remain 

elevated for the duration of the embryonic stage (Balthazart and Ottinger, 1984). The 5β-

reduced metabolite, 5β-DHT, had no effect on male sexual behavior post hatching (Schumacher 

et al., 1989), confirming that 5β-reduced metabolites are inactive compounds with regards to 

the process of sexual differentiation of the brain. Together, these findings regarding the activity 

of 5β-reductase enzymes, reflect our own discovery of transient etiocholanolone levels found in 
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the yolk of starling eggs during early embryonic development. The 5β-reduction pathway is 

considered to be an inactivation pathway for testosterone (Balthazart and Ottinger, 1984), and 

therefore it is possible that 5β-reductase “buffers” maternal steroids by rendering them as 

inactive compounds which cannot influence sexual differentiation of the developing embryo. 

Therefore, embryos may not be passive agents of maternal effects and seem to have the ability 

to circumvent any early developmental effects of maternal testosterone through the 

conversion of testosterone to etiocholanolone.  

One question still remaining is how do effects of testosterone exist when it is 

metabolized so early in development? We show testosterone is metabolized to etiocholanolone 

at the onset of incubation, but effects on tarsus length (Navara et al., 2005, 2006; Navara and 

Mendonça, 2008; Muriel et al., 2013) and the development of the musculus complexus (Navara 

and Mendonça, 2008; Chin et al., 2009) have all been documented in birds following 

testosterone manipulation. However, recent studies suggest these effects are tissue and 

context-dependent (Muriel et al., 2015a,b), which may be attributed to an escape of 

testosterone from metabolism, leading to the possibility that some yolk testosterone effects 

may not arise until later stages of development (Muriel et al., 2015a). This escape could be due 

to an overabundance of testosterone in the egg, or perhaps reduced activity of testosterone 

metabolizing enzymes in the yolk.  

Another possibility for these developmental effects could be due to etiocholanolone 

effects that are independent of early growth. In the blastoderm stage of chicken development, 

5β-reduced steroids, similar to etiocholanolone, induced erythropoiesis directly in cells (Levere 

et al., 1967) and perhaps etiocholanolone is responsible for a similar process in the European 
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starling. It is also possible that etiocholanolone may alter gene activation and expression during 

early development which could lead to the development of phenotypic effects, such as 

impaired or enhanced immune function and muscle development, post-hatch. 

There may also be a critical window of development where maternal steroids and their 

metabolites have the highest propensity to elicit phenotypic effects in offspring. A prior study 

performed in Japanese quail (Coturnix japonica) eggs, between days 10 and 15 of embryonic 

development, suggest injections of testosterone are most effective at altering offspring 

phenotypes related to sexual differentiation (Adkins, 1979). Steroids are known to act during a 

critical period to irreversibly organize tissues early in development and can act later in 

development and elicit activational effects (Carere and Balthazart, 2007). Therefore, it is 

possible that phenotypic effects mediated by etiocholanolone are present in the starling, but 

may not arise until later in development after our sampling occurred and perhaps may not be 

visible until after hatching. 

Overall, with these findings, we show that testosterone is metabolized within the first 

four hours of embryonic development. Additionally, the metabolism of testosterone is 

associated with the accumulation of etiocholanolone, an inactive metabolite of the 5β-

reduction pathway. The clearance of this secondary metabolite is associated with increased 

levels of the steroid conjugate, etiocholanolone glucuronide, which is also found in the yolk. 

Recent work suggests this metabolism pathway occurs in multiple species of birds (von 

Engelhardt et al., 2009; Kumar et al., 2018; Kumar et al., 2019; Paitz et al., 2011; Paitz and 

Casto, 2012; Vassallo et al., 2014; Vassallo et al., 2018), suggesting this steroid metabolism is 

conserved. Finally, the role of the 5β-reduction as an inactivation pathway (Balthazart et al., 
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1990) is further supported with our finding that etiocholanolone had no effect on the 

development of the embryo and extra-embryonic membrane mass. Therefore, the in ovo 

metabolism of testosterone to etiocholanolone may serve as a buffer mechanism to protect the 

developing embryo from maternal steroids.  
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Figure 1 Timing of In Ovo Testosterone Metabolism During the First Five Days of 

Development: Concentration of 3H-Testosterone and its metabolites over the first five days of 

incubation. Time points with the same letter do not significantly differ from each other. Error 

bars denote the standard error for each time point. 
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Figure 2 Timing of In Ovo Testosterone Metabolism During the First 12 Hours of 

Development: Concentration of 3H-Testosterone and its metabolites over the first 12 hours of 

incubation. Time points with the same letter do not significantly differ from each other. Error 

bars denote the standard error for each time point. 
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Figure 3 In Vitro Etiocholanolone Production: Production of etiocholanolone in vitro in 0.5 g 

yolk over the course of two hours. Time points with the same letter are not significantly 

different from each other. Error bars denote the standard error for each time point. 
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Figure 4 Endogenous Etiocholanolone: Etiocholanolone levels within the yolks of unincubated 

eggs and eggs that had been incubated for five days. Endogenous etiocholanolone levels are 

significantly different on day five than on day zero of development (p < 0.005). 
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Figure 5 Etiocholanolone Injections Introduced Higher Levels of Etiocholanolone to Eggs: 

Treated verses untreated eggs and the amount of etiocholanolone present over the first five 

days of development. Bars with the same letter are not significantly different from each other. 

Day 3 eggs significantly differ from day 5 eggs as shown by the asterisk and high 

etiocholanolone (High Etio) eggs significantly differ from control eggs on both day 3 and day 5 

of development as indicated by the asterisk. Error bars denote the standard error for each 

treatment. 

 

 

 

 

 

 

 



28 
 

Figure 6 Etiocholanolone Effects on Embryo and Extra-embryonic Membrane Masses: Average 

mass (in grams) of extracted embryo and extraembryonic membrane tissues from each 

treatment on days three and five of development. There was a significant effect of day on mass 

as denoted by the asterisk. Error bars denote the standard error for each treatment on each 

sampling day. 
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