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We propose a generic spatiotemporal event forecasting method which
we developed for the National Institute of Justice’s (NIJ) Real-Time Crime
Forecasting Challenge (National Institute of Justice (2017)). Our method is
a spatiotemporal forecasting model combining scalable randomized Repro-
ducing Kernel Hilbert Space (RKHS) methods for approximating Gaussian
processes with autoregressive smoothing kernels in a regularized supervised
learning framework. While the smoothing kernels capture the two main ap-
proaches in current use in the field of crime forecasting, kernel density es-
timation (KDE) and self-exciting point process (SEPP) models, the RKHS
component of the model can be understood as an approximation to the pop-
ular log-Gaussian Cox Process model. For inference, we discretize the spa-
tiotemporal point pattern and learn a log-intensity function using the Poisson
likelihood and highly efficient gradient-based optimization methods. Model
hyperparameters including quality of RKHS approximation, spatial and tem-
poral kernel lengthscales, number of autoregressive lags and bandwidths for
smoothing kernels as well as cell shape, size and rotation, were learned using
cross validation. Resulting predictions significantly exceeded baseline KDE
estimates and SEPP models for sparse events.

1. Introduction. Spatiotemporal forecasting of crime has been the focus of
considerable attention in recent years as academic researchers, police departments
and commercial entities have all sought to build forecasting tools to predict when
and where crimes are likely to occur (Perry et al. (2013)). The earliest crime fore-
casting tools consisted of nothing more than pin maps (see Figure 1). Prior week’s
crimes were mapped and qualitative assessments of density, location, stability and
significance were made (Schutt (1922)).

Subsequent tools have adopted a range of different smoothing techniques to
augment this method with kernel density estimation the most commonly used ap-
proach (Gorr and Lee (2015), Porter and Reich (2012), Chainey, Tompson and
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FIG. 1. Early use of crime pin maps at Scotland Yard. 1947 ©Illustrated London News Ltd/Mary
Evans.

Uhlig (2008), Johnson et al. (2009)). Many methods are model driven and based
on theories of crime causation (Caplan, Kennedy and Miller (2011), Mohler et al.
(2011)). Some use log Gaussian Cox Processes (LGCPs) (Rodrigues and Diggle
(2012), Shirota and Gelfand (2017)), while others use self-exciting point process
models (SEPPs) (Levine (2004), Liu and Brown (2003), Taddy (2010), Mohler
et al. (2011), Rosser and Cheng (2019)) based on evidence of elevated levels of
near-repeat victimization (Pease et al. (1998)). Some use additional information,
such as weather, demographics and even social media (Wang, Gerber and Brown
(2012)). Most simply use past events to forecast future events (Chainey, Tompson
and Uhlig (2008), Kang and Kang (2017)), suggesting that methods that are effec-
tive at forecasting crime could readily be generalized to an increasing number of
real-time spatiotemporal forecasting problems (Taddy (2010)). However, users of
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these methods often confront the question of which method to adopt and how to
ensure optimal performance across a wide variety of settings.

In 2016, the National Institute of Justice (NIJ) announced the Real-Time Crime
Forecasting Competition to test which forecasting models could most accurately
predict out-of-sample crime hotspots in the City of Portland. This solicitation drew
in a wide range of competitors. Teams were given five years of historical calls for
service data from the Portland Police Bureau (PPB) and asked to submit predic-
tions for the locations of the largest crime clusters in the subsequent weeks and
months.

Our team (“Team Kernel Glitches”) tied for first place in the large organization
category with wins across a range of categories. While our solution performed
equally well on frequent and sparse crime forecasts and over short and long du-
rations, it performed especially well, compared to competitors and contemporary
methods, at forecasting sparse events over short durations. In describing our so-
lution, we make the following contributions: we propose a flexible, generic and
scalable spatiotemporal forecasting model, casting the problem of spatiotemporal
forecasting explicitly as a supervised learning problem, while incorporating exist-
ing and highly successful modeling approaches from the spatiotemporal statistics
literature: Gaussian processes, autoregressive terms, kernel smoothing and self-
exciting point processes. This supervised learning setup provides a coherent frame-
work for the time-consuming task of optimizing hyperparameters, while its mod-
eling and inference scalability ensures that the model parameters themselves can
be learned quickly enough to enable real-time forecasting. This approach achieves
accuracy improvements well beyond those generated by existing best practices in
crime prediction (Chainey, Tompson and Uhlig (2008), Johnson et al. (2009)).

The rest of this paper is laid out as follows. Section 2 describes our model.
Section 3 describes the details of the NIJ competition. Section 4 reports competi-
tion performance. Section 5 concludes with a discussion of implications for future
work on spatiotemporal prediction of crime and related phenomena.

2. Our model.

2.1. Background. Previous methods for spatiotemporal forecasting of crime
have either focused on highly flexible but relatively simple kernel density estima-
tion techniques (Johnson et al. (2009), Gorr and Lee (2015)) where crime events
are aggregated over time, smoothed over space and used to predict crime pat-
terns in the subsequent time period, or more complex and model-based approaches
(Mohler et al. (2011), Rosser and Cheng (2019)). Recent work has demonstrated
that Gaussian process modeling of crime data can produce highly accurate long-
term forecasts by combining the benefits of nonparametric methods with the in-
terpretability of additive methods (Flaxman (2014)). Subsequent work (Flaxman
et al. (2015)) has proposed that, instead of specifying an additive kernel struc-
ture, it is is possible to learn it directly from the data, given enough data and a
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rich enough class of kernels. This assumes, however, that it is possible to perform
inference with very large datasets as the standard approach to Gaussian process
inference requires matrix algebra to manipulate the multivariate Gaussian distri-
bution, requiring O(N3) time and O(N2) storage. We therefore first present the
hypothetical model we would use if computational constraints were not a concern,
then our actual model which is an approximation to this model enabling applica-
tion of this method to real-time rather than long-term forecasting problems.

2.2. Model specification. Our hypothetical model is a log Gaussian Cox Pro-
cess (LGCP). The LGCP is a doubly stochastic point process model. Given an ob-
servation window W in spacetime, we place a GP prior on the log intensity f (s)
for any s ∈ W . Let N(·) be a counting measure. For any spacetime region S ⊂ W ,
N(S) is a Poisson distributed random variable counting the number of points in S.
Our hierarchical parameterization is as follows:

(2.1)

f ∼ GP
(
μ,kθ (·, ·)),

N(S)|f ∼ Poisson
(∫

S
exp

(
f (s)

)
ds

)
.

We defer the specification of the mean μ and covariance kernel kθ until later. For
details on Gaussian processes, see Section A.1 of the Supplementary Materials
(Flaxman et al. (2019a)).

Inference with the LGCP model is difficult because it is doubly intractable and
existing approaches (Møller, Syversveen and Waagepetersen (1998), Brix and Dig-
gle (2001), Cunningham, Shenoy and Sahani (2008), Adams, Murray and MacKay
(2009), Teh and Rao (2011), Diggle et al. (2013)) are often limited to one dimen-
sion and small datasets. Lloyd et al. (2015) is a possible exception in that it points
the way to a scalable stochastic variational inference approach.

To approximate this model, we discretize. We specify a spacetime grid parti-
tioning W into N disjoints sets Si , that is, W = ⋃N

i=1 Si . As described below,
this approach leads to a tractable model. Also, it is consistent with the design
of the forecasting competition motivating our approach. For simplicity, let each
grid cell Si be of equal volume |Si | = 1. The centroid of each grid cell is a lat-
itude/longitude/timestamp triple si = (xi, yi, ti). The underlying point pattern is
then represented as aggregate counts oi = N(Si) of the number of crimes per cell.
Given the grid, the integral in equation (2.1) is approximated with a sum. When
considering the entire observation window W , the approximation takes the follow-
ing form:

(2.2)
∫
W

exp
(
f (s)

)
ds ≈

N∑
i=1

exp
(
f (si )

)|Si | =
N∑

i=1

exp
(
f (si )

)
.

In a Poisson process, conditional on the intensity, the random variables N(S1) and
N(S2) are independent for S1 ∩ S2 = ∅. Thus given the log intensity f , each grid
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cell Si can be considered independently, so combining equations (2.1) and (2.2)
yields

(2.3) oi |f ∼ Poisson
(
exp

(
f (si )

)) ∀i = 1, . . . ,N.

This produces an i.i.d. likelihood (observation model) over all cells i, yielding
the so-called computational grid approximation to the log Gaussian Cox Process
(Diggle et al. (2013), Flaxman et al. (2015)).

In the function-space view of GPs, inference is performed about the function f

directly. Using the “kernel trick” (Schölkopf and Smola (2002)), all calculations
can be carried out using a kernel kθ , evaluated at all pairs of s1, . . . , sN . However,
to do this requires storing and manipulating an N × N covariance matrix K at a
cost of O(N2) storage and O(N3) computation (Rasmussen and Williams (2006))
which is infeasible for large N .

By contrast, the weight-space view of GPs (Rasmussen and Williams (2006),
Ch. 2) requires an explicit feature map φ(s) = kθ (s, ·) ∈ H where H is the Re-
producing Kernel Hilbert Space corresponding to the kernel kθ with φ(s)	φ(t) =
kθ (s, t). Instead of learning f directly (function space), for finite dimensional H
a set of weights β can be learned by considering the vector φ(s) as a set of ba-
sis functions. Thus, we define f (s) := φ(s)	β and observe that the weight-space
view is equivalent to a linear model with a particular set of basis functions.

In practice, the weight-space view is not computationally tractable in the case of
popular universal (Sriperumbudur, Fukumizu and Lanckriet (2011)) kernel choices
like the Gaussian or Matérn kernel because the corresponding H is infinite di-
mensional. Unlike infinite-dimensional universal kernels, kernels corresponding
directly to finite-dimensional RKHS are limited in their representational capacity,
for example, polynomial kernels of order p only capture p moments of a distribu-
tion. A solution can be found, following recent trends in the literature (May et al.
(2019)), using finite-dimensional approximations to universal kernels in the form
of the random Fourier feature expansion (Rahimi and Recht (2007)) as described
in Section A.2 of the Supplementary Materials (Flaxman et al. (2019a)). For any
kernel this requires the selection of a dimension d , which determines the accu-
racy of the approximation φ̂ ∈ R2d where φ̂(s)	φ(t) ≈ φ(s)	φ(t) = kθ (s, t). An
example of our approximation is illustrated in Figure A1 in the Supplementary
Materials (Flaxman et al. (2019a)) where the Matérn-5/2 kernel is approximated
using various values of d .

A finite dimensional φ̂ leads from the function-space view to the weight-space
view (Rasmussen and Williams (2006), Ch. 2, Milton et al. (2019)). To make the
connection explicit, we define a kernel k̂θ (s, t) = φ̂(s)	φ̂(t). Define a matrix �

for observations s1, . . . , sN with each row �i = φ̂(si )
	. The function-space view

on Gaussian process regression with covariance kernel k̂ and a Gaussian likelihood
is

(2.4)
f ∼ GP

(
μ, k̂θ (·, ·)),

y|f, si ∼N
(
f (si ), σ

2)
.
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Equation (2.4) is equivalent to Bayesian linear regression with β ∈ R2d (where
the term weight-space view comes from considering the parameter vector β as
“weights” to be learned):

(2.5)
β ∼N (0, I ),

y|β, si ,� ∼N
(
μ(si ) + �iβ,σ 2)

.

For the present application, the data consists of count-valued observations, so we
adopt a generalized linear modeling (GLM) framework and replace the Gaussian
likelihood in equation (2.5) with the Poisson likelihood as in equation (2.3):

(2.6) oi |β, si ,� ∼ Poisson
(
exp

(
μ(si ) + �iβ

))
.

It remains to specify the function μ. In the spatial statistics literature a linear
model using spatially varying covariates is standard (e.g., Diggle et al. (2013)),
while μ = 0 is a common default choice in machine learning, though recent work
has questioned this approach (Bhatt et al. (2017)). We consider a different ap-
proach, based on prior work that has shown that using historical crime rates can
be very effective in crime forecasting. Expanding upon prior KDE-forecasting
methods that search a limited number of possible values and in line with the su-
pervised learning framework discussed above, μ is parameterized as follows for
s = (x, y, t):

(2.7) μ(s) =
p∑

j=1

γj KDEλ,j (x, y, t),

where there are p autoregressive lagged terms, each representing a spatial KDE
for a given time period in the past and regression coefficients γj are to be learned.
KDEλ,j (x, y, t) is the kernel density estimator at location (x, y, t) using a spatial
Gaussian kernel κλ with lengthscale λ,

(2.8) KDEλ,j (x, y, t) = ∑
{ti |t−j ·D<ti≤t−(j−1)·D}

κλ

(
(x, y), (xi, yi)

)
,

where D is the size of the temporal window in days.
Given the potential for a large number of parameters β (the more random fre-

quencies d we choose for the random Fourier feature expansion, the better our
approximation); the use of 
1 and 
2 regularization (as in the popular elastic net
(Zou and Hastie (2005))) provides a useful simplification.

Finally, our objective is to maximize the penalized log likelihood of the Poisson
distribution. Simplifying and dropping constant terms yields the following objec-
tive with parameters β and γ and regularization hyperparameters a and b:

(2.9)

N∑
i=1

[
oi

( p∑
j=1

γj KDEλ,j (xi, yi, ti) + �iβ

)
− e

∑p
j=1 γj KDEλ,j (xi ,yi ,ti )+�iβ

]

− a
(‖β‖1 + ‖γ ‖1

) − b
(‖β‖2

2 + ‖γ ‖2
2
)
.
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2.3. Inference. We learn the parameters β and γ by maximizing the objective
in equation (2.9) using gradient ascent. The random Fourier feature approxima-
tion combined with linear regression leads to immediate speedups and memory
savings whereas full GP regression is O(N3) time and O(N2) storage, calculat-
ing the random features for � is O(Nd) for both time and storage. Given a fixed
design matrix �, ordinary linear regression requires calculating �	� which is
O(Nd2) time and O(d2) storage. Depending on how the lasso and ridge penalties
are implemented, penalized linear regression can be very efficient, for example,
cyclical coordinate descent takes O(Nd) time for each update of all of the pa-
rameters (Friedman, Hastie and Tibshirani (2010)). The important point is that the
overall running time is linear in N rather than cubic, a significant savings in time.
This approach is competitive with standard approaches to scalable inference in the
spatial statistics literature (Sun, Li and Genton (2012), Milton et al. (2019)).

During competition, we performed optimization using the large-scale machine
learning package Vowpal Wabbit (http://hunch.net/~vw). Vowpal Wabbit employs
feature hashing (Weinberger et al. (2009)) and online learning, which is even faster
than the standard O(Nd2) approach to linear regression, allowing it to scale up
to handle huge datasets. We fit the training dataset using default settings for the
learning algorithm (a variant of online gradient descent), with at most 200 train-
ing passes (epochs) through the dataset. As a stopping criterion for convergence
was applied, running times did not directly vary with dataset size. For any given
set of hyperparameters (except the regularization parameters), a new dataset was
produced and saved to disk, and then this model was fit across the full path of reg-
ularization parameters by repeatedly running Vowpal Wabbit. The entire process
of dataset creation and multiple calls to Vowpal Wabbit usually took about half an
hour, even with datasets as large as N ≈ 300 k (one week time horizon). All of our
computation was carried out in a parallel cluster computing environment, with 8
Dell PowerEdge R630 nodes. Each node consisted of 2 × Intel Xeon E5-2690 v4
2.6 GHz, 14 Core CPUs, and 256 GB memory.

After fitting the model, we made predictions in the form of counts for the test
data, and then calculate PEI for each year of data, where PEI is a forecasting accu-
racy metric used in the crime forecasting literature. To learn the hyperparameters,
we maximize average PEI. The hyperparameters related to our model are as fol-
lows: the number of random features d in our feature expansion, the number of
lags p, the size of the temporal window D, the spatial lengthscale for KDE λ

(with a Gaussian kernel), the lengthscale θ of the covariance kernel kθ (we used
a Matérn-5/2 kernel, a standard choice in spatial statistics (Guttorp and Gneiting
(2005))) and the amount of 
1 and 
2 regularization a and b. In addition, there are
competition-related hyperparameters that are learned, including cell size, shape,
grid rotation and forecast area. We cross validated over a very large grid of hy-
perparameters, considering a range of values for each parameter and every pos-
sible combination of these values. As an alternative method to further explore

http://hunch.net/~vw
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the entire space of hyperparameter choices, we separately performed a hyperpa-
rameter search using sequential Bayesian Optimization (O’Hagan (1992), Snoek,
Larochelle and Adams (2012), Hennig, Osborne and Girolami (2015)). Having run
both searches, we combined the results and chose the best sets of hyperparameters
based on cross validated average PEI. Additional details are given in Section C of
the Supplementary Materials (Flaxman et al. (2019a)).

2.4. Relationship with prior work. Supervised learning methods are widely
used within nonspatiotemporal applications. However, they are less commonly
used within the applied spatial (Heaton et al. (2019)), time series (Makridakis,
Spiliotis and Assimakopoulos (2018)) and crime forecasting domains. In crime
forecasting KDE-based forecasting approaches remain the most common fore-
casting techniques used (Gorr, Olligschlaeger and Thompson (2003), Gorr (2009),
Chainey, Tompson and Uhlig (2008), Caplan, Kennedy and Miller (2011), Berk
et al. (2018)). While small numbers of parameters may be user selected and mod-
ified, these methods are commonly implemented absent any framework for maxi-
mizing the objective function of forecasting accuracy. Instead, practitioners modify
parameters on an ad hoc basis, assuming that the resulting forecasts are a reason-
able implementation of KDE methods. For a recent exception to this approach, see
Rosser and Cheng (2019).

When prior work has sought to improve upon the performance of these less-
than-optimized KDE forecasts, the principle area of focus has not been on scalable
hyperparameter optimization, but instead on implementing model-based charac-
terizations of underlying crime intensities. Some work has focused on modeling
spatial and temporal range of crime decays (Johnson et al. (2009)), but the Hawkes
process has recently been the focus of significant attention in the crime forecast-
ing literature (Ogata (1988), Møller and Rasmussen (2005), Mohler et al. (2011),
Mohler (2013, 2014), Rosser and Cheng (2019), Loeffler and Flaxman (2018)).
Both approaches seek to avoid a common feature of prior KDE methods which
implicitly weight all prior events as equally informative with no attention to re-
cency. However, the question of how to identify the optimal spatial and temporal
range of crime decay is also not entirely addressed in these contributions.

The logic of our approach is that it combines state-of-the-art nonparametric spa-
tiotemporal methods (Gaussian process regression), which fundamentally encode
an assumption of spatial and temporal autocorrelation, with the most long-standing
and widely used crime forecasting method (KDE surfaces) by defining sets of fea-
tures for each. By placing these two sets of features into a penalized supervised
learning framework for forecasting the intensity and considering a large set of
hyperparameters and training data, we hope to combine the benefits of nonpara-
metric modeling, principally accuracy in the absence of a known best model, with
the benefits of parametric modeling, principally model simplicity, to obtain good
predictive performance on unseen data. For a discussion of the similarities of op-
timized KDE features and so-called “Hawkes features,” see Section A.3 of the
Supplementary Materials (Flaxman et al. (2019a)).
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3. The competition. The goal of the NIJ Real-Time Crime Forecasting Com-
petition was to forecast hotspots for several categories of calls for service to the
Portland Police Bureau (PPB) in Portland, Oregon. Contestants submitted fore-
casts on (or before) February 28, 2017, for various time horizons starting on March
1, 2017, and extending as late as May 31, 2017. The hotspot predictions were
scored on two metrics related to their accuracy. Contest rules required that contes-
tants predict which of the 62,500–360,000 square foot cells within PPB’s 147.71
square mile service area would have the highest number of calls for service, with
the total forecast area being no smaller than 0.25 square miles and no larger than
0.75 square miles, equivalent to forecasting 175–525 city blocks out of a total of
103,397 blocks. Prizes were given out for five different cumulative forecast pe-
riods (one week, two weeks, four weeks, eight weeks, 12 weeks), four different
crime categories (burglary, street crime, theft of auto, all calls for service) and two
different accuracy metrics.

3.1. Data and setting. The NIJ Real-Time Crime Forecasting dataset consists
of 958,499 calls for service records from the Portland Police Bureau (PPB), repre-
senting calls to Portland’s 911 system requesting police assistance from March
1st, 2012, through February 28th, 2017. As shown in Figure 2, the four cate-
gories of crime, which themselves varied in the degree of internal heterogeneity,
included burglary (burglary and prowling), street crime (ranging from disturbance
and threats up to armed robbery and assault with a Firearm), theft of auto and all
calls for service.

3.2. Metrics. The simplest metric for evaluating the accuracy of crime fore-
casts is the “hit rate” (Chainey, Tompson and Uhlig (2008)),2

Hit rate = n

T
,

where n is the number of crimes predicted and T is the total number of crimes in
that period in that area. Performance on this metric depends critically on the size
of the forecasted area in addition to underlying crime densities and forecasting
quality. In the case of the NIJ competition, this coverage area was between 0.2%
and 0.5% of the City of Portland.

The NIJ competition focused on two alternatives metrics (Chainey, Tompson
and Uhlig (2008), Hunt (2016)) with a goal of allowing for a comparison of hit
rates across forecasts using different coverage areas. The first metric, the prediction
accuracy index (PAI) (Chainey, Tompson and Uhlig (2008)), is the ratio of the hit
rate to the fraction of area covered:

PAI =
n
T
a
A

.

2It is also known as sensitivity in the statistics literature. See Adepeju, Rosser and Cheng (2016)
for a recent discussion of alternative evaluation metrics for crime forecasting.
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FIG. 2. The competition focused on four categories of crimes, ranging from the very abundant (all
calls for service) to the very sparse (burglaries). Shown here are the locations of reported crimes in
February 2016.

This metric directly incorporates the trade-off between hit rate and coverage, as in
an ROC curve, into the score weighting.

The second metric, the prediction efficiency index (PEI), is the ratio of PAI to
the hypothetically maximum PAI that could have been obtained using the chosen
coverage area and discretization of space. Since the forecasting area is the same in
both the actual and hypothetical maximum cases, this reduces to

PEI = n

n∗ ,

where n is the number of crimes occurring in predicted hotspots and n∗ is the
maximum number of crimes that could have been captured for the forecasted area.
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While optimizing either metric will produce similar results some of the time,
optimizing for PEI incurs a PAI penalty proportional to the marginal change in
forecasted area divided by the marginal change in correctly forecasted crimes.
Therefore, the optimal cell selection for maximizing PEI will often fail to maxi-
mize PAI. For the competition we maximized the PEI metric. (For a result making
the opposite choice, see Mohler and Porter (2018).)

3.3. Data for training and hyperparameter selection. For a given spatial grid
size we restricted our temporal windows to match the corresponding forecasting
window. For example, for a one week forecasting window the training data is ag-
gregated to the weekly level. The training period consisted of each prior year’s ag-
gregated counts, excluding the corresponding time period, being forecasted. This
excluded period formed the validation period. We then created a single dataset us-
ing data from the union of all of the training and validation periods. Using this
dataset, we forecasted hotspot maps for the five different validation periods, cor-
responding to the five different years of pre-2017 data available and calculated
PEI for each. The average of this heldout PEI was then maximized to select the
hyperparameters of the model.

4. NIJ challenge results. In this section we describe the performance of our
method according to the scoring metrics of the NIJ challenge, assess its robustness
and investigate what features of the model contributed to its out-of-sample per-
formance. Source code for replication is available in the Supplementary Materials
(Flaxman et al. (2019b)) and online at https://github.com/MichaelChirico/portland.

There were a total of 40 prizes awarded, one for each of the highest PEI and
PAI scores in each crime category and forecasting window. Our team won a total
of nine prizes in the “Large Business” competition. As we focused on maximizing
the forecasting performance on the out-of-sample PEI metric, most of our winning
entries were in this category: all calls for service (one week, one month, three
months), burglary (one week, two weeks), street crime (two weeks) and theft of
auto (one week). In addition, we also had winning PAI entries for burglary (one
week and two weeks).

At the heart of our model was a hyperparameter search strategy, in which fi-
nal models were selected from the union of all models explored by an exhaustive
grid search coupled with a Bayesian Optimization designed to optimize forecast-
ing accuracy. In practice, there were no consistently chosen hyperparameter val-
ues: the grid cells were sometimes small squares, 250 ft × 250 ft (the minimum
area), or large squares, 600 ft × 600 ft (the maximum area) or large rectangles,
800 ft × 450 ft (also the maximum area). The coverage fraction ranged from the
minimum (0.25 sq miles) to the maximum (0.75 sq miles). The lengthscales for
space and time were highly varied, as were the number of KDE lags and the KDE
bandwidth. The number of random Fourier features went as low as d = 5, which

https://github.com/MichaelChirico/portland
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means that the surface was a very crude approximation to a Gaussian process con-
sisting of the sum of 10 random sine and cosine functions, to as high as 362, a
much better approximation. In a minority of cases, no 
1 or 
2 regularization was
needed, but most final models used at least some 
2 regularization. In a minority
of cases (four out of 20) the best hyperparameters turned out to be those found
by Bayesian Optimization, while in all other cases the best hyperparameters were
those found by grid search. (See Table A1 in the Supplementary Materials for de-
tails (Flaxman et al. (2019a)).) The lack of overlap in optimal hyperparameter se-
lection across competition categories both reinforces the importance of supervised
learning optimization for forecasting accuracy and raises the question of whether
other, possibly more uniform, hyperparameter choices might also exist.

We examine the distribution of all PEI values obtained in our grid search for
each category/forecast window separately. For the one week theft of auto and bur-
glary categories, 41% and 44%, respectively, of the possible hyperparameter com-
binations gave PEI scores of zero. This is strong evidence for the importance of
an exhaustive hyperparameter search, at least for these sparse events. To further
quantify this numerically, we calculate the z-score of the maximum PEI for the
distribution of PEIs for each category/forecast window. Our winning theft of auto
one week entry had a PEI z-score of 21, and our winning burglary entries had
z-scores of 12.4 (one week) and 11 (two weeks), all results which are consistent
with the idea that good forecasting accuracy requires an exhaustive hyperparam-
eter search. The distributions for more abundant crime types did not yield such
extreme z-scores: in the All Calls for Service category, the z-scores of the max-
imum PEIs ranged from 2.5 to 4.0. In the street crimes category the z-scores of
the maximum PEIs ranged from 2.8 to 5.6. Thus, for more abundant crime types a
range of hyperparameters could produce similar results.

A final question concerning the competition is the maximum achievable level of
forecasting accuracy. As shown in Figure 3, which depicts the maximum achieved
PEI for all competitors, for high volume crimes, such as all calls for service, even a
week’s worth of data is sufficient to achieve very high PEI scores (nearly 0.9) of the
theoretical limit (one) for a one week prediction. Extending the cumulative forecast
period leads to further improvements in forecasting accuracy, plateauing at 97%.
Sizable subcategories, such as street crimes, share this basic trajectory as well,
suggesting that for high volume crimes over both short and medium-term hori-
zons near limit and unity performance can be expected. For some sparse crimes,
such as theft of auto, despite lower starting values, similar improvements in predic-
tive accuracy can be seen as the forecasting windows are expanded, even if these
improvements are not strictly monotonically increasing. Whether a longer hori-
zon would lead to further improvements is unknown. However, for other sparse
crimes, such as burglary, adding additional weeks of data to the forecast period
does little to improve maximum achieved forecast accuracy. Reinforcing the idea
that crime forecasting is not a single problem but several, only some of which are
more accurately solved through the addition of more data.
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FIG. 3. Competition Maximum PEI Performance Among All Competitors. Each column represents
the highest level of forecasting accuracy achieved across all competitors for a particular combination
of crime type and forecasting period. From left to right all calls for service, burglary, street crime
and theft of auto for one week, two weeks, one month, two months and three months (also left to
right).

4.1. Investigating method performance. As discussed in Section 1, many
crime forecasting implementations rely on KDE-type approaches. As our model
included lagged KDE terms, we expected to always perform as well as a KDE-
type baseline. As a post-competition check, we fit a model with just one KDE lag,
corresponding to a KDE-type baseline, and fixed parameters according to com-
mon practice (Chainey and Ratcliffe (2005)) and found that our model was better
than this baseline 90% of the time (18 cases out of 20) on the true out-of-sample
forecasted data with an average absolute improvement of 0.16 for the PEI scoring
metric. The improvements were most notable for sparse crimes and short time-
horizons, as the baseline model often identified no correct theft of auto or burglary
hotspots (Figure 4). Interestingly, for the two forecasts for which simple KDE out-
performed our model (e.g., burglary 2 months and 3 months), hyperparameters for
the model were selected using Bayesian Optimization (BO) rather than grid search,
suggesting that BO will not always give the optimal set of parameters. Comparing
the full method, which combines lagged KDE terms and a Gaussian process sur-
face, to a model without the Gaussian process surface, the full model gave better
PEI results 75% of the time. The average absolute improvement was 0.05. Thus,
although the full model is an improvement, the improvements are not as dramatic
as going from a simple KDE to a lagged KDE model with kernels optimized for
forecasting accuracy. This result suggests that for many models, especially ones
predicting sparse events (as depicted in Figure 5), the routine variation in perfor-
mance is sufficient to swamp the benefits of using Gaussian process surfaces or
other complex methods. Instead, considerable portions of achievable performance
improvements can be realized by optimizing the parameters of simpler methods,
such as lagged KDEs.
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FIG. 4. KDE Baseline (x-axis) compared to Full Model (y-axis). The Full Model outperformed
the KDE Baseline Model in 18 out of 20 forecast problems. The average out-of-sample performance
improvement of the Full Model over the KDE Baseline Model was 0.16 on the PEI scoring metric.
BURG = burglary, SC = street crime, TOA = theft of auto, ACFS = all calls for service.

Rosser et al. (2016) recently demonstrated that due to geocoding, noncardinal
land use and other related factors, a nonstandard alignment could improve predic-
tive accuracy in crime forecasting. In the present application, we explored altering
the rotation of the entire tessellation and the dimensions of the cell rectangles.
With improved performance of only 0.029 on the PEI scoring metric for a freely
rotated model when compared to the best performing nonrotated model, rotation
does not appear to be a major contributor to overall performance. However, certain
crime categories and forecast windows can be observed to benefit more substan-
tially. A similar result can be observed for altering cell dimensions, which only
improves overall performance on the PEI scoring metric by 0.019, when com-
pared to a conventionally used 600 ft × 600 ft rectangle. (See Figures A2–A4 in
the Supplementary Materials (Flaxman et al. (2019a)) for more details.) These re-
sults parallel previous findings that showed the limited return on the inclusion of
nonautoregressive information (Wang, Gerber and Brown (2012), Gerber (2014)).
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FIG. 5. Rolling Forecast. The 13 week competition period (March through May 2017) was split
into 13 one-week forecast periods and a one-week rolling forward prediction was made for each
week using the competition model trained to predict only the first out-of-sample week.

The sparseness of several of the forecasted incidents and recent findings on lack
of robustness of forecasting models (Rosser and Cheng (2019)) suggests that it
is worthwhile to examine the stability of the model’s performance over multiple
periods. To accomplish this, the 13 week competition period (March through May
2017) was split into 13 one-week forecast periods and a one-week rolling forward
prediction was made for each week. The resulting predictions, as seen in Figure 5,
manifest variability consistent with the stochastic events being predicted. However,
these rolling-forward predictions provide little evidence of over-fitting to the first
out-of-sample time period, even for the sparsest of incidents. They instead suggest,
at least for settings like the competition, that the short-term accuracy improvements
are robust and stable.

Alongside submodel component performance and model stability, a final area
of interest is method error. Figure 6 (left) shows the actual performance of the full
forecasting model for a high volume crime category (ACFS) and a middle-range
forecasting period (one month). Polygons that were correctly forecast as the high-
est possible crime count polygons are in green. Polygons incorrectly forecast to
not be hotspots are in red. And polygons that were incorrectly predicted to be the
highest possible crime count polygons are depicted in blue. Crimes are black dots.
The largest single cluster of hotspots for all calls for service can be seen down-
town. However, the model slightly over invested in this section of Portland. As can
be seen in the inset, hotspots just across the Willamette River had more crimes
reported over the relevant forecast window. In practice, most of these misses were
relatively small with “false negatives” only slightly “hotter” than the correspond-
ing “false positive” cells (e.g., 44 crimes in a FN cell versus 39 crimes in a FP
cell).
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FIG. 6. Left: all calls for service one month. Correctly forecast polygons are in green. “False
negative” polygons are in red. “False positive” polygons are depicted in blue. Crimes are black
dots. Right: burglary one week. Forecasted burglary cells are depicted with boxes. Actual burglaries
are depicted by blue x’s. Boxed x’s indicate a successful prediction. Empty boxes indicate a “false
positive” prediction.

Figure 6 (right) show the actual performance of the model for a sparse crime
category (burglary) and a short-range forecasting period (one week). Forecasted
burglary cells are depicted with boxes and actual burglaries are depicted by blue
x’s. Boxed x’s indicate a successful prediction, while empty boxes indicate a “false
positive” prediction. The absence of large-scale clustering is quite visible in both
the dispersion of the burglaries throughout Portland and in the similarly dispersed
allocation of predictions. As can be seen in the inset, a successful prediction was
accompanied by several near misses in the vicinity, including one near-miss off by
only a single cell. Predicting sparse crimes, while more difficult than predicting
concentrated crimes, is still achievable and with accuracy levels not previously
seen with other conventional forecasting methods.

5. Discussion. Real-time spatiotemporal forecasting is an area of increasing
interest. Yet many common approaches, such as kernel smoothing based on fixed
bandwidths and cell sizes, can be quite limited in their out-of-the-box accuracy,
especially for sparse events. Past work (Johnson et al. (2009)) has reported one-
week burglary forecasting accuracy of 10% at 1.3% of coverage area and 25% of
burglaries at 5% of coverage area using near-repeat models with baseline KDE
models producing one-week accuracy of 10% at 2% coverage and 25% at 6.5%
coverage. Mohler et al. (2011) report 5% accuracy for daily predictions at compa-
rable coverage levels. By comparison, using the described methods, median one-
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week burglary accuracy of 10% was achieved with a coverage area of 0.5% and
50% of the time 25% forecasting accuracy was achieved at 0.5% coverage.

These results build upon prior work exploring parameter tuning (Chainey
(2013), Rosser and Cheng (2019)) and reinforce three points. First, it appears that
simple but well-tuned models incorporating lagged kernel smoothing can achieve
many of the benefits commonly associated with more complex methods. This con-
clusion stems from the recognition that parameter optimization, particularly in the
case of kernel smoothing, is a reweighting of different spatiotemporal portions of
an autoregressive process for forecasting accuracy. Second, the poor performance
of conventional kernel estimators with parameters set based on rules-of-thumb sug-
gests that many existing crime forecasting implementations are not as accurate as
they could be. Third, while some parameters are more important than others, no
one parameter is universally better and, as such, supervised learning will likely be
a continuing feature of spatiotemporal crime forecasting.

While the results reported here suggest that forecasting the hottest high volume
crime hotspots can be done with great accuracy using a variety of techniques, the
same cannot be said for sparse events, at least not yet. This leaves as an open ques-
tion whether rare crime events are intrinsically harder to forecast due to random
error or are simply harder because of insufficient training data. The fact that some
rare crime forecasts saw no improvement in forecasting accuracy, despite the ad-
dition of more training data and larger cumulative forecasting windows could be
considered suggestive evidence that there may be a signal limit for this type of
event. However, refitting our models in other settings would shed further light on
this question, as would the inclusion of additional predictors. For example, μ based
on the kernel density estimates of other types of crimes, inspired by criminology
research on “leading indicators” of crime (Cohen, Gorr and Olligschlaeger (2007)).

Another question not answered by these results is why this method’s perfor-
mance was not more uniform. One possible answer is that the methods described
in this paper simply do a better job at forecasting certain types of events over
certain forecasting windows. Another possibility is that incomplete grid-search
of hyperparamaters during competition led to the use of suboptimal parameters
for certain forecasting subtasks. A final possibility is that the close performance
of competitors, on at least some forecasting tasks, achieved near limit forecasting
performance using known methods and data. In future work in other settings, these
possibilities could more readily be teased out.

Pending completion of this research, the absolute performance of different
methods in this competition also raises the policy question, “What is an accept-
able level of accuracy for any crime forecasting method to be used?” In recent
years crime forecasting tools have been a supplement or replacement for tradi-
tional crime analysis (Mohler et al. (2015)) with applications to police deploy-
ment, enforcement actions targeted at particular individuals or places (Lum and
Isaac (2016), Perry et al. (2013)) as well as nonenforcement notification strate-
gies (Groff and Taniguchi (2019)). These applications, especially those involving
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law enforcement activity, have elevated concerns about fairness in criminal jus-
tice decision making, leading to a vigorous debate about definitions of algorithmic
fairness (Berk et al. (2018), Corbett-Davies et al. (2017), Mitchell et al. (2018)).
While fairness is an important debate, we have focused instead on accuracy, as this
is a necessary precondition to considerations of fairness (Dressel and Farid (2018),
Rudin and Ustun (2018)). As the results of our research suggest, opportunities for
large gains in accuracy exist through the use of standard machine learning frame-
works and spatial statistical methods.
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SUPPLEMENTARY MATERIAL

Supplement to “Scalable high-resolution forecasting of sparse spatiotem-
poral events with kernel methods: A winning solution to the NIJ ‘Real-Time
Crime Forecasting Challenge’” (DOI: 10.1214/19-AOAS1284SUPPA; .pdf).
Supplement on scalable Gaussian processes, additional results, hyperparameter
choices.

Source code for “Scalable high-resolution forecasting of sparse spatiotem-
poral events with kernel methods: A winning solution to the NIJ ‘Real-
Time Crime Forecasting Challenge’” (DOI: 10.1214/19-AOAS1284SUPPB;
.zip). R source code for the models described in this paper and data files from
the NIJ competition.
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