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Abstract—The growing use of aerial user equipments (UEs) in
various applications requires ubiquitous and reliable connectivity
for safe control and data exchange between these devices and
ground stations. Key questions that need to be addressed when
planning the deployment of aerial UEs are whether the cellular
network is a suitable candidate for enabling such connectivity,
and how the inclusion of aerial UEs might impact the overall
network efficiency. This paper provides an in-depth analysis of
user and network level performance of a cellular network that
serves both unmanned aerial vehicles (UAVs) and ground users in
the downlink. Our results show that the favorable propagation
conditions that UAVs enjoy due to their height often backfire
on them, as the increased co-channel interference received from
neighboring ground BSs is not compensated by the improved signal
strength. When compared with a ground user in an urban area,
our analysis shows that a UAV flying at 100 meters can experience a
throughput decrease of a factor 10 and a coverage drop from 76%
to 30%. Motivated by these findings, we develop UAV and network
based solutions to enable an adequate integration of UAVs into
cellular networks. In particular, we show that an optimal tilting
of the UAV antenna can increase their coverage and throughput
from 23% to 89% and from 3.5 b/s/Hz to 5.8 b/s/Hz, respectively,
outperforming ground UEs. Furthermore, our findings reveal that
depending on UAV altitude, the aerial user performance can scale
with respect to the network density better than that of a ground
user. Finally, our results show that network densification and the
use of micro cells limit UAV performance. While UAV usage has
the potential to increase area spectral efficiency (ASE) of cellular
networks with moderate number of cells, they might hamper the
development of future ultra dense networks.

Index Terms—Unmanned aerial vehicle (UAV), drone, user
equipment (UE), cellular networks, ultra-dense networks (UDNs),
cellular-connected UAV.

I. INTRODUCTION

A. Motivation

Drones or unmanned aerial vehicles (UAVs) are receiving
great interest from both academia and industry. Thanks to recent
developments in reliable and cost-effective hardware, the use of
these platforms in diverse applications is rapidly becoming a
reality, ranging from rescue missions to sensing application or
even network deployment. As most of these applications depend
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on a reliable control of the UAVs and need a significant real-
time data exchange, they require wireless technology that can
guarantee an adequate connectivity between drones and ground-
based networks [1], [2]. The key challenges that such technology
needs to address are:
• high coverage and continuous connectivity to ensure con-

tinuous control and tracking of autonomous or piloted
UAVs,

• high throughput to allow data exchange and video surveil-
lance, and

• low latency to enable robust remote control or real-time
applications such as event monitoring.

Additional features that are desirable from such technology
include secure communication for data protection and privacy,
location verification for traffic management, licensed spectrum
for mission-critical applications, system scalability for support-
ing UAVs rapid growth, and regulatory compliance of UAV
communication.

The wireless cellular network is a natural candidate for
serving UAVs, as it is a mature technology which satisfies
the above design objectives when serving ground users. In
particular, using Long Term Evolution (LTE) technology with
existing infrastructure offers several potential benefits such as
flexible scheduling, resource management and multiple access
mechanism [3]. This, in turn, could significantly reduce op-
erational costs needed to enable the desired UAV connectiv-
ity. However, many parameters of the current instantiation of
the cellular infrastructure and corresponding LTE technology
have been optimized for ground users. For example, the fact
that base station (BS) tilt their antennas down to the ground
generates considerable antenna gain reduction for aerial users.
Also, an spatial re-use factor designed for ground propagation
conditions and inter-cell interference assumptions might not be
applicable to UAVs. Moreover, recent studies have made clear
the remarkable difference between ground-to-UAV communi-
cations and conventional ground-to-ground systems in terms
of propagation conditions [4]–[6]. Therefore, there can exist a
significant variation in the performance experienced by aerial
users with respect to ground users when served by the ground
cellular infrastructure.

In order to enable a successful use of cellular technology for
serving UAVs, it is therefore critical to provide a clear character-
ization of the corresponding ground-to-UAV link properties and
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their relationship with principal network parameters. Moreover,
it is crucial to explore potential coexistence conflicts that could
exist between ground and aerial user equipments (UEs), and
study the effect of various design factors on the quality of
service (QoS) of both communities.

In summary, the key questions that drive this study are:
Can current and future cellular networks be used to provide
connectivity to aerial users? If yes, which are the major factors
that could limit the performance for aerial users? Moreover, is
it possible to leverage the flexibility of UAVs design to enhance
the network performance? Finally, what are the main trade-
offs when providing service to both aerial and ground users
simultaneously?

B. Related Works

The first theoretical investigations that consider UAV UEs
(U-UEs) can be traced back to [7], [8] where the idea of
cellular-connected UAVs are explored through the analysis of
link coverage probability. By analyzing the impact of ground in-
terfering BSs on aerial users, these works show that the network
performance can be significantly improved by lowering BSs
height and antenna tilt. To mitigate interference, furthermore,
a learning based approach is proposed in [9].

In parallel to these analytical efforts, the feasibility of LTE-
based UAV communication has also been examined via a set
of field trials and simulations [10]–[12]. In [10] is shown
by measurements that the number of detected cells tends to
increase as the UAV height increases, due to more favorable
fading conditions and less shadowing or obstruction of the
electromagnetic propagation. These results are then used to feed
numerical simulations to estimate the SINR for the downlink,
while assuming free space propagation conditions and ignoring
the effect of non-line-of-sight (NLoS) links and small-scale
fading. Although insightful, it is not clear how to generalize
these results to enable an efficient exploration of the impact and
trade-offs of combinations of various system parameters. In [11],
[12] the authors studied serving UAVs through cellular networks
in the downlink for a suburban environment. Interestingly,
several of findings reported in [7], [8] are corroborated by
these measurements. Finally, a downlink service for aerial users
through multi-user massive MIMO BSs is considered in [13],
showing the performance enhancement as compared to existing
single-user cellular network.

A complementary body of research considers UAVs not as
cellular UEs but as aerial BSs or relays [4], [5], [14]–[21].
In [5], [14] the authors consider multiple aerial BSs serving
ground users and optimize the network of UAVs for maximum
performance. The results in [5] include an interference analysis
of ground receivers harmed by distributed aerial transmitters
at low altitudes, which is shown to be lower in denser envi-
ronments for certain altitude ranges. To analyze UAV networks
in an urban environment, a novel elevation angle and hence
altitude dependent path loss model is proposed in [4] supported
by the subsequent measurement based results [22]. In [21] an
efficient 3D placement of drone cells are studied aiming to
maximize the number of covered users. Optimal placement
of UAV for maximum coverage and reliability is studied in
[4], [17] by deriving outage probability for ground and aerial

relaying respectively. A tutorial and general overview on UAV
applications and corresponding challenges can be found in [15],
[23], [24].

C. Contributions

This paper presents a generic model to analyze the per-
formance of UAVs served by a ground cellular network in
terms of coverage probability, achievable throughput and area
spectral efficiency. The proposed framework includes a dual-
slope LoS/NLoS propagation model for both path loss and small
scale fading, which are combined according to their probability
of occurrence. The model also employs a generic distance and
altitude dependent LoS probability that considers the effect of
different types of urban environments. Therefore, following [4],
this channel model reflects the fact that the path loss exponent
and fading effect varies with link distance and altitude, while
remaining unchanged within a certain range. The framework
also includes the effect of the UAV antenna beamwidth and
tilt angle, BSs height and various propagation environment and
types of urban areas.

Using this framework, we derive exact expressions for the
aforementioned performance metrics, and also approximations
that allow insightful calculations in specific conditions. We
analyze trends in user and network level performance for various
combination of system parameters. The results are then used to
evaluate the feasibility of ground and aerial users coexistence,
and provide design guidelines for enabling an harmonious
integration of UAVs in cellular networks.

A critical finding is that the combined effect of the signal loss
due to BSs antenna downtilt and the increased LoS probability
due to height introduces significant performance degradation to
UAVs using omnidirectional antennas with respect to ground
UEs (G-UEs). This fact, which is resulted from high amount
of interference in the air, considerably reduces the operational
range of UAV altitude. Motivated by this result, we explored
the use of tilted directional antennas in UAV UEs which
allows UAVs operate at higher altitudes. In particular, we show
that tilting the UAV antenna is notably beneficial for sparse
to medium dense networks, being disadvantageous for very
dense networks. For instance, in one specific examined case
corresponding to 4th generation (4G) specification, optimum
UAV antenna tilting enhances the coverage probability from
23% to 89% and increases the achievable throughput from 3.5
b/s/Hz to 5.8 b/s/Hz. Interestingly, the optimum UAV antenna
tilt is not the same for all performance metrics, which introduces
a trade-off between coverage and throughput.

We further study optimal tier selection in a heterogeneous cel-
lular network for UAV connectivity. Optimal altitude-dependent
tier selection enhances link coverage from 10% to 80% and
throughput from 0.25 b/s/Hz to 4 b/s/Hz at altitude of 100 m.
We also address the optimal BSs deployment density from
user and network perspective. For this, the overall effect of
adding aerial users in the network is studied by considering
scaling properties of user throughput and network area spectral
efficiency. We found that when increasing network density a
UAV UE can benefit considerably higher than a ground UE
if appropriate choice of UAV altitude and antenna tilt angle
is adopted. We recognized three regimes for aerial users when
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scaling the network with respect to its density, being different
than that of a ground user. Finally, our findings show that
network area spectral efficiency can be improved through the
inclusion of aerial users.

D. Paper Structure

The rest of paper is organized as follows. The network
model is presented in Section II, including the system architec-
ture, channel and blockages modeling in urban environments,
and performance metrics considered for efficiency evaluation.
Section III presents the main theoretical contributions, which
include closed-form expressions for the performance metrics
and approximations of reduced mathematical complexity. These
results are then used in Section IV to study UAV connectivity
in current and future of cellular networks. Finally, our main
conclusions are summarized in Section V.

II. NETWORK MODEL

This section presents the considered cellular network and
key modeling assumptions. In the sequel, Section II-A first
presents general considerations about the network architecture.
Then, Section II-B describes the channel model and Section
II-C introduces blockages modeling in an urban area and the
corresponding probability of LoS. Section II-D describes the
BS association method and quantifies the corresponding signal-
to-interference-plus-noise ratio (SINR) of each link, and finally
Section II-E presents several performance metrics considered
for user and network level efficiency evaluation.

A. System Architecture

We consider a cellular network composed of ground base
stations (BSs) and user equipments (UEs) representing both
ground and aerial users. The ground BSs are randomly dis-
tributed according to a homogeneous Poisson point process
(HPPP) Φ with density λ BSs/Km2, having hb meters of height.
Users are assumed to be located hu meters above the ground,
with hu = 1.5 m for ground UEs. For a given BS, its ground
distance to a specific UE’s projection on the ground O is denoted
by r, as illustrated in Figure 1.

The antenna radiation pattern of the BSs is assumed to be
vertically directional and horizontally omnidirectional, imple-
mented using multiple sector antennas. As these antennas are
typically tilted down to help ground users coverage [3], the users
above BS height are assumed to receive signals from the BSs
sidelobe. The antenna gain of a BS is represented by Gb, with
gM and gm being the mainlobe and sidelobe gain.

We consider UAVs that are capable of tilting their directional
antenna using a mechanical or electrical mechanism. The UAV’s
antenna is characterized by its opening angle φB and tilt angle
φt, as illustrated in Figure 1. The UAV antenna gain can be
approximated by Gu = 29000/φ2

B within the main lobe and
zero outside of the main lobe [25]. Please note that, after tilting
the antenna, a drone only receives signals coming from BSs
within an elliptical section, denoted by C (c.f. Figure 1). When
restricted to C, the BSs also form an HPPP ΦC with the same
density λ [26]. The elliptical section can be described by its
center Oe = (re, 0), semi-major axis rM and semi-minor axis
rm, as illustrated in Figure 1.

(a)

(b)

Fig. 1. Cellular connectivity for UAVs in 3D. (a) An illustration of the
network geometry and parameters including UAV altitude hu, antenna
tilt angle φt, antenna beamwidth φB, BS height hb, and the ground
distance between a BS and the UAV r. (b) The UAV is equipped with
a tilted directional antenna for performance enhancement. Because of
this radiation pattern, the area seen by the UAV is modeled by an
ellipse centered at a distance re from the projection of the UAV on the
ground.

Finally, the communication link length d between a BS and
a UE is d =

√
r2 + ∆2

h where ∆h , hu − hb. Please note
that the tilted directional antenna for a UE is meaningful only
if hu > hb. Accordingly, when hu < hb it is assumed that the
UE’s antenna is omnidirectional.

B. Channel Model

In order to model the wireless link between a UE and a
ground BS, the LoS and NLoS components are considered
separately along with their probabilities of occurrence. The path
loss ζυ(r) for each LoS/NLoS components can be expressed as

ζυ(r) = Aυd
−αυ = Aυ

(
r2 + ∆2

h

)−αυ/2
; υ ∈ {L,N}, (1)

where υ ∈ {L,N} indicates the condition of link being LoS
(υ = L) or NLoS (υ = N). Moreover, αL and αN are the
path loss exponents for the LoS and NLoS links respectively,
and AL and AN are constants representing the path losses at
the reference distance d = 1 for the LoS and NLoS cases
respectively.

In our modeling wireless links undergo small scale fading
with Ωυ being the fading power for the channel of condition
υ which is either LoS or NLoS. Without loss of generality, we
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follow the convention E{Ωυ} = 1. For modeling the distribution
of the channel gain Ωυ we use the Nakagami-m fading model,
which can represent a wide range of fading environments
[27]. Accordingly, Ωυ follows a Gamma distribution, whose
cumulative distribution function (CDF) can be expressed as [28]

FΩυ
(ω) , P[Ωυ < ω] = 1−

mυ−1∑
k=0

(mυω)k

k!
exp(−mυω), (2)

where mυ is the fading parameter assumed to be a positive
integer for the sake of analytical tractability. Please note that, as
a larger mυ corresponds to a lighter fading, usually mL > mN

holds.
If a BS transmits with a power level Ptx, the corresponding

power received by a UE located at a ground distance r is given
by

Prx(r) = Ptx Gtot ζυ(r) Ωυ, (3)

where υ is chosen depending if the link is LoS or NLoS, and
Gtot = Gb Gu represents the total effect of transmitter and
receiver antenna gains.

C. Blockages Modeling and LoS Probability

We model an urban area as a set of buildings located in a
square grid, following the method reported in [29]. The 3D
blockages are characterized by three parameters: the fraction of
total land area occupied by buildings, denoted by a, the mean
number of buildings per km2, denoted by b, and the buildings
height which are modeled as random variables that follow a
Rayleigh distribution with an scale parameter c. Therefore,
various environments (e.g. suburban, urban, dense urban or
highrise urban) can be modeled by choosing an appropriate set
of values (a, b, c). Using this model, the proposed expression
for the LoS probability between a given BS and UE can be
expressed as (see Figure 2)

PL(r) =

M∏
n=0

1− exp

−
[
hb − (n+0.5)(hb−hu)

m+1

]2
2c2


 , (4)

where M = b r
√
ab

1000 − 1c. Correspondingly, the probability of
NLoS is PN(r) = 1− PL(r).

For the sake of tractability we assume that the LoS probability
of different communication links are independent, leaving the
exploration of blockage correlations for future work. As a conse-
quence of this assumption, one can decompose the PPP process
ΦC in two independent but inhomogeneous PPP subprocesses:
a PPP ΦL

C of BSs that are in LoS condition with respect to
the UE, henceforth called LoS BSs, and a PPP ΦN

C of BSs in
NLoS condition, henceforth called NLoS BS. The non-constant
densities of ΦL

C and ΦN
C are denoted by λL(r) = λPL(r) and

λN(r) = λPN(r), respectively. Therefore, ΦC = ΦL
C ∪ ΦN

C and
λ = λL + λN.

D. User Association Strategy and Link SINR

We focus on the case where UEs establish communication
links with the BS that provides the highest SINR. Interestingly,
depending on the distribution of blockages, the serving BS can
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Fig. 2. LoS probability is an increasing function of hu and a decreasing
step function of r.

be either in LoS or NLoS condition, and it might not be the
one closest to the UE.

Let us denote the ground distance between a given UE and
the serving BS as RS. Then, using (3), the received power
of the desired signal is given by Prx(RS), and the aggregate
interference caused by all the other BSs within C can be written
as

I =
∑

r∈ΦC\RS

Prx(r)

=
∑

r∈ΦL
C\RS

Ptx Gtot ζL(r) ΩL +
∑

r∈ΦN
C \RS

Ptx Gtot ζN(r) ΩN.

(5)

Above, the first and second term correspond to the total aggre-
gate LoS and NLoS interference, respectively. Note that, due
to the stochasticity of PPP, both Prx(RS) and I are random
variables.

Combining above results, the local instantaneous signal-to-
interference-plus-noise ratio (SINR) for a serving BS can be
finally stated as

SINR =
Ptx Gtot ζυ(RS) Ωυ

I + N0
; υ ∈ {L,N}, (6)

where N0 represents the noise power at the receiver’s front-end.

E. Performance Metrics

We evaluate the system performance from both user and
network perspective using three metrics, which are described
in the sequel. Please note that the distribution of the SINR, as
defined in (6), is affected by many system parameters including
the aerial UE altitude, hu. Therefore, all the metrics considered
below depend on these parameters, although this might not be
explicated in their functional definition.

1) Coverage Probability: denoted by Pcov, is defined by

Pcov , P[SINR > T], (7)

which can be written as Pcov = Pcov(hu,T) as SINR de-
pends on hu. The target value T is determined based on
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the user requirement and is related to the target rate Rt by
T = 2Rt/BW − 1, where BW is the bandwidth allocated to
each user. This performance metric reflects the reliability of
the link between a UE and its associated BS in satisfying
the target requirement. Additionally, this metric is useful to
evaluate the reliability of a UAV link for command and control
(C&C), which includes critical information such as telemetry,
identity, flight authorization, real time control for piloting,
or navigation database and waypoint updates for autonomous
UAVs. A reliable C&C link can enable UAV operations beyond
visual LoS, being crucial for a safe UAV deployment and traffic
management in future of UAV networks.

2) Achievable Throughput (Channel Capacity): denoted by
R, is the highest bit rate that a UE could obtain from the
network. This metric is computed as

R , E
[

log2(1 + SINR)
]

(b/s/Hz), (8)

which depends on the user altitude hu and the network density
λ, and hence can be written as R = R(hu, λ). The achievable
throughput R quantifies performance in terms of average raw
throughput, in contrast of the coverage probability that focuses
on eventual events of service loss and other effects related to
the quality of service and reliability of the link. As such, R and
Pcov provides complementary views over the BS to UE link
quality.

3) Area Spectral Efficiency (ASE): denoted by A, is a
network-level performance metric that reflects the achievable
data-rate per square meter. Let us denote as ρ the ratio of
UEs that correspond to aerial users. Then, on average λρ BSs
per square meter serve aerial users and λ(1 − ρ) serve ground
users. Therefore, the average throughput per square meter can
be calculated as

A , λ[(1−ρ)·R(1.5, λ)+ρ·R(hu, λ)] (b/s/Hz/Km2), (9)

where R(1.5, λ) and R(hu, λ) corresponds to ground users at
altitude of 1.5 m and aerial users at altitude of hu, respectively.

Through analyzing the ASE we aim to quantify the impact
of adding aerial users to the network and investigate how the
overall spectrum efficiency is affected when network resources
are shared between ground and aerial users. In particular, we
aim to study how the network scales in presence of aerial users
and which consequences might be imposed by the inclusion of
UAV UEs. Our analysis will enable to derive design guidelines
for optimizing the ASE of networks with UAV and ground users.

III. PERFORMANCE ANALYSIS

In this section we study the system described in the previous
section with the performance metrics introduced in Section II-E.
First, an exact expression for the coverage probability is derived
in Subsection III-A. Then, in order to ease the numerical
evaluations several approximations are proposed in Subsection
III-B. Finally, the user achievable throughput and network ASE
is calculated in Subsection III-C.

A. Exact Coverage Probability

Given the system model and performance metrics defined
earlier, Theorem 1 presents an exact expression for the coverage
probability for a target rate Rt corresponding to an SINR

threshold T. In this theorem, we also obtain the distribution
function of the serving BS distance RS, and characterize the
aggregate interference through its Laplace transform.

Theorem 1. The exact downlink coverage probability of a
cellular-connected UAV equipped with a tilted directional an-
tenna is obtained as

Pcov = 2
∑

υ∈{L,N}

∫ re+rM

r0

(
Pυcov|RS

(rS) fυRS
(rS)

× rS[π + ϕ1(rS)− ϕ2(rS)]
)

drS, (10)

where r0, re, rM, ϕ1(r) and ϕ2(r) are given in Table III in
Appendix A. Above, fυRS

(rS) is the probability density function
(PDF) of the serving BS’s distance RS at an arbitrary angular
coordinate within C, which is calculated as

fυRS
(rS) = λPυ(rS) · e−2λ

[
Iυ1L+Iυ1N

]
; υ ∈ {L,N}, (11)

with

Iυ1ξ ,
∫ rυξ

r0

rPξ(r)[π + ϕ1(r)− ϕ2(r)] dr; ξ ∈ {L,N},

and rυξ can be found in Table III. Moreover, Pυcov|RS
is the con-

ditional coverage probability, given the serving BS of condition
υ and its ground distance RS, which is derived as

Pυcov|RS
=

mυ−1∑
k=0

(−1)kqk ·
dk

dykυ
LυI|RS

(yυ); υ ∈ {L,N} (12)

where

qk ,
e−N0yυ

k!

mυ−1∑
j=k

Nj−k
0 yjυ

(j − k)!
, (13)

yυ ,
mυT

Ptx Gtot ζυ(rS)
, (14)

and LυI|RS
(yυ) is the Laplace transform of the conditional

aggregate interference I|RS evaluated at yυ for the serving BS
of condition υ. Finally, LυI|RS

(·) can be expressed as

LυI|RS
(yυ) = e−2λ[Iυ2L+Iυ2N], (15)

where

Iυ2ξ ,
∫ re+rM

rυξ

rPξ(r) [1−Υξ(r, yυ)]

× [π + ϕ1(r)− ϕ2(r)] dr (16)

with rυξ given in Table III and

Υξ(r, yυ) ,

(
mξ

mξ + yυPtx Gtot ζξ(r)

)mξ

. (17)

Proof. See Appendix A.

Note that Theorem 1 can also be used to find the coverage
probability of a user equipped with an omnidirectional antenna.
For doing this, one needs to use above equations replacing re =
r0 = 0, rM =∞, and ϕ1(r) = ϕ2(r).
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B. Approximations for UAV Coverage Probability

In this subsection we explore two methods for finding approx-
imations that reduce the complexity of the equations involved
in Theorem 1. These methods allow to focus into factors that
play major roles into the achievable performance of UAV UEs.
To this end, in the sequel we first show when NLoS links and
noise effects can be neglected, and then use this result to build
simplified approximations for the coverage probability.

1) Discarding NLoS and noise effects: For a UAV UE flying
above the BS height, the number of LoS BSs is considerably
higher than that of a ground UE. These BSs are likely to be
closer to the UAV since the probability of LoS increases as the
distance decreases. Therefore, due to lower path loss exponent
and shorter distances, the received power of those nearby LoS
BSs will be dominant as compared to the aggregate received
power from NLoS BSs. Furthermore, the noise effect could also
be neglected due to the high amount of aggregate interference
power received from the LoS BSs. These facts motivate us to
consider the case that the communication link with UAV is
LoS and interference limited in order to simplify expressions
as follows.

Proposition 1. The UAV-UE coverage performance Pcov can be
significantly simplified by eliminating NLoS links and thermal
noise effects as

Pcov ≈ 2

∫ re+rM

0

PL
cov|RS

(rS) fL
RS

(rS)[π + ϕ1(rS)− ϕ2(rS)] rSdrS,

where
fL

RS
(rS) ≈ λPL(rS) · e−2λIL

1L , (18)

PL
cov|RS

≈
mL−1∑
k=0

(−yL)k

k!
· d

k

dykL
LL
I|RS

(yL), (19)

LL
I|RS

(yL) ≈ e−2λIL
2L . (20)

Proof. The above is a direct consequence of using PN ≈ 0 and
N0 ≈ 0 in Theorem 1.

Proposition 1 provides an elegant expression to estimate Pcov,
which is obtained by neglecting several terms that correspond
to NLoS links, including IN

1ξ and IL
1N. Moreover, the convolved

calculation of LυI|RS
in Theorem 1 is significantly simplified, as

IL
2N is removed from the calculation of the Laplace transform.

The accuracy of this approximation is explored in Section IV.
2) Moment Matching: To enable a more simplified calcu-

lation of the coverage probability using Proposition 1, in the
sequel, we pursue a parametric estimation of the interference
statistics based on a Gamma distribution. This is done by a mo-
ments matching method, which allows us to find a closed-form
approximation of the interference Laplace transform. Using
this approximation, the integral and derivatives corresponding
to the interference Laplace transform are eliminated, greatly
simplifying the calculations.

As a first step, we provide expressions for the mean and
variance of the interference.

Lemma 1. First and second moments of the interference PDF
can be calculated as

µI|RS
= 2λPtxGtot

∫ re+rM

rS

rPL(r)ζL(r)[π+ϕ1(r)−ϕ2(r)] dr

(21)

and

σ2
I|RS

= 2λ(PtxGtot)
2

(
mL + 1

mL

)
×
∫ re+rM

rS

rPL(r)ζ2
L(r)[π + ϕ1(r)− ϕ2(r)] dr.

(22)

Proof. See Appendix B.

Note that PL(r), as defined in (4) in Section II-C, is a
decreasing step function of r as illustrated in Figure 2. In
particular, for an arbitrary non-negative integer value of k and
any r ∈ [rk, rk+1] with rk = 1000(k + 1)/

√
ab, we have

PL(r) = pk where pk is a fixed value obtained from (4) by
replacing M = k. Therefore, the integrals in Lemma 1 can be
obtained through the following corollary for φt = 0. This, in
turn, corresponds to the case where the UAV antenna is pointing
directly down, or when the antenna is omnidirectional.

Corollary 1. For the case that φt = 0, the first and second
moments of interference can be obtained as

µI|RS
=
πλPtxGtotAL

0.5αL − 1

×
j∑
k=i

pk

[
(r2

k + ∆2
h)1−0.5αL − (r2

k+1 + ∆2
h)1−0.5αL

]
,

(23)

and

σ2
I|RS

=
λ(PtxGtotAL)2

αL − 1

(
mL + 1

mL

)
×

j∑
k=i

pk

[
(r2

k + ∆2
h)1−αL − (r2

k+1 + ∆2
h)1−αL

]
, (24)

in which i = b rS

√
ab

1000 − 1c, j = b rM

√
ab

1000 − 1c, rk = 1000(k +

1)/
√
ab except that ri = rS and rj+1 = rM, and pk is a fixed

value obtained from (4) by replacing M = k.

Proof. Please find Appendix C.

A Gamma approximation of I can be characterized by its
scale and shape parameters, denoted as β2, β1 respectively. The
relationship between these parameters and the interference’s
mean and variance is [28]

β1 =
σ2
I|RS

µI|RS

, β2 =
µ2
I|RS

σ2
I|RS

. (25)

Moreover, the Laplace transform of Gamma distribution can be
written as [28]

LL
I|RS

(yL) = (1 + β1yL)−β2 . (26)

Using this approximation, one can directly obtain the coverage
probability of UAV communication link using the next propo-
sition.

Proposition 2. The statistics I can be approximated by a
Gamma distribution with scale and shape parameters β2 and
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β1, and hence the conditional coverage performance of a UAV-
UE can be approximated by

PL
cov|RS

≈ 1

Γ(β2)

mL−1∑
k=0

(β1yL)k

k!
Γ(β2 + k) (1 + β1yL)−β2−k,

(27)
where Γ(·) is the complete gamma function1.

Proof. The result is obtained by substituting (26) in (19).

C. Achievable Throughput and ASE Analysis

The achievable throughput of a typical UE introduced in
Section II-E can be obtained as

R , E
[

log2(1 + SINR)
]

(28)

=
1

ln 2

∫ ∞
0

Pcov(hu, t)

1 + t
dt

≈ 1

ln 2

K∑
n=1

Pcov(hu, tn)

1 + tn
·

π2 sin
(

2n−1
2K π

)
4K cos2

[
π
4 cos

(
2n−1

2K π
)

+ π
4

] .
(29)

Above, the last equation is an approximation to facilitate numer-
ical calculations and follows the Gauss-Chebyshev Quadrature
(GCQ) rule, whose free parameter K is to be chosen large
enough for a high accuracy of approximation [30]. Also, tn
is a shorthand notation for

tn = tan

[
π

4
cos

(
2n− 1

2K
π

)
+
π

4

]
. (30)

Finally, ASE is obtained by a direct substitution of R(hu, λ)
from (29) into (9).

IV. SYSTEM DESIGN: STUDY CASES AND DISCUSSION

The goal of this section is to use the theoretical tools devel-
oped in the Section III to enable a qualitative and quantitative
understanding of key design parameters for the inclusion of
aerial users in cellular networks. For this aim, we ran network
simulations and numerical evaluations using the parameter val-
ues listed in Table I.

In the sequel, Section IV-A validates the analytical expres-
sions obtained for coverage probability in Theorem 1, and
also explores the accuracy of the approximations proposed in
Propositions 1 and 2. Then, Subsection IV-B studies the impact
of different system parameters on the coverage probability
and expected throughput of the UAV communication link, and
compares the results with ground users performance. Finally,
we study UAV connectivity performance by considering hetero-
geneous networks in Subsection IV-C and network densification
in Subsection IV-D.

A. Analysis of Accuracy

Figure 3 shows the complementary cumulative distribution
function (CCDF) of the received SINR at different altitudes
for users equipped with omnidirectional antennas. Simulation
results are obtained by averaging over 105 network realizations.

1Please note that using the property of gamma function we have
Γ(β2 + k)/Γ(β2) =

∏k−1
i=0 (β2 + i).

TABLE I. Default values for simulation and numerical evaluation.

Parameter Value
(αL, αN) (2.09 , 3.75)
(AL,AN) (−41.1 , −32.9) dB
(mL,mN) (3 , 1)

Ptx 46 dBm
(a, b, c) (0.3 , 500 , 15) @Urban
λ 10 BSs/Km2

(gM, gm) (10 , 0.5)
hu 100 m
hb 25 m

BW 200 KHz
Rt 100 Kbps
T 2Rt/BW − 1 = −3.8 dB
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Approximation, Theorem 2
Approximation, Theorem 3
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Fig. 3. Results from analytical expressions in Theorem 1 and network
simulation are in a good conformity. Moreover, proposed approxi-
mations in Propositions 1 and 2 for UAV UEs (U-UEs) precisely
follow the observed trend in exact coverage probability. However, these
approximations are not included for ground UEs (G-UEs) since NLoS
links play prominent role for G-UEs and hence they are away from
the area where the approximations are supposed to be accurate. In
general, the coverage of UAV communication link at higher altitude
drops significantly when it is equipped with omnidirectional antenna.

Simulation results are in perfect correspondence with the expres-
sions presented in Theorem 1, and further illustrate the accuracy
of approximations presented in Propositions 1 and 2. As noted
in Section III-B, the accuracy of the approximations relies on
the relatively higher probability of LoS with BSs detected by a
UAV, which reduces the impact of NLoS links and noise. Please
note that for ground users this approximation is not valid and,
hence, the corresponding curve is not included in the figure.

Indirectly, this figure also reveals the effect of altitude on the
SINR distribution. In effect, as the UAV altitude increases the
distribution of SINR becomes more concentrated. This effect
is due to the fact that the total signal power received from
LoS links grows and dominates over the multipath scatterers.
In contrast, it can also be seen how multipath scatterers play a
prominent role in determining the SINR distribution for a G-UE
due to the low probability of LoS with BSs.
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Fig. 4. In an urban area achievable throughput (channel capacity) of
an omnidirectional UAV at altitude of 100 m is only 12% of a ground
user and 10% of its maximum at the optimum altitude, i.e. hu =10 m.
In this case feasible operational range of UAV altitude is very limited.

B. Design Parameters

This subsection provides an in-depth analysis of the impact
of various design parameters on the quality of the UAV com-
munication link with BSs.

1) Impact of Altitude: Our results show in general that
there is an optimum altitude where the performance of cellular-
connected UAV is maximized, as illustrated in Figure 4. In fact,
at the optimum altitude the LoS probability of the serving BS
is enhanced compared to the ground level while keeping most
of the interfering BSs in NLoS condition. However, at higher
altitudes, the interfering BSs start to become more LoS and
hence significantly reduce the communication link quality. Our
results show that even when considering sidelobe attenuation for
the radiated signals, the impact of interference at relatively high
altitudes is significant, introducing considerable degradation
in the performance of UAV communication link. The strong
detrimental effect of the interference makes the optimal UAV
altitude hu to be relatively low, as illustrated in Figure 4.

For example, in an urban environment throughput is maxi-
mized at hu = 10 m, and at a higher altitude of hu = 100 m
the UAV achieves only 10% of its maximum throughput. These
results are consistent with the findings reported for coverage
probability in [8]. In dense urban scenarios experiencing more
blockages, a higher optimal UAV altitude is found. The situation
is however different in suburban scenarios where there are not
so many blockages, and UAVs should fly as low as possible
(see Figure 4).

2) Impact of the Environment: Table II reveals that, When
comparing various urban environments, the effect of UE altitude
on the coverage performance is worse in less obstructed envi-
ronments. For example, in a suburban area the link coverage
goes down from 90% at ground to 4% at 150 m, which is
more severe than the corresponding fall from 76% to 10% in
an urban environment. Moreover, a ground UE has the highest
coverage performance in suburban areas, while a UAV UE
is best served in urban environments. Accordingly, network
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φt = 0o, R(1.5,λ) = 4.01 b/s/Hz.
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Fig. 5. Appropriate dimensioning of UAV antenna beamwidth φB

considerably improves the link performance and extends the range
of reliable and efficient UAV operation. For each of the performance
metrics an optimum φB exists which depends on the altitude of UAV
hu.

deployment strategies for ground and aerial users are to be
different.

It is direct to see that, as the UAV link is interference
limited, the achievable throughput R grows linearly with the
assigned bandwidth (BW). In contrast, the link coverage prob-
ability is affected by the BW in a non-trivial way. Table II
illustrates this dependency through four sample altitudes in
two different environments, focusing on a fixed target rate of
Rt = 100 Kbps for UAV C&C [31]. Results show that UAVs
with omnidirectional antenna endure considerably lower link
coverage than a ground user particularly in less obstructed areas.
Doubling the bandwidth for a given target rate reduces the
SINR threshold constraint and hence significantly improves the
coverage probability, e.g., the coverage probability is improved
almost 4 times for a UAV at 150 m in an urban setting. On the



9TABLE II. Link coverage of a cellular-connected UAV with an om-
nidirectional antenna in two types of urban areas. A target rate of
Rt = 100 Kbps is assumed for coverage assessment.

UAV Altitude Assigned BW Coverage Coverage
hu [m] [KHz] @Suburban @Urban

1.5 200 90% 76%
50 200 34% 54%
100 200 20% 30%
150 200 4% 10%
1.5 400 97% 85%
50 400 60% 82%
100 400 48% 60%
150 400 28% 39%

other hand, the same BW doubling enables a growth of only
%8 for UE at ground level. Therefore, in general, our results
suggest that an increase in bandwidth is more efficient for aerial
than ground users.

3) Impact of UAV Beamwidth : Results show that an ade-
quate choice of UAV antenna beamwidth φB can significantly
enhance the network performance, as shown in Figure 5. An
optimal antenna beanwidth exists as a higher UAV beamwidth
φB will increase the probability of seeing at least one BS, hence
increasing the coverage probability, but this higher beamwidth
also increases the aggregate interference hence lowering the link
performance.

Interestingly, the optimal beamwidth that maximizes the
coverage probability does not maximizes the throughput. The
reason is that throughput is a mean value over whole SINR
distribution while the coverage probability depends only on
an specific SINR threshold. An optimal design needs hence
to choose a compromise within this two conflicting goals,
establishing a throughput-coverage trade-off.

When using the optimum φB a flying UAV can establish a
link with even higher capacity and more reliable than the ones
established by ground UE with omnidirectional antenna, which
enables UAV to safely and efficiently operate at higher altitudes.
These figures also show that as φB increases, the optimum
altitude decreases. This trend holds both for throughput and
coverage probability.

4) Impact of UAV Antenna Tilt: By increasing the tilt angle
of the UAV antenna two effects happen simultaneously: the
number of BSs within the mainlobe increases, while most of
the BSs transit from LoS to NLoS condition. The former effect
is constructive due to the presence of more candidate BSs for
serving UAV and is destructive because of increased number of
interfering BSs. The latter effect is also beneficial as it reduces
the LoS interfering BSs and is detrimental as the serving BS
might end up in an NLoS condition. These opposite influences
eventually result in an optimum tilt angle φt that in many cases
is non zero, as revealed in Figure 6.

Using this optimal tilt considerably increases the quality of
service. For instance, in one case when λ = 5 BSs/Km2 link
coverage increases from 23% to 89% and channel capacity
is enhanced from 3.5 b/s/Hz to 5.8 b/s/Hz. However, as the
network densifies, the optimum φt converges to zero, as shown
in Figure 6. Therefore, tilting the antenna is a good strategy
only in non-dense networks.
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φB = 120o

λ = 1 BSs/Km2, R(1.5,λ) = 2.26
λ = 5 BSs/Km2, R(1.5,λ) = 3.40
λ = 10 BSs/Km2, R(1.5,λ) = 4.04
λ = 50 BSs/Km2, R(1.5,λ) = 2.87
λ = 100 BSs/Km2, R(1.5,λ) = 1.44

(b)

Fig. 6. A significant performance enhancement is observed by leverag-
ing UAV antenna tilt for sparse to medium dense networks. However,
tilting is not beneficial for a dense network due to the inclusion of
significantly more interfering BSs.

C. Heterogeneous Networks - Tier Selection

As macro base station deployment alone does not satisfy the
increasing data demand in cellular networks, special attention
has been paid to deploying less expensive micro base stations
[32]. In general, micro BSs adopt different characteristics in-
cluding lower transmit power, smaller cell size, lower BS height
and larger deployment densities. Moreover, macro and micro
BSs can operate on orthogonal frequency spectrum [32] recom-
mended by 3GPP for the design of 4G LTE networks. As a UAV
is potentially capable of seeing both tiers in a heterogeneous
network and hence receiving their radiated signals, one might
ask which tier could be the best candidate for UAV connectivity.

To address this issue, following characteristics of macro and
micro BSs as described in [31] including their values of BSs
density λ, height hb and transmit power Ptx, we use our model
to study UAV connectivity performance for different network
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Fig. 7. At high altitudes macro cells are superior to micro cells for
UAV connectivity. In particular there is a certain altitude at which
UAV should switch from micro to macro tier. Therefore, an altitude
dependent tier connectivity should be taken into account. The cross-
over point however depends on the desired performance metric and
UAV antenna beamwidth and tilt angle.

types (see Figure 7). Intuitively, the lower density of macro BSs
than micro BSs imposes less interference and hence is favorable
for increasing the UAV performance. However, the higher macro
BS generate more interfering LoS BSs, degrading the SINR
level. This non-trivial trade-off is studied in Figure 7, which
shows that there is a certain altitude where a UAV should switch
to macro BSs to improve its performance. Therefore, a smart
altitude aware tier selection strategy could enhance the coverage
and throughput of the UAV communication link.

The switching altitude is lower for larger φB and also
depends on the tilting angle φt. For example, the coverage
probability increases from 10% to 80% for a UAV flying
at 100 m with (φB, φt) = (150o, 0o). A similar conclusion
is drawn for throughput evaluation for which the switching
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Fig. 8. From UAV perspective network performance converges to
zero as it goes dense even though optimal titling angle is adopted.
However, lowering UAV altitude partially save the UAV. Note that
for these simulations ground UE are considered to be equipped with
omnidirectional antenna.
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Fig. 9. Adding UAV UEs can increase area spectral efficiency up to a
certain density of BSs λ. Three scaling regimes with respect to λ are
recognized for aerial users.

altitude is different. For instance, the same case study shows 15
times throughput enhancement by selecting appropriate tier at
hu = 100 m. These results confirm that, for the considered target
rate Rt = 100 Kbps, the height that maximizes the coverage
probability is higher than the one that maximizes throughput.

D. Network Densification - Optimal Density

Network densification is a promising solution in cellular
technology to enhance network capacity and user performance
through spatial reuse of spectrum. However, this is not always
beneficial for the performance of individual UEs, as the in-
dividual performance can go to zero even when the global
performance grows [8]. It is hence important to determine
the optimal network density for users, beyond which further
densification is useless or even harmful, particularly when aerial
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users are added. This operating point depends on several factors
such as the altitude for corresponding UEs, the percentage of
UAV users and their antenna design.

To study the above-mentioned issue, we first investigate the
impact of densification on user performance. For this, for a given
UAV user we consider an optimal tuning of φt at each density
denoted by φopt

t (λ), achieving the maximum throughput over
all possible values of φt, which is denoted by Rmax.

Figure 8 shows that interestingly aerial users are capable
of receiving remarkably higher throughput than ground users.
However, further increasing λ results in a larger loss for UAVs.
Moreover, at each altitude user throughput is maximized at a
finite density and then decreases to zero as the network is
further densified. Comparing two cases for UAV users shows
that, in general, as the network densifies a lower UAV altitude
leads to significant performance enhancement. Furthermore, the
optimum density for maximum performance decreases as the
altitude of UAVs increases.

We also studied the scaling properties, with respect to the
BS density, of networks composed solely of ground users,
aerial users, and mixed networks. Three scaling regimes are
recognized for networks of only aerial users, as illustrated
in Figure 9. First, signal dominated regime where the signal
power growth is dominated over increased interference. In this
region, aerial users inclusion with appropriate φt enhances
the total ASE, i.e. adding UAVs to the network and sharing
resources with them overall increases network capacity. Sec-
ondly, interference dominated regime where the interference
growth generated by the BSs dominates and, hence, degrades
the overall performance. The effect is significant, and can result
in a smaller ASE of UAV networks compared to networks of
only ground UEs (when the black lines cross the blue line
in Fig. 8). Finally, balanced regime where the user achievable
throughput is inversely proportional to λ resulting in a constant
ASE. Therefore, for very dense networks adding more aerial
users is detrimental for the network performance. In general,
when balancing requirements for ground and aerial users, the
optimal network density depends on UAV beamwidth as well
as resource requirements ρ of ground and aerial users.

V. CONCLUSION

We studied the integration of UAVs as aerial users into current
and future cellular networks. For this, a generic framework was
developed that allowed us to find closed-form expressions of
user and network performance metrics. Design insights were
found through the analysis, which might serve to improve UAVs
connectivity in cellular networks.

When integrated into the cellular network, our results showed
that omnidirectional UAVs are highly vulnerable to interference
caused by BSs with which they have line of sight condition.
Fortunately, there is still hope for UAV integration, as a care-
ful design of the UAV antenna and other system parameters
can greatly improve the UAV performance. In particular, an
environment dependent optimum choice of UAV antenna tilt,
beamwidth and altitude significantly improve the link coverage
probability and achievable throughput. Moreover, heterogeneous
networks introduce an additional degree of freedom: UAVs at
relatively low altitudes are best served by micro cells, while

at higher altitudes macro cells give the best service. An opti-
mal switching altitude can be derived, which depends on the
performance requirement — coverage probability or achievable
throughput.

Finally, the scaling properties of a network with respect to
the BS density were analyzed for both ground and aerial users
in terms of spectral efficiency per square meter. According to
our results, introducing UAVs can be beneficial for the network
performance at moderate BSs density. However, as the BS
density grows the benefit of UAVs inclusion decreases. In fact,
ultra dense networks perform better when serving only ground
devices, and hence adding UAVs is detrimental for the network
performance. This suggests that, although the integration of
UAVs to the cellular network seems feasible and even desirable,
they might decrease network densification gains of operators.

APPENDIX A
PROOF OF THEOREM 1

Using the definition presented in (7), a direct calculation
shows that

Pcov =
∑

υ∈{L,N}

∫
C
Pυcov|RS

(rS) fυRS
(rS) rSdϕdrS. (31)

Above,

PL
cov|RS

= P[SINR > T|RS = rS, LoS], (32)

PN
cov|RS

= P[SINR > T|RS = rS, NLoS], (33)

are the conditional coverage probabilities when the serving BS
location is given at specific ground location in R2 and the
serving BS is LoS and NLoS respectively. Note that Pυcov|RS

is
independent of the angular coordinate of the serving BS location
in polar coordinate, being only dependent on the ground distance
rS. Also, fL

RS
(rS) and fN

RS
(rS) are probability distributions over

rS that correspond to when the serving BS is in LoS and NLoS
condition, respectively. Regardless of the serving link being in
LoS or NLoS condition, the received signal is interfered by both
LoS and NLoS BSs as stated in (5). Following well-known PPP
properties, the function fL

RS
(rS) can be expressed as

fL
RS

(rS) = λL(rS) · PL
noL(rS) · PL

noN(rS), (34)

where λL(rS) is the unconditional PDF of having an LoS BS,
PL

noL(rS) is the probability of having no LoS BS that provides
stronger signal for the UE, and PL

noN(rS) is the probability of
having no NLoS BS with better link. Assuming that AL

noL(rS)
is formed by all the 2D locations at which a LoS BS could
provide a better link, PL

noL(rS) can be written as

PL
noL(rS) = e

−2
∫
AL

noL
λL(r) rdϕdr

. (35)

Similarly, if AL
noN(rS) is defined as the set of locations with

stronger NLoS signal than the LoS signal at the location rS,
one finds that

PL
noN(rS) = e

−2
∫
AL

noN
λN(r) rdϕdr

. (36)

The sets AL
noL and AL

noN are dependent on the geometry of the
network and are characterized in the sequel. For this, first we
note that the area C covered by a UAV of beamwidth angle
φB and tilt angle φt is an elliptical section characterized by its
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semi-major and semi-minor axis, i.e. rM and rm respectively,
and its origin (re, 0) as illustrated in Figure 10. Following [33]
we can obtain these parameters in Table III where we use the
following notations

[y]+x , max(x, y), [y]−x , min(x, y). (37)

The set AL
noL can be written as the intersection of C and a

disc of radius rS centered at origin as illustrated in Figure 10.
Therefore, one can obtain

AL
noL =

{
(r, ϕ)

∣∣∣ r < rL
L, ϕ ∈ [0, π]\[ϕ1(r), ϕ2(r)]

}
, (38)

where rL
L = rS and by using geometry properties, ϕ1(r) and

ϕ2(r) are obtained in Table III.

TABLE III. Parameters values.

rM =
∆h sin(φB)

2[cos2(φt)−sin2(φB/2)]

rm =
∆h sin(φB/2)√

cos2(φt)−sin2(φB/2)

re = ∆h tan(φt − φB
2

) + rM

r0 = [re − rM]+0

rL
L = rS, rL

N =

√[
(AN/AL)2/αN (r2

S + ∆2
h)αL/αN −∆2

h

]+
r20

rN
L =

[√
(AL/AN)2/αL (r2

S + ∆2
h)αN/αL −∆2

h

]−
re+rM

, rN
N = rS

ϕ1(r) = ϕ2(r) = π
2

; if r < rm
rM

√
r2
M − r2

e & φt <
φB
2

ϕ1(r) = cos−1

[
rer2m−

√
r2er4m−(r2m−r2M)(r2er2m+r2r2M−r2mr2M)

r(r2m−r2M)

]
,

ϕ2(r) = cos−1

[
rer2m+

√
r2er4m−(r2m−r2M)(r2er2m+r2r2M−r2mr2M)

r(r2m−r2M)

]
;

if rm
rM

√
r2
M − r2

e ≤ r ≤ rM − re & φt <
φB
2

ϕ1(r) = cos−1

[
rer2m−

√
r2er4m−(r2m−r2M)(r2er2m+r2r2M−r2mr2M)

r(r2m−r2M)

]
,

ϕ2(r) = π; if r > |rM − re|

Therefore, the integral in (35) can be written as

∫
AL

noL

λL(r) rdϕdr =

∫ rS

0

∫ ϕ1(r)

0

λPL(r) rdϕdr

+

∫ rS

0

∫ π

ϕ2(r)

λPL(r) rdϕdr

= λ

∫ rS

0

rϕ1(r)PL(r) dr

+ λ

∫ rS

0

r[π − ϕ2(r)]PL(r) dr

= λ

∫ rS

0

rPL(r)[ϕ1(r) + π − ϕ2(r)] dr

, λ IL
1L (39)

The set AL
noN can be written as

AL
noN =

{
(r, ϕ)

∣∣∣ r < rL
N, ϕ ∈ [0, π]\[ϕ1(r), ϕ2(r)]

}
, (40)

where rL
N is obtained in Table III, and hence

∫
AL

noN

λN(r) rdϕdr = λ

∫ rL
N

0

rϕ1(r)PN(r) dr

+ λ

∫ rL
N

0

r[π − ϕ2(r)]PN(r) dr

= λ

∫ rL
N

0

rPN(r)[ϕ1(r) + π − ϕ2(r)] dr

, λ IL
1N (41)

Using (34) – (41), fL
RS

(rS) can be finally written as

fL
RS

(rS) = λPL(rS) · e−2λ
[
IL

1L+IL
1N

]
. (42)

Similarly we can write

fN
RS

(rS) = λPN(rS) · e−2λ
[
IN

1L+IN
1N

]
, (43)

where the integrals and corresponding parameters are defined
in Theorem 1.

To obtain the conditional coverage probability Pυcov|RS
one

can write

Pυcov|RS
= P

[
Ptx Gtot ζυ Ωυ

N0 + I
> T

∣∣∣ RS = rS

]
= EI

{
P
[
Ωυ >

T

Ptx Gtot ζυ
(N0 + I)

∣∣∣ RS = rS

]}
(a)
= EI

{
mυ−1∑
k=0

ykυ
k!

(N0 + I)k exp[−yυ(N0 + I)]
∣∣∣ RS = rS

}

= EI

{
mυ−1∑
k=0

ykυ
k!
e−N0yυ

k∑
j=0

(
k

j

)
Nk−j

0 Ij exp[−yυI]
∣∣∣ RS = rS

}

=

mυ−1∑
k=0

qk · EI
{
Ik exp(−yυI)

∣∣ RS = rS

}
=

mυ−1∑
k=0

(−1)kqk ·
dk

dykυ
LυI|RS

(yυ), (44)

where (a) follows from the gamma distribution of Ωυ with an
integer parameter mυ and qk and yυ are expressed in (13) and
(14) respectively.

To derive LI|RS
(yυ) one can write

LI|XS
(yυ) = EI

{
e−yυI

∣∣∣ RS = rS

}
= EΦ,Ω

 ∏
r∈Φ\rS

e−yυPtx Gtot ζξ(r) Ωξ


= EΦ

 ∏
r∈Φ\rS

EΩ

{
e−yυPtx Gtot ζξ(r) Ωξ

} .

The above equation can be further processed as
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LI|RS
(yυ) = EΦL

 ∏
r∈ΦL\rS

EΩ

{
e−yυPtx Gtot ζL(r) ΩL

}
× EΦN

 ∏
r∈ΦN\rS

EΩ

{
e−yυPtx Gtot ζN(r) ΩN

}
(a)
= e

−2
∫
Āυ

noL
λL(r) [1−ΥL(r,yυ)] rdϕdr

× e−2
∫
Āυ

noN
λN(r) [1−ΥN(r,yυ)] rdϕdr

where (a) is obtained using the probability generating functional
(PGFL) of PPP. Moreover, in above equation Āυnoξ indicates the
complementary of the sets Aυnoξ over C, i.e.

Āυnoξ = C\Aυnoξ. (45)

Thus,∫
ĀL

noL

λL(r) [1−ΥL(r, yL)] dx

=

∫ re+rM

rS

∫ ϕ1(r)

0

λL(r) [1−ΥL(r, yυ)] rdϕdr

+

∫ re+rM

rS

∫ π

ϕ2(r)

λL(r) [1−ΥL(r, yL)] rdϕdr

= λ

∫ re+rM

rS

ϕ1(r)PL(r) [1−ΥL(r, yL)] rdr

+ λ

∫ re+rM

rS

[π − ϕ2(r)]PL(r) [1−ΥL(r, yL)] rdr

= λ

∫ re+rM

rS

rPL(r) [1−ΥL(r, yL)][ϕ1(r) + π − ϕ2(r)] dr

, λ IL
2L (46)

and∫
ĀL

noN

λN(r) [1−ΥN(r, yL)] rdϕdr

= λ

∫ re+rM

rL
N

ϕ1(r)PN(r) [1−ΥN(r, yL)] rdr

+ λ

∫ re+rM

rL
N

[π − ϕ2(r)]PN(r) [1−ΥN(r, yL)] rdr

= λ

∫ re+rM

rL
N

rPN(r) [1−ΥN(r, yL)][ϕ1(r) + π − ϕ2(r)] dr

, λ IL
2N (47)

Therefore
LI|RS

(yL) = e−2λ[IL
2L+IL

2N]. (48)

Similarly
LI|RS

(yN) = e−2λ[IN
2L+IN

2N], (49)

where corresponding parameters are defined in Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

The first moment of I can be calculated from its Laplace
transform as

µI|RS
= − d

dyL
LI|RS

(yL)

∣∣∣∣
yL=0

. (50)

Fig. 10. An illustration of the region C for the calculation of ϕ1 and
ϕ2.

Using (26), one can re=write (50) as

µI|RS
= −2λ

d

dyL
IL

2L

∣∣∣∣
yL=0

· LI|RS
(0)

= 2λ

∫ re+rM

rS

d

dyL
ΥL(r, yL)

∣∣∣∣
yL=0

rPL(r) [ϕ1(r) + π − ϕ2(r)] dr

= 2λPtxGtot

∫ re+rM

rS

rPL(r)ζL(r)[π + ϕ1(r)− ϕ2(r)] dr. (51)

For calculating the variance of I , one can use the following
relationship:

σ2
I|RS

=
d2

dy2
L

LI|RS
(yL)

∣∣∣∣
yL=0

− µ2
I|RS

. (52)

By applying (26) and following a similar derivation than the
above, one can find the desired result.

APPENDIX C
PROOF OF COROLLARY 1

Let us assume φt = 0. Then, ϕ1(r) = ϕ2(r) = π/2 holds,
and hence the integral in (21) can be written as

µI|RS
= 2πλPtxGtot

j∑
k=i

pk

∫ rk+1

rk

rζL(r) dr

= 2πλPtxGtotAL

j∑
k=i

pk

∫ rk+1

rk

r
(
r2 + ∆2

h

)−αL/2
dr

= 2πλPtxGtotAL

j∑
k=i

pk

[
(r2 + ∆2

h)1−0.5αL

2(1− 0.5αL)

]rk+1

r=rk

,

yielding the desired result.
The expression for σ2

I|RS
can be obtained following a similar

rationale.
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